WO2022264911A1 - Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system - Google Patents

Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system Download PDF

Info

Publication number
WO2022264911A1
WO2022264911A1 PCT/JP2022/023257 JP2022023257W WO2022264911A1 WO 2022264911 A1 WO2022264911 A1 WO 2022264911A1 JP 2022023257 W JP2022023257 W JP 2022023257W WO 2022264911 A1 WO2022264911 A1 WO 2022264911A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing plate
belt
shaped object
strip
cable
Prior art date
Application number
PCT/JP2022/023257
Other languages
French (fr)
Japanese (ja)
Inventor
基善 北井
熱気 小寺
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2023529829A priority Critical patent/JPWO2022264911A1/ja
Publication of WO2022264911A1 publication Critical patent/WO2022264911A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/26Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for engaging or disengaging the two parts of a coupling device

Definitions

  • the present invention relates to a method for performing three-dimensional measurement of a band-like object such as a flexible printed circuit board having a reinforcing plate at its tip, and a method for connecting the tip of the band-like object to a connector.
  • the invention also relates to a system and controller for implementing the connection of strips to connectors.
  • Patent Document 2 discloses that the tip of a flexible cable is imaged with a stereo camera, edge processing is performed, and the edge of a member to be grasped is processed. is extracted, and fitting processing is performed on a rectangular model that is the shape of the member to be grasped to calculate the position and orientation of the member to be grasped. Further, in Patent Documents 3 and 4, a belt-shaped object such as a flat cable in a free state where deformation due to bending or twisting is not restricted is imaged with a stereo camera, the side edge is extracted, and its three-dimensional coordinates are calculated. It is described that a three-dimensional measuring method for a belt-shaped object is performed by doing so.
  • the flexible cable described in Patent Document 2 has a gripped member (male connector) larger than the cable main body at the tip, and the position range information of the gripped member that has been acquired in advance is used.
  • the threshold processing it is required that position range information be obtained in advance and that the grasped member be positioned within the position range.
  • the threshold processing cannot distinguish between the cable body and the gripped member, and cannot accurately calculate the position and orientation of the gripped member.
  • Patent Documents 3 and 4 do not particularly mention the presence or absence of a reinforcing plate at the tip of the strip.
  • the present invention has been made in consideration of the above, and provides a method for efficiently performing three-dimensional measurement of a strip having a reinforcing plate at its tip, and a method for connecting the tip of the strip to a connector.
  • the purpose is to provide a method to
  • a three-dimensional measurement method for a belt-shaped object includes an image acquisition step of acquiring image information of a belt-shaped object having a reinforcing plate at the tip thereof; and a step of calculating the position and orientation of the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate.
  • the image information includes color information
  • the identifying step identifies the reinforcing plate and the belt-like article main body based on the color information.
  • the image information includes positional information of at least two sides or three corners of the reinforcing plate, and the identifying step identifies the reinforcing plate and the belt-like article body based on the positional information.
  • the belt-like objects are arranged in a state in which the position and orientation are indefinite.
  • one end of the strip is fixed, and the other end provided with the reinforcing plate is free in the air.
  • the belt-shaped object main body is a flexible object.
  • the belt-like object connection method of the present invention operates a robot hand to move the reinforcing plate or the belt-like object main body portion in the vicinity of the reinforcing plate based on the position and orientation of the reinforcing plate or the belt-like object main body near the reinforcing plate calculated by the three-dimensional measurement method.
  • a belt-shaped object connection system control device of the present invention is a belt-shaped object connection system control device for controlling a system in which a belt-shaped object having a reinforcing plate at its tip is held by a robot and connected to a connector, and the belt-shaped object is imaged. and an image pickup unit capable of acquiring an image by using the image pickup unit.
  • the computing unit identifies the reinforcing plate and the main body portion of the belt-shaped object in the image, and calculates the position and orientation of the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate.
  • the robot is caused to hold the reinforcing plate or the belt-like object main body in the vicinity of the reinforcing plate by a robot hand, and the belt-shaped object main body Instructing the connection of the tip of an object to the connector.
  • a belt-like object connection system of the present invention includes the belt-like object connection system control device and the robot having the robot hand.
  • the reinforcing plate and the main body of the belt-like object are distinguished, and the reinforcing plate or the belt-like object in the vicinity of the reinforcing plate is detected. Calculate the position and orientation of the body. As a result, even when the position to which the strip is supplied is not constant, or when the flexible strip is in a bent or twisted state, the reinforcing plate or the main body of the strip near the reinforcing plate can be A desired position can be held autonomously by the robot hand.
  • FIG. 1 is a diagram showing the configuration of a belt-shaped object connection system according to a first embodiment of the present invention
  • FIG. It is a figure which shows the structure of a strip
  • FIG. 4 is a process flow chart of the belt-like object connection method of the first embodiment.
  • a to F Diagrams for explaining the belt-like object connection method of the first embodiment.
  • FIG. 10 is a bottom view showing a state in which the robot hand holds the reinforcing plate of the belt-like object;
  • FIG. 10 is a bottom view showing a state in which the robot hand holds the reinforcing plate of the belt-like object;
  • FIG. 10 is a process flow diagram of a belt-like object connecting method according to a second embodiment; 10A to 10D are diagrams for explaining the belt-shaped object connection method of the second embodiment;
  • FIG. FIG. 10 is a diagram showing a state in which the robot hand holds the main body of the belt-like object; A: side view, B: bottom view. It is a figure which shows the structure of a strip
  • FIG. 11 is a process flow diagram of a belt-like object connecting method according to a third embodiment; 10A to 10D are diagrams for explaining a belt-like object connection method according to a third embodiment; FIG.
  • FIG. 1 A first embodiment of the present invention will be described based on FIGS. 1 to 6.
  • FIG. 1 the position and posture of the reinforcing plate provided at the tip of the strip are calculated, the reinforcing plate is gripped by the robot hand, and the tip of the strip is connected to the connector.
  • a belt-like object connection system 10 of this embodiment has a robot 20 and a belt-like object connection system control device 15 that controls the entire system 10 .
  • the belt-like object connection system control device 15 has an imaging section 16 and a calculation section 17 .
  • the belt-like object connection system 10 three-dimensionally measures the belt-like object 50 , holds the belt-like object 50 with the robot hand 30 of the robot 20 , and connects it to the connector 42 .
  • the belt-shaped object connection system control device 15 will be simply referred to as the "system control device”
  • the robot hand 30 will be simply referred to as the "hand”.
  • the type of the belt-shaped object 50 is not particularly limited, and for example, a belt-shaped flexible printed cable (FPC) or a flexible flat cable (FFC) can be targeted.
  • the strip 50 has a reinforcing plate 52 at its tip. In the following description, it is assumed that the strip is FPC. Further, the strip 50 is simply referred to as a "cable”, and the body portion of the strip 50 to which the reinforcing plate 52 is not attached is referred to as a "belt body” 51 or a "cable body” 51.
  • cable 50 is formed by sandwiching wiring 56 formed by etching copper foil or the like between resin films 54 and 55 such as polyimide.
  • resin films 54 and 55 such as polyimide.
  • the resin film 55 on one side is removed to form an electrode portion 57 in which the wiring 56 is exposed in a comb shape.
  • This electrode portion 57 is electrically connected to the connector 42 .
  • a reinforcing plate 52 is attached to the resin film 54 on the other side of the tip.
  • the reinforcing plate 52 is a member for reinforcing the electrode portion 57 of the cable 50.
  • a thin elastic resin plate or the like can be used as the reinforcing plate.
  • the scale of FIG. 2 is not exact for ease of explanation.
  • the thickness of the cable body is several tens of ⁇ m, while the thickness of the reinforcing plate 52 is about 200 ⁇ m.
  • a male connector was attached to the tip of a strip-shaped cable and connected to a female connector, but in recent years, in order to make the connection part more compact, the male connector has been used. Instead, there is an increasing number of cases where the tip of a strip-shaped cable is directly connected to a female connector.
  • the reinforcing plate 52 supports the flexible cable 50 when the electrode portion 57 is connected to the connector 42 , and adjusts the thickness of the cable tip to match the thickness of the connector 42 .
  • the shape of the reinforcing plate 52 is not particularly limited, it generally has substantially the same width as the lateral width of the cable 50 in order to reduce the size of the connecting portion.
  • the reinforcing plate 52 shown in FIG. 2 is provided with protrusions 53A and 53B that protrude in the width direction. The function of the protrusion will be described later.
  • the cable 50 rises from, for example, between the circuit board 40 and the housing 41 of the flat display device with the display section facing downward.
  • the base end of the cable 50 is fixed to a display panel or the like (not shown) inside the housing 41, and the tip of the cable 50 is a free end in the air.
  • a free end is one in which the end of the cable is free to move, twist or bend.
  • a connector 42 is mounted on the board 40, and the cable 50 is connected to this connector 42.
  • the connector 42 is a female connector into which the tip of a cable is inserted for connection, and is also called a receptacle, socket, slot, or the like.
  • the format of the connector is not particularly limited.
  • the connector 42 shown in FIG. 1 is called a flip-lock type, and has a cover member 43 that can be opened and closed by rotating around a shaft 44 as a lock mechanism. By inserting the cable 50 into the open connector with the electrode portion 57 facing downward and closing the cover member toward the cable side, the cable can be held down and prevented from coming off the connector. .
  • the system control device 15 has an imaging section 16 and a computing section 17 .
  • the system controller measures the positions and orientations of the tip of the cable 50 and the connector 42 in the three-dimensional space, and gives necessary instructions to the robot 20 .
  • the imaging unit 16 images the tip of the cable 50 and the connector 42 to acquire the image information.
  • Image information includes an image and information capable of calculating three-dimensional coordinates.
  • the image information is, for example, stereo image information captured from different viewpoints, or distance images obtained by a light section method or a TOF method, depending on the type of imaging unit.
  • the image information preferably includes color information. This is because the identification of the reinforcing plate 52 and the cable main body 51 is facilitated by using the color information.
  • the imaging unit 16 may combine two or more measurement devices, for example, a combination of a light cutting device and a two-dimensional color camera.
  • a stereo camera more preferably a stereo camera capable of acquiring color information is used.
  • the stereo camera uses the principle of triangulation to calculate the three-dimensional positions of measurement points, and uses epipolar lines to find corresponding points at high speed. Dimensional measurements are possible.
  • the calculation unit 17 identifies the reinforcing plate 52 and the cable main body 51 from the image information of the tip of the cable 50, and determines the portion of the reinforcing plate or the cable main body near the reinforcing plate to be held by the hand 30. Calculate position and orientation. Moreover, the calculation unit instructs the robot 20 to perform a necessary operation based on these calculated values. Specifically, the computing unit instructs the hand 30 to hold the reinforcing plate or the cable main body 51 in the vicinity of the reinforcing plate, and to connect the tip of the cable 50 to the connector 42 . The calculation unit 17 also calculates the position and orientation of the connector 42 from the image information of the connector 42 .
  • the physical configuration of the computing unit 17 is not particularly limited.
