JP6807111B2 - Manufacturing equipment for T-shaped joint body - Google Patents

Manufacturing equipment for T-shaped joint body Download PDF

Info

Publication number
JP6807111B2
JP6807111B2 JP2019004553A JP2019004553A JP6807111B2 JP 6807111 B2 JP6807111 B2 JP 6807111B2 JP 2019004553 A JP2019004553 A JP 2019004553A JP 2019004553 A JP2019004553 A JP 2019004553A JP 6807111 B2 JP6807111 B2 JP 6807111B2
Authority
JP
Japan
Prior art keywords
core pin
flow path
shaped
tip
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019004553A
Other languages
Japanese (ja)
Other versions
JP2020112233A (en
Inventor
井上 智史
智史 井上
清和 高橋
清和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2019004553A priority Critical patent/JP6807111B2/en
Publication of JP2020112233A publication Critical patent/JP2020112233A/en
Application granted granted Critical
Publication of JP6807111B2 publication Critical patent/JP6807111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、三方継手やチーズ等とも称されるT型継手本体の製造装置に関する。 The present invention relates to a manufacturing apparatus for a T-shaped joint body, which is also called a three-way joint or cheese.

従来の製造装置によって製造された合成樹脂製のT型管継手本体としては、図22に示すようなものが公知である(特許文献1参照)。
従来のT型管継手の継手本体75は、図22に示したように、180°反対側の流体の流入口76・流出口77を有するメイン流路部78がストレート状(直線状)であり、かつ、このメイン流路部78から直角に副流路部79が分岐し、このメイン流路部78と(分流用の)副流路部79をもってT字状流路80が形成されていた。
As a T-shaped pipe joint body made of synthetic resin manufactured by a conventional manufacturing apparatus, the one shown in FIG. 22 is known (see Patent Document 1).
As shown in FIG. 22, in the joint body 75 of the conventional T-shaped pipe joint, the main flow path portion 78 having the fluid inlet 76 and the outlet 77 on the opposite side of 180 ° is straight (straight). In addition, the sub-flow path portion 79 branches at a right angle from the main flow path portion 78, and the T-shaped flow path 80 is formed by the main flow path portion 78 and the sub-flow path portion 79 (for diversion). ..

意匠登録第1091181号公報Design Registration No. 1091181

図23(A)に於て、従来の(図22に示したような)継手本体75を備えたT型管継手85の接続配管の一例を示す。図23(A)では、3個のT型管継手85を、メインパイプP10,P11,P12,P13によって順次接続して、メイン流路81を構成し、さらに、T型管継手85の各々に、分岐パイプP30,P31,P32を接続して、分岐流路82,82,82を構成した場合を、簡略図示している。 FIG. 23 (A) shows an example of the connection pipe of the T-shaped pipe joint 85 provided with the conventional joint body 75 (as shown in FIG. 22). In FIG. 23 (A), three T-shaped pipe joints 85 are sequentially connected by main pipes P 10 , P 11 , P 12 , and P 13 to form a main flow path 81, and further, T-type pipe joints are formed. A simplified diagram shows a case where branch pipes P 30 , P 31 , and P 32 are connected to each of 85 to form branch flow paths 82, 82, and 82.

このような継手本体75を使用した場合に、次のような問題がある。
即ち、図22及び図23中の矢印F81はメイン流路81を流れる流体の流量を示し、矢印F82は分岐流路82を流れる流体の流量を示すが、分岐側の流量F82が、メイン側の流量F81に比べて、極端に少ないという問題である。分岐パイプP30,P31,P32の配設方向、配設高さ等によっては、分岐側の流量F82が零となったり、さらには逆流するような問題が起こる場合もあった。
その原因は、図22に於て、矢印F81にて示すように、流体が直線方向にメイン流路部78を高速で流れると、ベルヌーイの定理により、(直角に交叉した)副流路部79内が、減圧され、乃至、負圧となるためであると推定される。
If you use this good UNA joint body 75, there are the following problems.
That is, the arrow F 81 in FIGS. 22 and 23 indicates the flow rate of the fluid flowing through the main flow path 81, the arrow F 82 indicates the flow rate of the fluid flowing through the branch flow path 82, and the flow rate F 82 on the branch side is. The problem is that the flow rate is extremely small compared to the flow rate F 81 on the main side. Depending on the arrangement direction, arrangement height, etc. of the branch pipes P 30 , P 31 , and P 32 , the flow rate F 82 on the branch side may become zero, or even backflow may occur.
The cause is, as shown by arrow F 81 in FIG. 22, when the fluid flows in the main flow path portion 78 in the linear direction at high speed, according to Bernoulli's theorem, the sub flow path portion (crossed at a right angle). It is presumed that this is because the pressure inside 79 is reduced or the pressure becomes negative.

