JP2020112233A - T-shaped pipe joint - Google Patents

T-shaped pipe joint Download PDF

Info

Publication number
JP2020112233A
JP2020112233A JP2019004553A JP2019004553A JP2020112233A JP 2020112233 A JP2020112233 A JP 2020112233A JP 2019004553 A JP2019004553 A JP 2019004553A JP 2019004553 A JP2019004553 A JP 2019004553A JP 2020112233 A JP2020112233 A JP 2020112233A
Authority
JP
Japan
Prior art keywords
flow passage
flow path
shape
main flow
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019004553A
Other languages
Japanese (ja)
Other versions
JP6807111B2 (en
Inventor
井上 智史
Tomohito Inoue
智史 井上
清和 高橋
Kiyokazu Takahashi
清和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2019004553A priority Critical patent/JP6807111B2/en
Publication of JP2020112233A publication Critical patent/JP2020112233A/en
Application granted granted Critical
Publication of JP6807111B2 publication Critical patent/JP6807111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To prevent extreme reduction in flow rate in a branch flow passage part where a flow passage branches into a T-shape, as compared to a main flow passage part.SOLUTION: A joint body 1 includes a guiding protrusion part Y formed in a main flow passage part M to deflect and guide part of fluid passing through the main flow passage part M to a branch flow passage part S.SELECTED DRAWING: Figure 6

Description

本発明は、三方継手やチーズ等とも称されるT型管継手に関する。 The present invention relates to a T-type pipe joint also called a three-way joint or cheese.

従来、合成樹脂製のT型管継手としては、図22に示すようなものが公知である(特許文献1参照)。
従来のT型管継手の継手本体75は、図22に示したように、180°反対側の流体の流入口76・流出口77を有するメイン流路部78がストレート状(直線状)であり、かつ、このメイン流路部78から直角に副流路部79が分岐し、このメイン流路部78と(分流用の)副流路部79をもってT字状流路80が形成されていた。
Conventionally, as a T-type pipe joint made of synthetic resin, one shown in FIG. 22 is known (see Patent Document 1).
In the joint main body 75 of the conventional T-type pipe joint, as shown in FIG. 22, a main flow path portion 78 having a fluid inlet 76 and a fluid outlet 77 on the opposite side of 180° is straight (straight). Moreover, the sub-flow passage portion 79 is branched at a right angle from the main flow passage portion 78, and the T-shaped flow passage 80 is formed by the main flow passage portion 78 and the sub flow passage portion 79 (for diverting). ..

意匠登録第1091181号公報Design Registration No. 1091181

図23(A)に於て、従来の(図22に示したような)継手本体75を備えたT型管継手85の接続配管の一例を示す。図23(A)では、3個のT型管継手85を、メインパイプP10,P11,P12,P13によって順次接続して、メイン流路81を構成し、さらに、T型管継手85の各々に、分岐パイプP30,P31,P32を接続して、分岐流路82,82,82を構成した場合を、簡略図示している。 In FIG. 23(A), an example of connecting piping of a conventional T-type pipe joint 85 having a joint body 75 (as shown in FIG. 22) is shown. In FIG. 23(A), three T-type pipe joints 85 are sequentially connected by main pipes P 10 , P 11 , P 12 , and P 13 to form a main flow path 81. The case where the branch pipes P 30 , P 31 , P 32 are connected to each of the 85 to form the branch flow paths 82, 82, 82 is shown in a simplified diagram.

このような従来の継手本体75を使用した場合に、次のような問題がある。
即ち、図22及び図23中の矢印F81はメイン流路81を流れる流体の流量を示し、矢印F82は分岐流路82を流れる流体の流量を示すが、分岐側の流量F82が、メイン側の流量F81に比べて、極端に少ないという問題である。分岐パイプP30,P31,P32の配設方向、配設高さ等によっては、分岐側の流量F82が零となったり、さらには逆流するような問題が起こる場合もあった。
その原因は、図22に於て、矢印F81にて示すように、流体が直線方向にメイン流路部78を高速で流れると、ベルヌーイの定理により、(直角に交叉した)副流路部79内が、減圧され、乃至、負圧となるためであると推定される。
When such a conventional joint body 75 is used, there are the following problems.
That is, the arrow F 81 in FIG. 22 and FIG. 23 shows the flow rate of the fluid flowing through the main flow passage 81, although the arrow F 82 indicates the flow rate of the fluid flowing through the branch passage 82, the flow rate F 82 of the branch side, The problem is that the flow rate F 81 on the main side is extremely small. Depending on the disposition direction, disposition height, etc. of the branch pipes P 30 , P 31 , and P 32 , there may be a problem that the flow rate F 82 on the branch side becomes zero, or even the backflow occurs.
The reason for this is that, as shown by arrow F 81 in FIG. 22, when a fluid flows in the main flow passage portion 78 at a high speed in a straight line direction, the sub flow passage portion (crossed at a right angle) is defined by Bernoulli's theorem. It is presumed that this is because the inside of 79 is depressurized or becomes negative pressure.

上述のように、分岐流路82側の流量F82が極端に減少すると、分岐パイプP30,P31,P32の先に接続された蛇口や温水機等が使用困難となるといった重大な問題を引き起こす虞れがあった。 As described above, the branch flow path 82 side of the flow F 82 is reduced extremely serious such branch pipe P 30, P 31, previously connected to the faucet and water heater etc. P 32 becomes difficult to use problem There was a risk of causing.

そこで、本発明は、合成樹脂製の継手本体を備え、該継手本体が、180°反対側から流体が流入・流出するメイン流路部と、該メイン流路部から直交方向へ分岐する副流路部と、から成るT字状流路を備えたT型管継手に於て、上記メイン流路部を通過する流体の一部を、上記副流路部へ偏向誘導する誘導突隆部を、上記メイン流路部における反分岐側内面に形成したものである。 Therefore, the present invention includes a joint body made of synthetic resin, and the joint body has a main flow passage portion into which a fluid flows in and out from the opposite side of 180°, and a side stream branched from the main flow passage portion in an orthogonal direction. In a T-shaped pipe joint having a T-shaped flow path including a flow path portion, a guide protrusion for deflecting a part of the fluid passing through the main flow path portion to the sub flow path portion is provided. It is formed on the inner surface on the side opposite to the branch in the main flow path portion.

また、横断面円形の一対の仮想エルボ体を、各々の一端面を180°反対の方向へ向けた背中合せ姿勢で、面対称に配置して、相互接近させ、各々の他端面が一致するように合体させた仮想合体形状に、上記T字状流路の分岐用中央領域の内面形状を、設定し、しかも、上記一端面を上記メイン流路部側とすると共に、上記他端面を上記副流路部側として、対応させ、上記仮想合体形状における背中側弯曲略V字谷に対応した凸部形状をもって、上記誘導突隆部が、構成されている。 Also, a pair of virtual elbow bodies having a circular cross section are arranged symmetrically in a back-to-back position with their one end faces facing in the opposite direction by 180°, and they are brought close to each other so that the other end faces thereof are aligned. The inner surface shape of the branching central region of the T-shaped flow path is set to the combined virtual shape, and the one end surface is the main flow path side and the other end surface is the sub-stream. On the road portion side, the guide protruding ridge portion is configured so as to have a convex shape corresponding to the back side curved V-shaped valley in the virtual united shape.

