JP2019195960A - Pipe fitting manufacturing apparatus - Google Patents

Pipe fitting manufacturing apparatus Download PDF

Info

Publication number
JP2019195960A
JP2019195960A JP2018091372A JP2018091372A JP2019195960A JP 2019195960 A JP2019195960 A JP 2019195960A JP 2018091372 A JP2018091372 A JP 2018091372A JP 2018091372 A JP2018091372 A JP 2018091372A JP 2019195960 A JP2019195960 A JP 2019195960A
Authority
JP
Japan
Prior art keywords
cavity
arc
pipe joint
pin
arcuate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018091372A
Other languages
Japanese (ja)
Other versions
JP6422610B1 (en
Inventor
井上 智史
Tomohito Inoue
智史 井上
清和 高橋
Kiyokazu Takahashi
清和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018091372A priority Critical patent/JP6422610B1/en
Application granted granted Critical
Publication of JP6422610B1 publication Critical patent/JP6422610B1/en
Publication of JP2019195960A publication Critical patent/JP2019195960A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

To manufacture an elbow type pipe fitting with smooth bends with no edges at the inner corners of channel holes.SOLUTION: A mold (1) for injection molding an elbow type pipe fitting has a curved cavity (3), and acts to insert and pull out an arc core pin (10) from an open end (3D) (3D) of the cavity (3) along an arc axis (L).SELECTED DRAWING: Figure 1

Description

本発明は、4半円状に弯曲したエルボ型管継手の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for an elbow-shaped pipe joint bent into a semicircular shape.

従来、射出成形によって製造される樹脂製エルボ型管継手51は、図13(A)に示すように、全体がL字形状であり、流路用孔部52は、その外側コーナー部53がアール状(円弧状)であるが、内側コーナー部54は直角エッジ状となっている。
その理由は、従来の射出成形金型が、図13(B)に示す如く、直交方向から一対のコアピン55,56を金型(入れ子)に形成されたキャビティ内へ挿入して、溶融した樹脂を注入し、樹脂が冷却・固化して後、コアピン55,56を矢印N55,N56の方向に引抜きを行う必要があったためである。
仮に、内側コーナー部54をアール状に形成しようとすれば、コアピン55,56の上記引抜きが行えなくなる。
このように、内側コーナー部54は、コアピン55,56の突き合せ部位58の内側端縁を直角のエッジ状にせざるを得なかった。
Conventionally, as shown in FIG. 13A, the resin elbow-type pipe joint 51 manufactured by injection molding is L-shaped as a whole, and the channel hole 52 has an outer corner portion 53 that is rounded. The inner corner portion 54 has a right-angled edge shape.
The reason is that, as shown in FIG. 13B, a conventional injection mold inserts a pair of core pins 55 and 56 into a cavity formed in the mold (nesting) from the orthogonal direction and melts the resin. This is because the core pins 55 and 56 had to be pulled out in the directions of the arrows N 55 and N 56 after the resin was cooled and solidified.
If the inner corner portion 54 is formed in a round shape, the core pins 55 and 56 cannot be pulled out.
As described above, the inner corner 54 has to make the inner edge of the abutting portion 58 of the core pins 55 and 56 into a right-angled edge.

そこで、従来、図12に示すような置き中子60を使用することも提案されていた(特許文献1の図8参照)。
即ち、置き中子60と、この置き中子60が嵌込まれる凹窪部を切欠形成したコアピン55Z,56Zとを、組合せてキャビティ内に設置し、樹脂を射出成形する製法(金型装置)である。
Therefore, conventionally, it has been proposed to use a placement core 60 as shown in FIG. 12 (see FIG. 8 of Patent Document 1).
That is, a manufacturing method (molding device) in which the placing core 60 and the core pins 55Z and 56Z in which the recessed portion into which the placing core 60 is fitted are notched are combined and placed in the cavity, and the resin is injection molded. It is.

しかしながら、図12に於て、同図(A)から(B)のようにコアピン55Z,56Zを矢印N55,N56のように引き抜いた後に、置き中子60を同図(C)に示す矢印N60の方向に一旦偏心させ、続いて、同図(D)の矢印N61の方向に引抜く必要がある。
この図12の(C)(D)(E)の置き中子60の作動は、図12の図面では簡単なようだが、実際の射出成形装置(金型)としては、複雑な機構を必要とし、故障発生率も高く、作業能率が良いとは言えない。
However, At a 12, core pin 55Z as shown in from FIG. (A) (B), after pulled out as indicated by an arrow N 55, N 56 and 56 z, shown in the placed core 60 FIG (C) It is necessary to decenter in the direction of arrow N 60 and then pull out in the direction of arrow N 61 in FIG.
The operation of the placing core 60 of FIGS. 12C, 12D and 12E is simple in the drawing of FIG. 12, but an actual injection molding apparatus (mold) requires a complicated mechanism. Also, failure rate is high and work efficiency is not good.

そこで、シリコン等で予め作製した内筒体をキャビティ内に設置し、内筒体の外周面とキャビティ内面との間に、樹脂を射出成形し、次に、冷却後に、シリコン製の内筒体を、その弾性変形を利用しつつ引きずり出すという製法も提案されている(特許文献2参照)。   Therefore, an inner cylinder made of silicon or the like is placed in the cavity, resin is injection-molded between the outer peripheral surface of the inner cylinder and the inner surface of the cavity, and then, after cooling, the inner cylinder made of silicon A manufacturing method has also been proposed in which the material is dragged out while utilizing its elastic deformation (see Patent Document 2).

特開2009−184203号公報JP 2009-184203 A 特開2011−47487号公報JP 2011-47487 A

しかし、特許文献2記載の管継手の製法では、以下のような問題がある。 (i) エルボの内側コーナー部54(図13参照)のアール半径としては、(直角ではないが)極めて小さな数値が得られるにすぎない。 (ii) 射出成形した後に、(キャビティ内に設置していた)シリコン等の内筒体を引き出さねばならず、その引出し作業は極めて困難である。(iii) 製造に時間が掛り、しかも、引き出した内筒体が繰返し使用することも難しく、資源の無駄使いとなる虞がある。   However, the method for manufacturing a pipe joint described in Patent Document 2 has the following problems. (i) The radius of the inner corner portion 54 (see FIG. 13) of the elbow is only a very small value (but not a right angle). (ii) After injection molding, the inner cylindrical body such as silicon (installed in the cavity) has to be pulled out, and the drawing operation is extremely difficult. (iii) It takes time to manufacture, and it is difficult to repeatedly use the drawn inner cylinder, which may waste resources.

そこで、本発明は、エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、金型に形成された弯曲状キャビティに対して、該弯曲状キャビティの円弧状軸心に沿って、横断面円形の円弧状コアピンを挿入し、次に、射出成形を行って、所定時間冷却後に上記円弧状軸心に沿って引抜く方法である。
また、本発明は、エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、上記エルボ型管継手の外面形状に対応した弯曲状キャビティを有する金型に対して、上記キャビティの2箇所の開口端から、横断面円形の一対の円弧状コアピンを、上記弯曲状キャビティの円弧状軸心に沿って挿入し、上記一対のコアピンの先端面を圧接状に保持しつつ、射出成形を行って、所定時間冷却後に、上記一対のコアピンを、上記弯曲状キャビティの円弧状軸心に沿って外方へ移動しつつ上記開口端から引抜き、上記エルボ型管継手の流路孔の内側コーナー部の縦断面形状が円弧状であり、しかも、上記流路孔の上記円弧状軸心に直交する横断面形状を全て円形とするものである。
Accordingly, the present invention provides a method for manufacturing an elbow-type pipe joint by injection molding of a thermoplastic resin, with respect to the curved cavity formed in the mold, with the arc-shaped axis of the curved cavity. A circular arc core pin having a circular cross section is inserted, and then injection molding is performed, followed by cooling for a predetermined time and drawing along the arc-shaped axis.
Further, the present invention provides a method for producing an elbow-type pipe joint by injection molding of a thermoplastic resin, with respect to a mold having a curved cavity corresponding to the outer surface shape of the elbow-type pipe joint. From two open ends of the cavity, a pair of circular arc core pins having a circular cross section are inserted along the arcuate axis of the curved cavity, and the tip surfaces of the pair of core pins are held in pressure contact, After performing injection molding and cooling for a predetermined time, the pair of core pins are pulled out from the opening end while moving outward along the arcuate axis of the curved cavity, and the flow path hole of the elbow-type fitting The inner corner portion has a circular cross-sectional shape, and the cross-sectional shape perpendicular to the arc-shaped axis of the flow path hole is all circular.

また、本発明に係る管継手の製造装置は、エルボ型管継手を熱可塑性樹脂の射出にて成形する金型を備え、上記金型に形成された弯曲状キャビティの円弧状軸心に沿って揺動しつつ、上記弯曲状キャビティへの挿入と外方への引抜きの円弧状運動を行う円弧状コアピンを、具備する。
また、エルボ型管継手を熱可塑性樹脂の射出にて成形する金型を備え、該金型は、上記エルボ型管継手の外面形状に対応した弯曲状キャビティを有し、該キャビティの2箇所の開口端の各々に対して、直線往復しつつ接近分離自在な作動ピンが配設され、さらに、該作動ピンの先端部には、横断面円形の円弧状コアピンが付設され、上記作動ピンの先端の上記開口端への接近乃至侵入に伴って、上記円弧状コアピンが上記弯曲状キャビティの円弧状軸心に沿って揺動しつつ挿入されると共に、上記作動ピンの先端の上記開口端からの分離乃至脱出に伴って、上記円弧状コアピンが上記円弧状軸心に沿って揺動しつつ上記弯曲状キャビティから外方へ引抜かれる円弧状運動強制手段を、具備する。
The pipe joint manufacturing apparatus according to the present invention includes a mold for molding an elbow pipe joint by injection of a thermoplastic resin, along the arc-shaped axis of the curved cavity formed in the mold. An arcuate core pin is provided that performs an arcuate motion of insertion into the bent cavity and extraction outward while swinging.
In addition, a mold for molding an elbow-type pipe joint by injection of a thermoplastic resin, the mold has a curved cavity corresponding to the outer surface shape of the elbow-type pipe joint, and two places of the cavity are provided. Each open end is provided with an actuating pin that can reciprocate while reciprocating linearly, and an arc-shaped core pin having a circular cross section is attached to the tip of the actuating pin, and the tip of the actuating pin The arc-shaped core pin is inserted while oscillating along the arc-shaped axis of the curved cavity with the approaching or intrusion of the opening pin, and the tip of the working pin from the opening end is inserted. In accordance with separation or escape, the arc-shaped core pin is provided with arc-shaped motion forcing means that is pulled out outward from the curved cavity while swinging along the arc-shaped axis.