上述のように、分岐流路82側の流量F82が極端に減少すると、分岐パイプP30,P31,P32の先に接続された蛇口や温水機等が使用困難となるといった重大な問題を引き起こす虞れがあった。 As described above, the branch flow path 82 side of the flow F 82 is reduced extremely serious such branch pipe P 30, P 31, previously connected to the faucet and water heater etc. P 32 becomes difficult to use problem There was a risk of causing.

そこで、本発明は、180°反対側から流体が流入・流出するメイン流路部と、該メイン流路部から直交方向へ分岐する副流路部と、から成るT字状流路を備えたT型継手本体を熱可塑性樹脂の射出成形にて成形する金型を備え、該金型は、上記継手本体の外面形状に対応した弯曲した略T字状のキャビティを有し、該キャビティの上記メイン流路部の上記180°反対側の2箇所の開口端に対して、直線往復しつつ接近分離自在な一対の作動ピンが配設され、さらに、上記各作動ピンの先端部には、横断面円形の円弧状コアピンが付設され、第1コアピンとしての上記円弧状コアピンの基端側を包囲する第2コアピンを、上記キャビティの上記開口端に対して侵入脱退自在に配設し、さらに、上記第2コアピンは、上記作動ピンに対して同一軸心に沿って直線往復摺動自在として、外嵌され、上記作動ピンの先端の上記開口端への接近乃至侵入に伴って、上記円弧状コアピンが上記略T字状のキャビティの円弧状軸心に沿って揺動しつつ挿入されると共に、上記作動ピンの先端の上記開口端からの分離乃至脱出に伴って、上記円弧状コアピンが上記円弧状軸心に沿って揺動しつつ上記キャビティから外方へ引抜かれる円弧状運動強制手段を、具備し、上記第2のコアピンの先端には、誘導用円形孔を有するガイド板が付設され、上記円弧状運動強制手段は、上記誘導用円形孔と、上記円弧状コアピンの基端と上記作動ピンの先端とを連動連結するカム機構とから、構成されており、上記副流路部に対応したパイプ挿入筒部形成部に対して直線往復運動する第3コアピンを備え、一対の上記円弧状第1コアピンの各々の先端に、小さな半円形の凹窪部が形成され、上記第3コアピンは、先端に位置決め用小円形突出子を、一体に有し、上記180°反対側の2箇所の開口端に対して上記円弧状コアピンを挿入すると共に、上記副流路部に対応したパイプ挿入筒部形成部に対して直線往復運動する上記第3コアピンを挿入し、一対の上記半円形凹窪部によって形成された小円形凹窪部に対して、上記小円形突出子を密に嵌合させた、一対の上記円弧状コアピンと一本の上記第3コアピンの合体状態下で、熱可塑性樹脂を射出成形して上記T字状流路の周囲壁を成形するように構成したT型継手本体の製造装置である。 The present onset Ming, a main flow passage portion through which fluid inflow and outflow from 18 0 ° opposite side, a side-stream path portion that branches from the main flow passage portion along the perpendicular direction, the T-shaped flow path consisting of A mold for molding the provided T-shaped joint body by injection molding of a thermoplastic resin is provided, and the mold has a curved substantially T-shaped cavity corresponding to the outer surface shape of the joint body, and the cavity is provided. A pair of actuating pins that can be approached and separated while reciprocating in a straight line are arranged with respect to the two opening ends on the opposite sides of the main flow path portion of 180 °, and further, the tip portion of each actuating pin is An arc-shaped core pin having a circular cross section is attached, and a second core pin surrounding the base end side of the arc-shaped core pin as the first core pin is arranged so as to be able to enter and leave the opening end of the cavity. Further, the second core pin is fitted so as to be linearly reciprocating and slidable along the same axis with respect to the operating pin, and as the tip of the operating pin approaches or enters the open end, the above The arc-shaped core pin is inserted while swinging along the arc-shaped axis of the substantially T-shaped cavity, and the arc-shaped core pin is separated or escaped from the opening end of the tip of the operating pin. Is provided with an arcuate motion forcing means that is pulled out from the cavity while swinging along the arcuate axis, and a guide plate having a circular hole for guidance is provided at the tip of the second core pin. The arc-shaped motion forcing means is attached, and is composed of the circular hole for guidance and a cam mechanism that interlocks and connects the base end of the arc-shaped core pin and the tip of the operating pin. A third core pin that linearly reciprocates with respect to the pipe insertion tube portion forming portion corresponding to the portion is provided, and a small semicircular concave portion is formed at the tip of each of the pair of arcuate first core pins. The 3-core pin has a small circular protrusion for positioning at the tip integrally, and the arc-shaped core pin is inserted into the two opening ends on the opposite sides of the 180 °, and the core pin corresponds to the sub-flow path portion. The third core pin that linearly reciprocates with respect to the pipe insertion tube forming portion is inserted, and the small circular protrusion is densely inserted into the small circular concave recess formed by the pair of semicircular concave recesses. Under the combined state of the pair of the arcuate core pins and the one third core pin, the thermoplastic resin is injection-molded to form the peripheral wall of the T-shaped flow path. It is a manufacturing device for the mold joint body.