T型管継手における副流路部へも、十分な流量をもって流体が流れる。このT型管継手を使用した接続配管にあっては、分岐流路(分岐パイプ)にも、均等に、流体が十分流れる。 The fluid also flows into the sub-flow passage portion of the T-type pipe fitting at a sufficient flow rate. In the connection pipe using this T-type pipe joint, the fluid flows evenly in the branch flow passage (branch pipe) evenly.

本発明の第1の実施の形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of the present invention. T字状流路の内面形状を説明するための斜視図であり、(A)は一対の仮想エルボ体を背中合せ姿勢で接近させてゆく説明のための斜視図、(B)は仮想合体形状の斜視図である。It is a perspective view for explaining the inner surface shape of the T-shaped flow path, (A) is a perspective view for explaining a pair of virtual elbow bodies are approached in a back-to-back posture, and (B) is a virtual united shape. It is a perspective view. 第1の実施の形態の管継手本体の斜視図である。It is a perspective view of the pipe joint main body of 1st Embodiment. 正面図である。It is a front view. 側面図である。It is a side view. 管継手本体の縦断面図である。It is a longitudinal cross-sectional view of a pipe joint body. 第2の実施の形態を示す斜視図である。It is a perspective view showing a 2nd embodiment. 側面図である。It is a side view. 正面図である。It is a front view. 縦断面図である。FIG. 底面図である。It is a bottom view. 本発明に係るT型管継手の製造装置の実施の一形態を示し、金型のキャビティに対してコアピンを挿入する前の状態を示す断面図である。It is a sectional view showing an embodiment of a manufacturing device of a T type pipe joint concerning the present invention, and showing a state before inserting a core pin into a cavity of a metallic mold. コアピンを金型のキャビティへ挿入して、樹脂を射出した直後の状態を示す断面図である。It is sectional drawing which shows the state just after inserting a core pin into the cavity of a metal mold and injecting resin. 射出成形から所定時間経過して成形された樹脂が冷却後に円弧状コアピンを円弧状軸心に沿って外方へ移動した引抜き途中の状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the resin molded after a predetermined time has elapsed from the injection molding is being drawn out after the arc-shaped core pin is moved outward along the arc-shaped axis after cooling. コアピンの引抜状態であって射出成形された管継手本体が金型から取出直前の状態を示す断面図である。It is sectional drawing which shows the state just before taking out the injection-molded pipe joint main body in the state which the core pin was pulled out. コアピンの具体例を示す図であって、(A)は先端上方向からの斜視図、(B)は先端方向からの側面図、(C)は先端下方向からの斜視図、(D)は基端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, (A) is a perspective view from a tip top direction, (B) is a side view from a tip direction, (C) is a perspective view from a tip bottom direction, (D) is It is a perspective view from a base end lower direction. 作動ブロックを示す図であって、(A)は正面図、(B)は側面図である。It is a figure showing an operation block, (A) is a front view and (B) is a side view. ガイド筒体を示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows a guide cylinder, (A) is a front view, (B) is a side view. 第2コアピンを示す図であって、(A)は正面図、(B)は部分断面側面図である。It is a figure showing the 2nd core pin, (A) is a front view and (B) is a partial section side view. 作動ピンを示し、(A)は側面図、(B)は正面図、(C)は(A)のC−C断面拡大図である。The operation pin is shown, (A) is a side view, (B) is a front view, and (C) is a CC cross-sectional enlarged view of (A). 誘導突隆部が配設されるべき反分岐側内面Xの説明のための図であって、(A)は正面断面図、(B)は側面図、(C)は斜視説明図である。It is a figure for explanation of the counter branch side inner surface X in which a guide ridge part is to be arranged, (A) is a front sectional view, (B) is a side view, and (C) is a perspective explanatory view. 従来例を示す縦断面図である。It is a longitudinal cross-sectional view showing a conventional example. 従来例と本発明の作用・効果を比較して説明するための配管接続図であって、(A)は従来例の配管接続図、(B)は本発明の配管接続図である。It is a piping connection diagram for comparing and explaining the operation and effect of a prior art example and this invention, (A) is a piping connection diagram of a prior art example, (B) is a piping connection diagram of this invention.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図6に示すように、本発明に係るT型管継手40は、合成樹脂製の継手本体1を備え、この継手本体1は、180°反対側から流体が流入・流出するメイン流路部Mと、メイン流路部Mから直交方向に分岐する副流路部Sと、から成るT字状流路10を備えている。
そして、図1,図6及び図5に示すように、メイン流路部Mを通過する流体の一部を、副流路部Sへ偏向誘導する誘導突隆部Yを、メイン流路部Mの内面に形成する。即ち、誘導突隆部Yは、メイン流路部Mにおける反分岐側内面Xに形成する(図21参照)。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
As shown in FIGS. 1 to 6, a T-type pipe joint 40 according to the present invention includes a synthetic resin joint body 1, and the joint body 1 has a main flow in which a fluid flows in and out from 180° opposite sides. A T-shaped flow path 10 including a flow path M and a sub flow path S branching from the main flow path M in an orthogonal direction is provided.
Then, as shown in FIGS. 1, 6 and 5, the guide protrusion ridge Y for deflecting and guiding a part of the fluid passing through the main flow passage portion M to the sub flow passage portion S is provided. Formed on the inner surface of. That is, the guide protrusions Y are formed on the inner surface X of the main flow path M on the side opposite to the branch (see FIG. 21).

ここで、「反分岐側内面X」及び「反分岐側内面Xに形成」について、具体的に以下説明する。
図21は、従来の図22に示した平滑なメイン流路部78と、これに直交する副流路部79を、模型図として写した図である。図21に於て、副流路部79の直径Dsに相当する軸心方向寸法Wを有し、副流路部79と180°反対側の内面であって、中心角度θが180°の領域を、反分岐側内面Xと呼ぶ。従って、図1,図6の実施形態では、副流路部Sの最小内径部2の内径寸法を(図21の)前記直径Dsとして、かつ、誘導突隆部Yが存在していなかった(図6中に2点鎖線3をもって示した)孔の内面を、図21のメイン流路部78の内面として、判断すれば、反分岐側内面Xが明らかとなる。
Here, the “counter-branch side inner surface X” and the “formation on the counter-branch side inner surface X” will be specifically described below.
FIG. 21 is a diagram in which the smooth main flow path portion 78 and the sub flow path portion 79 orthogonal to the smooth main flow path portion 78 shown in FIG. In FIG. 21, it has an axial direction dimension W 0 corresponding to the diameter Ds of the sub flow passage portion 79, is an inner surface 180° opposite to the sub flow passage portion 79, and has a central angle θ of 180°. The area is referred to as the anti-branch inner surface X. Therefore, in the embodiments of FIGS. 1 and 6, the inner diameter dimension of the smallest inner diameter portion 2 of the sub-flow passage portion S is set to the diameter Ds (of FIG. 21) and the guide protrusion Y does not exist ( When the inner surface of the hole (indicated by the chain double-dashed line 3 in FIG. 6) is determined as the inner surface of the main flow path portion 78 of FIG. 21, the inner surface X on the anti-branch side becomes clear.