本発明に係る管継手の製造方法によれば、得られる管継手の流路は、縦断面に於て、その内側コーナー部を、(従来の直角エッジ状から、)円弧状にすることができ、しかも、円弧状軸心に直交する横断面形状が、軸心方向のいずれの位置にあっても、円形とすることができる。それによって、得られた上記管継手の流路を流れる流体に渦(乱流)を発生せず、通過抵抗が減少し、圧力損失を著しく低減できる。つまり、圧力損失の小さい滑らかな流路を有するエルボ型管継手が得られる。
また、本発明に係る管継手の製造装置によれば、製造装置の構成を簡素化でき、流路内側コーナー部を、(従来の直角エッジ状から、)円弧状で、かつ、横断面形状が円形である90°の流路を有するエルボ型管継手を、確実かつ能率良く製造できる。
According to the method for manufacturing a pipe joint according to the present invention, the flow path of the obtained pipe joint can have an arcuate shape (from the conventional right-angled edge shape) in the longitudinal cross section thereof. In addition, the cross-sectional shape perpendicular to the arcuate axis can be circular regardless of the position in the axial direction. Accordingly, vortices (turbulent flow) are not generated in the fluid flowing through the flow path of the obtained pipe joint, the passage resistance is reduced, and the pressure loss can be remarkably reduced. That is, an elbow type pipe joint having a smooth flow path with a small pressure loss is obtained.
In addition, according to the pipe joint manufacturing apparatus according to the present invention, the configuration of the manufacturing apparatus can be simplified, the inner corner portion of the flow path has an arc shape (from a conventional right-angled edge shape), and has a cross-sectional shape. An elbow pipe joint having a circular 90 ° channel can be manufactured reliably and efficiently.

本発明に係る管継手の製造装置(と方法)の実施の一形態を示し、金型のキャビティに対して、円弧状コアピンを挿入する前の状態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing apparatus (and method) of the pipe joint which concerns on this invention, and shows the state before inserting an arc-shaped core pin with respect to the cavity of a metal mold | die. 円弧状コアピンを金型のキャビティへ挿入した状態であって、樹脂の射出直前の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state immediately before injection of a resin in a state where an arc-shaped core pin is inserted into a cavity of a mold. 射出成形から所定時間経過して成形された樹脂が冷却後にコアピンを円弧状軸心に沿って外方へ移動した引抜き途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of drawing | extracting which the resin shape | molded after the predetermined time passed from injection molding moved the core pin outward along the circular arc-shaped axis after cooling. コアピンを金型から引抜いた状態と製造されたエルボ型管継手の一例を説明する断面図であって、(A)はコアピンの引抜状態であって射出成形されたエルボ型管継手が金型から取出直前の状態を示す断面図、(B)はエルボ型管継手の一例を示した断面図である。It is sectional drawing explaining an example of the state which pulled the core pin from the metal mold | die, and the manufactured elbow type pipe fitting, Comprising: (A) is the drawing state of the core pin, and the elbow type pipe joint by which injection molding was carried out from a metal mold | die Sectional drawing which shows the state just before taking out, (B) is sectional drawing which showed an example of the elbow type pipe joint. コアピンの具体例を示す図であって、(A)は先端上方向からの斜視図、(B)は先端方向からの側面図、(C)は先端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a perspective view from front-end | tip upper direction, (B) is a side view from front-end | tip direction, (C) is a perspective view from front-end | tip lower direction. コアピンの具体例を示す図であって、(A)は平面図、(B)は正面図、(C)は底面図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a top view, (B) is a front view, (C) is a bottom view. コアピンの具体例を示す図であって、(A)は基端上方向からの斜視図、(B)は基端方向から見た側面図、(C)は基端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a perspective view from base end upper direction, (B) is a side view seen from the base end direction, (C) is a perspective view from base end lower direction is there. 作動ブロックを示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows an operation | movement block, Comprising: (A) is a front view, (B) is a side view. ガイド筒体を示し、(A)は正面図、(B)は側面図である。A guide cylinder is shown, (A) is a front view, (B) is a side view. 管継手の大径端部を形成する第2コアピンを示し、(A)は正面図、(B)は半截断面側面図である。The 2nd core pin which forms the large diameter end part of a pipe joint is shown, (A) is a front view, (B) is a half-rod cross-sectional side view. 作動ピンを示し、(A)は側面図、(B)は正面図、(C)は(A)のC−C断面拡大図である。The operation | movement pin is shown, (A) is a side view, (B) is a front view, (C) is CC sectional expanded view of (A). 従来例の製造方法を順次示した断面説明図である。It is sectional explanatory drawing which showed the manufacturing method of the prior art example one by one. 別の従来例を示す図であって、(A)は従来のエルボ型管継手の縦断面図、(B)は従来の製造装置と製造方法を説明するための一部断面側面図である。It is a figure which shows another prior art example, Comprising: (A) is a longitudinal cross-sectional view of the conventional elbow type pipe joint, (B) is a partial cross section side view for demonstrating the conventional manufacturing apparatus and manufacturing method.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図4は、本発明に係るエルボ型管継手(以下、単に「エルボ継手」という場合がある)を、熱可塑性樹脂の射出成形にて製造する方法、及び、製造装置の実施の一形態を示す。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1 to 4 show an embodiment of a method for manufacturing an elbow type pipe joint according to the present invention (hereinafter sometimes simply referred to as “elbow joint”) by injection molding of a thermoplastic resin, and a manufacturing apparatus. The form is shown.

まず、(主として)エルボ継手の製造装置について説明すると、1は、エルボ継手Eを成形する金型を示し、図面の紙面と平行な平面で合体分離自在な一対の入れ子2,2から成る。
この金型1は、一対の入れ子2,2の合体によって、射出成形されるべきエルボ継手Eの外面形状に対応した弯曲状キャビティ3を有する。
このキャビティ3は、約90°の弯曲本体形成部3Aと、該弯曲本体形成部3Aの両端から順次連続状に形成される中径部3Bと大径部3Cと、から成り、相互に90°を成す方向に、金型1から開口する開口端3D,3Dを有する。
First, a description will be given of (mainly) an elbow joint manufacturing apparatus. Reference numeral 1 denotes a mold for molding the elbow joint E, which includes a pair of inserts 2 and 2 that can be separated and combined in a plane parallel to the paper surface of the drawing.
The mold 1 has a curved cavity 3 corresponding to the outer surface shape of the elbow joint E to be injection-molded by combining the pair of inserts 2 and 2.
The cavity 3 is composed of a bent main body forming portion 3A of about 90 °, and a medium diameter portion 3B and a large diameter portion 3C that are successively formed from both ends of the bent main body forming portion 3A. Are open ends 3D and 3D that open from the mold 1.

5は、キャビティ3の開口端3Dに対して、直線往復しつつ接近分離自在な作動ピンである。即ち、軸心が直交状に配設された一対の作動ピン5,5は、各々、図1から図2のように、金型1のキャビティ3の開口端3D,3Dに対して直線作動しつつ接近し、先端部5Aが侵入し、また、図2から図3を経て図4にまで、引抜(後退)作動にて、開口端3Dから分離する。
この作動ピン5は、図11に示すように、基本円柱部5Bと4角板片状の基盤部5Cと、先端面5Dから切欠状に形成された凹溝5Eによって形成された一対の横断面三ケ月型突片部5F,5Fと、を一体に有している。しかも、先端部5Aの突片部5F,5Fには、図11(A)の側面図に示すように、ピン軸心5Gに対して、所定の傾斜角度θ5 を成すカム孔(カム溝)5Hが設けられている(図11(C)参照)。
Reference numeral 5 denotes an actuating pin that can freely approach and separate while reciprocating linearly with respect to the opening end 3 </ b> D of the cavity 3. That is, the pair of actuating pins 5 and 5 whose axes are arranged orthogonally operate linearly with respect to the open ends 3D and 3D of the cavity 3 of the mold 1 as shown in FIGS. While approaching, the tip 5A enters, and from FIG. 2 to FIG. 4 to FIG. 4, it is separated from the opening end 3D by the drawing (retracting) operation.
As shown in FIG. 11, the actuating pin 5 has a pair of cross sections formed by a basic cylindrical portion 5B, a square plate-like base portion 5C, and a groove 5E formed in a cutout shape from the tip surface 5D. It has three-month-shaped protrusions 5F, 5F. Moreover, as shown in the side view of FIG. 11A, the protrusions 5F and 5F of the tip 5A have cam holes (cam grooves) that form a predetermined inclination angle θ 5 with respect to the pin shaft center 5G. 5H is provided (see FIG. 11C).

このような作動ピン5の先端部5Aには、横断面円形の円弧状コアピン10が付設されている。
具体的には、図5,図6及び図7に示すように、コアピン10は、基端に小さな面取り部11と、突片部12が、連続状に連設されている。また、突片部12には貫孔13が設けられる。
An arcuate core pin 10 having a circular cross section is attached to the distal end portion 5A of such an operating pin 5.
Specifically, as shown in FIGS. 5, 6, and 7, the core pin 10 has a small chamfered portion 11 and a protruding piece portion 12 that are continuously provided at the base end. The projecting piece 12 is provided with a through hole 13.

図1〜図4に示すように、作動ピン5の先端部5Aに形成された前記カム孔5Hに嵌合して、移動自在なカム軸14が、円弧状コアピン10に連設された突片部12の貫孔13に、挿入(圧入)固着されている。
つまり、円弧状コアピン10は、カム孔5Hとカム軸14によって、基端側の動きが規制される。
As shown in FIGS. 1 to 4, a projecting piece in which a movable cam shaft 14 is connected to the arc-shaped core pin 10 by being fitted in the cam hole 5 </ b> H formed in the tip portion 5 </ b> A of the operating pin 5. It is inserted (press-fit) and fixed in the through-hole 13 of the portion 12.
That is, the movement of the base end side of the arc-shaped core pin 10 is restricted by the cam hole 5H and the cam shaft 14.

図1〜図4及び図8に於て、6は、図外のシリンダ等のアクチュエータによって、矢印N6 ,N7 のように直線往復動する作動ブロックであり、前記作動ピン5が挿入固定される孔部6Aを有する。また、この作動ブロック6には、上記作動ピン5用の孔部6Aと同心状として、金型1に当接する一面に、凹所6Bが形成され、この凹所6Bにガイドキャップ7(図9参照)が嵌入固着される。このガイドキャップ7は、先端に孔部7Aを有する内鍔部7Bを有し、このガイドキャップ7内を(軸心方向に)直線往復移動可能として、第2のコアピン8が、内嵌状として、組付けられている。
つまり、前述した円弧状コアピン10を第1のコアピンと呼ぶと共に、この直線往復移動するコアピン8は、第2のコアピンと呼ぶ。
1 to 4 and 8, reference numeral 6 denotes an operation block that linearly reciprocates as indicated by arrows N 6 and N 7 by an actuator such as a cylinder (not shown), and the operation pin 5 is inserted and fixed. 6A. The operating block 6 is concentric with the hole 6A for the operating pin 5 and has a recess 6B formed on one surface thereof that contacts the mold 1. The guide cap 7 (FIG. 9) is formed in the recess 6B. Is inserted and fixed. The guide cap 7 has an inner flange portion 7B having a hole portion 7A at the tip. The guide cap 7 can linearly reciprocate (in the axial direction) in the guide cap 7, and the second core pin 8 has an inner fitting shape. It is assembled.
In other words, the arc-shaped core pin 10 described above is referred to as a first core pin, and the core pin 8 that reciprocates linearly is referred to as a second core pin.