メインパイプから直角に分岐する分岐パイプ(副パイプ)にも、均等に、流体が流れるT型継手本体が、本発明の製造装置によって、確実かつ能率的に、製造可能となった。 The manufacturing apparatus of the present invention has made it possible to reliably and efficiently manufacture a T-shaped joint body in which a fluid flows evenly in a branch pipe (secondary pipe) that branches at a right angle from the main pipe .

本発明によって製造されたT型継手本体を備えるT型管継手の一例を示す縦断面図である。It is a vertical cross-sectional view which shows an example of the T-type pipe joint including the T-type joint body manufactured by this invention. T字状流路の内面形状を説明するための斜視図であり、(A)は一対の仮想エルボ体を背中合せ姿勢で接近させてゆく説明のための斜視図、(B)は仮想合体形状の斜視図である。It is a perspective view for explaining the inner surface shape of a T-shaped flow path, (A) is a perspective view for explaining a pair of virtual elbow bodies approaching each other in a back-to-back posture, and (B) is a virtual united shape. It is a perspective view. 継手本体の斜視図である。It is a perspective view of a joint body. 正面図である。It is a front view. 側面図である。It is a side view. 管継手本体の縦断面図である。It is a vertical sectional view of a pipe joint main body. 本発明によって製造されたT型継手本体を備えるT型管継手の他例を示す斜視図である。It is a perspective view which shows another example of the T-type pipe joint provided with the T-type joint body manufactured by this invention . 側面図である。It is a side view. 正面図である。It is a front view. 縦断面図である。It is a vertical sectional view. 底面図である。It is a bottom view. 本発明に係るT型管継手の製造装置の実施の一形態を示し、金型のキャビティに対してコアピンを挿入する前の状態を示す断面図である。It is sectional drawing which shows one embodiment of the T-shaped pipe joint manufacturing apparatus which concerns on this invention, and shows the state before inserting a core pin into a cavity of a mold. コアピンを金型のキャビティへ挿入して、樹脂を射出した直後の状態を示す断面図である。It is sectional drawing which shows the state immediately after inserting a core pin into a cavity of a mold and injecting a resin. 射出成形から所定時間経過して成形された樹脂が冷却後に円弧状コアピンを円弧状軸心に沿って外方へ移動した引抜き途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of drawing which the resin formed after the lapse of a predetermined time from injection molding moved outward along the arcuate axis after cooling. コアピンの引抜状態であって射出成形された管継手本体が金型から取出直前の状態を示す断面図である。It is sectional drawing which shows the state which the core pin was pulled out, and the pipe joint body which was injection-molded just before being taken out from a mold. コアピンの具体例を示す図であって、(A)は先端上方向からの斜視図、(B)は先端方向からの側面図、(C)は先端下方向からの斜視図、(D)は基端下方向からの斜視図である。It is a figure which shows the specific example of a core pin, (A) is a perspective view from the tip upward direction, (B) is a side view from the tip direction, (C) is a perspective view from the tip downward direction, (D) is a view. It is a perspective view from the lower side of a base end. 