次に、「誘導突隆部Yが反分岐側内面Xに形成」とは、
(a)誘導突隆部Yが全て反分岐側内面Xにのみ形成されている場合。
(b)誘導突隆部Yの最も大きく突出した部位が反分岐側内面Xに存在しつつ、一部が反分岐側内面Xを越えて存在している場合。
以上の(a)(b)のいずれをも包含しているものと定義する。
Next, "the guide ridge Y is formed on the inner surface X on the side opposite to the branch"
(A) In the case where all the guiding protrusions Y are formed only on the inner surface X on the side opposite to the branch.
(B) In the case where the largest protruding portion of the guide protrusion ridge Y exists on the inner surface X on the anti-branch side, but a part thereof exists beyond the inner surface X on the anti-branch side.
It is defined as including any of the above (a) and (b).

図5,図6に示した実施形態、及び、(後述する)図8,図10の実施形態では、後者(b)に、該当している。言い換えれば、図5及び図8に於ては、図21に示したθ=180°よりも大きい中心角度範囲まで誘導突隆部Yが延伸状に配設され、さらに、図6及び図10に於ては、図21に示したWよりもアキシャル方向に誘導突隆部Yが延伸状に配設された場合を、例示している。 The latter embodiment (b) is applicable to the embodiments shown in FIGS. 5 and 6 and the embodiments shown in FIGS. 8 and 10 (described later). In other words, in FIGS. 5 and 8, the guide protrusion ridges Y are arranged in a stretched shape up to a central angle range larger than θ=180° shown in FIG. 21 illustrates a case where the guide protrusion ridge Y is arranged in a stretched shape in the axial direction with respect to W 0 shown in FIG.

次に、(一実施形態を示した)図1、及び、図3〜図6、さらに他の実施形態の図7〜図11におけるT字状流路10の分岐用中央領域10Pと、誘導突隆部Yの立体的形状につき、以下説明する。
まず、図1と図6に於て、分岐用中央領域10Pについて説明する。継手本体1のT字状流路10には、パイプPが挿入される、やや大径のパイプ挿入筒部5,5,5が形成され、シール材9等の密封機能を付加し、あるいは、パイプ引抜阻止機能等が付加される(図示省略)。
Next, FIG. 1 (one embodiment is shown), FIG. 3 to FIG. 6, and FIG. 7 to FIG. 11 of still another embodiment, the branching central region 10P of the T-shaped flow path 10 and the guide protrusion. The three-dimensional shape of the ridge Y will be described below.
First, the branching central region 10P will be described with reference to FIGS. In the T-shaped flow path 10 of the joint body 1, pipes P, 5 and 5 of slightly larger diameter are formed to insert the pipe P, and a sealing function such as a sealing material 9 is added, or A pipe withdrawal prevention function is added (not shown).

なお、挿入筒部5の外周には雄ネジ6を介して、袋ナット7が螺着され、パイプ引抜阻止機能として、食込み爪を内周縁に有する抜止めリング8を付設している。
分岐用中央領域10Pとは、このようなパイプ引抜機能や密封機能を有さず、純粋に流体の分岐を行うための中心的役割を果たす領域を言う。
A cap nut 7 is screwed onto the outer periphery of the insertion tube portion 5 via a male screw 6, and a retaining ring 8 having a biting claw on the inner peripheral edge is attached as a pipe withdrawal preventing function.
The branching central region 10P is a region that does not have such a pipe drawing function or a sealing function and plays a central role for purely branching a fluid.

図1に於ては、分岐用中央領域10Pの3方向の端部20は、段付部をもって形成されており、この段付部から成る端部20に、パイプPの先端が近接乃至当接し、あるいは、図1のような目印兼ガイドリング14が当接する。また、図1のように、補強用金属筒体16が、上記端部20に、近接乃至当接する場合もある。 In FIG. 1, the ends 20 in the three directions of the branching central region 10P are formed with a stepped portion, and the tip end of the pipe P comes close to or abuts the end portion 20 composed of the stepped portion. Alternatively, the mark/guide ring 14 as shown in FIG. In addition, as shown in FIG. 1, the reinforcing metal cylinder 16 may approach or abut the end 20.

図2は、上述の分岐用中央領域10P、及び、誘導突隆部Yの立体的形状を、説明するための仮想図である。
即ち、横断面円形の一対の仮想エルボ体11,11を想定する。その一対の仮想エルボ体11
,11を、同一平面内に軸心L11,L11が含まれるように、かつ、背中合せ姿勢で矢印E,Eのように接近させる。この背中合せ姿勢にあっては、一対の仮想エルボ体11,11の一端面12,12は180°反対方向へ向き、この一端面12,12の中心点を通る、前記軸心L11の延長直線L110 は、一致する(つまり、図2(A)に示すように一本の直線を成す)。
FIG. 2 is a virtual diagram for explaining the three-dimensional shapes of the branching central region 10P and the guide protrusion ridge Y described above.
That is, a pair of virtual elbow bodies 11, 11 having a circular cross section is assumed. The pair of virtual elbow body 11
, 11 are made to approach each other so that the axes L 11 and L 11 are included in the same plane and in a back-to-back posture as indicated by arrows E and E. In this back-to-back posture, the one end faces 12, 12 of the pair of virtual elbow bodies 11, 11 face in opposite directions by 180°, and pass through the center points of the one end faces 12, 12 to extend the straight line of the axis L 11 . L 110 matches (that is, forms one straight line as shown in FIG. 2A).

そして、一対の仮想エルボ体11,11は、面対称に配置される。要するに、図2(A)に示したように、横断面円形の一対の仮想エルボ体11,11を、背中合せ姿勢で、相互に矢印E,Eの如く接近させ、図2(B)のように、他端面13,13が一致するように、合体させ、一端面12,12を180°反対の方向へ向けた仮想合体形状15を、想定する。 Then, the pair of virtual elbow bodies 11, 11 are arranged in plane symmetry. In short, as shown in FIG. 2(A), a pair of virtual elbow bodies 11, 11 having a circular cross section are made to approach each other in a back-to-back posture as shown by arrows E, E, and as shown in FIG. 2(B). , A virtual united shape 15 in which the other end surfaces 13 and 13 are united so that the one end surfaces 12 and 12 face 180° in opposite directions is assumed.

図1,図3〜図6、及び、図7〜図11に示した各実施形態に於て、継手本体1のT字状流路10の中央領域10Pの内面形状は、前述した仮想合体形状に一致させている。
さらに具体的に説明すれば、仮想合体形状15(図2(B)参照)の一端面12,12を、図1,図6,図10等に示した分岐用中央領域10Pのメイン流路部M(の端部20)とする。
In each of the embodiments shown in FIGS. 1, 3 to 6 and FIGS. 7 to 11, the inner surface shape of the central region 10P of the T-shaped channel 10 of the joint body 1 is the above-mentioned virtual united shape. Match.
More specifically, the one end faces 12 and 12 of the virtual united shape 15 (see FIG. 2B) are connected to the main flow path portion of the branching central region 10P shown in FIGS. M (end 20).