第2のコアピン8は、図10に示すような形状であって、基端に、非回転とするための正方形板片部8Aを外鍔状に有し、作動ピン5が挿入自在な孔部8Bを略全長にわたって有する。また、複数段の外周面を有する筒部状であり、図2,図3に示すように、中径部3B,大径部3Cに対応して、図4に示したようなエルボ継手Eの開口端寄りの中径・大径の円筒部を形成する。
そして、第2のコアピン8の先端には、誘導用円形孔8Cを有するガイド板8Dが固着されている。
The second core pin 8 has a shape as shown in FIG. 10, has a square plate piece 8A for non-rotating at the base end in the shape of an outer casing, and a hole portion into which the operating pin 5 can be inserted. 8B over substantially the entire length. Moreover, it is a cylinder part shape which has a multi-step outer peripheral surface, and as shown in FIGS. 2 and 3, the elbow joint E as shown in FIG. 4 corresponds to the medium diameter part 3B and the large diameter part 3C. A cylindrical portion with a medium diameter and a large diameter near the opening end is formed.
A guide plate 8D having a guide circular hole 8C is fixed to the tip of the second core pin 8.

前記コアピン10は、このガイド板8Dに貫設の誘導用円形孔8Cによって、先端側の動きが規制される。
即ち、図1〜図11に示す実施形態にあっては、円弧状コアピン10が、弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ、弯曲状キャビティ3から、金型1の外方へ引抜かれる円弧状運動強制手段Zを、具備し、この円弧状運動強制手段Zは、ガイド板8Dの誘導用円形孔8Cと、カム孔5Hとカム軸14のカム機構Kとから、構成される。
The movement of the core pin 10 on the tip side is restricted by a guide circular hole 8C penetrating the guide plate 8D.
That is, in the embodiment shown in FIGS. 1 to 11, the arcuate core pin 10 swings along the arcuate axis L 3 of the curved cavity 3, and the mold 1 is moved from the curved cavity 3. The arc-shaped motion forcing means Z is pulled out outward from the guide hole 8C of the guide plate 8D, the cam hole 5H and the cam mechanism K of the cam shaft 14. Configured.

このように、本発明は、図1に示すように、図外のアクチュエータによって作動ブロック6が矢印N6 方向に直線的移動して、このブロック6に保持された作動ピン5の先端が、金型1のキャビティ3の開口端3Dへの接近、及び、引続いての図2に示す侵入に伴って、円弧状コアピン10が弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ挿入され、円弧状コアピン10の円形先端面10A,10Aが相互に当接(圧接)され、その後、(図3に示すように)樹脂の射出成形が行われ、所定時間冷却後に、作動ピン5を矢印N7 方向に移動させて、作動ピン5の先端が、キャビティ3の開口端3Dから分離し又は脱出することで、円弧状コアピン10が、円弧状軸心L3 に沿って揺動しつつキャビティ3から外方へ引抜かれる円弧状運動強制手段Zを、具備している。
なお、図10、及び、図1〜図4に示すように、誘導用円形孔8Cは、円弧状コアピン10の(小さな曲率半径の)内周面に摺接する部位を、(ガイド板8Dの肉厚の範囲で、)アール状面乃至勾配面16に形成する。
Thus, as shown in FIG. 1, according to the present invention, the operation block 6 is linearly moved in the direction of the arrow N 6 by an actuator not shown, and the tip of the operation pin 5 held by the block 6 is made of gold. access to the open end 3D of type 1 of the cavity 3, and, with the penetration shown in Figure 2 of subsequently, arcuate core pin 10 is swung along an arcuate axis L 3 of curved shape cavity 3 The circular distal end surfaces 10A and 10A of the arc-shaped core pin 10 are brought into contact with each other (pressure contact), and then resin injection molding (as shown in FIG. 3) is performed, and after cooling for a predetermined time, the operation pin 5 is moved in the arrow N 7 direction, the leading end of the operating pin 5, to separate or escape from the open end 3D of the cavity 3, arcuate core pin 10, along an arcuate axis L 3 swings Arc forcing means Z pulled out from cavity 3 while doing so , It has been provided.
As shown in FIG. 10 and FIGS. 1 to 4, the guide circular hole 8 </ b> C has a portion in sliding contact with the inner peripheral surface (having a small radius of curvature) of the arc-shaped core pin 10 (the wall of the guide plate 8 </ b> D). In the range of thickness, it is formed on the rounded surface or the inclined surface 16.

図4(B)に於て、点々を付した90°の円弧状流路孔範囲20が、上述の一対の約45°の円弧状コアピン10,10によって、その内面形状が決まる範囲であるといえる。なお、相互に当接する先端面10A,10Aの一方に小凸部を、他方に小凹窪部を設けて、芯ずれを防ぐようにするも、好ましい(図示省略)。
なお、上述の実施形態では、約45°の一対の円弧状コアピン10,10を備えた製造装置であるが、これを、約90°の一本の円弧状コアピン10を設け、カム機構Kを大きな揺動角度を生ずるものに変更して、あるいは、リンク機構を付加又は置換えて、一本の約90°の円弧状コアピン10にて、同様の流路孔20を形成しても良い。
In FIG. 4B, the 90 ° arcuate channel hole range 20 with dots is a range in which the inner surface shape is determined by the pair of approximately 45 ° arcuate core pins 10 and 10 described above. I can say that. It is also preferable to provide a small convex portion on one of the tip surfaces 10A and 10A that are in contact with each other and a small concave portion on the other to prevent misalignment (not shown).
In the above-described embodiment, the manufacturing apparatus is provided with a pair of arcuate core pins 10 and 10 of about 45 °. However, this is provided with a single arcuate core pin 10 of about 90 ° and a cam mechanism K is provided. The same flow path hole 20 may be formed by a single arcuate core pin 10 of about 90 ° by changing to one that generates a large swing angle, or by adding or replacing a link mechanism.

次に、エルボ継手Eの製造方法について、以下、説明する。
本発明では、熱可塑性樹脂の射出成形にて製造する方法であり、エルボ継手Eの外面形状に対応した弯曲状キャビティ3を有する金型1(図1参照)に対して、キャビティ3の2箇所の開口端3D,3Dから、横断面円形の一対の円弧状コアピン10,10を弯曲状キャビティ3の円弧状軸心L3 に沿って挿入し、図2に示すように、一対の上記コアピン10,10の先端面10Aを圧接状に保持しつつ、キャビティ3内へ熱可塑性樹脂を注入して(射出成形を行い)、所定時間冷却後に、一対の上記コアピン10,10を、弯曲状キャビティ3の円弧状軸心L3 に沿って外方へ移動しつつ開口端3D,3Dから引抜く。そして、金型1を合せ面から分離して、成形されたエルボ継手Eを、図4(A)から(B)のように、取出す。
Next, a method for manufacturing the elbow joint E will be described below.
The present invention is a method of manufacturing by injection molding of a thermoplastic resin, and two locations of the cavity 3 with respect to a mold 1 (see FIG. 1) having a curved cavity 3 corresponding to the outer surface shape of the elbow joint E. from the open end 3D, 3D, a circular cross section of the pair of arc-shaped core pin 10, 10 inserted along an arcuate axis L 3 of curved shape cavity 3, as shown in FIG. 2, a pair of the core pin 10 , 10 while holding the tip face 10A in pressure contact, a thermoplastic resin is injected into the cavity 3 (injection molding is performed), and after cooling for a predetermined time, the pair of core pins 10, 10 are bent into the curved cavity 3 pulled open end 3D, the 3D while moving outwardly along an arcuate axis L 3 of. Then, the mold 1 is separated from the mating surface, and the molded elbow joint E is taken out as shown in FIGS.

図4(B)のように、エルボ継手Eの流路孔20の内側コーナー部21の縦断面形状が円弧状であり、かつ、流路孔20の円弧状軸心L3 に直交する横断面形状を(どこで横断しても)全て円形とする方法である。
つまり、従来例の図13(A)に示したような内側コーナー部54に直角エッジが成形されず、図4(B)のように美しい円弧状となる。しかも、図4(B)に示したように、円弧状軸心L3 の中心点O20を共通とした円弧状に、内側コーナー部21と外側コーナー部22を、形成する。言い換えれば、(菓子の)ドーナツを4分割した形状に、流路孔20を形成する。
As shown in FIG. 4B, the longitudinal cross-sectional shape of the inner corner portion 21 of the flow path hole 20 of the elbow joint E is an arc, and the cross section is perpendicular to the arc-shaped axis L 3 of the flow path hole 20. It is a method of making the shape all circular (wherever it crosses).
That is, a right-angled edge is not formed in the inner corner portion 54 as shown in FIG. 13A of the conventional example, and a beautiful arc shape is obtained as shown in FIG. 4B. Moreover, as shown in FIG. 4 (B), in an arc shape with the center point O 20 of the arcuate axis L 3 and the common, the inner corner portion 21 and the outer corner portion 22, is formed. In other words, the channel hole 20 is formed in a shape obtained by dividing a (confectionery) donut into four parts.