作動ブロックを示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows the operation block, (A) is a front view, (B) is a side view. ガイド筒体を示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows the guide cylinder, (A) is a front view, (B) is a side view. 第2コアピンを示す図であって、(A)は正面図、(B)は部分断面側面図である。It is a figure which shows the 2nd core pin, (A) is a front view, (B) is a partial cross-sectional side view. 作動ピンを示し、(A)は側面図、(B)は正面図、(C)は(A)のC−C断面拡大図である。The operating pin is shown, (A) is a side view, (B) is a front view, and (C) is an enlarged sectional view taken along the line CC of (A). 誘導突隆部が配設されるべき反分岐側内面Xの説明のための図であって、(A)は正面断面図、(B)は側面図、(C)は斜視説明図である。It is a figure for demonstrating the anti-branch side inner surface X on which the guide ridge portion should be arranged, (A) is a front sectional view, (B) is a side view, and (C) is a perspective explanatory view. 従来のT型管継手を示す縦断面図である。It is a vertical cross-sectional view which shows the conventional T type pipe joint . 従来のT型管継手と本発明の製造装置によって製造されたT型管継手の作用・効果を比較して説明するための配管接続図であって、(A)は従来のT型管継手の配管接続図、(B)は本発明の製造装置によって製造されたT型管継手の配管接続図である。 It is a pipe connection diagram for comparing and explaining the operation and effect of the conventional T-type pipe joint and the T-type pipe joint manufactured by the manufacturing apparatus of the present invention, and (A) is the conventional T-type pipe joint . The piping connection diagram, (B) is a piping connection diagram of a T-shaped pipe joint manufactured by the manufacturing apparatus of the present invention.

以下、図示の実施の形態に基づき本発明を詳説する。
本発明に係る製造装置によって製造された合成樹脂製の継手本体1は、例えば、図1〜図6に示すように、T型管継手40に用いられる。この継手本体1は、180°反対側から流体が流入・流出するメイン流路部Mと、メイン流路部Mから直交方向に分岐する副流路部Sと、から成るT字状流路10を備えている。
そして、図1,図6及び図5に示すように、メイン流路部Mを通過する流体の一部を、副流路部Sへ偏向誘導する誘導突隆部Yを、メイン流路部Mの内面に形成する。即ち、誘導突隆部Yは、メイン流路部Mにおける反分岐側内面Xに形成する(図21参照)。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
Joint body 1 made of manufacturing synthetic resin by the manufacturing apparatus according to the present onset Ming, for example, as shown in FIGS. 1 to 6, used in the T-type fitting 40. The joint body 1 is a T-shaped flow path 10 composed of a main flow path portion M in which a fluid flows in and out from the opposite side by 180 °, and a sub flow path portion S branching in an orthogonal direction from the main flow path portion M. It has.
Then, as shown in FIGS. 1, 6 and 5, an induction ridge portion Y that deflects and guides a part of the fluid passing through the main flow path portion M to the sub flow path portion S is provided by the main flow path portion M. Formed on the inner surface of. That is, the induction ridge portion Y is formed on the anti-branch side inner surface X in the main flow path portion M (see FIG. 21).