また、仮想合体形状15の(図2(B)参照)の他端面13を、副流路部S側とする。
なお、図2に於て、仮想エルボ体11を90°エルボよりも、僅かに小さい角度───例えば、60°以上90°未満───のエルボとすることで(後述の)コアピンによる製造が容易となる場合があり、そのような僅かに小さい角度とすることも、自由である。
In addition, the other end surface 13 of the virtual united shape 15 (see FIG. 2B) is the side of the sub-flow path portion S.
In FIG. 2, the virtual elbow body 11 is formed at an angle slightly smaller than the 90° elbow--for example, 60° or more and less than 90°--by a core pin (described later). May be easier, and such slightly smaller angles are also free.

そして、図2(A)(B)等によって説明したような仮想合体形状15に、分岐用中央領域10Pの内面形状を、設定したことによって、誘導突隆部Yは、仮想合体形状15における背中側弯曲V字谷18に対応した凸部形状に、形成される。 Then, by setting the inner surface shape of the branching central region 10P to the virtual united shape 15 as described with reference to FIGS. It is formed in a convex shape corresponding to the V-shaped valley 18 of the side curve.

また、図2(B)に於て、(イ−イ)断面、(ロ−ロ)断面は、略円形であり、従って、図6,図10に於ける中央領域10Pの横断面形状も略円形となって、メイン流路部Mから副流路部Sへの流れの抵抗は、減少し、誘導突隆部Yと共働して、一層スムーズに副流路部Sへ流れる流量Fsは十分多くなる(図23(B)参照)。 Further, in FIG. 2(B), the (ii) cross section and the (roll) cross section are substantially circular, and therefore, the cross sectional shape of the central region 10P in FIGS. 6 and 10 is also substantially circular. The flow resistance Fs flowing from the main flow passage M to the sub flow passage S is reduced, and the flow resistance Fs flowing to the sub flow passage S more smoothly in cooperation with the guide protrusions Y becomes circular. It is sufficiently large (see FIG. 23(B)).

なお、中央領域10Pの流路孔部の横断面形状は、上述の如く略円形であるが、さらに詳しく説明すれば、図2(B)に示した一端面12及び他端面13に対応する(図6,図10に示した)端部20の横断面形状は円形であり、また、中央領域10Pの(図6,図10における)中央部位は、上記円形と円形が部分的に重なり合った、やや大きな横断面積の異形となっている。 The cross-sectional shape of the flow path hole in the central region 10P is substantially circular as described above, but if explained in more detail, it corresponds to the one end face 12 and the other end face 13 shown in FIG. 2B ( The cross-sectional shape of the end portion 20 (shown in FIGS. 6 and 10) is circular, and in the central portion (in FIGS. 6 and 10) of the central region 10P, the circular shape and the circular shape partially overlap each other, It has a slightly large cross-sectional area.

次に、図1に示すT型管継手40の継手本体1に関して、図3〜図6と共に、詳しく説明すれば、副流路部S側と反対側に於て、ストレート状に付設された補強リブ21、及び、前後側面に於てT字状に付設された補強リブ22を、外面に突出状として有する。
また、この継手本体1は、(図1,図6に於て、)透明樹脂による内外二重構造の場合を例示する。袋ナット7は不透明樹脂とする。
Next, the joint body 1 of the T-type pipe joint 40 shown in FIG. 1 will be described in detail with reference to FIGS. 3 to 6, in which the reinforcement provided in a straight shape is provided on the side opposite to the side of the sub-channel portion S. The ribs 21 and the reinforcing ribs 22 attached to the front and rear side surfaces in a T shape are provided on the outer surface in a protruding shape.
Further, this joint body 1 has an inner and outer double structure made of a transparent resin (in FIGS. 1 and 6). The cap nut 7 is made of opaque resin.

また、23は、締め付け状態で袋ナット廻り止めの機能を成す係止小突片であって、継手本体1の熱可塑性樹脂の射出成形によって一体に形成されている。袋ナット7の内端部の内周面には、多数の不等辺三角形の歯が設けられており、袋ナット7の雌ネジ24が雄ネジ6に螺合して、最終締付状態近くで、上記歯が係止小突片23をカチカチと乗り越えて、最終締付状態を最後に維持する構造である。 Reference numeral 23 is a small locking projection that functions to prevent the cap nut from rotating in the tightened state, and is integrally formed by injection molding of the thermoplastic resin of the joint body 1. On the inner peripheral surface of the inner end portion of the cap nut 7, a large number of teeth of an isosceles triangle are provided. The structure is such that the above-mentioned tooth clicks over the small locking projection 23 tightly and maintains the final tightened state at the end.

図7〜図11に示した他の実施形態では、図3〜図6に示した補強リブ21,22を省略している。
従って、内部のT字状流路10の中央領域10Pの内面形状(即ち、図2(B)の仮想立体形状)よりも薄い肉厚分だけ大きい外面25を、中央部位に、有する。
In other embodiments shown in FIGS. 7 to 11, the reinforcing ribs 21 and 22 shown in FIGS. 3 to 6 are omitted.
Therefore, the central portion has an outer surface 25 that is thicker than the inner surface shape (that is, the virtual three-dimensional shape of FIG. 2B) of the central region 10P of the T-shaped channel 10 inside.

そして、図3〜図6に示した雄ネジ6が、図7〜図11に示すパイプ挿入筒部5では省略されている。袋ナット7に相当する円筒リング(図示省略)の内端側内周面は、平滑円周面として、パイプ挿入筒部5に外嵌し、接着剤等にて固着一体化する構成である。
また、図11の底面図では、縦一文字状に誘導突隆部Yの稜線が見える。
The male screw 6 shown in FIGS. 3 to 6 is omitted in the pipe insertion tubular portion 5 shown in FIGS. 7 to 11. A cylindrical ring (not shown) corresponding to the cap nut 7 has an inner peripheral surface on the inner end side, which is a smooth circumferential surface, is externally fitted to the pipe insertion tubular portion 5, and is fixed and integrated with an adhesive or the like.
Further, in the bottom view of FIG. 11, the ridgeline of the guide protrusion ridge Y can be seen in a vertical line.

次に、以上述べた継手本体1についての製造方法、及び、製造装置に関して、以下、説明する。
図12〜図15は、継手本体1を、熱可塑性樹脂の射出成形にて製造する方法、及び、製造装置の実施の一形態を示す。31は、T型(チーズ型)継手本体1を成形する金型を示し、図面の紙面と平行な平面で合体分離自在な一対の入れ子32,32から成る。この金型31は、一対の入れ子32,32の合体によって、射出成形されるべき継手本体1の外面形状に対応した弯曲した(略T字状の)キャビティ33を有する。
Next, the manufacturing method and the manufacturing apparatus for the joint body 1 described above will be described below.
12 to 15 show an embodiment of a method and a manufacturing apparatus for manufacturing the joint body 1 by injection molding of a thermoplastic resin. Reference numeral 31 denotes a mold for molding the T-type (cheese-type) joint body 1, which is composed of a pair of nests 32, 32 which can be united and separated in a plane parallel to the plane of the drawing. The mold 31 has a curved (substantially T-shaped) cavity 33 corresponding to the outer surface shape of the joint body 1 to be injection-molded by combining a pair of inserts 32, 32.