  • the calculation unit 17 may be configured integrally with the imaging unit 16 as shown in FIG. 1, or may be configured by being divided into two or more parts. Further, all or part of the calculation unit 17 may be configured integrally with the control unit 25 of the robot, which will be described later.
  • the robot 20 is an articulated robot.
  • the robot 20 has an arm 21 to which a plurality of links 22 and joints 23 are connected, a hand 30 attached to the tip of the arm, and a controller 25 .
  • a control unit 25 controls the operation of the entire robot including the arm 21 and hand 30 .
  • the control unit 25 receives an instruction from the system control device 15, calculates the positions and angles of the joints 23 necessary for the instructed motion, moves the hand 30 to the target position, and also holds the cable 50. , release, etc. to the hand.
  • the robot hand 30 holds the cable 50.
  • the type of the hand 30 is not particularly limited, and may be one that holds the cable by suction or one that holds the cable by pinching it.
  • the hand 30 holds the cable by suction. This is because it is suitable for work in a narrow space because it can be held in contact with only one side of the cable.
  • the hand 30 of this embodiment holds the cable 50 by suction.
  • the hand 30 has a hand main body portion 31 having a substantially rectangular parallelepiped shape and a post 37 .
  • a plurality of suction holes 35 are provided along one side (the left side in FIG. 3B) on the lower surface of the hand main body 31 , and the suction holes communicate with a pressure reduction source 38 (not shown) via an air passage 36 .
  • a flat portion 32 is formed in the lower surface of the hand body portion 31 in a region including the suction hole, and ridges 33 are formed at both ends of the flat portion in the width direction.
  • the hand 30 applies the suction hole 35 to the reinforcing plate 52 of the cable 50 or the cable main body portion 51 in the vicinity of the reinforcing plate to suck and hold the cable.
  • the reinforcing plate 52 or the cable body portion 51 in the vicinity of the reinforcing plate is accommodated between the ridges 33 and comes into contact with the flat portion 32 .
  • FIG. 5A shows the state before starting this strip connection method.
  • the connector is in an open state with the cover member 43 upright. If the connector is in the closed state, the cover member is raised to open the connector. When the connector is in place, the cover member is raised and opened by a previously taught robot.
  • the imaging unit 16 of the system control device 15 captures an image of the connector to obtain image information, and the computing unit 17 calculates the position and orientation of the connector by a known method. Control the robot to open the cover member based on the position and orientation.
  • the imaging unit is a stereo camera
  • the corresponding points of the points to be measured on the two images are obtained, and the corresponding points on each image and the positional relationship between the two cameras are used to locate the measurement points using the principle of triangulation. 3D coordinates are calculated.
  • the position and orientation of the contour of the connector 42 in the three-dimensional space can be obtained. This makes it possible to determine the direction in which the cable is inserted into the connector.
  • the tip of the cable 50 is three-dimensionally measured.
  • the imaging unit 16 images the tip of the cable 50 .
  • the image includes the reinforcing plate 52 and the portion of the cable main body 51 in the vicinity of the reinforcing plate 52 .
  • the computing unit 17 identifies the reinforcing plate and the cable body.
  • the image information includes color information
  • the computing section 17 distinguishes between the reinforcing plate and the cable body based on the color information. For example, if the resin film of the FPC is a transparent orange color, the reinforcing plate and the cable body can be identified by distinguishing the color of the region on the image by making the reinforcing plate a different color.
  • the matching process that searches for corresponding points on two images is a process that causes measurement errors.
  • the cable 50 is provided with the reinforcing plate 52 at the tip, especially when the reinforcing plate is thin and the width of the reinforcing plate is substantially the same as the width of the cable body, unlike the case where the cable is provided with the male connector at the tip.
  • the feature points are few and difficult to detect.
  • the color information it is possible to distinguish between the reinforcing plate and the cable main body with a small amount of calculation, and it is possible to reduce the error of the matching process and improve the measurement accuracy.
  • the cables and connectors 42 become smaller, the matching process becomes more difficult, but higher measurement accuracy is required. It is particularly preferred to identify portion 51 .
  • the stereo image contains color information. information is available.
  • the reinforcing plate and the cable body are cut based on the color information of the two-dimensional image, and the cut reinforcing plate or The three-dimensional coordinates of the portion of the cable main body to be held by the hand 30, which is the reinforcing plate 52 in this embodiment, may be calculated.
  • the reinforcing plate 52 can be distinguished without using color information.
  • a plurality of reference images or CAD data with different positions and postures of the reinforcing plate may be prepared, and the reinforcing plate and the cable body may be identified by pattern matching with the image acquired by the imaging unit 16 .
  • the reinforcing plate 52 can be regarded as a flat surface and is often rectangular, the outline of the tip of the cable 50 can be calculated using the corners and sides of the tip of the cable 50 as clues, for example, by the methods described in Patent Documents 3 and 4. is extracted, the reinforcing plate can be identified by specifying two sides or three corners of the reinforcing plate.
  • the rear end portion of the reinforcing plate is accommodated between the two ridges 33 of the hand 30 and abuts on the flat portion (32 in FIG. 3B). At this time, preferably, the position where the projecting portion 53B comes immediately in front of the tip end 34 of the projected streak is sucked.
  • the tip of the cable 50 is horizontally inserted into the connector 42, and the cable is removed by pushing the step or constriction at the boundary between the reinforcing plate and the cable main body 51. It can be inserted all the way into the connector.
  • the cable 50 is inserted all the way into the connector 42, and the insertion state is checked.
  • the tip of the protrusion 34 pushes the protrusion 53B.
  • the insertion state can be confirmed by confirming whether the insertion is pushed to the position of .
  • an image of the connector 42 is further taken to check the insertion state of the cable 50 with the image. For example, check if the cable is connected diagonally to the connector.
  • the position and posture of the cable main body near the reinforcing plate attached to the tip of the belt-shaped object are calculated, and the cable main body is grasped by a robot hand, and the tip of the cable is moved. connect to the connector.
  • FIG. 9 shows a state in which the hand 30 holds the cable 70.
  • the cable 70 is composed of a reinforcing plate 72 and a cable body portion 71.
  • the reinforcing plate 72 is provided with a protrusion 73B projecting in the width direction at the rear end of the reinforcing plate.
  • Other configurations of cable 70 are the same as cable 50 of FIG.
  • the hand 30 is attracted to the cable main body portion 71 near the reinforcing plate 72, and the cable main body portion 71 is accommodated between the two ridges 33 and contacts the flat portion (32 in FIG. 3B). Also, the ridges 33 on both sides of the hand 30 extend to the front end of the hand main body 31 . Preferably, when the hand 30 holds the cable main body 71, the cable is sucked so that the protruding tip 34 is positioned immediately behind the protrusion 73B.
  • the belt-like object connection system of this embodiment is the same as that shown in FIG. 1, and the robot 20, imaging unit 16, and computing unit 17 that constitute the system 10 are also the same as those of the first embodiment.
  • FIG. 7 shows the process flow of the belt-like object connection method of this embodiment. Steps S1 to S2, S5 and S7 are the same as in the first embodiment in which the reinforcing plate is held.
  • Fig. 8A shows the state before starting this strip connection method.
  • the connector 62 shown in FIG. 8 is of a type in which the portion into which the cable is inserted does not open and the tip of the cable is inserted parallel to a narrow slot.
  • step S2 it is not always necessary to calculate the three-dimensional coordinates of the reinforcing plate 72, and at least the positional information of the cable body 71 in the vicinity of the boundary with the reinforcing plate 72 should be calculated.
  • the hand 30 holds the cable body 71 in the vicinity of the reinforcing plate 72 (FIG. 8B). Specifically, based on the position and orientation of the portion of the cable body to be gripped calculated in the previous step S2, the suction hole 35 of the hand is attracted to and held by the cable body. For example, the position at a predetermined distance in the longitudinal direction of the cable main body from the central point of the boundary between the cable main body 71 and the reinforcing plate 72 is notified to the robot as the holding position, and the robot is sucked and held. Referring to FIG. 9, hand 30 preferably holds a position as close to reinforcing plate 72 as possible.
  • the distance between the rear end of the reinforcing plate 72 and the front end of the plane portion 32 of the hand is preferably less than the width of the cable 70 and less than 5 mm.
  • the inclination of the reinforcing plate 72 is measured.
  • the imaging unit 16 of the system control device 15 captures an image of the tip of the cable 70 to obtain image information, and the calculation unit 17 calculates the orientation (inclination) of the reinforcing plate. Due to the flexibility of the cable 70, the orientation of the reinforcing plate 72 not held by the hand 30 may not be constant. By measuring the orientation of the reinforcing plate 72, the posture of the hand 30 when inserting the cable 70 into the connector 62 can be determined.
  • the position and orientation of the reinforcing plate provided at the tip of the strip are calculated, the robot hand grips the reinforcing plate, and the tip of the strip is connected to the connector.
  • This embodiment differs from the first embodiment in the method of connecting the tip of the cable to the connector.
  • the cable and connector are separated by pushing the terminal provided at the tip of the cable from the upper side of the connector toward the board.
  • terminal 98 is fixed to electrode portion 97 by soldering or the like. This terminal 98 is sometimes called a header.
  • the cable 90 and the connector 82 are connected by pushing the terminal 98 from the upper side of the connector (82 in FIG. 12) toward the board 40 .
  • the belt-like object connection system of this embodiment is the same as that shown in FIG. 1, and the robot 20, imaging unit 16, and computing unit 17 that constitute the system 10 are also the same as those of the first embodiment.
  • FIG. 11 shows the process flow of the belt-like object connection method of this embodiment. Steps S1 to S3, S5 and S7 are all the same as in the first embodiment.
  • Fig. 12A shows the state before starting this strip connection method.
  • S1 The position of the connector 82 is confirmed by three-dimensional measurement.
  • S2 Three-dimensional measurement of the tip of the cable 90, identification of the reinforcing plate 92 and the cable body 91, calculation of the position and orientation of the reinforcing plate 92, and (S3) holding of the reinforcing plate 92 with the hand 30.
  • Fig. 12B The reinforcing plate 92 held by the hand 30 is moved above the connector 82, the terminals 98 are opposed to the openings of the connector 82 (FIG. 12C), and then the terminals 98 are pushed toward the substrate 40. The terminal and connector are connected by mating with 82 (FIG. 12D). After that, (S5) the insertion state of the terminal 98 is confirmed by a force sensor or the like, and (S7) the connection state of the cable 90 is confirmed by an image or the like.
  • the hand 30 holds the cables 50, 70, and 90 arranged in a state where one end is fixed and the other end is free in the air.
  • the initial arrangement of the cables is not limited to this, and the cables may be arranged in a state where the positions and orientations are uncertain.
  • the hand 30 may hold and pick up strips one by one from strips that are randomly stacked on a tray or table.
  • the type of the connector is not limited to the above embodiment, nor is the combination of the position held by the hand 30 (reinforcement plate or cable body) and the moving direction when connecting to the connector also limited to the above embodiment. can't
  • belt-shaped object connection system 15 belt-shaped object connection system control device 16 imaging unit 17 arithmetic unit 20 multi-joint robot 21 arm 22 link 23 joint 25 robot control unit 30 robot hand 31 hand main unit 32 lower surface Plane portion 33 Projection 34 Projection tip 35 Suction hole 36 Ventilation path 37 Post 38 Decompression source 40 Substrate 41 Housing 42 Connector 43 Cover member 44 Shaft 50 FPC cable (belt) 51 Cable body (strip body) 52 Reinforcement plate 53A, 53B Protrusion 54, 55 Resin film 56 Copper wiring 57 Electrode 62 Connector 70 FPC cable (strip) 71 Cable body (strip body), 72 reinforcing plate, 73B protrusion 82 connector 90 FPC cable (strip), 91 cable body (strip body), 92 reinforcing plate, 97 electrode, 98 terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