ここで、「反分岐側内面X」及び「反分岐側内面Xに形成」について、具体的に以下説明する。
図21は、従来の図22に示した平滑なメイン流路部78と、これに直交する副流路部79を、模型図として写した図である。図21に於て、副流路部79の直径Dsに相当する軸心方向寸法Wを有し、副流路部79と180°反対側の内面であって、中心角度θが180°の領域を、反分岐側内面Xと呼ぶ。従って、図1,図6の実施形態では、副流路部Sの最小内径部2の内径寸法を(図21の)前記直径Dsとして、かつ、誘導突隆部Yが存在していなかった(図6中に2点鎖線3をもって示した)孔の内面を、図21のメイン流路部78の内面として、判断すれば、反分岐側内面Xが明らかとなる。
Here, the "anti-branch side inner surface X" and the "formed on the anti-branch side inner surface X" will be specifically described below.
FIG. 21 is a diagram showing a smooth main flow path portion 78 and a sub flow path portion 79 orthogonal to the smooth main flow path portion 78 shown in FIG. 22 as a model diagram. In FIG. 21, it has an axial dimension W 0 corresponding to the diameter Ds of the sub-channel portion 79, is an inner surface 180 ° opposite to the sub-channel portion 79, and has a central angle θ of 180 °. The region is referred to as the anti-branch side inner surface X. Therefore, in the embodiment of FIGS. 1 and 6, the inner diameter dimension of the minimum inner diameter portion 2 of the subchannel portion S is set to the diameter Ds (of FIG. 21), and the induction ridge portion Y does not exist (). If the inner surface of the hole (shown by the alternate long and short dash line 3 in FIG. 6) is determined as the inner surface of the main flow path portion 78 of FIG. 21, the inner surface X on the anti-branch side becomes clear.

次に、「誘導突隆部Yが反分岐側内面Xに形成」とは、
(a)誘導突隆部Yが全て反分岐側内面Xにのみ形成されている場合。
(b)誘導突隆部Yの最も大きく突出した部位が反分岐側内面Xに存在しつつ、一部が反分岐側内面Xを越えて存在している場合。
以上の(a)(b)のいずれをも包含しているものと定義する。
Next, "the induction ridge Y is formed on the inner surface X on the anti-branch side" is
(A) When all the induction ridges Y are formed only on the inner surface X on the anti-branch side.
(B) When the most protruding portion of the induction ridge Y exists on the inner surface X on the anti-branch side, but a part of the inner surface X on the anti-branch side is present.
It is defined as including all of the above (a) and (b).

図5,図6に示した継手本体1、及び、(後述する)図8,図10の継手本体1では、後者(b)に、該当している。言い換えれば、図5及び図8に於ては、図21に示したθ=180°よりも大きい中心角度範囲まで誘導突隆部Yが延伸状に配設され、さらに、図6及び図10に於ては、図21に示したWよりもアキシャル方向に誘導突隆部Yが延伸状に配設された場合を、例示している。 5, the joint body 1 shown in FIG. 6, and, (described later) FIG. 8, the joint body 1 of FIG. 10, the latter (b), the applicable. In other words, in FIGS. 5 and 8, the guided ridges Y are arranged in a stretched manner up to a central angle range larger than θ = 180 ° shown in FIG. 21, and further, in FIGS. 6 and 10. In this example, a case where the guided ridges Y are arranged in a stretched manner in the axial direction with respect to W 0 shown in FIG. 21 is illustrated.

次に、図1、及び、図3〜図6に示したT型継手本体1、さらに図7〜図11に示したT型継手本体1におけるT字状流路10の分岐用中央領域10Pと、誘導突隆部Yの立体的形状につき、以下説明する。
まず、図1と図6に於て、分岐用中央領域10Pについて説明する。継手本体1のT字状流路10には、パイプPが挿入される、やや大径のパイプ挿入筒部5,5,5が形成され、シール材9等の密封機能を付加し、あるいは、パイプ引抜阻止機能等が付加される(図示省略)。
Next, FIGS. 1 and, the central branch of the T-shaped joint body 1, is T-shaped flow channel 10 et in definitive the T-shaped joint body 1 shown in FIGS. 7 to 11 shown in FIGS. 3 to 6 The three-dimensional shape of the region 10P and the induction protrusion Y will be described below.
First, the branching central region 10P will be described with reference to FIGS. 1 and 6. In the T-shaped flow path 10 of the joint body 1, a slightly large-diameter pipe insertion tube portion 5, 5, 5 into which the pipe P is inserted is formed, and a sealing function such as a sealing material 9 is added, or A pipe pull-out prevention function is added (not shown).