本発明は、以上詳述したように、エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、金型1に形成された弯曲状キャビティ3に対して、該弯曲状キャビティ3の円弧状軸心L3 に沿って、横断面円形の円弧状コアピン10を挿入し、次に、射出成形を行って、所定時間冷却後に上記円弧状軸心L3 に沿って引抜く方法であるので、(図13に示した)従来のエルボ型管継手51のような直角状エッジが内側コーナー部54に発生せず、十分に大きい曲率半径の円弧状とすることができる。従って、製造されたエルボ型管継手の流路孔20内面は、横断面形状も円形で一定となり、流体は渦(乱流)を生ずることなく滑らかに流れ、通過抵抗が減少し、圧力損失も著しく低減できる。実際の配管現場では多数のエルボ型継手が一本の配管パイプに使用されているため、全体の圧力損失の低減効果は著大である。
また、円弧状軸心L3 に沿って、コアピン10を芯振れなく引抜くことで、成形品(エルボ型管継手E)の流路孔20の内面が、引抜きの際に、傷が付かず、内面が平滑な高品質な成型品となる。
As described in detail above, the present invention relates to the curved cavity 3 formed in the mold 1 in the manufacturing method of manufacturing an elbow pipe joint by injection molding of a thermoplastic resin. An arc-shaped core pin 10 having a circular cross section is inserted along the arc-shaped axis L 3 of the cavity 3, and then injection molding is performed. After cooling for a predetermined time, the core pin 10 is drawn along the arc-shaped axis L 3. Because of this method, a right-angled edge like the conventional elbow type pipe joint 51 (shown in FIG. 13) does not occur in the inner corner portion 54, and it can be formed into an arc shape having a sufficiently large radius of curvature. Therefore, the inner surface of the channel hole 20 of the manufactured elbow type pipe joint has a circular cross-sectional shape that is constant, the fluid flows smoothly without generating vortices (turbulent flow), the passage resistance is reduced, and the pressure loss is also reduced. It can be significantly reduced. Since many elbow joints are used for one piping pipe in an actual piping site, the effect of reducing the overall pressure loss is remarkable.
Also, along an arcuate axis L 3, by pulling out without deflection core to core pin 10, the inner surface of the flow path hole 20 of the molded article (elbow fitting E) is, at the time of withdrawal, not adhere scratches It becomes a high-quality molded product with a smooth inner surface.

また、エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、上記エルボ型管継手の外面形状に対応した弯曲状キャビティ3を有する金型1に対して、上記キャビティ3の2箇所の開口端3D,3Dから、横断面円形の一対の円弧状コアピン10,10を、上記弯曲状キャビティ3の円弧状軸心L3 に沿って挿入し、上記一対のコアピン10,10の先端面10A,10Aを圧接状に保持しつつ、射出成形を行って、所定時間冷却後に、上記一対のコアピン10,10を、上記弯曲状キャビティ3の円弧状軸心L3 に沿って外方へ移動しつつ上記開口端3D,3Dから引抜き、上記エルボ型管継手Eの流路孔20の内側コーナー部21の縦断面形状が円弧状であり、しかも、上記流路孔20の上記円弧状軸心L3 に直交する横断面形状を全て円形とする方法であるので、製造が容易で大量生産にも好適な方法である。特に、円弧状コアピン10の挿入・引出しの作動ストロークが短いため、製造装置をコンパクト化でき、実施も安価かつ確実となる。そして、製造されるエルボ型管継手は、従来のエルボ型管継手51(図13参照)の直角状エッジが内側コーナー部54に発生せず、十分に大きい曲率半径のアール状とすることができる。しかも、流路孔20の内面は、横断面形状が円形で一定となり、流体は渦(乱流)を生ずることなく滑らかに流れ、圧力損失が著しく低減され、エネルギー低減にも寄与することができる。 Further, in the manufacturing method of manufacturing the elbow pipe joint by injection molding of a thermoplastic resin, the cavity 3 is compared with the mold 1 having the curved cavity 3 corresponding to the outer surface shape of the elbow pipe joint. two places open end 3D of the 3D, a circular cross section of the pair of arcuate core pin 10, 10 is inserted along an arcuate axis L 3 of the curved shape cavity 3, the pair of core pin 10, 10 outside of the distal end surface 10A, the 10A while maintaining the pressure contact shape by performing injection molding, after a predetermined time cooling, the pair of core pins 10 and 10, along an arcuate axis L 3 of the curved shape cavity 3 The inner corner portion 21 of the elbow-type pipe joint E is drawn out from the open ends 3D and 3D while moving in the direction of the arc, and the inner corner portion 21 of the elbow-type pipe joint E has an arcuate cross-sectional shape. By making all the cross-sectional shapes orthogonal to the arcuate axis L 3 circular Therefore, it is easy to manufacture and suitable for mass production. In particular, since the operation stroke for inserting and extracting the arc-shaped core pin 10 is short, the manufacturing apparatus can be made compact, and the implementation is inexpensive and reliable. The manufactured elbow-type pipe joint does not have the right-angled edge of the conventional elbow-type pipe joint 51 (see FIG. 13) in the inner corner portion 54, and can have a round shape with a sufficiently large radius of curvature. . Moreover, the inner surface of the channel hole 20 has a circular cross-sectional shape and is constant, and the fluid flows smoothly without generating vortices (turbulent flow), pressure loss is significantly reduced, and energy can be reduced. .

また、本発明の製造装置は、エルボ型管継手Eを熱可塑性樹脂の射出にて成形する金型1を備え、上記金型1に形成された弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ、上記弯曲状キャビティ3への挿入と外方への引抜きの円弧状運動を行う円弧状コアピン10を、具備する構成であるので、従来の図12に示すような置き中子60を用いずに、能率的に大量生産を実現できる。そして、製造されるエルボ型管継手Eは、流体が滑らかに流れ、圧力損失は著しく低減できる。 Further, the manufacturing apparatus of the present invention includes a mold 1 for molding an elbow pipe joint E by injection of a thermoplastic resin, and the arcuate axis L 3 of a curved cavity 3 formed in the mold 1. Since it has an arc-shaped core pin 10 that swings along the arc-shaped motion of insertion into the curved cavity 3 and withdrawing outward, it is placed as shown in FIG. Efficient mass production can be realized without using the child 60. In the manufactured elbow type pipe joint E, the fluid flows smoothly and the pressure loss can be remarkably reduced.

また、エルボ型管継手Eを熱可塑性樹脂の射出にて成形する金型1を備え、該金型1は、上記エルボ型管継手Eの外面形状に対応した弯曲状キャビティ3を有し、該キャビティ3の2箇所の開口端3D,3Dの各々に対して、直線往復しつつ接近分離自在な作動ピン5が配設され、さらに、該作動ピン5の先端部5Aには、横断面円形の円弧状コアピン10が付設され、上記作動ピン5の先端の上記開口端3Dへの接近乃至侵入に伴って、上記円弧状コアピン10が上記弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ挿入されると共に、上記作動ピン5の先端の上記開口端3Dからの分離乃至脱出に伴って、上記円弧状コアピン10が上記円弧状軸心L3 に沿って揺動しつつ上記弯曲状キャビティ3から外方へ引抜かれる円弧状運動強制手段Zを、具備する構成であるので、直線往復動する作動ピン5の駆動は、安価に入手容易なアクチュエータ等にて簡単に行え、このような作動ピン5をもって、エルボ型管継手Eに圧力損失の著しく少ない流路孔20を、確実に形成可能となった。 The mold 1 includes a mold 1 for molding the elbow pipe joint E by injection of a thermoplastic resin, and the mold 1 has a curved cavity 3 corresponding to the outer surface shape of the elbow pipe joint E, An operating pin 5 that is linearly reciprocated and freely separable is provided for each of the two open ends 3D and 3D of the cavity 3, and the distal end portion 5A of the operating pin 5 has a circular cross section. An arc-shaped core pin 10 is attached, and the arc-shaped core pin 10 swings along the arc-shaped axis L 3 of the curved cavity 3 as the tip of the operating pin 5 approaches or enters the opening end 3D. while being inserted while moving, with the separation or escape from the open end 3D of the tip of the operating pin 5, the said arcuate core pin 10 while swinging along the arcuate axis L 3 curve Forcing an arc-shaped motion to be pulled out from the cylindrical cavity 3 Since Z is configured to drive the operating pin 5 that reciprocates linearly, it can be easily driven by an actuator that is easily available at a low cost. With such an operating pin 5, pressure loss is caused in the elbow type pipe joint E. Thus, it is possible to reliably form the flow path holes 20 with extremely few.

1 金型
3 弯曲状キャビティ
3D 開口端
5 作動ピン
5A 先端部
10 円弧状コアピン
10A 先端面
20 流路孔
21 内側コーナー部
E エルボ型管継手(エルボ継手)
3 円弧状軸心
Z 円弧状運動強制手段
1 Mold 3 Curved Cavity 3D Open End 5 Actuation Pin 5A Tip
10 Arc core pin
10A Tip surface
20 Channel hole
21 Inner corner E Elbow fitting (Elbow fitting)
L 3 Arc-shaped shaft center Z Arc-shaped motion forcing means

本発明は、4半円状に弯曲したエルボ型管継手の製造装置に関する。 The present invention relates to a manufacturing apparatus of curvature the elbow fitting to 4 semicircular.

従来、射出成形によって製造される樹脂製エルボ型管継手51は、図13(A)に示すように、全体がL字形状であり、流路用孔部52は、その外側コーナー部53がアール状(円弧状)であるが、内側コーナー部54は直角エッジ状となっている。
その理由は、従来の射出成形金型が、図13(B)に示す如く、直交方向から一対のコアピン55,56を金型(入れ子)に形成されたキャビティ内へ挿入して、溶融した樹脂を注入し、樹脂が冷却・固化して後、コアピン55,56を矢印N55,N56の方向に引抜きを行う必要があったためである。
仮に、内側コーナー部54をアール状に形成しようとすれば、コアピン55,56の上記引抜きが行えなくなる。
このように、内側コーナー部54は、コアピン55,56の突き合せ部位58の内側端縁を直角のエッジ状にせざるを得なかった。
Conventionally, as shown in FIG. 13A, the resin elbow-type pipe joint 51 manufactured by injection molding is L-shaped as a whole, and the channel hole 52 has an outer corner portion 53 that is rounded. The inner corner portion 54 has a right-angled edge shape.
The reason is that, as shown in FIG. 13B, a conventional injection mold inserts a pair of core pins 55 and 56 into a cavity formed in the mold (nesting) from the orthogonal direction and melts the resin. This is because the core pins 55 and 56 had to be pulled out in the directions of the arrows N 55 and N 56 after the resin was cooled and solidified.
If the inner corner portion 54 is formed in a round shape, the core pins 55 and 56 cannot be pulled out.
As described above, the inner corner 54 has to make the inner edge of the abutting portion 58 of the core pins 55 and 56 into a right-angled edge.

そこで、従来、図12に示すような置き中子60を使用することも提案されていた(特許文献1の図8参照)。
即ち、置き中子60と、この置き中子60が嵌込まれる凹窪部を切欠形成したコアピン55Z,56Zとを、組合せてキャビティ内に設置し、樹脂を射出成形する製法(金型装置)である。
Therefore, conventionally, it has been proposed to use a placement core 60 as shown in FIG. 12 (see FIG. 8 of Patent Document 1).
That is, a manufacturing method (molding device) in which the placing core 60 and the core pins 55Z and 56Z in which the recessed portion into which the placing core 60 is fitted are notched are combined and placed in the cavity, and the resin is injection molded. It is.