[Problem] To provide a method of efficiently performing three-dimensional measurement of a strip-shaped object provided with a reinforcement plate at a tip section. [Solution] Provided is a three-dimensional measurement method for a strip-shaped object, the method including: an image acquisition step for acquiring image information of a strip-shaped object (50) provided with a reinforcement plate (52) at a tip section; an identification step for identifying the reinforcement plate (52) and a body section (51) of the strip-shaped object in the image information; and a step for calculating the position and orientation of the reinforcement plate or the strip-shaped object body section near the reinforcement plate.

Description

帯状物の3次元計測方法、帯状物の接続方法、帯状物接続システム制御装置および帯状物接続システムBelt-shaped object three-dimensional measurement method, belt-shaped object connection method, belt-shaped object connection system controller, and belt-shaped object connection system
 本発明は、先端部に補強板を備えたフレキシブルプリント基板等の帯状物の3次元計測を行う方法、およびその帯状物の先端部をコネクタに接続する方法に関する。また、本発明は、帯状物のコネクタへの接続を実施するためのシステムおよび制御装置に関する。 The present invention relates to a method for performing three-dimensional measurement of a band-like object such as a flexible printed circuit board having a reinforcing plate at its tip, and a method for connecting the tip of the band-like object to a connector. The invention also relates to a system and controller for implementing the connection of strips to connectors.
 電子機器の内部配線に、銅配線を柔軟な樹脂フィルムで挟んだ帯状のフレキシブルプリントケーブル(FPC)やフレキシブルフラットケーブル(FFC)が用いられる。また、近年では接続部を小型化するため、FPC等の先端部に樹脂製の補強板を貼付して、コネクタに接続することが行われている。例えば、特許文献1には、端子パターンが形成された先端部に補強板が設けられたフラットケーブルをストックしておき、ハンド部をフラットケーブルがストックされた位置の上方まで移動させ、吸着部と把持爪とによってフラットケーブルを保持してコネクタに挿入するフラットケーブル挿入装置が記載されている。 Belt-shaped flexible printed cables (FPC) and flexible flat cables (FFC), in which copper wiring is sandwiched between flexible resin films, are used for the internal wiring of electronic devices. Further, in recent years, in order to reduce the size of the connecting portion, it has been practiced to attach a reinforcing plate made of resin to the tip portion of the FPC or the like and connect it to the connector. For example, in Patent Document 1, a flat cable having a terminal pattern and a reinforcing plate provided at the tip thereof is stocked, and a hand portion is moved above the position where the flat cable is stocked, and a suction portion is formed. A flat cable inserting device for holding a flat cable with gripping claws and inserting it into a connector is described.
特開2016-209967号公報JP 2016-209967 A 特開2009-107043号公報JP 2009-107043 A 特開2020-037147号公報JP 2020-037147 A 特開2020-041862号公報JP 2020-041862 A
 特許文献1に記載された方法では、定位置にストックされたフラットケーブルを保持する。しかし、フラットケーブルが供給される位置が一定しない場合や、可撓性を有するフラットケーブルが曲がったり捻じれたりした状態にある場合にこれをロボットで自律的に保持するには、保持しようとする部位を3次元的に認識する必要がある。 In the method described in Patent Document 1, a flat cable stocked at a fixed position is held. However, if the position to which the flat cable is supplied is not constant, or if the flexible flat cable is in a bent or twisted state, the robot can hold it autonomously. It is necessary to recognize the part three-dimensionally.
 フラットケーブル等の帯状物をロボットでハンドリングするために3次元的に認識することに関して、特許文献2には、フレキシブルケーブルの先端部をステレオカメラで撮像し、エッジ処理を行って被把持部材のエッジを抽出し、被把持部材の形状である矩形形状モデルをフィッティング処理することによって被把持部材の位置姿勢を算出することが記載されている。また、特許文献3および4には、撓みや捻じれによる変形が制限されない自由な状態にあるフラットケーブル等の帯状物をステレオカメラで撮像し、側端辺を抽出してその3次元座標を算出することにより、帯状物の3次元計測方法を行うことが記載されている。しかし、特許文献2に記載されたフレキシブルケーブルは先端部にケーブル本体より大きな被把持部材(オス型コネクタ)を備えており、あらかじめ取得しておいた被把持部材が位置する位置範囲情報を用いて閾値処理を行うため、位置範囲情報をあらかじめ取得しておくことと、被把持部材が当該位置範囲に位置することが要求される。さらに、当該閾値処理では、ケーブル本体と被把持部材とを識別することができず、被把持部材の位置および向きを精確に算出することができない。特許文献3および4では、帯状物先端の補強板の有無について特に言及がない。 Regarding the three-dimensional recognition of belt-shaped objects such as flat cables for handling by robots, Patent Document 2 discloses that the tip of a flexible cable is imaged with a stereo camera, edge processing is performed, and the edge of a member to be grasped is processed. is extracted, and fitting processing is performed on a rectangular model that is the shape of the member to be grasped to calculate the position and orientation of the member to be grasped. Further, in Patent Documents 3 and 4, a belt-shaped object such as a flat cable in a free state where deformation due to bending or twisting is not restricted is imaged with a stereo camera, the side edge is extracted, and its three-dimensional coordinates are calculated. It is described that a three-dimensional measuring method for a belt-shaped object is performed by doing so. However, the flexible cable described in Patent Document 2 has a gripped member (male connector) larger than the cable main body at the tip, and the position range information of the gripped member that has been acquired in advance is used. In order to perform threshold processing, it is required that position range information be obtained in advance and that the grasped member be positioned within the position range. Furthermore, the threshold processing cannot distinguish between the cable body and the gripped member, and cannot accurately calculate the position and orientation of the gripped member. Patent Documents 3 and 4 do not particularly mention the presence or absence of a reinforcing plate at the tip of the strip.
 本発明は、上記を考慮してなされたものであり、先端部に補強板を備えた帯状物を対象として、効率よくその3次元計測を行う方法、および当該帯状物の先端部をコネクタに接続する方法を提供することを目的とする。 The present invention has been made in consideration of the above, and provides a method for efficiently performing three-dimensional measurement of a strip having a reinforcing plate at its tip, and a method for connecting the tip of the strip to a connector. The purpose is to provide a method to
 本発明の帯状物の3次元計測方法は、先端部に補強板を備えた帯状物の画像情報を取得する画像取得工程と、前記画像情報において前記補強板と前記帯状物の本体部分である帯状物本体部とを識別する識別工程と、前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きを算出する工程とを有する。 A three-dimensional measurement method for a belt-shaped object according to the present invention includes an image acquisition step of acquiring image information of a belt-shaped object having a reinforcing plate at the tip thereof; and a step of calculating the position and orientation of the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate.
 好ましくは、前記画像情報が色情報を含み、前記識別工程は、前記色情報に基づいて前記補強板と前記帯状物本体部とを識別する。 Preferably, the image information includes color information, and the identifying step identifies the reinforcing plate and the belt-like article main body based on the color information.
 あるいは好ましくは、前記画像情報が前記補強板の少なくとも2辺又は3角の位置情報を含み、前記識別工程は、前記位置情報に基づいて前記補強板と前記帯状物本体部とを識別する。 Alternatively, preferably, the image information includes positional information of at least two sides or three corners of the reinforcing plate, and the identifying step identifies the reinforcing plate and the belt-like article body based on the positional information.
 好ましくは、前記帯状物は位置および向きが不定な状態で配置されている。あるいは、好ましくは、前記帯状物は、一端が固定されており、前記補強板を備えた他端が空中で自由端となっている。 Preferably, the belt-like objects are arranged in a state in which the position and orientation are indefinite. Alternatively, preferably, one end of the strip is fixed, and the other end provided with the reinforcing plate is free in the air.
 好ましくは、前記帯状物本体部が柔軟物である。 Preferably, the belt-shaped object main body is a flexible object.
 本発明の帯状物の接続方法は、上記3次元計測方法によって算出した前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きに基づいて、ロボットハンドを動作させて前記補強板または前記補強板近傍の前記帯状物本体部を保持する保持工程と、前記ロボットハンドを動作させて前記帯状物の前記先端部をコネクタに接続する接続工程とを有する。 The belt-like object connection method of the present invention operates a robot hand to move the reinforcing plate or the belt-like object main body portion in the vicinity of the reinforcing plate based on the position and orientation of the reinforcing plate or the belt-like object main body near the reinforcing plate calculated by the three-dimensional measurement method. A holding step of holding the main body portion of the belt-shaped object in the vicinity of the reinforcing plate and a connecting step of operating the robot hand to connect the tip portion of the belt-shaped object to a connector.
 本発明の帯状物接続システム制御装置は、先端部に補強板を備えた帯状物をロボットで保持してコネクタに接続するシステムを制御する帯状物接続システム制御装置であって、前記帯状物を撮像して画像を取得可能な撮像部と、演算部とを有する。前記演算部は、前記画像において前記補強板と前記帯状物の本体部分である帯状物本体部とを識別し、前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きを算出し、算出した前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きに基づいて、前記ロボットにロボットハンドによる前記補強板または前記補強板近傍の前記帯状物本体部の保持および前記帯状物の前記先端部の前記コネクタへの接続を指示する。 A belt-shaped object connection system control device of the present invention is a belt-shaped object connection system control device for controlling a system in which a belt-shaped object having a reinforcing plate at its tip is held by a robot and connected to a connector, and the belt-shaped object is imaged. and an image pickup unit capable of acquiring an image by using the image pickup unit. The computing unit identifies the reinforcing plate and the main body portion of the belt-shaped object in the image, and calculates the position and orientation of the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate. Then, based on the calculated position and orientation of the reinforcing plate or the belt-like object main body in the vicinity of the reinforcing plate, the robot is caused to hold the reinforcing plate or the belt-like object main body in the vicinity of the reinforcing plate by a robot hand, and the belt-shaped object main body Instructing the connection of the tip of an object to the connector.
 本発明の帯状物接続システムは、上記帯状物接続システム制御装置と、前記ロボットハンドを備えた前記ロボットとを有する。 A belt-like object connection system of the present invention includes the belt-like object connection system control device and the robot having the robot hand.
 本発明の帯状物の3次元計測方法によれば、先端部に補強板を備えた帯状物に対して、補強板と帯状物本体部とを識別して、補強板または補強板近傍の帯状物本体部の位置および向きを算出する。これにより、帯状物が供給される位置が一定しない場合や、可撓性を有する帯状物が曲がったり捻じれたりした状態にある場合にも、補強板または補強板近傍の帯状物本体部のうち所要の位置をロボットハンドで自律的に保持することができる。 According to the three-dimensional measurement method for a belt-like object of the present invention, for a belt-like object having a reinforcing plate at its tip, the reinforcing plate and the main body of the belt-like object are distinguished, and the reinforcing plate or the belt-like object in the vicinity of the reinforcing plate is detected. Calculate the position and orientation of the body. As a result, even when the position to which the strip is supplied is not constant, or when the flexible strip is in a bent or twisted state, the reinforcing plate or the main body of the strip near the reinforcing plate can be A desired position can be held autonomously by the robot hand.
本発明の第1実施形態の帯状物接続システムの構成を示す図である。1 is a diagram showing the configuration of a belt-shaped object connection system according to a first embodiment of the present invention; FIG. 帯状物の構造を示す図である。A:上面図、B:側面図、C:下面図。It is a figure which shows the structure of a strip|belt-shaped object. A: top view, B: side view, C: bottom view. 第1実施形態のロボットハンドの構造を示す図である。A:側面図、B:下面図。It is a figure which shows the structure of the robot hand of 1st Embodiment. A: side view, B: bottom view. 第1実施形態の帯状物接続方法の工程フロー図である。FIG. 4 is a process flow chart of the belt-like object connection method of the first embodiment. A~F:第1実施形態の帯状物接続方法を説明するための図である。A to F: Diagrams for explaining the belt-like object connection method of the first embodiment. ロボットハンドが帯状物の補強板を保持した状態を示す下面図である。FIG. 10 is a bottom view showing a state in which the robot hand holds the reinforcing plate of the belt-like object; 第2実施形態の帯状物接続方法の工程フロー図である。FIG. 10 is a process flow diagram of a belt-like object connecting method according to a second embodiment; A~D:第2実施形態の帯状物接続方法を説明するための図である。10A to 10D are diagrams for explaining the belt-shaped object connection method of the second embodiment; FIG. ロボットハンドが帯状物の本体部を保持した状態を示す図である。A:側面図、B:下面図。FIG. 10 is a diagram showing a state in which the robot hand holds the main body of the belt-like object; A: side view, B: bottom view. 帯状物の構造を示す図である。A:上面図、B:側面図、C:下面図、D:正面図。It is a figure which shows the structure of a strip|belt-shaped object. A: top view, B: side view, C: bottom view, D: front view. 第3実施形態の帯状物接続方法の工程フロー図である。FIG. 11 is a process flow diagram of a belt-like object connecting method according to a third embodiment; A~D:第3実施形態の帯状物接続方法を説明するための図である。10A to 10D are diagrams for explaining a belt-like object connection method according to a third embodiment; FIG.