このキャビティ33は、前記分岐用中央領域10P(図6参照)に対応した継手本体外面中央部を成形するための(点々をもって示した)継手外面中央形成部33Aと、この中央形成部33Aから三方へ延設される(図6のパイプ挿入筒部5,5,5を成形するための)パイプ挿入筒部形成部33Bと、から成る。そして、90°を成す3方向に、金型31から開口する開口端33M,33S,33Mを有する。開口端33M,33Mは、180°反対側に配設されて、図6に示す継手本体1のメイン流路部Mの開口端の位置に対応する。開口端33Mは、図6の副流路部Sの開口端の位置に対応する。35,35は、キャビティ33の開口端33M,33Mに対して、直線往復しつつ接近分離自在な一対の作動ピンである。即ち、同一軸心Lm上に、かつ、相反する方向から接近分離するように、一対の作動ピン35,35が、配設され、図12から図13のように、金型31の開口端33M,33Mに対して直線作動しつつ接近し、先端部35Aが侵入し、また、図13から図14を経て、図15にまで、引抜(後退)作動し、開口端33Mから分離する。 The cavity 33 includes a joint outer surface central forming portion 33A (shown with dots) for molding the joint main body outer surface central portion corresponding to the branching central region 10P (see FIG. 6), and three-way from the central forming portion 33A. A pipe insertion tube portion forming portion 33B (for forming the pipe insertion tube portions 5, 5, 5 in FIG. 6). And, it has opening ends 33M, 33S, 33M opening from the die 31 in three directions forming 90°. The open ends 33M, 33M are arranged on the opposite sides of 180° and correspond to the positions of the open ends of the main flow path portion M of the joint body 1 shown in FIG. The opening end 33M corresponds to the position of the opening end of the sub-flow path portion S in FIG. Numerals 35 and 35 are a pair of operation pins that can reciprocate linearly and reciprocally with respect to the open ends 33M and 33M of the cavity 33. That is, a pair of operating pins 35, 35 are arranged on the same axis Lm so as to approach and separate from the opposite directions, and as shown in FIGS. 12 to 13, the opening end 33M of the mold 31 is opened. , 33M while linearly operating and approaching, the tip end portion 35A enters, and pulls out (retracts) from FIG. 13 through FIG. 14 to FIG. 15 to separate from the open end 33M.

この作動ピン35は、図20に示すように基本円柱部35Bと4角板片状の基盤部35Cと、先端面35Dから切欠状に形成された凹溝35Eによって形成された一対の横断面三ケ月型突片部35F,35Fと、を一体に有している。しかも、先端部35Aの突片部35F,35Fには、図20(A)の側面図に示すように、ピン軸心35Gに対して、所定の傾斜角度θ35を成すカム孔(カム溝)35Hが設けられている(図20(C)参照)。 As shown in FIG. 20, the operating pin 35 has a pair of transverse cross sections formed by a basic columnar portion 35B, a square plate-shaped base portion 35C, and a groove 35E formed in a cutout shape from the front end surface 35D. The mold projections 35F, 35F are integrally provided. Moreover, as shown in the side view of FIG. 20(A), the projecting portions 35F, 35F of the tip end portion 35A have cam holes (cam grooves) forming a predetermined inclination angle θ 35 with respect to the pin axis 35G. 35H is provided (see FIG. 20(C)).

このような作動ピン35の先端部35Aには、横断面円形の円弧状コアピン51が付設されている。
具体的には、図16に示すように、コアピン51は、基端に突片部42が、連設されている。また、突片部42には貫孔43が設けられる。
An arcuate core pin 51 having a circular cross section is attached to the tip end portion 35A of the operation pin 35.
Specifically, as shown in FIG. 16, the core pin 51 has a projecting piece portion 42 continuously provided at the base end thereof. Further, the projecting piece portion 42 is provided with a through hole 43.

図12〜図15に示すように、作動ピン35の先端部35Aに形成された前記カム孔35Hに嵌合して、移動自在なカム軸44が、円弧状コアピン51に連設された突片部42の貫孔43に、挿入(圧入)固着されている。
つまり、円弧状コアピン51は、カム孔35Hとカム軸44によって、基端側の動きが規制される。
As shown in FIGS. 12 to 15, a movable cam shaft 44, which is fitted in the cam hole 35H formed in the tip end portion 35A of the actuating pin 35, has a movable cam shaft 44 continuously provided on the arc-shaped core pin 51. It is fixedly inserted (press-fitted) into the through hole 43 of the portion 42.
That is, the movement of the arc-shaped core pin 51 on the base end side is restricted by the cam hole 35H and the cam shaft 44.

図12〜図15及び図17に於て、36,36は、図外のシリンダ等のアクチュエータによって、矢印N,Nのように直線往復動する作動ブロックであり、前記作動ピン35が挿入固着される孔部36Aを有する。また、この作動ブロック36には、作動ピン35用の孔部36Aと同心状として、金型31に当接する一面に、凹所36Bが形成され、この凹所36Bにガイドキャップ37(図18参照)が嵌入固着される。
このガイドキャップ37は、先端に孔部37Aを有する内鍔部37Bを備え、このガイドキャップ37内を(軸心方向に)直線往復移動可能として、第2のコアピン52が、内嵌状として、組付けられている。
In FIGS. 12 to 15 and 17, reference numerals 36 and 36 denote operating blocks which linearly reciprocate as shown by arrows N 6 and N 7 by an actuator such as a cylinder (not shown). It has a hole 36A to be fixed. In addition, a concavity 36B is formed in the actuation block 36 concentrically with the hole 36A for the actuation pin 35 on one surface that abuts the die 31, and the guide cap 37 (see FIG. 18) is formed in the recess 36B. ) Is inserted and fixed.
This guide cap 37 is provided with an inner flange portion 37B having a hole portion 37A at its tip, is linearly reciprocally movable (in the axial direction) in the guide cap 37, and the second core pin 52 is internally fitted. It is assembled.

つまり、前述した円弧状コアピン51を第1のコアピンと呼ぶと共に、この直線往復移動するコアピン52を、第2のコアピンと呼ぶ。
第2のコアピン52は、図19に示すような形状であって、基端に、非回転とするための正方形板片部52Aを外鍔状に有し、作動ピン35が挿入自在な孔部52Bを略全長にわたって有する。また、複数段の外周面を有する筒状体であり、図6又は図10に示すように、メイン流路部Mの開口端附近、つまり、パイプ挿入筒部5の内部の孔部を、段付形状に形成する。
That is, the arcuate core pin 51 described above is called a first core pin, and the core pin 52 that reciprocates linearly is called a second core pin.
The second core pin 52 has a shape as shown in FIG. 19, has a square plate piece portion 52A for non-rotation at the base end in an outer brim shape, and a hole portion into which the operating pin 35 can be inserted. 52B over almost the entire length. Further, it is a tubular body having a plurality of steps of outer peripheral surface, and as shown in FIG. 6 or 10, a step near the opening end of the main flow path part M, that is, a hole part inside the pipe insertion tube part 5, It is formed in the attached shape.