しかしながら、図12に於て、同図(A)から(B)のようにコアピン55Z,56Zを矢印N55,N56のように引き抜いた後に、置き中子60を同図(C)に示す矢印N60の方向に一旦偏心させ、続いて、同図(D)の矢印N61の方向に引抜く必要がある。
この図12の(C)(D)(E)の置き中子60の作動は、図12の図面では簡単なようだが、実際の射出成形装置(金型)としては、複雑な機構を必要とし、故障発生率も高く、作業能率が良いとは言えない。
However, At a 12, core pin 55Z as shown in from FIG. (A) (B), after pulled out as indicated by an arrow N 55, N 56 and 56 z, shown in the placed core 60 FIG (C) It is necessary to decenter in the direction of arrow N 60 and then pull out in the direction of arrow N 61 in FIG.
The operation of the placing core 60 of FIGS. 12C, 12D and 12E is simple in the drawing of FIG. 12, but an actual injection molding apparatus (mold) requires a complicated mechanism. Also, failure rate is high and work efficiency is not good.

そこで、シリコン等で予め作製した内筒体をキャビティ内に設置し、内筒体の外周面とキャビティ内面との間に、樹脂を射出成形し、次に、冷却後に、シリコン製の内筒体を、その弾性変形を利用しつつ引きずり出すという製法も提案されている(特許文献2参照)。   Therefore, an inner cylinder made of silicon or the like is placed in the cavity, resin is injection-molded between the outer peripheral surface of the inner cylinder and the inner surface of the cavity, and then, after cooling, the inner cylinder made of silicon A manufacturing method has also been proposed in which the material is dragged out while utilizing its elastic deformation (see Patent Document 2).

特開2009−184203号公報JP 2009-184203 A 特開2011−47487号公報JP 2011-47487 A

しかし、特許文献2記載の管継手の製法では、以下のような問題がある。 (i) エルボの内側コーナー部54(図13参照)のアール半径としては、(直角ではないが)極めて小さな数値が得られるにすぎない。 (ii) 射出成形した後に、(キャビティ内に設置していた)シリコン等の内筒体を引き出さねばならず、その引出し作業は極めて困難である。(iii) 製造に時間が掛り、しかも、引き出した内筒体が繰返し使用することも難しく、資源の無駄使いとなる虞がある。   However, the method for manufacturing a pipe joint described in Patent Document 2 has the following problems. (i) The radius of the inner corner portion 54 (see FIG. 13) of the elbow is only a very small value (but not a right angle). (ii) After injection molding, the inner cylindrical body such as silicon (installed in the cavity) has to be pulled out, and the drawing operation is extremely difficult. (iii) It takes time to manufacture, and it is difficult to repeatedly use the drawn inner cylinder, which may waste resources.

そこで、本発明に係る管継手の製造装置は、エルボ型管継手(E)を熱可塑性樹脂の射出にて成形する金型を備え、該金型は、上記エルボ型管継手の外面形状に対応した弯曲状キャビティを有し、かつ、該弯曲状キャビティは、弯曲本体形成部と、該弯曲本体形成部の両端各々に順次連設されるパイプ接合用中径部・大径部を、有し、該キャビティの2箇所の開口端の各々に対して、直線往復しつつ接近分離自在な作動ピンが配設され、さらに、該作動ピンの先端部には、横断面円形の円弧状コアピンが付設され、第1コアピンとしての上記円弧状コアピンの基端側を包囲する第2コアピンを、上記キャビティの上記大径部と中径部に対して侵入脱退自在に配設し、さらに、上記第2コアピンは、上記作動ピンに対して同一軸心に沿って直線往復摺動自在として、外嵌され、上記作動ピンの先端の上記開口端への接近乃至侵入に伴って、上記円弧状コアピンが上記弯曲状キャビティの円弧状軸心に沿って揺動しつつ挿入されると共に、上記作動ピンの先端の上記開口端からの分離乃至脱出に伴って、上記円弧状コアピンが上記円弧状軸心に沿って揺動しつつ上記弯曲状キャビティから外方へ引抜かれる円弧状運動強制手段を、具備し、上記円弧状運動強制手段は、上記第2コアピンの先端のガイド板に貫設された円弧状コアピン誘導用円形孔と、上記円弧状コアピンの基端と上記作動ピンの先端とを連動連結するカム機構とから、構成されている。 Therefore, the pipe joint manufacturing apparatus according to the present invention includes a mold for molding the elbow pipe joint (E) by injection of a thermoplastic resin, and the mold corresponds to the outer surface shape of the elbow pipe joint. The curved cavity, and the curved cavity has a curved main body forming portion, and a medium diameter portion and a large diameter portion for pipe joining sequentially connected to both ends of the curved main body forming portion, respectively. Each of the two open ends of the cavity is provided with an actuating pin that can be reciprocated while reciprocating linearly, and an arc-shaped core pin having a circular cross section is attached to the tip of the actuating pin. A second core pin surrounding the base end side of the arc-shaped core pin as the first core pin is disposed so as to be able to enter and retract with respect to the large diameter portion and the medium diameter portion of the cavity; The core pin is straight along the same axis with respect to the operating pin. It is externally fitted to be slidable and inserted while the arcuate core pin swings along the arcuate axis of the curved cavity as the tip of the actuating pin approaches or enters the open end. In addition, the arc-shaped core pin swings along the arc-shaped axis and is pulled out outward from the curved cavity as the tip of the operating pin is separated from or escaped from the open end. An arcuate motion forcing means, wherein the arcuate motion forcing means comprises an arcuate core pin guiding circular hole penetrating through a guide plate at the tip of the second core pin, a base end of the arcuate core pin, and the operation And a cam mechanism that interlocks and connects the tip of the pin.

発明に係る管継手の製造装置によれば、製造装置の構成を簡素化でき、流路内側コーナー部を、(従来の直角エッジ状から、)円弧状で、かつ、横断面形状が円形である90°の流路を有するエルボ型管継手を、確実かつ能率良く製造できる。 According to the pipe joint manufacturing apparatus according to the present invention, the configuration of the manufacturing apparatus can be simplified, the flow path inner corner portion is arc-shaped (from the conventional right-angled edge shape), and the cross-sectional shape is circular. An elbow type pipe joint having a certain 90 ° channel can be manufactured reliably and efficiently.

本発明に係る管継手の製造装置の実施の一形態を示し、金型のキャビティに対して、円弧状コアピンを挿入する前の状態を示す断面図である。Shows an embodiment of the manufacturing equipment of the pipe joint according to the present invention, relative to the mold cavity, is a cross-sectional view showing a state before inserting the arc-shaped core pin. 円弧状コアピンを金型のキャビティへ挿入した状態であって、樹脂の射出直前の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state immediately before injection of a resin in a state where an arc-shaped core pin is inserted into a cavity of a mold. 射出成形から所定時間経過して成形された樹脂が冷却後にコアピンを円弧状軸心に沿って外方へ移動した引抜き途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of drawing | extracting which the resin shape | molded after the predetermined time passed from injection molding moved the core pin outward along the circular arc-shaped axis after cooling. コアピンを金型から引抜いた状態と製造されたエルボ型管継手の一例を説明する断面図であって、(A)はコアピンの引抜状態であって射出成形されたエルボ型管継手が金型から取出直前の状態を示す断面図、(B)はエルボ型管継手の一例を示した断面図である。It is sectional drawing explaining an example of the state which pulled the core pin from the metal mold | die, and the manufactured elbow type pipe fitting, Comprising: (A) is the drawing state of the core pin, and the elbow type pipe joint by which injection molding was carried out from a metal mold | die Sectional drawing which shows the state just before taking out, (B) is sectional drawing which showed an example of the elbow type pipe joint. コアピンの具体例を示す図であって、(A)は先端上方向からの斜視図、(B)は先端方向からの側面図、(C)は先端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a perspective view from front-end | tip upper direction, (B) is a side view from front-end | tip direction, (C) is a perspective view from front-end | tip lower direction. コアピンの具体例を示す図であって、(A)は平面図、(B)は正面図、(C)は底面図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a top view, (B) is a front view, (C) is a bottom view. コアピンの具体例を示す図であって、(A)は基端上方向からの斜視図、(B)は基端方向から見た側面図、(C)は基端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, Comprising: (A) is a perspective view from base end upper direction, (B) is a side view seen from the base end direction, (C) is a perspective view from base end lower direction is there. 作動ブロックを示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows an operation | movement block, Comprising: (A) is a front view, (B) is a side view. ガイド筒体を示し、(A)は正面図、(B)は側面図である。A guide cylinder is shown, (A) is a front view, (B) is a side view. 管継手の大径端部を形成する第2コアピンを示し、(A)は正面図、(B)は半截断面側面図である。The 2nd core pin which forms the large diameter end part of a pipe joint is shown, (A) is a front view, (B) is a half-rod cross-sectional side view. 作動ピンを示し、(A)は側面図、(B)は正面図、(C)は(A)のC−C断面拡大図である。The operation | movement pin is shown, (A) is a side view, (B) is a front view, (C) is CC sectional expanded view of (A). 従来例の製造方法を順次示した断面説明図である。It is sectional explanatory drawing which showed the manufacturing method of the prior art example one by one. 別の従来例を示す図であって、(A)は従来のエルボ型管継手の縦断面図、(B)は従来の製造装置と製造方法を説明するための一部断面側面図である。It is a figure which shows another prior art example, Comprising: (A) is a longitudinal cross-sectional view of the conventional elbow type pipe joint, (B) is a partial cross section side view for demonstrating the conventional manufacturing apparatus and manufacturing method.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図4は、本発明に係るエルボ型管継手(以下、単に「エルボ継手」という場合がある)を、熱可塑性樹脂の射出成形にて製造する製造装置の実施の一形態を示す。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1 to 4, elbow pipe joint according to the present invention (hereinafter, simply referred to as "elbow fitting"), and an embodiment of to that production equipment manufactured by injection molding of a thermoplastic resin Show.

まず、(主として)エルボ継手の製造装置について説明すると、1は、エルボ継手Eを成形する金型を示し、図面の紙面と平行な平面で合体分離自在な一対の入れ子2,2から成る。
この金型1は、一対の入れ子2,2の合体によって、射出成形されるべきエルボ継手Eの外面形状に対応した弯曲状キャビティ3を有する。
このキャビティ3は、約90°の弯曲本体形成部3Aと、該弯曲本体形成部3Aの両端から順次連続状に形成される中径部3Bと大径部3Cと、から成り、相互に90°を成す方向に、金型1から開口する開口端3D,3Dを有する。
First, a description will be given of (mainly) an elbow joint manufacturing apparatus. Reference numeral 1 denotes a mold for molding the elbow joint E, which includes a pair of inserts 2 and 2 that can be separated and combined in a plane parallel to the paper surface of the drawing.
The mold 1 has a curved cavity 3 corresponding to the outer surface shape of the elbow joint E to be injection-molded by combining the pair of inserts 2 and 2.
The cavity 3 is composed of a bent main body forming portion 3A of about 90 °, and a medium diameter portion 3B and a large diameter portion 3C that are successively formed from both ends of the bent main body forming portion 3A. Are open ends 3D and 3D that open from the mold 1.