 本発明の第1実施形態を図1~図6に基づいて説明する。この実施形態では、帯状物が先端部に備える補強板の位置および姿勢を算出し、ロボットハンドで補強板を把持して、帯状物の先端部をコネクタに接続する。 A first embodiment of the present invention will be described based on FIGS. 1 to 6. FIG. In this embodiment, the position and posture of the reinforcing plate provided at the tip of the strip are calculated, the reinforcing plate is gripped by the robot hand, and the tip of the strip is connected to the connector.
 図1を参照して、本実施形態の帯状物接続システム10は、ロボット20と、本システム10の全体を制御する帯状物接続システム制御装置15とを有する。帯状物接続システム制御装置15は撮像部16と演算部17とを有する。帯状物接続システム10は、帯状物50を3次元計測し、ロボット20が備えるロボットハンド30で保持して、コネクタ42に接続する。以下において、帯状物接続システム制御装置15を単に「システム制御装置」、ロボットハンド30を単に「ハンド」という。 Referring to FIG. 1, a belt-like object connection system 10 of this embodiment has a robot 20 and a belt-like object connection system control device 15 that controls the entire system 10 . The belt-like object connection system control device 15 has an imaging section 16 and a calculation section 17 . The belt-like object connection system 10 three-dimensionally measures the belt-like object 50 , holds the belt-like object 50 with the robot hand 30 of the robot 20 , and connects it to the connector 42 . Hereinafter, the belt-shaped object connection system control device 15 will be simply referred to as the "system control device", and the robot hand 30 will be simply referred to as the "hand".
 帯状物50の種類は特に限定されず、例えば帯状のフレキシブルプリントケーブル(FPC)やフレキシブルフラットケーブル(FFC)を対象とすることができる。帯状物50は先端部に補強板52を有する。以下においては、帯状物がFPCであるとして説明する。また、帯状物50を単に「ケーブル」といい、帯状物50のうち補強板52が貼付されていない本体部分を「帯状物本体部」51または「ケーブル本体部」51という。 The type of the belt-shaped object 50 is not particularly limited, and for example, a belt-shaped flexible printed cable (FPC) or a flexible flat cable (FFC) can be targeted. The strip 50 has a reinforcing plate 52 at its tip. In the following description, it is assumed that the strip is FPC. Further, the strip 50 is simply referred to as a "cable", and the body portion of the strip 50 to which the reinforcing plate 52 is not attached is referred to as a "belt body" 51 or a "cable body" 51.
 図2を参照して、ケーブル50は、銅箔をエッチング加工等して形成した配線56をポリイミド等の樹脂フィルム54、55で挟んで形成される。先端部は片側の樹脂フィルム55が除去されて、配線56が櫛歯状に露出した電極部57を形成している。この電極部57がコネクタ42に電気的に接続される。先端部の他方の側の樹脂フィルム54には、補強板52が貼付されている。 Referring to FIG. 2, cable 50 is formed by sandwiching wiring 56 formed by etching copper foil or the like between resin films 54 and 55 such as polyimide. At the tip, the resin film 55 on one side is removed to form an electrode portion 57 in which the wiring 56 is exposed in a comb shape. This electrode portion 57 is electrically connected to the connector 42 . A reinforcing plate 52 is attached to the resin film 54 on the other side of the tip.
 補強板52はケーブル50の電極部57を補強するための部材である。補強板としては、弾力のある薄い樹脂板などを用いることができる。図2の縮尺は説明を容易にするために正確ではなく、典型的には、ケーブル本体部の厚さが数十μmであるのに対して、補強板52の厚さは200μm程度である。従来より、帯状のケーブルの先端にオス型のコネクタを装着して、メス型のコネクタに接続することが行われてきたが、近年では、接続部をより小型化するために、オス型コネクタを排して、帯状のケーブルの先端部を直接メス型コネクタに接続する場合が増えている。補強板52は、電極部57をコネクタ42に接続する際に柔軟なケーブル50を支持し、ケーブル先端部の厚さをコネクタ42に適合する厚さに合わせる。 The reinforcing plate 52 is a member for reinforcing the electrode portion 57 of the cable 50. A thin elastic resin plate or the like can be used as the reinforcing plate. The scale of FIG. 2 is not exact for ease of explanation. Typically, the thickness of the cable body is several tens of μm, while the thickness of the reinforcing plate 52 is about 200 μm. In the past, a male connector was attached to the tip of a strip-shaped cable and connected to a female connector, but in recent years, in order to make the connection part more compact, the male connector has been used. Instead, there is an increasing number of cases where the tip of a strip-shaped cable is directly connected to a female connector. The reinforcing plate 52 supports the flexible cable 50 when the electrode portion 57 is connected to the connector 42 , and adjusts the thickness of the cable tip to match the thickness of the connector 42 .
 補強板52の形状は特に限定されないが、接続部の小型化を目的とするため、ケーブル50の横幅と略同一の幅を有することが一般的である。図2に示した補強板52では、幅方向に突出する突起部53A、53Bが設けられている。突起部の機能は後述する。 Although the shape of the reinforcing plate 52 is not particularly limited, it generally has substantially the same width as the lateral width of the cable 50 in order to reduce the size of the connecting portion. The reinforcing plate 52 shown in FIG. 2 is provided with protrusions 53A and 53B that protrude in the width direction. The function of the protrusion will be described later.
 図1に戻って、ケーブル50は、例えば、表示部を下に向けた平面ディスプレイ装置の回路基板40と筐体41との間から立ち上がっている。ケーブル50の基端部は筐体41の内部で図示しないディスプレイパネル等に固定され、ケーブル50の先端は空中にあって自由端となっている。自由端とは、ケーブルの端部が移動したり捩じれたり曲がったりできる状態にあることをいう。 Returning to FIG. 1, the cable 50 rises from, for example, between the circuit board 40 and the housing 41 of the flat display device with the display section facing downward. The base end of the cable 50 is fixed to a display panel or the like (not shown) inside the housing 41, and the tip of the cable 50 is a free end in the air. A free end is one in which the end of the cable is free to move, twist or bend.
 基板40にはコネクタ42が実装されており、このコネクタ42にケーブル50が接続される。コネクタ42はケーブルの先端を挿入して接続するメス型のコネクタであって、レセプタクル、ソケット、スロットなどとも呼ばれる。コネクタの形式は特に限定されない。例えば、図1に示したコネクタ42はフリップロック型と呼ばれるもので、ロック機構として軸44の周りに回転することにより開閉自在なカバー部材43を備え、カバー部材を立てるとコネクタの上部が開く。この開状態のコネクタに、電極部57を下に向けてケーブル50を挿入し、カバー部材をケーブル側に倒して閉状態とすることで、ケーブルを押さえ込んでコネクタからの抜けを防止することができる。 A connector 42 is mounted on the board 40, and the cable 50 is connected to this connector 42. The connector 42 is a female connector into which the tip of a cable is inserted for connection, and is also called a receptacle, socket, slot, or the like. The format of the connector is not particularly limited. For example, the connector 42 shown in FIG. 1 is called a flip-lock type, and has a cover member 43 that can be opened and closed by rotating around a shaft 44 as a lock mechanism. By inserting the cable 50 into the open connector with the electrode portion 57 facing downward and closing the cover member toward the cable side, the cable can be held down and prevented from coming off the connector. .
 システム制御装置15は撮像部16と演算部17とを有する。システム制御装置は、ケーブル50の先端部やコネクタ42の3次元空間内での位置および向きを計測して、ロボット20に対して必要な指示を与える。 The system control device 15 has an imaging section 16 and a computing section 17 . The system controller measures the positions and orientations of the tip of the cable 50 and the connector 42 in the three-dimensional space, and gives necessary instructions to the robot 20 .
 撮像部16は、ケーブル50の先端部やコネクタ42を撮像して、その画像情報を取得する。撮像部としては、公知の種々の装置を用いることができる。画像情報は、画像および3次元座標を算出可能な情報を含む。画像情報は、撮像部の種類に応じて、例えば、異なる視点から撮像されたステレオ画像情報であり、あるいは、光切断法やTOF法によって得られた距離画像である。画像情報は、好ましくは色情報を含む。色情報を利用することによって補強板52とケーブル本体部51の識別が容易になるからである。撮像部16は2以上の計測機器を組み合わせてもよく、例えば光切断装置と2次元カラーカメラとを組み合わせて用いてもよい。撮像部16としては、好ましくはステレオカメラ、より好ましくは色情報を取得可能なステレオカメラを用いる。ステレオカメラは3角測量の原理によって計測点の3次元位置を算出し、対応点の探索にはエピポーラ線を利用することで高速に対応点を求めることができるため、情報処理の負荷が少なく3次元計測が可能である。 The imaging unit 16 images the tip of the cable 50 and the connector 42 to acquire the image information. Various known devices can be used as the imaging unit. Image information includes an image and information capable of calculating three-dimensional coordinates. The image information is, for example, stereo image information captured from different viewpoints, or distance images obtained by a light section method or a TOF method, depending on the type of imaging unit. The image information preferably includes color information. This is because the identification of the reinforcing plate 52 and the cable main body 51 is facilitated by using the color information. The imaging unit 16 may combine two or more measurement devices, for example, a combination of a light cutting device and a two-dimensional color camera. As the imaging unit 16, preferably a stereo camera, more preferably a stereo camera capable of acquiring color information is used. The stereo camera uses the principle of triangulation to calculate the three-dimensional positions of measurement points, and uses epipolar lines to find corresponding points at high speed. Dimensional measurements are possible.
 演算部17は、ケーブル50先端部の画像情報から、補強板52とケーブル本体部51とを識別して、補強板または補強板近傍のケーブル本体部のうち、ハンド30で保持しようとする部位の位置および向きを算出する。また、演算部は、これら算出した値に基づいて、必要な動作をロボット20に指示する。具体的には、演算部は、ハンド30による補強板または補強板近傍のケーブル本体部51の保持や、ケーブル50先端部のコネクタ42への接続を指示する。また、演算部17は、コネクタ42の画像情報から、コネクタ42の位置および向きを算出する。 The calculation unit 17 identifies the reinforcing plate 52 and the cable main body 51 from the image information of the tip of the cable 50, and determines the portion of the reinforcing plate or the cable main body near the reinforcing plate to be held by the hand 30. Calculate position and orientation. Moreover, the calculation unit instructs the robot 20 to perform a necessary operation based on these calculated values. Specifically, the computing unit instructs the hand 30 to hold the reinforcing plate or the cable main body 51 in the vicinity of the reinforcing plate, and to connect the tip of the cable 50 to the connector 42 . The calculation unit 17 also calculates the position and orientation of the connector 42 from the image information of the connector 42 .
 演算部17の物理的な構成は特に限定されない。演算部17は、図1に示したように撮像部16と一体に構成されていてもよいし、2つ以上の部分に分けて構成されていてもよい。また、演算部17の全部または一部が、後述するロボットの制御部25と一体に構成されていてもよい。 The physical configuration of the computing unit 17 is not particularly limited. The calculation unit 17 may be configured integrally with the imaging unit 16 as shown in FIG. 1, or may be configured by being divided into two or more parts. Further, all or part of the calculation unit 17 may be configured integrally with the control unit 25 of the robot, which will be described later.
 ロボット20は多関節ロボットである。ロボット20は、複数のリンク22と関節23が連結されたアーム21と、アームの先端に装着されたハンド30と、制御部25を有する。制御部25はアーム21およびハンド30を含むロボット全体の動作を制御する。例えば、制御部25はシステム制御装置15からの指示を受けて、指示された動作に必要な各関節23の位置や角度を算出してハンド30を目標位置まで移動させ、また、ケーブル50の保持、解放などをハンドに行わせる。 The robot 20 is an articulated robot. The robot 20 has an arm 21 to which a plurality of links 22 and joints 23 are connected, a hand 30 attached to the tip of the arm, and a controller 25 . A control unit 25 controls the operation of the entire robot including the arm 21 and hand 30 . For example, the control unit 25 receives an instruction from the system control device 15, calculates the positions and angles of the joints 23 necessary for the instructed motion, moves the hand 30 to the target position, and also holds the cable 50. , release, etc. to the hand.
 ロボットハンド30はケーブル50を保持する。ハンド30の形式は特に限定されず、ケーブルを吸着によって保持するものであっても、ケーブルを挟持して保持するものであってもよい。好ましくは、ハンド30はケーブルを吸着によって保持する。ケーブルの片面だけに当接して保持できるので、狭い空間での作業に適するからである。 The robot hand 30 holds the cable 50. The type of the hand 30 is not particularly limited, and may be one that holds the cable by suction or one that holds the cable by pinching it. Preferably, the hand 30 holds the cable by suction. This is because it is suitable for work in a narrow space because it can be held in contact with only one side of the cable.