なお、挿入筒部5の外周には雄ネジ6を介して、袋ナット7が螺着され、パイプ引抜阻止機能として、食込み爪を内周縁に有する抜止めリング8を付設している。
分岐用中央領域10Pとは、このようなパイプ引抜機能や密封機能を有さず、純粋に流体の分岐を行うための中心的役割を果たす領域を言う。
A bag nut 7 is screwed to the outer periphery of the insertion cylinder portion 5 via a male screw 6, and a retaining ring 8 having a biting claw on the inner peripheral edge is attached as a pipe pull-out prevention function.
The branching central region 10P is a region that does not have such a pipe drawing function or a sealing function and plays a central role for purely fluid branching.

図1に於ては、分岐用中央領域10Pの3方向の端部20は、段付部をもって形成されており、この段付部から成る端部20に、パイプPの先端が近接乃至当接し、あるいは、図1のような目印兼ガイドリング14が当接する。また、図1のように、補強用金属筒体16が、上記端部20に、近接乃至当接する場合もある。 In FIG. 1, the end portion 20 in the three directions of the branching central region 10P is formed with a stepped portion, and the tip of the pipe P is in close proximity to or abuts on the end portion 20 composed of the stepped portion. Alternatively, the mark and guide ring 14 as shown in FIG. 1 comes into contact with each other. Further, as shown in FIG. 1, the reinforcing metal cylinder 16 may come close to or abut on the end portion 20.

図2は、上述の分岐用中央領域10P、及び、誘導突隆部Yの立体的形状を、説明するための仮想図である。
即ち、横断面円形の一対の仮想エルボ体11,11を想定する。その一対の仮想エルボ体11,11を、同一平面内に軸心L11,L11が含まれるように、かつ、背中合せ姿勢で矢印E,Eのように接近させる。この背中合せ姿勢にあっては、一対の仮想エルボ体11,11の一端面12,12は180°反対方向へ向き、この一端面12,12の中心点を通る、前記軸心L11の延長直線L110 は、一致する(つまり、図2(A)に示すように一本の直線を成す)。
FIG. 2 is a virtual diagram for explaining the three-dimensional shape of the above-mentioned central region 10P for branching and the guided ridge portion Y.
That is, assume a pair of virtual elbow bodies 11 and 11 having a circular cross section. The pair of virtual elbow bodies 11 and 11 are brought close to each other so that the axes L 11 and L 11 are included in the same plane and in a back-to-back posture as shown by arrows E and E. In this back-to-back posture, the end faces 12 and 12 of the pair of virtual elbow bodies 11 and 11 face 180 ° in opposite directions and pass through the center points of the end faces 12 and 12 and are an extension straight line of the axis L 11 . L 110 coincides (that is, forms a straight line as shown in FIG. 2 (A)).

そして、一対の仮想エルボ体11,11は、面対称に配置される。要するに、図2(A)に示したように、横断面円形の一対の仮想エルボ体11,11を、背中合せ姿勢で、相互に矢印E,Eの如く接近させ、図2(B)のように、他端面13,13が一致するように、合体させ、一端面12,12を180°反対の方向へ向けた仮想合体形状15を、想定する。 Then, the pair of virtual elbow bodies 11, 11 are arranged symmetrically in plane. In short, as shown in FIG. 2 (A), a pair of virtual elbow bodies 11 and 11 having a circular cross section are brought close to each other in a back-to-back posture as shown by arrows E and E, and as shown in FIG. 2 (B). Assuming a virtual united shape 15 in which the other end surfaces 13 and 13 are united so that the other end surfaces 13 and 13 are aligned and the one end surfaces 12 and 12 are oriented in the opposite directions by 180 °.