5は、キャビティ3の開口端3Dに対して、直線往復しつつ接近分離自在な作動ピンである。即ち、軸心が直交状に配設された一対の作動ピン5,5は、各々、図1から図2のように、金型1のキャビティ3の開口端3D,3Dに対して直線作動しつつ接近し、先端部5Aが侵入し、また、図2から図3を経て図4にまで、引抜(後退)作動にて、開口端3Dから分離する。
この作動ピン5は、図11に示すように、基本円柱部5Bと4角板片状の基盤部5Cと、先端面5Dから切欠状に形成された凹溝5Eによって形成された一対の横断面三ケ月型突片部5F,5Fと、を一体に有している。しかも、先端部5Aの突片部5F,5Fには、図11(A)の側面図に示すように、ピン軸心5Gに対して、所定の傾斜角度θ5 を成すカム孔(カム溝)5Hが設けられている(図11(C)参照)。
Reference numeral 5 denotes an actuating pin that can freely approach and separate while reciprocating linearly with respect to the opening end 3 </ b> D of the cavity 3. That is, the pair of actuating pins 5 and 5 whose axes are arranged orthogonally operate linearly with respect to the open ends 3D and 3D of the cavity 3 of the mold 1 as shown in FIGS. While approaching, the tip 5A enters, and from FIG. 2 to FIG. 4 to FIG. 4, it is separated from the opening end 3D by the drawing (retracting) operation.
As shown in FIG. 11, the actuating pin 5 has a pair of cross sections formed by a basic cylindrical portion 5B, a square plate-like base portion 5C, and a groove 5E formed in a cutout shape from the tip surface 5D. It has three-month-shaped protrusions 5F, 5F. Moreover, as shown in the side view of FIG. 11A, the protrusions 5F and 5F of the tip 5A have cam holes (cam grooves) that form a predetermined inclination angle θ 5 with respect to the pin shaft center 5G. 5H is provided (see FIG. 11C).

このような作動ピン5の先端部5Aには、横断面円形の円弧状コアピン10が付設されている。
具体的には、図5,図6及び図7に示すように、コアピン10は、基端に小さな面取り部11と、突片部12が、連続状に連設されている。また、突片部12には貫孔13が設けられる。
An arcuate core pin 10 having a circular cross section is attached to the distal end portion 5A of such an operating pin 5.
Specifically, as shown in FIGS. 5, 6, and 7, the core pin 10 has a small chamfered portion 11 and a protruding piece portion 12 that are continuously provided at the base end. The projecting piece 12 is provided with a through hole 13.

図1〜図4に示すように、作動ピン5の先端部5Aに形成された前記カム孔5Hに嵌合して、移動自在なカム軸14が、円弧状コアピン10に連設された突片部12の貫孔13に、挿入(圧入)固着されている。
つまり、円弧状コアピン10は、カム孔5Hとカム軸14によって、基端側の動きが規制される。
As shown in FIGS. 1 to 4, a projecting piece in which a movable cam shaft 14 is connected to the arc-shaped core pin 10 by being fitted in the cam hole 5 </ b> H formed in the tip portion 5 </ b> A of the operating pin 5. It is inserted (press-fit) and fixed in the through-hole 13 of the portion 12.
That is, the movement of the base end side of the arc-shaped core pin 10 is restricted by the cam hole 5H and the cam shaft 14.

図1〜図4及び図8に於て、6は、図外のシリンダ等のアクチュエータによって、矢印N6 ,N7 のように直線往復動する作動ブロックであり、前記作動ピン5が挿入固定される孔部6Aを有する。また、この作動ブロック6には、上記作動ピン5用の孔部6Aと同心状として、金型1に当接する一面に、凹所6Bが形成され、この凹所6Bにガイドキャップ7(図9参照)が嵌入固着される。このガイドキャップ7は、先端に孔部7Aを有する内鍔部7Bを有し、このガイドキャップ7内を(軸心方向に)直線往復移動可能として、第2のコアピン8が、内嵌状として、組付けられている。
つまり、前述した円弧状コアピン10を第1のコアピンと呼ぶと共に、この直線往復移動するコアピン8は、第2のコアピンと呼ぶ。
1 to 4 and 8, reference numeral 6 denotes an operation block that linearly reciprocates as indicated by arrows N 6 and N 7 by an actuator such as a cylinder (not shown), and the operation pin 5 is inserted and fixed. 6A. The operating block 6 is concentric with the hole 6A for the operating pin 5 and has a recess 6B formed on one surface thereof that contacts the mold 1. The guide cap 7 (FIG. 9) is formed in the recess 6B. Is inserted and fixed. The guide cap 7 has an inner flange portion 7B having a hole portion 7A at the tip. The guide cap 7 can linearly reciprocate (in the axial direction) in the guide cap 7, and the second core pin 8 has an inner fitting shape. It is assembled.
In other words, the arc-shaped core pin 10 described above is referred to as a first core pin, and the core pin 8 that reciprocates linearly is referred to as a second core pin.

第2のコアピン8は、図10に示すような形状であって、基端に、非回転とするための正方形板片部8Aを外鍔状に有し、作動ピン5が挿入自在な孔部8Bを略全長にわたって有する。また、複数段の外周面を有する筒部状であり、図2,図3に示すように、中径部3B,大径部3Cに対応して、図4に示したようなエルボ継手Eの開口端寄りの中径・大径の円筒部を形成する。
そして、第2のコアピン8の先端には、誘導用円形孔8Cを有するガイド板8Dが固着されている。
The second core pin 8 has a shape as shown in FIG. 10, has a square plate piece 8A for non-rotating at the base end in the shape of an outer casing, and a hole portion into which the operating pin 5 can be inserted. 8B over substantially the entire length. Moreover, it is a cylinder part shape which has a multi-step outer peripheral surface, and as shown in FIGS. 2 and 3, the elbow joint E as shown in FIG. 4 corresponds to the medium diameter part 3B and the large diameter part 3C. A cylindrical portion with a medium diameter and a large diameter near the opening end is formed.
A guide plate 8D having a guide circular hole 8C is fixed to the tip of the second core pin 8.

前記コアピン10は、このガイド板8Dに貫設の誘導用円形孔8Cによって、先端側の動きが規制される。
即ち、図1〜図11に示す実施形態にあっては、円弧状コアピン10が、弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ、弯曲状キャビティ3から、金型1の外方へ引抜かれる円弧状運動強制手段Zを、具備し、この円弧状運動強制手段Zは、ガイド板8Dの誘導用円形孔8Cと、カム孔5Hとカム軸14のカム機構Kとから、構成される。
The movement of the core pin 10 on the tip side is restricted by a guide circular hole 8C penetrating the guide plate 8D.
That is, in the embodiment shown in FIGS. 1 to 11, the arcuate core pin 10 swings along the arcuate axis L 3 of the curved cavity 3, and the mold 1 is moved from the curved cavity 3. The arc-shaped motion forcing means Z is pulled out outward from the guide hole 8C of the guide plate 8D, the cam hole 5H and the cam mechanism K of the cam shaft 14. Configured.

このように、本発明は、図1に示すように、図外のアクチュエータによって作動ブロック6が矢印N6 方向に直線的移動して、このブロック6に保持された作動ピン5の先端が、金型1のキャビティ3の開口端3Dへの接近、及び、引続いての図2に示す侵入に伴って、円弧状コアピン10が弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ挿入され、円弧状コアピン10の円形先端面10A,10Aが相互に当接(圧接)され、その後、(図3に示すように)樹脂の射出成形が行われ、所定時間冷却後に、作動ピン5を矢印N7 方向に移動させて、作動ピン5の先端が、キャビティ3の開口端3Dから分離し又は脱出することで、円弧状コアピン10が、円弧状軸心L3 に沿って揺動しつつキャビティ3から外方へ引抜かれる円弧状運動強制手段Zを、具備している。
なお、図10、及び、図1〜図4に示すように、誘導用円形孔8Cは、円弧状コアピン10の(小さな曲率半径の)内周面に摺接する部位を、(ガイド板8Dの肉厚の範囲で、)アール状面乃至勾配面16に形成する。
Thus, as shown in FIG. 1, according to the present invention, the operation block 6 is linearly moved in the direction of the arrow N 6 by an actuator not shown, and the tip of the operation pin 5 held by the block 6 is made of gold. access to the open end 3D of type 1 of the cavity 3, and, with the penetration shown in Figure 2 of subsequently, arcuate core pin 10 is swung along an arcuate axis L 3 of curved shape cavity 3 The circular distal end surfaces 10A and 10A of the arc-shaped core pin 10 are brought into contact with each other (pressure contact), and then resin injection molding (as shown in FIG. 3) is performed, and after cooling for a predetermined time, the operation pin 5 is moved in the arrow N 7 direction, the leading end of the operating pin 5, to separate or escape from the open end 3D of the cavity 3, arcuate core pin 10, along an arcuate axis L 3 swings Arc forcing means Z pulled out from cavity 3 while doing so , It has been provided.
As shown in FIG. 10 and FIGS. 1 to 4, the guide circular hole 8 </ b> C has a portion in sliding contact with the inner peripheral surface (having a small radius of curvature) of the arc-shaped core pin 10 (the wall of the guide plate 8 </ b> D). In the range of thickness, it is formed on the rounded surface or the inclined surface 16.

図4(B)に於て、点々を付した90°の円弧状流路孔範囲20が、上述の一対の約45°の円弧状コアピン10,10によって、その内面形状が決まる範囲であるといえる。なお、相互に当接する先端面10A,10Aの一方に小凸部を、他方に小凹窪部を設けて、芯ずれを防ぐようにするも、好ましい(図示省略) In FIG. 4B, the 90 ° arcuate channel hole range 20 with dots is a range in which the inner surface shape is determined by the pair of approximately 45 ° arcuate core pins 10 and 10 described above. I can say that. It is also preferable to provide a small convex portion on one of the tip surfaces 10A and 10A that contact each other and a small concave recess on the other to prevent misalignment (not shown) .