 図3を参照して、本実施形態のハンド30はケーブル50を吸着によって保持する。ハンド30は略直方体の形状を有するハンド本体部31と支柱37とを有する。ハンド本体部31の下面には、一辺(図3Bの左側の辺)に沿って複数の吸引孔35が設けられ、吸引孔は通気路36を経由して図示しない減圧源38に通じている。ハンド本体部31の下面のうち、吸引孔を含む領域は平面部32となっており、平面部の幅方向の両端に突条33が形成されている。ハンド30は、ケーブル50の補強板52または補強板近傍のケーブル本体部51に吸引孔35を当てて、ケーブルを吸着して保持する。このとき、補強板52または補強板近傍のケーブル本体部51は、突条33の間に納まって平面部32に当接する。 With reference to FIG. 3, the hand 30 of this embodiment holds the cable 50 by suction. The hand 30 has a hand main body portion 31 having a substantially rectangular parallelepiped shape and a post 37 . A plurality of suction holes 35 are provided along one side (the left side in FIG. 3B) on the lower surface of the hand main body 31 , and the suction holes communicate with a pressure reduction source 38 (not shown) via an air passage 36 . A flat portion 32 is formed in the lower surface of the hand body portion 31 in a region including the suction hole, and ridges 33 are formed at both ends of the flat portion in the width direction. The hand 30 applies the suction hole 35 to the reinforcing plate 52 of the cable 50 or the cable main body portion 51 in the vicinity of the reinforcing plate to suck and hold the cable. At this time, the reinforcing plate 52 or the cable body portion 51 in the vicinity of the reinforcing plate is accommodated between the ridges 33 and comes into contact with the flat portion 32 .
 次に、本実施形態の帯状物接続方法を図4の工程フローに沿って説明する。 Next, the belt-shaped object connection method of this embodiment will be described along the process flow of FIG.
(S1)システム制御装置15がコネクタ42を3次元計測する。図5Aはこの帯状物接続方法を開始する前の状態を示している。コネクタはカバー部材43が立って、開状態にある。コネクタが閉状態であった場合は、カバー部材を立ててコネクタを開状態にする。コネクタが所定位置にある場合は、事前にティーチングしたロボットによってカバー部材を立てて開状態にする。コネクタが所定の位置にない場合は、システム制御装置15の撮像部16でコネクタを撮像して、画像情報を取得し、演算部17が公知の方法によってコネクタの位置および向きを算出し、算出した位置および向きに基づいてロボットを制御してカバー部材を開ける。例えば、撮像部がステレオカメラであれば、2枚の画像上で計測したい点の対応点を求め、各画像上の対応点および2台のカメラの位置関係から3角測量の原理によって計測点の3次元座標を算出する。そして、コネクタ42の角などから選択した複数の特徴点を計測点として、コネクタ42の輪郭の3次元空間内での位置および向きを求めることができる。これにより、ケーブルをコネクタに挿入するときの進行方向を決めることができる。 (S1) The system control device 15 measures the connector 42 three-dimensionally. FIG. 5A shows the state before starting this strip connection method. The connector is in an open state with the cover member 43 upright. If the connector is in the closed state, the cover member is raised to open the connector. When the connector is in place, the cover member is raised and opened by a previously taught robot. When the connector is not in the predetermined position, the imaging unit 16 of the system control device 15 captures an image of the connector to obtain image information, and the computing unit 17 calculates the position and orientation of the connector by a known method. Control the robot to open the cover member based on the position and orientation. For example, if the imaging unit is a stereo camera, the corresponding points of the points to be measured on the two images are obtained, and the corresponding points on each image and the positional relationship between the two cameras are used to locate the measurement points using the principle of triangulation. 3D coordinates are calculated. By using a plurality of feature points selected from the corners of the connector 42 as measurement points, the position and orientation of the contour of the connector 42 in the three-dimensional space can be obtained. This makes it possible to determine the direction in which the cable is inserted into the connector.
(S2)システム制御装置15を用いてケーブル50の先端部を3次元計測する。撮像部16がケーブル50先端部を撮像する。このとき、画像には、補強板52と、ケーブル本体部51のうち補強板52近傍の部分が含まれるようにする。次に、演算部17が補強板とケーブル本体部を識別する。画像情報が色情報を含む場合は、演算部17はその色情報に基づいて補強板とケーブル本体部とを識別する。例えば、FPCの樹脂フィルムが透明な橙色であるとすると、補強板をこれと異なる色にしておくことで、画像上の領域の色を識別することで、補強板とケーブル本体部を識別できる。 (S2) Using the system control device 15, the tip of the cable 50 is three-dimensionally measured. The imaging unit 16 images the tip of the cable 50 . At this time, the image includes the reinforcing plate 52 and the portion of the cable main body 51 in the vicinity of the reinforcing plate 52 . Next, the computing unit 17 identifies the reinforcing plate and the cable body. When the image information includes color information, the computing section 17 distinguishes between the reinforcing plate and the cable body based on the color information. For example, if the resin film of the FPC is a transparent orange color, the reinforcing plate and the cable body can be identified by distinguishing the color of the region on the image by making the reinforcing plate a different color.
 ステレオカメラを用いた3次元計測では、2枚の画像上で対応点を探索するマッチング処理が、測定誤差の原因となるプロセスである。ケーブル50が先端部に補強板52を備える場合、特に、補強板が薄く、補強板の幅がケーブル本体の幅と略同一である場合は、ケーブルが先端部にオス型コネクタを備える場合と異なり、特徴点が少なく、その検出も難しい。色情報を利用することにより、少ない計算量で補強板とケーブル本体部を識別できるし、マッチング処理の誤差を小さくして測定精度を上げることができる。ケーブルやコネクタ42が小さくなるほど、マッチング処理が難しくなるのに反して、より高い計測精度が求められることから、FPCのコネクタへの接続方法においては、色情報を利用して補強板52とケーブル本体部51を識別することが特に好ましい。  In 3D measurement using a stereo camera, the matching process that searches for corresponding points on two images is a process that causes measurement errors. When the cable 50 is provided with the reinforcing plate 52 at the tip, especially when the reinforcing plate is thin and the width of the reinforcing plate is substantially the same as the width of the cable body, unlike the case where the cable is provided with the male connector at the tip. , the feature points are few and difficult to detect. By using the color information, it is possible to distinguish between the reinforcing plate and the cable main body with a small amount of calculation, and it is possible to reduce the error of the matching process and improve the measurement accuracy. As the cables and connectors 42 become smaller, the matching process becomes more difficult, but higher measurement accuracy is required. It is particularly preferred to identify portion 51 .
 色情報を利用して補強板52とケーブル本体部51とを識別するには、例えば、撮像部16としてカラー画像を取得可能なステレオカメラを用いる場合はステレオ画像が色情報を含むので、この色情報を利用することができる。撮像部16として、3次元画像を取得可能な装置と2次元カラーカメラを組み合わせて用いる場合は、2次元画像の色情報に基づいて補強板とケーブル本体部とを切り分け、切り分けられた補強板またはケーブル本体部のうちハンド30で保持しようとする部位、本実施形態では補強板52の3次元座標を算出してもよい。 In order to distinguish between the reinforcing plate 52 and the cable body 51 using color information, for example, when a stereo camera capable of acquiring a color image is used as the imaging unit 16, the stereo image contains color information. information is available. When a device capable of acquiring a three-dimensional image and a two-dimensional color camera are used in combination as the imaging unit 16, the reinforcing plate and the cable body are cut based on the color information of the two-dimensional image, and the cut reinforcing plate or The three-dimensional coordinates of the portion of the cable main body to be held by the hand 30, which is the reinforcing plate 52 in this embodiment, may be calculated.
 色情報を利用しないで、補強板52とケーブル本体部51とを識別することも可能である。例えば、補強板の位置や姿勢を変えた複数の参照画像やCADデータを用意して、撮像部16が取得した画像とのパターンマッチングによって補強板とケーブル本体部とを識別してもよい。あるいは、補強板52は平面とみなすことができ、多くの場合長方形であるので、例えば、特許文献3および4に記載された方法によってケーブル50先端部の角や辺を手掛かりにして先端部の輪郭を抽出すれば、補強板の2つの辺や3つの角等を特定することによって補強板を識別できる。 It is also possible to distinguish between the reinforcing plate 52 and the cable body 51 without using color information. For example, a plurality of reference images or CAD data with different positions and postures of the reinforcing plate may be prepared, and the reinforcing plate and the cable body may be identified by pattern matching with the image acquired by the imaging unit 16 . Alternatively, since the reinforcing plate 52 can be regarded as a flat surface and is often rectangular, the outline of the tip of the cable 50 can be calculated using the corners and sides of the tip of the cable 50 as clues, for example, by the methods described in Patent Documents 3 and 4. is extracted, the reinforcing plate can be identified by specifying two sides or three corners of the reinforcing plate.
(S3)ハンド30で補強板52を保持する(図5B)。具体的には、前工程S2で算出した補強板の位置および向きに基づいて、ハンドの吸引孔35を補強板の面に垂直に近付けて、吸着して保持する。その際ハンドは、図6を参照して、ケーブル50先端をコネクタ42に挿入する際に邪魔にならないように、補強板の面の後端側の領域、言い換えるとケーブル50をコネクタ42に接続したときにコネクタの内部に入らない部分を吸着する。補強板の後端部はハンド30の2本の突条33の間に納まって平面部(図3Bの32)に当接する。このとき、好ましくは突条先端34のすぐ前方に突起部53Bがくる位置を吸着する。 (S3) Hold the reinforcing plate 52 with the hand 30 (FIG. 5B). Specifically, based on the position and orientation of the reinforcing plate calculated in the previous step S2, the suction hole 35 of the hand is brought perpendicularly close to the surface of the reinforcing plate and held by suction. At that time, referring to FIG. 6, the hand connected the area on the rear end side of the surface of the reinforcing plate, in other words, the cable 50 to the connector 42 so as not to interfere with the insertion of the tip of the cable 50 into the connector 42. Sometimes it sucks the part that does not fit inside the connector. The rear end portion of the reinforcing plate is accommodated between the two ridges 33 of the hand 30 and abuts on the flat portion (32 in FIG. 3B). At this time, preferably, the position where the projecting portion 53B comes immediately in front of the tip end 34 of the projected streak is sucked.
(S4)補強板52を保持したハンド30を移動させて(図5C)、補強板の突起部53A、53Bが嵌るコネクタの凹部に干渉しないようにケーブル50先端部をコネクタ42に斜め下方に向けて挿入し(図5D)、補強板を水平にして電極部57をコネクタ42の接合面に接触させる(図5E)。ハンド30でケーブルをコネクタ側に押す際に、突条先端34が突起部53Bを押すことで、ケーブルをコネクタの奥まで差し込むことができる。補強板に突起部53A、53Bが無い場合は、ケーブル50先端部をコネクタ42に水平方向に挿入し、補強板とケーブル本体部51との境目にある段差やくびれ部を押すことで、ケーブルをコネクタの奥まで差し込むことができる。 (S4) The hand 30 holding the reinforcing plate 52 is moved (FIG. 5C), and the tip of the cable 50 is directed obliquely downward toward the connector 42 so as not to interfere with the concave portion of the connector in which the protrusions 53A and 53B of the reinforcing plate are fitted. (FIG. 5D), and with the reinforcing plate horizontal, the electrode portion 57 is brought into contact with the joint surface of the connector 42 (FIG. 5E). When the cable is pushed toward the connector by the hand 30, the tip of the projection 34 pushes the protrusion 53B, so that the cable can be inserted all the way into the connector. If the reinforcing plate does not have protrusions 53A and 53B, the tip of the cable 50 is horizontally inserted into the connector 42, and the cable is removed by pushing the step or constriction at the boundary between the reinforcing plate and the cable main body 51. It can be inserted all the way into the connector.
(S5)好ましくは、ケーブル50がコネクタ42に奥まで挿入されているか、挿入状態を確認する。ハンド30でケーブルをコネクタ側に押すと、図6を参照して、突条先端34が突起部53Bを押すので、例えばその際の抵抗を力覚センサ等で検出し、ロボットハンドの位置が所定の位置まで押し込まれているか確認することによって、挿入状態が確認できる。 (S5) Preferably, the cable 50 is inserted all the way into the connector 42, and the insertion state is checked. When the cable is pushed toward the connector by the hand 30, as shown in FIG. 6, the tip of the protrusion 34 pushes the protrusion 53B. The insertion state can be confirmed by confirming whether the insertion is pushed to the position of .
(S6)カバー部材43を閉じる(図5F)。例えば、別のロボットを用いてカバー部材を閉じることができる。補強板52の前方の突起部53Aはコネクタ内に収容されて、ケーブル50がコネクタ42から抜けることを防止する。以上によってケーブルのコネクタへの接続が完了する。 (S6) Close the cover member 43 (FIG. 5F). For example, another robot can be used to close the cover member. A projection 53A on the front side of the reinforcing plate 52 is accommodated in the connector to prevent the cable 50 from coming out of the connector 42. As shown in FIG. This completes the connection of the cable to the connector.
(S7)好ましくは、さらに、コネクタ42を撮像して、ケーブル50の挿入状態を画像で確認する。例えば、ケーブルがコネクタに対して斜めに接続されていないかを確認する。 (S7) Preferably, an image of the connector 42 is further taken to check the insertion state of the cable 50 with the image. For example, check if the cable is connected diagonally to the connector.
 次に、本発明の第2実施形態を図7~図9に基づいて説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS. 7-9.
 本実施形態では、帯状物の先端部に貼付された補強板の近傍にあるケーブル本体部について、その位置および姿勢を算出し、ロボットハンドで当該ケーブル本体部を把持して、ケーブルの先端部をコネクタに接続する。 In this embodiment, the position and posture of the cable main body near the reinforcing plate attached to the tip of the belt-shaped object are calculated, and the cable main body is grasped by a robot hand, and the tip of the cable is moved. connect to the connector.