そして、第2のコアピン52の先端には、誘導用円形孔52Cを有するガイド板52Dが付設される。
コアピン52は、このガイド板52Dに貫設された誘導用円形孔52Cによって、先端側の動きが規制される。
A guide plate 52D having a guiding circular hole 52C is attached to the tip of the second core pin 52.
The movement of the core pin 52 on the tip side is restricted by the guiding circular hole 52C penetrating the guide plate 52D.

即ち、図12〜図20に示す管継手製造装置にあっては、円弧状コアピン51が、図12と図13に示したキャビティ33の円弧状軸心L33に沿って揺動しつつ、挿入され、かつ、引抜かれる円弧状運動強制手段Zを、具備している。
この円弧状運動強制手段Zは、ガイド板52Dの誘導用円形孔52Cと、カム孔35Hとカム軸44のカム機構Kとから、構成される(図14,図19参照)。
言い換えれば、上記キャビティ33の円弧状軸心L33は、図2に於て既に述べた仮想合体形状15の弯曲状軸心L11に、一致していると言える。
That is, in the pipe joint manufacturing apparatus shown in FIGS. 12 to 20, the arcuate core pin 51 is inserted while swinging along the arcuate axis L 33 of the cavity 33 shown in FIGS. 12 and 13. It is provided with an arcuate movement forcing means Z that is pulled out and pulled out.
The arcuate movement forcing means Z comprises a guide circular hole 52C of the guide plate 52D, a cam hole 35H and a cam mechanism K of the cam shaft 44 (see FIGS. 14 and 19).
In other words, it can be said that the arcuate axis L 33 of the cavity 33 coincides with the curved axis L 11 of the virtual united shape 15 already described in FIG.

ところで、図12〜図15に於て、第3コアピン53が付加されている。この第3コアピン53は、副流路部Sに対応したパイプ挿入筒部形成部33Bに対して、直線往復運動しつつ、挿入・退出する直線運動ピンである。
この第3コアピン53は、図19に示した第2コアピン52の孔部52B及び円形孔52Cを、埋め込んだ中実棒状体としたものであり、しかも、先端に小径の位置決め用突出子53Aを、一体に有する。第3コアピン53の直線運動は、図外のシリンダ等のアクチュエータにて行えば良い。
By the way, in FIGS. 12 to 15, a third core pin 53 is added. The third core pin 53 is a linear movement pin that inserts/retracts with respect to the pipe insertion tube portion forming portion 33B corresponding to the sub-flow passage portion S while linearly reciprocating.
The third core pin 53 is a solid rod-shaped body in which the hole portion 52B and the circular hole 52C of the second core pin 52 shown in FIG. 19 are embedded, and further, a small diameter positioning protrusion 53A is provided at the tip. , Have one. The linear movement of the third core pin 53 may be performed by an actuator such as a cylinder (not shown).

また、図16に示すように、円弧状の第1コアピン51は、横断面円形の弯曲ピン本体部51Aを有するのであるが、この弯曲ピン本体部51Aの先端は、略直角に交わる第1先端面51Bと第2先端面51Cをもって、形成されている。
図13に示した射出成形状態では、一対の第1コアピン51,51は、その第1先端面51B,51Bが密に圧接状態となる。さらに、第2先端面51Cは、上記第3コアピン53の先端に密に圧接する。
Further, as shown in FIG. 16, the arc-shaped first core pin 51 has a curved pin main body 51A having a circular cross section, and the distal end of the curved pin main body 51A has a first distal end that intersects at a substantially right angle. The surface 51B and the second tip surface 51C are formed.
In the injection-molded state shown in FIG. 13, the pair of first core pins 51, 51 have their first tip surfaces 51B, 51B closely pressed. Further, the second tip surface 51C closely contacts the tip of the third core pin 53.

ところが、第1コアピン51の第2先端面51Cには、小さな半円形の凹窪部51Dが形成され、上述のように、一対のコアピン51,51が、その第1先端面51B,51Bが圧接した状態では、一対の凹窪部51D,51Dによって、小円形状凹部が形成され、その小円形状凹部に対して、図13に示したように、第3コアピン53の突出子53Aが嵌合し、この嵌合によって、一対の第1コアピン51,51の先端が確実に正確な位置に保持(センタリング)される。つまり、図19に示す第2コアピン52の円形孔52C、及び、カム軸44によって、第1コアピン51の基端寄りは、比較的安定して位置決め(センタリング)されているといえども、第1コアピン51の先端が振らつくことで、センタリングが難しい。このような問題点を、直線運動しつつ侵入して、安定してセンタリングが確実な第3コアピン53の先端と、一対の第1コアピン51,51の先端とを、相互に係合(嵌合)状態とすることで、解決できる。 However, a small semicircular concave recess 51D is formed on the second tip end surface 51C of the first core pin 51, and as described above, the pair of core pins 51, 51 are pressed against the first tip end surface 51B, 51B. In this state, a small circular concave portion is formed by the pair of concave concave portions 51D, 51D, and the protrusion 53A of the third core pin 53 is fitted into the small circular concave portion as shown in FIG. Then, by this fitting, the tips of the pair of first core pins 51, 51 are reliably held (centering) at accurate positions. That is, although the circular hole 52C of the second core pin 52 and the cam shaft 44 shown in FIG. 19 position the first core pin 51 near the base end relatively stably (centering), Centering is difficult because the tip of the core pin 51 fluctuates. To solve such a problem, the tip of the third core pin 53, which ensures stable and reliable centering, while entering while linearly moving, and the tip of the pair of first core pins 51, 51 are engaged (fitted) with each other. ) It can be solved by setting the status.

図12の状態から、金型31へ第1コアピン51,51と第3コアピン53を挿入し、半円形凹窪部51D,51Dによって形成された小円形凹窪部に対して、小円形突出子53Aを密に嵌合させた、図13に示したような一対の第1コアピン51,51と一本の第3コアピン53の合体状態下で、熱可塑性樹脂を射出成形すれば、均等の肉厚をもって、T字状流路10の包囲(周囲)壁を、成形可能となる。 From the state shown in FIG. 12, the first core pins 51, 51 and the third core pin 53 are inserted into the mold 31, and the small circular protrusions are formed with respect to the small circular concave portions formed by the semicircular concave portions 51D, 51D. If the thermoplastic resin is injection-molded in the state where the pair of first core pins 51, 51 and the single third core pin 53 as shown in FIG. With the thickness, the surrounding (surrounding) wall of the T-shaped channel 10 can be molded.

なお、射出成形後は、図13から図14に示す如く、矢印N方向に作動ブロック36,36を後退させれば、円弧運動しつつ第1コアピン51,51は引抜かれて、図15の状態となる。
冷却後、金型31を、図面の紙面をパーティングラインとして、分離開放して、成形品としての継手本体1を取出す。
After the injection molding, as shown in FIGS. 13 to 14, if the operation blocks 36, 36 are retracted in the direction of the arrow N 7 , the first core pins 51, 51 are pulled out while moving in an arc, and as shown in FIG. It becomes a state.
After cooling, the mold 31 is separated and opened with the drawing sheet surface as a parting line, and the joint body 1 as a molded product is taken out.