次に、エルボ継手Eの製造方法について、以下、説明する。
本発明では、熱可塑性樹脂の射出成形にて製造する方法であり、エルボ継手Eの外面形状に対応した弯曲状キャビティ3を有する金型1(図1参照)に対して、キャビティ3の2箇所の開口端3D,3Dから、横断面円形の一対の円弧状コアピン10,10を弯曲状キャビティ3の円弧状軸心L3 に沿って挿入し、図2に示すように、一対の上記コアピン10,10の先端面10Aを圧接状に保持しつつ、キャビティ3内へ熱可塑性樹脂を注入して(射出成形を行い)、所定時間冷却後に、一対の上記コアピン10,10を、弯曲状キャビティ3の円弧状軸心L3 に沿って外方へ移動しつつ開口端3D,3Dから引抜く。そして、金型1を合せ面から分離して、成形されたエルボ継手Eを、図4(A)から(B)のように、取出す。
Next, a method for manufacturing the elbow joint E will be described below.
The present invention is a method of manufacturing by injection molding of a thermoplastic resin, and two locations of the cavity 3 with respect to a mold 1 (see FIG. 1) having a curved cavity 3 corresponding to the outer surface shape of the elbow joint E. from the open end 3D, 3D, a circular cross section of the pair of arc-shaped core pin 10, 10 inserted along an arcuate axis L 3 of curved shape cavity 3, as shown in FIG. 2, a pair of the core pin 10 , 10 while holding the tip face 10A in pressure contact, a thermoplastic resin is injected into the cavity 3 (injection molding is performed), and after cooling for a predetermined time, the pair of core pins 10, 10 are bent into the curved cavity 3 pulled open end 3D, the 3D while moving outwardly along an arcuate axis L 3 of. Then, the mold 1 is separated from the mating surface, and the molded elbow joint E is taken out as shown in FIGS.

図4(B)のように、エルボ継手Eの流路孔20の内側コーナー部21の縦断面形状が円弧状であり、かつ、流路孔20の円弧状軸心L3 に直交する横断面形状を(どこで横断しても)全て円形とする方法である。
つまり、従来例の図13(A)に示したような内側コーナー部54に直角エッジが成形されず、図4(B)のように美しい円弧状となる。しかも、図4(B)に示したように、円弧状軸心L3 の中心点O20を共通とした円弧状に、内側コーナー部21と外側コーナー部22を、形成する。言い換えれば、(菓子の)ドーナツを4分割した形状に、流路孔20を形成する。
As shown in FIG. 4B, the longitudinal cross-sectional shape of the inner corner portion 21 of the flow path hole 20 of the elbow joint E is an arc, and the cross section is perpendicular to the arc-shaped axis L 3 of the flow path hole 20. It is a method of making the shape all circular (wherever it crosses).
That is, a right-angled edge is not formed in the inner corner portion 54 as shown in FIG. 13A of the conventional example, and a beautiful arc shape is obtained as shown in FIG. 4B. Moreover, as shown in FIG. 4 (B), in an arc shape with the center point O 20 of the arcuate axis L 3 and the common, the inner corner portion 21 and the outer corner portion 22, is formed. In other words, the channel hole 20 is formed in a shape obtained by dividing a (confectionery) donut into four parts.

以上説明したように、エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、金型1に形成された弯曲状キャビティ3に対して、該弯曲状キャビティ3の円弧状軸心L3 に沿って、横断面円形の円弧状コアピン10を挿入し、次に、射出成形を行って、所定時間冷却後に上記円弧状軸心L3 に沿って引抜く方法であるので、(図13に示した)従来のエルボ型管継手51のような直角状エッジが内側コーナー部54に発生せず、十分に大きい曲率半径の円弧状とすることができる。従って、製造されたエルボ型管継手の流路孔20内面は、横断面形状も円形で一定となり、流体は渦(乱流)を生ずることなく滑らかに流れ、通過抵抗が減少し、圧力損失も著しく低減できる。実際の配管現場では多数のエルボ型継手が一本の配管パイプに使用されているため、全体の圧力損失の低減効果は著大である。
また、円弧状軸心L3 に沿って、コアピン10を芯振れなく引抜くことで、成形品(エルボ型管継手E)の流路孔20の内面が、引抜きの際に、傷が付かず、内面が平滑な高品質な成型品となる。
As described above, in the manufacturing method for manufacturing the elbow pipe joint by injection molding of thermoplastic resin, the arcuate shape of the curved cavity 3 is compared with the curved cavity 3 formed in the mold 1. Since the arc-shaped core pin 10 having a circular cross section is inserted along the axis L 3 , then injection molding is performed, and after cooling for a predetermined time, it is drawn along the arc-shaped axis L 3 . A right-angled edge like the conventional elbow type pipe joint 51 (shown in FIG. 13) does not occur in the inner corner portion 54, and can be formed into an arc shape having a sufficiently large radius of curvature. Therefore, the inner surface of the channel hole 20 of the manufactured elbow type pipe joint has a circular cross-sectional shape that is constant, the fluid flows smoothly without generating vortices (turbulent flow), the passage resistance is reduced, and the pressure loss is also reduced. It can be significantly reduced. Since many elbow joints are used for one piping pipe in an actual piping site, the effect of reducing the overall pressure loss is remarkable.
Also, along an arcuate axis L 3, by pulling out without deflection core to core pin 10, the inner surface of the flow path hole 20 of the molded article (elbow fitting E) is, at the time of withdrawal, not adhere scratches It becomes a high-quality molded product with a smooth inner surface.

また、上記エルボ型管継手の外面形状に対応した弯曲状キャビティ3を有する金型1に対して、上記キャビティ3の2箇所の開口端3D,3Dから、横断面円形の一対の円弧状コアピン10,10を、上記弯曲状キャビティ3の円弧状軸心L3 に沿って挿入し、上記一対のコアピン10,10の先端面10A,10Aを圧接状に保持しつつ、射出成形を行って、所定時間冷却後に、上記一対のコアピン10,10を、上記弯曲状キャビティ3の円弧状軸心L3 に沿って外方へ移動しつつ上記開口端3D,3Dから引抜き、上記エルボ型管継手Eの流路孔20の内側コーナー部21の縦断面形状が円弧状であり、しかも、上記流路孔20の上記円弧状軸心L3 に直交する横断面形状を全て円形とする方法であるので、製造が容易で大量生産にも好適な方法である。特に、円弧状コアピン10の挿入・引出しの作動ストロークが短いため、製造装置をコンパクト化でき、実施も安価かつ確実となる。そして、製造されるエルボ型管継手は、従来のエルボ型管継手51(図13参照)の直角状エッジが内側コーナー部54に発生せず、十分に大きい曲率半径のアール状とすることができる。しかも、流路孔20の内面は、横断面形状が円形で一定となり、流体は渦(乱流)を生ずることなく滑らかに流れ、圧力損失が著しく低減され、エネルギー低減にも寄与することができる。 Further, with respect to the mold 1 having a curved shape cavity 3 corresponding to the outer contour of the upper Symbol elbow fitting open end 3D of two positions of the cavity 3, from 3D, a pair of arcuate core pin of circular cross 10, 10 and inserted along an arcuate axis L 3 of the curved shape cavity 3, while maintaining the distal end surface 10A of the pair of core pin 10, 10, the 10A to the pressure contact shape by performing injection molding, after a predetermined time cooling, the pair of core pins 10 and 10, the curved shape cavity while being moved above the open end 3D 3 along the arcuate axis L 3 outward, withdrawal from 3D, the elbow fitting E a longitudinal section shaped arcuate inner corner 21 of the flow path hole 20, moreover, since all the cross-sectional shape orthogonal to the arc-shaped axis L 3 of the flow path hole 20 is in a way that a circular This method is easy to manufacture and suitable for mass production. In particular, since the operation stroke for inserting and extracting the arc-shaped core pin 10 is short, the manufacturing apparatus can be made compact, and the implementation is inexpensive and reliable. The manufactured elbow-type pipe joint does not have the right-angled edge of the conventional elbow-type pipe joint 51 (see FIG. 13) in the inner corner portion 54, and can have a round shape with a sufficiently large radius of curvature. . Moreover, the inner surface of the channel hole 20 has a circular cross-sectional shape and is constant, and the fluid flows smoothly without generating vortices (turbulent flow), pressure loss is significantly reduced, and energy can be reduced. .

以上詳述したように、エルボ型管継手Eを熱可塑性樹脂の射出にて成形する金型1を備え、上記金型1に形成された弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ、上記弯曲状キャビティ3への挿入と外方への引抜きの円弧状運動を行う円弧状コアピン10を、具備する構成であるので、従来の図12に示すような置き中子60を用いずに、能率的に大量生産を実現できる。そして、製造されるエルボ型管継手Eは、流体が滑らかに流れ、圧力損失は著しく低減できる。 As detailed above, the mold 1 for molding the elbow pipe joint E by injection of thermoplastic resin is provided, and along the arcuate axis L 3 of the curved cavity 3 formed in the mold 1. Since the arcuate core pin 10 that performs the arcuate motion of the insertion into the curved cavity 3 and the outward drawing while swinging is provided, the placement core 60 as shown in FIG. Efficient mass production can be realized without using In the manufactured elbow type pipe joint E, the fluid flows smoothly and the pressure loss can be remarkably reduced.

また、エルボ型管継手Eを熱可塑性樹脂の射出にて成形する金型1を備え、該金型1は、上記エルボ型管継手Eの外面形状に対応した弯曲状キャビティ3を有し、該キャビティ3の2箇所の開口端3D,3Dの各々に対して、直線往復しつつ接近分離自在な作動ピン5が配設され、さらに、該作動ピン5の先端部5Aには、横断面円形の円弧状コアピン10が付設され、上記作動ピン5の先端の上記開口端3Dへの接近乃至侵入に伴って、上記円弧状コアピン10が上記弯曲状キャビティ3の円弧状軸心L3 に沿って揺動しつつ挿入されると共に、上記作動ピン5の先端の上記開口端3Dからの分離乃至脱出に伴って、上記円弧状コアピン10が上記円弧状軸心L3 に沿って揺動しつつ上記弯曲状キャビティ3から外方へ引抜かれる円弧状運動強制手段Zを、具備する構成であるので、直線往復動する作動ピン5の駆動は、安価に入手容易なアクチュエータ等にて簡単に行え、このような作動ピン5をもって、エルボ型管継手Eに圧力損失の著しく少ない流路孔20を、確実に形成可能となった。 The mold 1 includes a mold 1 for molding the elbow pipe joint E by injection of a thermoplastic resin, and the mold 1 has a curved cavity 3 corresponding to the outer surface shape of the elbow pipe joint E, An operating pin 5 that is linearly reciprocated and freely separable is provided for each of the two open ends 3D and 3D of the cavity 3, and the distal end portion 5A of the operating pin 5 has a circular cross section. An arc-shaped core pin 10 is attached, and the arc-shaped core pin 10 swings along the arc-shaped axis L 3 of the curved cavity 3 as the tip of the operating pin 5 approaches or enters the opening end 3D. while being inserted while moving, with the separation or escape from the open end 3D of the tip of the operating pin 5, the said arcuate core pin 10 while swinging along the arcuate axis L 3 curve Forcing an arc-shaped motion to be pulled out from the cylindrical cavity 3 Since Z is configured to drive the operating pin 5 that reciprocates linearly, it can be easily driven by an actuator that is easily available at a low cost. With such an operating pin 5, pressure loss is caused in the elbow type pipe joint E. Thus, it is possible to reliably form the flow path holes 20 with extremely few.