 補強板の長さ(ケーブルの長さ方向の大きさ)が短いことなどにより、ケーブルとコネクタに接続したときにコネクタの外に残る補強板部分が小さく、ハンドで補強板を保持するとコネクタへの挿入時にハンドとコネクタが干渉する場合は、ハンドでケーブル本体部を保持する。図9に、ハンド30がケーブル70を保持した状態を示す。ケーブル70は、補強板72とケーブル本体部71からなり、補強板72には、幅方向に突出する突起部73Bが補強板の後端に設けられている。ケーブル70のその他の構成は図3のケーブル50と同じである。ハンド30は補強板72近傍のケーブル本体部71に吸着し、ケーブル本体部71は2本の突条33の間に納まって平面部(図3Bの32)に当接する。また、ハンド30両側の突条33は、ハンド本体部31の前端まで延ばされている。好ましくは、ハンド30がケーブル本体部71を保持したときに突条先端34が突起部73Bのすぐ後方に位置するように、ケーブルを吸着する。 Due to the short length of the reinforcing plate (size in the lengthwise direction of the cable), the portion of the reinforcing plate that remains outside the connector when the cable is connected to the connector is small. If the hand interferes with the connector during insertion, hold the cable body with the hand. FIG. 9 shows a state in which the hand 30 holds the cable 70. As shown in FIG. The cable 70 is composed of a reinforcing plate 72 and a cable body portion 71. The reinforcing plate 72 is provided with a protrusion 73B projecting in the width direction at the rear end of the reinforcing plate. Other configurations of cable 70 are the same as cable 50 of FIG. The hand 30 is attracted to the cable main body portion 71 near the reinforcing plate 72, and the cable main body portion 71 is accommodated between the two ridges 33 and contacts the flat portion (32 in FIG. 3B). Also, the ridges 33 on both sides of the hand 30 extend to the front end of the hand main body 31 . Preferably, when the hand 30 holds the cable main body 71, the cable is sucked so that the protruding tip 34 is positioned immediately behind the protrusion 73B.
 本実施形態の帯状物接続システムは図1に示したものと同じであり、システム10を構成するロボット20、撮像部16および演算部17も第1実施形態のそれらと同じである。 The belt-like object connection system of this embodiment is the same as that shown in FIG. 1, and the robot 20, imaging unit 16, and computing unit 17 that constitute the system 10 are also the same as those of the first embodiment.
 本実施形態の帯状物接続方法の工程フローを図7に示す。工程S1~S2、S5およびS7は、補強板を保持する第1実施形態と同様である。 FIG. 7 shows the process flow of the belt-like object connection method of this embodiment. Steps S1 to S2, S5 and S7 are the same as in the first embodiment in which the reinforcing plate is held.
 図8Aはこの帯状物接続方法を開始する前の状態を示している。図8に示したコネクタ62は、ケーブルを挿入する部分が開かず、ケーブルの先端を狭いスロットに平行に挿入する形式のものである。 Fig. 8A shows the state before starting this strip connection method. The connector 62 shown in FIG. 8 is of a type in which the portion into which the cable is inserted does not open and the tip of the cable is inserted parallel to a narrow slot.
(S1)コネクタ62を3次元計測し、(S2)ケーブル先端部を3次元計測する。工程S2において、必ずしも補強板72の3次元座標を算出する必要はなく、少なくとも補強板72との境界付近のケーブル本体部71の位置情報を算出できればよい。 (S1) The connector 62 is three-dimensionally measured, and (S2) the cable tip is three-dimensionally measured. In step S2, it is not always necessary to calculate the three-dimensional coordinates of the reinforcing plate 72, and at least the positional information of the cable body 71 in the vicinity of the boundary with the reinforcing plate 72 should be calculated.
(S3A)ハンド30で補強板72近傍のケーブル本体部71を保持する(図8B)。具体的には、前工程S2で算出したケーブル本体部の把持しようとする部位の位置および向きに基づいて、ハンドの吸引孔35をケーブル本体部に吸着して保持する。例えば、ケーブル本体部71と補強板72との境界の中心点からケーブル本体部の長手方向に所定の距離にある位置を保持位置としてロボットに通知し、吸着保持する。図9を参照して、ハンド30はできる限り補強板72に近い位置を保持することが好ましい。具体的には、ハンド30がケーブル本体部71に吸着したときに、補強板72後端とハンドの平面部32前端の間隔がケーブル70の幅以下であり、かつ5mm以下とすることが好ましい。補強板に極めて近いケーブル本体部の位置を精確に保持することで、ケーブル本体部が柔軟であっても、他のロボットハンドによる持ち替えやケーブルのたぐり動作を必要とせずにそのままコネクタに挿入することができる。 (S3A) The hand 30 holds the cable body 71 in the vicinity of the reinforcing plate 72 (FIG. 8B). Specifically, based on the position and orientation of the portion of the cable body to be gripped calculated in the previous step S2, the suction hole 35 of the hand is attracted to and held by the cable body. For example, the position at a predetermined distance in the longitudinal direction of the cable main body from the central point of the boundary between the cable main body 71 and the reinforcing plate 72 is notified to the robot as the holding position, and the robot is sucked and held. Referring to FIG. 9, hand 30 preferably holds a position as close to reinforcing plate 72 as possible. Specifically, when the hand 30 is attracted to the cable body 71, the distance between the rear end of the reinforcing plate 72 and the front end of the plane portion 32 of the hand is preferably less than the width of the cable 70 and less than 5 mm. By precisely holding the position of the cable body that is extremely close to the reinforcing plate, even if the cable body is flexible, it can be inserted into the connector as it is without the need for another robot hand to change the grip or pull the cable. can be done.
(S3B)補強板72の傾きを計測する。システム制御装置15の撮像部16でケーブル70先端部を撮像して、画像情報を取得し、演算部17で補強板の向き(傾き)を算出する。ケーブル70の柔軟性によって、ハンド30に保持されていない補強板72の向きは一定しないことがある。補強板72の向きを計測することによって、ケーブル70をコネクタ62に挿入するときのハンド30の姿勢を決めることができる。 (S3B) The inclination of the reinforcing plate 72 is measured. The imaging unit 16 of the system control device 15 captures an image of the tip of the cable 70 to obtain image information, and the calculation unit 17 calculates the orientation (inclination) of the reinforcing plate. Due to the flexibility of the cable 70, the orientation of the reinforcing plate 72 not held by the hand 30 may not be constant. By measuring the orientation of the reinforcing plate 72, the posture of the hand 30 when inserting the cable 70 into the connector 62 can be determined.
(S4A)ケーブル本体部71を保持したハンド30を移動させて(図8C)、ケーブル70をコネクタ62に挿入する(図8D)。次いで、(S5)ケーブルの挿入状態を確認する。 (S4A) Move the hand 30 holding the cable body 71 (FIG. 8C) and insert the cable 70 into the connector 62 (FIG. 8D). Next, (S5) the insertion state of the cable is checked.
(S6A)コネクタがカバー部材43に代わるロック機構を有する場合は、コネクタをロックする。次いで、(S7)ケーブルの挿入状態を確認する。 (S6A) If the connector has a locking mechanism instead of the cover member 43, the connector is locked. Next, (S7) the insertion state of the cable is confirmed.
 次に、本発明の第3実施形態を図10~図12に基づいて説明する。 Next, a third embodiment of the present invention will be described with reference to FIGS. 10-12.
 本実施形態では、第1実施形態と同じく、帯状物が先端部に備える補強板の位置および姿勢を算出し、ロボットハンドで補強板を把持して、帯状物の先端部をコネクタに接続する。本実施形態では、ケーブル先端部のコネクタへの接続方法が第1実施形態と異なる。 In this embodiment, as in the first embodiment, the position and orientation of the reinforcing plate provided at the tip of the strip are calculated, the robot hand grips the reinforcing plate, and the tip of the strip is connected to the connector. This embodiment differs from the first embodiment in the method of connecting the tip of the cable to the connector.
 コネクタの種類によって、例えば基板対基板(BtoB)コネクタ、超低背コネクタ等と呼ばれるコネクタでは、ケーブルの先端部に設けた端子を、コネクタの上側から基板に向かって押し込むことによって、ケーブルとコネクタが接続される。図10を参照して、本実施形態のケーブル90では、電極部97に端子98が半田付け等によって固定される。この端子98はヘッダーと呼ばれることもある。端子98がコネクタ(図12の82)の上側から基板40に向かって押し込まれることによって、ケーブル90とコネクタ82が接続される。 Depending on the type of connector, for example, in connectors called board-to-board (B-to-B) connectors, ultra-low profile connectors, etc., the cable and connector are separated by pushing the terminal provided at the tip of the cable from the upper side of the connector toward the board. Connected. Referring to FIG. 10, in cable 90 of the present embodiment, terminal 98 is fixed to electrode portion 97 by soldering or the like. This terminal 98 is sometimes called a header. The cable 90 and the connector 82 are connected by pushing the terminal 98 from the upper side of the connector (82 in FIG. 12) toward the board 40 .
 本実施形態の帯状物接続システムは図1に示したものと同じであり、システム10を構成するロボット20、撮像部16および演算部17も第1実施形態のそれらと同じである。 The belt-like object connection system of this embodiment is the same as that shown in FIG. 1, and the robot 20, imaging unit 16, and computing unit 17 that constitute the system 10 are also the same as those of the first embodiment.
 本実施形態の帯状物接続方法の工程フローを図11に示す。工程S1~S3、S5およびS7はいずれも第1実施形態と同様である。 FIG. 11 shows the process flow of the belt-like object connection method of this embodiment. Steps S1 to S3, S5 and S7 are all the same as in the first embodiment.
 図12Aはこの帯状物接続方法を開始する前の状態を示している。(S1)コネクタ82を3次元計測して位置を確認する。(S2)ケーブル90先端部を3次元計測し、補強板92とケーブル本体部91とを識別して補強板92の位置および向きを算出して、(S3)ハンド30で補強板92を保持する(図12B)。(S4B)ハンド30が保持した補強板92をコネクタ82の上方に移動させ、端子98をコネクタ82の開口部と対向させ(図12C)、次いで、端子98を基板40に向かって押し込むようにコネクタ82に嵌め合わせることで、端子とコネクタを接続する(図12D)。その後、(S5)端子98の挿入状態を力覚センサ等で確認し、(S7)ケーブル90の接続状態を画像等で確認する。 Fig. 12A shows the state before starting this strip connection method. (S1) The position of the connector 82 is confirmed by three-dimensional measurement. (S2) Three-dimensional measurement of the tip of the cable 90, identification of the reinforcing plate 92 and the cable body 91, calculation of the position and orientation of the reinforcing plate 92, and (S3) holding of the reinforcing plate 92 with the hand 30. (Fig. 12B). (S4B) The reinforcing plate 92 held by the hand 30 is moved above the connector 82, the terminals 98 are opposed to the openings of the connector 82 (FIG. 12C), and then the terminals 98 are pushed toward the substrate 40. The terminal and connector are connected by mating with 82 (FIG. 12D). After that, (S5) the insertion state of the terminal 98 is confirmed by a force sensor or the like, and (S7) the connection state of the cable 90 is confirmed by an image or the like.
 本発明は上記実施形態には限定されず、その技術的思想の範囲内で種々の変形が可能である。 The present invention is not limited to the above embodiments, and various modifications are possible within the scope of its technical ideas.
 例えば、上記実施形態では、ケーブル50、70、90が一端を固定され、他端が空中で自由端となった状態に配置されたものをハンド30で保持した。しかし、ケーブルの初期配置はこれには限定されず、位置および向きが不定な状態で配置されていてもよい。例えば、トレイや台の上に乱雑に積み重ねられた状態で供給された帯状物からハンド30で帯状物を1本ずつ保持して取り上げてもよい。 For example, in the above embodiment, the hand 30 holds the cables 50, 70, and 90 arranged in a state where one end is fixed and the other end is free in the air. However, the initial arrangement of the cables is not limited to this, and the cables may be arranged in a state where the positions and orientations are uncertain. For example, the hand 30 may hold and pick up strips one by one from strips that are randomly stacked on a tray or table.
 また、例えば、コネクタの形式は上記実施形態には限られないし、ハンド30による保持位置(補強板かケーブル本体部か)とコネクタに接続する際の移動方向の組み合わせについても上記実施形態には限られない。 Further, for example, the type of the connector is not limited to the above embodiment, nor is the combination of the position held by the hand 30 (reinforcement plate or cable body) and the moving direction when connecting to the connector also limited to the above embodiment. can't
10 帯状物接続システム、 15 帯状物接続システム制御装置、 16 撮像部、 17 演算部
20 多関節ロボット、 21 アーム、 22 リンク、 23 関節、 25 ロボット制御部
30 ロボットハンド、 31 ハンド本体部、 32 下面平面部、 33 突条、 34 突条先端、 35 吸引孔、 36 通気路、 37 支柱、 38 減圧源
40 基板、 41 筐体、 42 コネクタ、 43 カバー部材、 44 軸
50 FPCケーブル(帯状物)、 51 ケーブル本体部(帯状物本体部)、 52 補強板、 53A,53B 突起部、 54、55 樹脂フィルム、 56 銅配線、 57 電極部
62 コネクタ
70 FPCケーブル(帯状物)、 71 ケーブル本体部(帯状物本体部)、 72 補強板、 73B 突起部
82 コネクタ
90 FPCケーブル(帯状物)、 91 ケーブル本体部(帯状物本体部)、 92 補強板、 97 電極部、 98 端子
10 belt-shaped object connection system 15 belt-shaped object connection system control device 16 imaging unit 17 arithmetic unit 20 multi-joint robot 21 arm 22 link 23 joint 25 robot control unit 30 robot hand 31 hand main unit 32 lower surface Plane portion 33 Projection 34 Projection tip 35 Suction hole 36 Ventilation path 37 Post 38 Decompression source 40 Substrate 41 Housing 42 Connector 43 Cover member 44 Shaft 50 FPC cable (belt) 51 Cable body (strip body) 52 Reinforcement plate 53A, 53B Protrusion 54, 55 Resin film 56 Copper wiring 57 Electrode 62 Connector 70 FPC cable (strip) 71 Cable body (strip body), 72 reinforcing plate, 73B protrusion 82 connector 90 FPC cable (strip), 91 cable body (strip body), 92 reinforcing plate, 97 electrode, 98 terminal