図23(B)は、本発明に係る継手本体1を使用したT型管継手40にて、配管を行った配管接続図である。図23(B)では、3個のT型管継手40を、メインパイプP,P,P,Pによって順次接続して、メイン流路26を構成し、さらに、T型管継手40の各々に、分岐パイプP20,P21,P22を接続して、分岐流路27,27,27を構成した場合を図示する。
図1及び図23(B)に於て、矢印Fmはメイン流路26を流れる流体の(メイン側の)流量を示し、矢印Fsは分岐流路27を流れる流体の(分岐側の)流量を示す。
FIG. 23(B) is a pipe connection diagram in which piping is performed in the T-type pipe joint 40 using the joint body 1 according to the present invention. In FIG. 23(B), the three T-type pipe joints 40 are sequentially connected by the main pipes P 0 , P 1 , P 2 , and P 3 to form the main flow path 26, and further, the T-type pipe joints. A case where branch pipes P 20 , P 21 , and P 22 are connected to each of the 40 to form branch channels 27, 27, 27 is shown.
In FIG. 1 and FIG. 23(B), the arrow Fm indicates the flow rate (on the main side) of the fluid flowing through the main flow path 26, and the arrow Fs indicates the flow rate (on the branch side) of the fluid flowing through the branch flow path 27. Show.

本発明では、既述したような誘導突隆部Yを備えていることによって、分岐側の流量Fsが、メイン側の流量Fmに比べて、極端に少なくなるといった問題が解決されている。即ち、FsがFmに比べて、十分な値が得られている。また、Fsが零となったり、さらには、マイナスとなる(逆流する)といった虞れもなくなった。このように、本発明に係るT型管継手40を、配管接続に用いれば、分岐流路27の先に接続された蛇口や温水機等が使用できなくなるといった問題も解決できることを、図23は示している。 The present invention solves the problem that the flow rate Fs on the branch side is extremely smaller than the flow rate Fm on the main side by providing the guide protrusion Y as described above. That is, Fs has a sufficient value compared to Fm. In addition, there is no fear that Fs will be zero or will be negative (backflow). As described above, when the T-type pipe coupling 40 according to the present invention is used for pipe connection, the problem that the faucet or the water heater connected to the end of the branch flow passage 27 cannot be used can be solved. Showing.

本発明は、以上詳述したように、合成樹脂製の継手本体1を備え、該継手本体1が、180°反対側から流体が流入・流出するメイン流路部Mと、該メイン流路部Mから直交方向へ分岐する副流路部Sと、から成るT字状流路10を備えたT型管継手に於て、上記メイン流路部Mを通過する流体の一部を、上記副流路部Sへ偏向誘導する誘導突隆部Yを、上記メイン流路部Mにおける反分岐側内面Xに形成したので、副流路部S側に接続された配管(分岐流路27)へ十分な流体流れが得られないといった従来の問題点を、簡易な形状(構成)をもって、解決できた。 INDUSTRIAL APPLICABILITY As described in detail above, the present invention is provided with the synthetic resin joint body 1, and the joint body 1 has a main flow passage portion M through which fluid flows in and out from the opposite side of 180°, and the main flow passage portion. In a T-shaped pipe joint provided with a T-shaped flow passage 10 composed of a sub flow passage portion S branched from M in the orthogonal direction, a part of the fluid passing through the main flow passage portion M is Since the guiding protrusion Y for deflecting and guiding to the flow path S is formed on the inner surface X of the main flow path M on the side opposite to the branch side, to the pipe (branch flow path 27) connected to the side of the sub flow path S. The conventional problem of not being able to obtain a sufficient fluid flow was solved with a simple shape (configuration).

また、横断面円形の一対の仮想エルボ体11,11を、各々の一端面12,12を180°反対の方向へ向けた背中合せ姿勢で、面対称に配置して、相互接近させ、各々の他端面13,13が一致するように合体させた仮想合体形状15に;上記T字状流路10の分岐用中央領域10Pの内面形状を、設定し;しかも、上記一端面12,12を上記メイン流路部M側とすると共に、上記他端面13を上記副流路部S側として、対応させ;上記仮想合体形状15における背中側弯曲略V字谷18に対応した凸部形状をもって、上記誘導突隆部Yが、構成されているので、T字状流路10における流体圧力損失が著しく低減でき、一層円滑に、分岐流路27側へ十分な流体流れが行われる。しかも、誘導突隆部Yの形成、及び、横断面円形の一対の仮想エルボ体11,11を背中合せで合体した仮想合体形状15に一致する分岐用中央領域10Pの形成を、比較的簡単な円弧状コアピン51と第3コアピン53等を使用した製造装置(図12〜図15参照)によって、同時に行い得る。
特に、図22に示した従来の樹脂製の継手本体75では、メイン流路部78から分岐流路部79への曲がりが、直角エッジ83に沿って急激に方向変換するために、直角エッジ83近くの乱流による圧力損失も大きく、分岐流路部79への流量がさらに減少していたのに対して、本発明では、横断面円形を保持しつつ、かつ、弯曲内周側には上記直角エッジ83が全く存在せず、小さな圧力損失をもって、一層、多い目の流量が分岐流量27へ送られる。しかも、全体がコンパクトな継手本体1となる利点もある。
In addition, a pair of virtual elbow bodies 11, 11 having a circular cross section are arranged back-to-back with their one end faces 12, 12 facing in opposite directions by 180°, and are arranged in plane symmetry to be brought close to each other. The virtual merged shape 15 is formed so that the end faces 13 and 13 are aligned with each other; the inner face shape of the branching central region 10P of the T-shaped flow path 10 is set; The other end face 13 is made to correspond to the side of the flow path portion M and the side of the sub-flow path portion S, and the guide is provided with a convex shape corresponding to the back side curved V-shaped valley 18 in the virtual united shape 15. Since the protruding portion Y is configured, the fluid pressure loss in the T-shaped flow passage 10 can be significantly reduced, and a sufficient fluid flow to the branch flow passage 27 side can be performed more smoothly. Moreover, the formation of the guide protrusion Y and the formation of the branching central region 10P corresponding to the virtual united shape 15 in which the pair of virtual elbow bodies 11, 11 having a circular cross section are united back to back are relatively simple circles. This can be performed simultaneously by a manufacturing apparatus (see FIGS. 12 to 15) using the arc-shaped core pin 51, the third core pin 53 and the like.
In particular, in the conventional resin joint body 75 shown in FIG. 22, the bend from the main flow path portion 78 to the branch flow path portion 79 is rapidly changed in direction along the right-angled edge 83. The pressure loss due to the nearby turbulent flow was large, and the flow rate to the branch flow passage portion 79 was further reduced, while in the present invention, while maintaining the circular cross section, the above-mentioned is provided on the curved inner peripheral side. There are no right-angled edges 83, and a higher flow is delivered to the branch flow 27 with a small pressure drop. Moreover, there is an advantage that the joint body 1 is compact as a whole.