1 金型
3 弯曲状キャビティ
3A 弯曲本体形成部
3B 中径部
3C 大径部
3D 開口端
5 作動ピン
5A 先端部
第2コアピン
8C コアピン誘導用円形孔
8D ガイド板
10 円弧状コアピン(第1コアピン)
10A 先端面
20 流路孔
21 内側コーナー部
E エルボ型管継手(エルボ継手)
3 円弧状軸心
Z 円弧状運動強制手段
カム機構
1 Mold 3 Curved Cavity
3A fold body forming part
3B medium diameter part
3C Large Diameter 3D Open End 5 Actuation Pin 5A Tip
8 Second core pin
Circular hole for guiding 8C core pin
8D guide plate
10 Arc core pin (first core pin)
10A Tip surface
20 Channel hole
21 Inner corner E Elbow fitting (Elbow fitting)
L 3 Arc-shaped shaft center Z Arc-shaped motion forcing means
K cam mechanism

Claims (4)

エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、
金型(1)に形成された弯曲状キャビティ(3)に対して、該弯曲状キャビティ(3)の円弧状軸心(L3 )に沿って、横断面円形の円弧状コアピン(10)を挿入し、次に、射出成形を行って、所定時間冷却後に上記円弧状軸心(L3 )に沿って引抜くことを特徴とする管継手の製造方法。
In a manufacturing method for manufacturing an elbow pipe joint by injection molding of a thermoplastic resin,
Against curved shape cavity formed in the mold (1) (3), along an arcuate axis of該弯song-like cavity (3) (L 3), arc-shaped core pin of a circular cross section (10) A method for manufacturing a pipe joint, comprising inserting, then performing injection molding, and drawing out along the arcuate axis (L 3 ) after cooling for a predetermined time.
エルボ型管継手を熱可塑性樹脂の射出成形にて製造する製造方法に於て、
上記エルボ型管継手の外面形状に対応した弯曲状キャビティ(3)を有する金型(1)に対して、上記キャビティ(3)の2箇所の開口端(3D)(3D)から、横断面円形の一対の円弧状コアピン(10)(10)を、上記弯曲状キャビティ(3)の円弧状軸心(L3 )に沿って挿入し、上記一対のコアピン(10)(10)の先端面(10A)(10A)を圧接状に保持しつつ、射出成形を行って、所定時間冷却後に、上記一対のコアピン(10)(10)を、上記弯曲状キャビティ(3)の円弧状軸心(L3 )に沿って外方へ移動しつつ上記開口端(3D)(3D)から引抜き、
上記エルボ型管継手(E)の流路孔(20)の内側コーナー部(21)の縦断面形状が円弧状であり、しかも、上記流路孔(20)の上記円弧状軸心(L3 )に直交する横断面形状を全て円形とすることを特徴とする管継手の製造方法。
In a manufacturing method for manufacturing an elbow pipe joint by injection molding of a thermoplastic resin,
From the two open ends (3D) (3D) of the cavity (3) to the mold (1) having a curved cavity (3) corresponding to the outer surface shape of the elbow pipe joint, the cross section is circular. The pair of arc-shaped core pins (10) and (10) are inserted along the arc-shaped axis (L 3 ) of the curved cavity (3), and the tip surfaces of the pair of core pins (10) and (10) ( 10A) (10A) is held in pressure contact, injection molding is performed, and after cooling for a predetermined time, the pair of core pins (10), (10) is connected to the arcuate axis (L) of the curved cavity (3). 3 ) Pulling out from the open end (3D) (3D) while moving outward along
The longitudinal cross-sectional shape of the inner corner (21) of the flow path hole (20) of the elbow pipe joint (E) is an arc, and the arcuate axis (L 3 ) of the flow path hole (20). A method of manufacturing a pipe joint, characterized in that all of the cross-sectional shapes orthogonal to () are circular.
エルボ型管継手(E)を熱可塑性樹脂の射出にて成形する金型(1)を備え、
上記金型(1)に形成された弯曲状キャビティ(3)の円弧状軸心(L3 )に沿って揺動しつつ、上記弯曲状キャビティ(3)への挿入と外方への引抜きの円弧状運動を行う円弧状コアピン(10)を、具備することを特徴とする管継手の製造装置。
A mold (1) for molding an elbow pipe fitting (E) by injection of a thermoplastic resin,
While swinging along the arcuate axis (L 3 ) of the curved cavity (3) formed in the mold (1), insertion into the curved cavity (3) and extraction to the outside are possible. An apparatus for manufacturing a pipe joint comprising an arc-shaped core pin (10) that performs an arc-shaped motion.
エルボ型管継手(E)を熱可塑性樹脂の射出にて成形する金型(1)を備え、該金型(1)は、上記エルボ型管継手(E)の外面形状に対応した弯曲状キャビティ(3)を有し、該キャビティ(3)の2箇所の開口端(3D)(3D)の各々に対して、直線往復しつつ接近分離自在な作動ピン(5)が配設され、さらに、該作動ピン(5)の先端部(5A)には、横断面円形の円弧状コアピン(10)が付設され、
上記作動ピン(5)の先端の上記開口端(3D)への接近乃至侵入に伴って、上記円弧状コアピン(10)が上記弯曲状キャビティ(3)の円弧状軸心(L3 )に沿って揺動しつつ挿入されると共に、上記作動ピン(5)の先端の上記開口端(3D)からの分離乃至脱出に伴って、上記円弧状コアピン(10)が上記円弧状軸心(L3 )に沿って揺動しつつ上記弯曲状キャビティ(3)から外方へ引抜かれる円弧状運動強制手段(Z)を、具備することを特徴とする管継手の製造装置。
A mold (1) for molding an elbow pipe joint (E) by injection of a thermoplastic resin is provided. The mold (1) is a curved cavity corresponding to the outer surface shape of the elbow pipe joint (E). (3), and each of the two open ends (3D) and (3D) of the cavity (3) is provided with an actuating pin (5) that can be moved back and forth while being linearly reciprocated. An arcuate core pin (10) having a circular cross section is attached to the tip (5A) of the operating pin (5).
With the approach to entry of the operating pin (5) the opening end of the tip to (3D), the arc-shaped core pin (10) along an arcuate axis of the curved shaped cavity (3) (L 3) The arcuate core pin (10) is inserted into the arcuate axis (L 3 ) as the tip of the operating pin (5) is separated from or escaped from the open end (3D). ), And an arcuate motion forcing means (Z) that is pulled outward from the curved cavity (3) while swinging along the curved cavity).
JP2018091372A 2018-05-10 2018-05-10 Pipe fitting manufacturing equipment Active JP6422610B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091372A JP6422610B1 (en) 2018-05-10 2018-05-10 Pipe fitting manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091372A JP6422610B1 (en) 2018-05-10 2018-05-10 Pipe fitting manufacturing equipment

Publications (2)

Publication Number Publication Date
JP6422610B1 JP6422610B1 (en) 2018-11-14
JP2019195960A true JP2019195960A (en) 2019-11-14

Family

ID=64269187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091372A Active JP6422610B1 (en) 2018-05-10 2018-05-10 Pipe fitting manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6422610B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112233A (en) * 2019-01-15 2020-07-27 井上スダレ株式会社 T-shaped pipe joint
US11987412B2 (en) 2019-11-06 2024-05-21 Scitech Centre Spirofeed brush box for a blister machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156735A (en) * 1974-11-14 1976-05-18 Kubota Ltd SHINGANENODATSUKEIHO OYOBI SEIKEISOCHI
JPS5181860A (en) * 1975-01-16 1976-07-17 Aron Kasei Kk GOSEIJUSHI KANTSUKITE SEIKEISOCHI
JPS5676421U (en) * 1979-11-16 1981-06-22
JPH052932U (en) * 1990-12-21 1993-01-19 株式会社北菱モールド U-shaped tube mold
JPH10235684A (en) * 1997-02-27 1998-09-08 Sekisui Chem Co Ltd Mold
JP2015193116A (en) * 2014-03-31 2015-11-05 株式会社アオイ Pipe joint made of synthetic resin and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156735A (en) * 1974-11-14 1976-05-18 Kubota Ltd SHINGANENODATSUKEIHO OYOBI SEIKEISOCHI
JPS5181860A (en) * 1975-01-16 1976-07-17 Aron Kasei Kk GOSEIJUSHI KANTSUKITE SEIKEISOCHI
JPS5676421U (en) * 1979-11-16 1981-06-22
JPH052932U (en) * 1990-12-21 1993-01-19 株式会社北菱モールド U-shaped tube mold
JPH10235684A (en) * 1997-02-27 1998-09-08 Sekisui Chem Co Ltd Mold
JP2015193116A (en) * 2014-03-31 2015-11-05 株式会社アオイ Pipe joint made of synthetic resin and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112233A (en) * 2019-01-15 2020-07-27 井上スダレ株式会社 T-shaped pipe joint
US11987412B2 (en) 2019-11-06 2024-05-21 Scitech Centre Spirofeed brush box for a blister machine

Also Published As

Publication number Publication date
JP6422610B1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
CN106382430B (en) Curved tube structure and metal mold for forming curved tube
JP6422610B1 (en) Pipe fitting manufacturing equipment
US8241031B2 (en) Demolding device for an injection molding part with an undercut
KR101699939B1 (en) Injection mold for forming curved tube
CN108943607B (en) Tubular product injection molding mould
KR20170058033A (en) Die casting die having slide core
WO2015141435A1 (en) Bent pipe structure
JP4982290B2 (en) Molding machine
JP2020078886A (en) Mold device and method for manufacturing flow passage member
US11577436B2 (en) Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
JP5783598B2 (en) Pipe-shaped bending apparatus
JP2020026034A (en) Injection mold
CN101663522B (en) One-piece metal orifice tube and solenoid valve including a one-piece metal orifice tube
WO2019160091A1 (en) Molding method and molding device
CN110756633B (en) Combined mold core structure for cold-pushing forming straight pipe elbow
CN110756634B (en) Cold-push forming method with straight pipe elbow
EP2327530B1 (en) Demolding device for injection molding part with undercut
CN106313449B (en) For manufacturing the injection mold of cantilever design product
JP6657044B2 (en) Manufacturing method of synthetic resin pipe
JP2007253175A (en) Method for forming ejector outer cylinder
CN108859020B (en) Injection molding mold with bent pipe demolding mechanism
JP2016055547A (en) Molding die and molding method
WO2019160084A1 (en) Molding method and molding device
JP6807111B2 (en) Manufacturing equipment for T-shaped joint body
CN213321479U (en) Side-pulling water cut-off mechanism for preventing air trapping of die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180510

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250