Claims (10)

  1.  先端部に補強板を備えた帯状物の画像情報を取得する画像取得工程と、
     前記画像情報において前記補強板と前記帯状物の本体部とを識別する識別工程と、
     前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きを算出する工程と、
    を有する帯状物の3次元計測方法。
    an image acquisition step of acquiring image information of a strip having a reinforcing plate at its tip;
    an identification step of identifying the reinforcing plate and the main body portion of the belt-like object in the image information;
    a step of calculating the position and orientation of the reinforcing plate or the main body portion of the belt-like object in the vicinity of the reinforcing plate;
    A three-dimensional measurement method for a belt-shaped object having
  2.  前記画像情報が色情報を含み、
     前記識別工程は、前記色情報に基づいて前記補強板と前記帯状物本体部とを識別する、
    請求項1に記載の帯状物の3次元計測方法。
    the image information includes color information;
    The identifying step identifies the reinforcing plate and the belt-like object main body based on the color information.
    A three-dimensional measurement method for a belt-like object according to claim 1.
  3.  前記画像情報が前記補強板の少なくとも2辺又は3角の位置情報を含み、
     前記識別工程は、前記位置情報に基づいて前記補強板と前記帯状物本体部とを識別する、
    請求項1に記載の帯状物の3次元計測方法。
    The image information includes position information of at least two sides or three corners of the reinforcing plate,
    The identifying step identifies the reinforcing plate and the belt-like object main body based on the position information.
    A three-dimensional measurement method for a belt-like object according to claim 1.
  4.  前記帯状物は位置および向きが不定な状態で配置されている、
    請求項1から3のいずれか一項に記載の帯状物の3次元計測方法。
    The belt-like object is arranged in a state in which the position and orientation are indeterminate,
    The three-dimensional measurement method for a belt-like object according to any one of claims 1 to 3.
  5.  前記帯状物は、一端が固定されており、前記補強板を備えた他端が空中で自由端となっている、
    請求項1から3のいずれか一項に記載の帯状物の3次元計測方法。
    One end of the belt-shaped object is fixed, and the other end provided with the reinforcing plate is a free end in the air,
    The three-dimensional measurement method for a belt-like object according to any one of claims 1 to 3.
  6.  前記帯状物本体部が柔軟物である、
    請求項1から3のいずれか一項に記載の帯状物の3次元計測方法。
    The belt-shaped object main body is a flexible object,
    The three-dimensional measurement method for a belt-like object according to any one of claims 1 to 3.
  7.  請求項1から3のいずれか一項に記載の3次元計測方法によって算出した前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きに基づいて、ロボットハンドを動作させて前記補強板または前記補強板近傍の前記帯状物本体部を保持する保持工程と、
     前記ロボットハンドを動作させて前記帯状物の前記先端部をコネクタに接続する接続工程と、
    を有する帯状物の接続方法。
    A robot hand is operated to perform the reinforcement based on the position and orientation of the reinforcing plate or the belt-like object main body in the vicinity of the reinforcing plate calculated by the three-dimensional measurement method according to any one of claims 1 to 3. a holding step of holding the main body portion of the belt-shaped object in the vicinity of the plate or the reinforcing plate;
    a connecting step of operating the robot hand to connect the tip of the strip to a connector;
    A method of connecting strips having
  8.  前記保持工程は、前記ロボットハンドが前記補強板または前記補強板近傍の前記帯状物本体部を吸着によって保持する、
    請求項7に記載の帯状物の接続方法。
    In the holding step, the robot hand holds the reinforcing plate or the main body portion of the belt-like object near the reinforcing plate by suction.
    The method for connecting strips according to claim 7.
  9.  先端部に補強板を備えた帯状物をロボットで保持してコネクタに接続するシステムを制御する帯状物接続システム制御装置であって、
     前記帯状物を撮像して画像を取得可能な撮像部と、演算部とを有し、
     前記演算部は、
      前記画像において前記補強板と前記帯状物の本体部とを識別し、
      前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きを算出し、
      算出した前記補強板または前記補強板近傍の前記帯状物本体部の位置および向きに基づいて、前記ロボットにロボットハンドによる前記補強板または前記補強板近傍の前記帯状物本体部の保持および前記帯状物の前記先端部の前記コネクタへの接続を指示する、
    帯状物接続システム制御装置。
    A belt-shaped object connection system control device for controlling a system in which a belt-shaped object having a reinforcing plate at its tip is held by a robot and connected to a connector,
    having an imaging unit capable of capturing an image by imaging the band-shaped object and a computing unit;
    The calculation unit is
    Identifying the reinforcing plate and the main body of the strip in the image,
    calculating the position and orientation of the reinforcing plate or the main body portion of the belt-shaped object in the vicinity of the reinforcing plate;
    Based on the calculated position and orientation of the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate, the robot is caused to hold the reinforcing plate or the belt-shaped object main body in the vicinity of the reinforcing plate by a robot hand and the belt-shaped object. instructing the connection of the tip of the connector to the connector;
    Strip connection system controller.
  10.  請求項9に記載の帯状物接続システム制御装置と、前記ロボットハンドを備えた前記ロボットとを有する、
    帯状物接続システム。
    A belt-like object connection system control device according to claim 9 and the robot equipped with the robot hand,
    Strip connection system.
PCT/JP2022/023257 2021-06-16 2022-06-09 Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system WO2022264911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529829A JPWO2022264911A1 (en) 2021-06-16 2022-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100469 2021-06-16
JP2021-100469 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022264911A1 true WO2022264911A1 (en) 2022-12-22