1 継手本体
10 T字状流路
10P 分岐用中央領域
11 仮想エルボ体
12 一端面
13 他端面
15 仮想合体形状
18 背中側弯曲V字谷
M メイン流路部
S 副流路部(分岐流路部)
X 反分岐側内面
Y 誘導突隆部
1 Joint body
10 T-shaped flow path
10P branch central area
11 virtual elbow body
12 One side
13 Other end surface
15 virtual coalescing shape
18 Back curve V-shaped valley M Main flow path S Sub flow path (branch flow path)
X Inner surface on the side opposite to Y Y Guide protrusion

Claims (2)

合成樹脂製の継手本体(1)を備え、該継手本体(1)が、180°反対側から流体が流入・流出するメイン流路部(M)と、該メイン流路部(M)から直交方向へ分岐する副流路部(S)と、から成るT字状流路(10)を備えたT型管継手に於て、
上記メイン流路部(M)を通過する流体の一部を、上記副流路部(S)へ偏向誘導する誘導突隆部(Y)を、上記メイン流路部(M)における反分岐側内面(X)に形成したことを特徴とするT型管継手。
A joint main body (1) made of synthetic resin is provided, and the joint main body (1) is orthogonal to the main flow passage (M) through which the fluid flows in and out from the opposite side of 180° and the main flow passage (M). In a T-type pipe joint provided with a T-shaped flow path (10) consisting of a sub-flow path portion (S) branching in the direction,
The guide ridge (Y) that guides a part of the fluid passing through the main flow channel (M) to the sub flow channel (S) is provided on the opposite branch side of the main flow channel (M). A T-type pipe joint formed on the inner surface (X).
横断面円形の一対の仮想エルボ体(11)(11)を、各々の一端面(12)(12)を180°反対の方向へ向けた背中合せ姿勢で、面対称に配置して、相互接近させ、各々の他端面(13)(13)が一致するように合体させた仮想合体形状(15)に、
上記T字状流路(10)の分岐用中央領域(10P)の内面形状を、設定し、
しかも、上記一端面(12)(12)を上記メイン流路部(M)側とすると共に、上記他端面(13)を上記副流路部(S)側として、対応させ、
上記仮想合体形状(15)における背中側弯曲略V字谷(18)に対応した凸部形状をもって、上記誘導突隆部(Y)が、構成されている請求項1記載のT型管継手。
A pair of virtual elbow bodies (11) (11) having a circular cross section are arranged back-to-back with their one end faces (12) (12) facing in opposite directions by 180°, and are arranged symmetrically about each other to be brought close to each other. , Into a virtual united shape (15) which is united so that the other end faces (13) (13) are aligned,
By setting the inner surface shape of the branching central region (10P) of the T-shaped flow path (10),
Moreover, the one end faces (12) (12) are made to correspond to the main flow passage part (M) side, and the other end face (13) is made to correspond to the sub flow passage part (S) side,
The T-type pipe joint according to claim 1, wherein the guide protrusion (Y) is configured to have a convex shape corresponding to the back-side curved V-shaped valley (18) in the virtual united shape (15).
JP2019004553A 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body Active JP6807111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019004553A JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019004553A JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Publications (2)

Publication Number Publication Date
JP2020112233A true JP2020112233A (en) 2020-07-27
JP6807111B2 JP6807111B2 (en) 2021-01-06

Family

ID=71666560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019004553A Active JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Country Status (1)

Country Link
JP (1) JP6807111B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1009987A (en) * 1948-07-20 1952-06-05 Connection and elbow for pipes
JPH07158786A (en) * 1993-11-22 1995-06-20 Taiko Kikai Kogyo Kk T-shapred fitting
US6182326B1 (en) * 1999-02-10 2001-02-06 Emerson Electric Co. Workshop dust collection apparatus and method
JP2008025613A (en) * 2006-07-18 2008-02-07 Sekisui Chem Co Ltd Branch joint made of resin
US20130146170A1 (en) * 2011-12-07 2013-06-13 Hyundai Motor Company Air intake hose for vehicle and production method thereof
JP2016215639A (en) * 2015-05-20 2016-12-22 株式会社オンダ製作所 Apparatus for manufacturing joint and method for manufacturing joint
WO2018059893A1 (en) * 2016-09-30 2018-04-05 Sig Technology Ag Device for controlling the flow direction of fluids
JP2019010857A (en) * 2017-10-06 2019-01-24 株式会社オンダ製作所 Manufacturing apparatus of fitting
JP2019195960A (en) * 2018-05-10 2019-11-14 井上 智史 Pipe fitting manufacturing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1009987A (en) * 1948-07-20 1952-06-05 Connection and elbow for pipes
JPH07158786A (en) * 1993-11-22 1995-06-20 Taiko Kikai Kogyo Kk T-shapred fitting
US6182326B1 (en) * 1999-02-10 2001-02-06 Emerson Electric Co. Workshop dust collection apparatus and method
JP2008025613A (en) * 2006-07-18 2008-02-07 Sekisui Chem Co Ltd Branch joint made of resin
US20130146170A1 (en) * 2011-12-07 2013-06-13 Hyundai Motor Company Air intake hose for vehicle and production method thereof
JP2016215639A (en) * 2015-05-20 2016-12-22 株式会社オンダ製作所 Apparatus for manufacturing joint and method for manufacturing joint
WO2018059893A1 (en) * 2016-09-30 2018-04-05 Sig Technology Ag Device for controlling the flow direction of fluids
JP2019010857A (en) * 2017-10-06 2019-01-24 株式会社オンダ製作所 Manufacturing apparatus of fitting
JP2019195960A (en) * 2018-05-10 2019-11-14 井上 智史 Pipe fitting manufacturing apparatus

Also Published As

Publication number Publication date
JP6807111B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US10557569B2 (en) Two-shot tube retention fastener molding method
EP1561564A1 (en) Valve nozzle
WO2012164762A1 (en) Joint and production method therefor
US20120223517A1 (en) Tubing and connector and method making the same
US9829113B2 (en) Clamp device and methods for making and using
KR20180104289A (en) Pre-filled drinking straw with a cross-slit valve closure on both ends
JP7136665B2 (en) Method for manufacturing mold device and flow path member
JP2020112233A (en) T-shaped pipe joint
JP7196984B2 (en) Joint manufacturing apparatus and joint manufacturing method
EP3632648A1 (en) Injection molding die, resin member, and method for producing resin article
US11105434B2 (en) Flow rib in valves
JP5015358B1 (en) Manufacturing method of joints
CN113543746A (en) Dual spray nozzle tip assembly
US20160223117A1 (en) Conduit having integral, monolithic flow regulation features
DK3012084T3 (en) Fitting
JP2016074142A (en) Metal mold for insert molding, and insert molding method using the metal mold
JP2015094275A (en) Exhaust gas recirculation valve
JP6422610B1 (en) Pipe fitting manufacturing equipment
WO2021039804A1 (en) Flow passage structure
EP3632649A1 (en) Injection molding die, resin member, and method for producing resin article
EP3632647A1 (en) Injection molding die, resin member, and method for producing resin article
JP6657044B2 (en) Manufacturing method of synthetic resin pipe
JP2012250525A (en) Method of manufacturing joint
JPH02502433A (en) Multi-fluid path connection device
JP7107919B2 (en) Valve housing, valve and method for manufacturing valve housing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6807111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250