Family

ID=84527503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023257 WO2022264911A1 (en) 2021-06-16 2022-06-09 Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system

Country Status (3)

Country Link
JP (1) JPWO2022264911A1 (en)
TW (1) TW202300860A (en)
WO (1) WO2022264911A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046975A1 (en) * 2015-09-18 2017-03-23 ソニー株式会社 Attachment device, attachment method, and hand mechanism
JP2020037147A (en) * 2018-09-03 2020-03-12 倉敷紡績株式会社 Determination method for work position of belt-like object, robot control method, determination device for work position of belt-like object and belt-like object handling system
JP2020041862A (en) * 2018-09-07 2020-03-19 倉敷紡績株式会社 Band-like object three-dimensional measurement method and band-like object three-dimensional measurement device
JP2020112470A (en) * 2019-01-15 2020-07-27 倉敷紡績株式会社 Tip member position estimating method, tip member holding method, tip member connecting method, tip member position estimating system and tip member holding system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046975A1 (en) * 2015-09-18 2017-03-23 ソニー株式会社 Attachment device, attachment method, and hand mechanism
JP2020037147A (en) * 2018-09-03 2020-03-12 倉敷紡績株式会社 Determination method for work position of belt-like object, robot control method, determination device for work position of belt-like object and belt-like object handling system
JP2020041862A (en) * 2018-09-07 2020-03-19 倉敷紡績株式会社 Band-like object three-dimensional measurement method and band-like object three-dimensional measurement device
JP2020112470A (en) * 2019-01-15 2020-07-27 倉敷紡績株式会社 Tip member position estimating method, tip member holding method, tip member connecting method, tip member position estimating system and tip member holding system

Also Published As

Publication number Publication date
JPWO2022264911A1 (en) 2022-12-22
TW202300860A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
CN108260300B (en) Electronic equipment assembling device and electronic equipment assembling method
EP3173194A1 (en) Manipulator system, image capturing system, transfer method of object, and carrier medium
CN114494420B (en) Flexible circuit board assembling device and method
WO2022264911A1 (en) Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system
TWI812257B (en) Electronic device assembly device and electronic device assembly method (2)
CN111757796B (en) Method for moving tip of thread, control device, and three-dimensional camera
CN114788436B (en) Component mounting machine
CN112350114A (en) Method and system for aligning and inserting wire contact with insertion hole of connector
JP7177639B2 (en) Three-dimensional measurement method for belt-shaped object and three-dimensional measurement device for belt-shaped object
US11962105B2 (en) Coupling method and robot system
WO2023068064A1 (en) Method for connecting substrate-to-substrate connector
US20220234208A1 (en) Image-Based Guidance for Robotic Wire Pickup
JP2020112470A (en) Tip member position estimating method, tip member holding method, tip member connecting method, tip member position estimating system and tip member holding system
JP2024040563A (en) Connection method for substrate-to-substrate connector, and system
US20240222925A1 (en) Electronic device assembly method
US20240235142A1 (en) Electronic device assembly apparatus and electronic device assembly method
TWI798100B (en) Electronic device assembling device and electronic device assembling method
TWI809912B (en) Electronic device assembly method
JP7217109B2 (en) Belt-shaped object work position determination method, robot control method, belt-shaped object work position determination device, and belt-shaped object handling system
CN114512882B (en) Electronic device assembling apparatus and electronic device assembling method
CN112672859B (en) Method for determining working position of belt, robot control method, working position determining device, belt processing system, three-dimensional measuring method, and three-dimensional measuring device
JP7346905B2 (en) Flexible board assembly method and assembly equipment
TWI839380B (en) Method for determining working position of strip, robot control method, device for determining working position of strip, strip processing system, three-dimensional measurement method of strip, and three-dimensional measurement device of strip
JP2022150352A (en) Robot system control method, robot system and program
CN117132642A (en) Method, system and storage medium for recognizing position and posture of object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529829

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824901

Country of ref document: EP

Kind code of ref document: A1