図1,図3〜図6、及び、図7〜図11に示した各T型管継手に於て、継手本体1のT字状流路10の中央領域10Pの内面形状は、前述した仮想合体形状に一致させている。
さらに具体的に説明すれば、仮想合体形状15(図2(B)参照)の一端面12,12を、図1,図6,図10等に示した分岐用中央領域10Pのメイン流路部M(の端部20)とする。
In each of the T-shaped pipe joints shown in FIGS. 1, 3 to 6, and 7 to 11, the inner surface shape of the central region 10P of the T-shaped flow path 10 of the joint body 1 is the virtual shape described above. Matches the combined shape.
More specifically, the one end surfaces 12 and 12 of the virtual united shape 15 (see FIG. 2B) are shown in FIGS. 1, 6, 10 and the main flow path portion of the central region 10P for branching. Let it be M (end 20).

また、仮想合体形状15の(図2(B)参照)の他端面13を、副流路部S側とする。
なお、図2に於て、仮想エルボ体11を90°エルボよりも、僅かに小さい角度───例えば、60°以上90°未満───のエルボとすることで(後述の)コアピンによる製造が容易となる場合があり、そのような僅かに小さい角度とすることも、自由である。
Further, the other end surface 13 of the virtual united shape 15 (see FIG. 2B) is set to the sub-flow path portion S side.
In FIG. 2, the virtual elbow body 11 is manufactured by a core pin (described later) by making the virtual elbow body 11 an elbow having a slightly smaller angle than the 90 ° elbow, for example, 60 ° or more and less than 90 °. May be easier, and such a slightly smaller angle is also free.

そして、図2(A)(B)等によって説明したような仮想合体形状15に、分岐用中央領域10Pの内面形状を、設定したことによって、誘導突隆部Yは、仮想合体形状15における背中側弯曲V字谷18に対応した凸部形状に、形成される。 Then, by setting the inner surface shape of the central region 10P for branching in the virtual united shape 15 as described with reference to FIGS. 2 (A) and 2 (B), the guided ridge portion Y becomes the back in the virtual united shape 15. It is formed in a convex shape corresponding to the laterally curved V-shaped valley 18.

また、図2(B)に於て、(イ−イ)断面、(ロ−ロ)断面は、略円形であり、従って、図6,図10に於ける中央領域10Pの横断面形状も略円形となって、メイン流路部Mから副流路部Sへの流れの抵抗は、減少し、誘導突隆部Yと共働して、一層スムーズに副流路部Sへ流れる流量Fsは十分多くなる(図23(B)参照)。 Further, in FIG. 2 (B), the (eye) cross section and the (roll) cross section are substantially circular, and therefore, the cross-sectional shape of the central region 10P in FIGS. 6 and 10 is also substantially circular. The resistance of the flow from the main flow path portion M to the sub flow path portion S decreases in a circular shape, and the flow rate Fs flowing to the sub flow path portion S more smoothly in cooperation with the induction ridge portion Y becomes It will be sufficiently large (see FIG. 23 (B)).

なお、中央領域10Pの流路孔部の横断面形状は、上述の如く略円形であるが、さらに詳しく説明すれば、図2(B)に示した一端面12及び他端面13に対応する(図6,図10に示した)端部20の横断面形状は円形であり、また、中央領域10Pの(図6,図10における)中央部位は、上記円形と円形が部分的に重なり合った、やや大きな横断面積の異形となっている。 The cross-sectional shape of the flow path hole in the central region 10P is substantially circular as described above, but to be described in more detail, it corresponds to the one end surface 12 and the other end surface 13 shown in FIG. 2 (B). The cross-sectional shape of the end portion 20 (shown in FIGS. 6 and 10) is circular, and the central portion (in FIGS. 6 and 10) of the central region 10P is such that the circular and circular parts partially overlap. It is a variant with a slightly larger cross-sectional area.

次に、図1に示すT型管継手40の継手本体1に関して、図3〜図6と共に、詳しく説明すれば、副流路部S側と反対側に於て、ストレート状に付設された補強リブ21、及び、前後側面に於てT字状に付設された補強リブ22を、外面に突出状として有する。
また、この継手本体1は、(図1,図6に於て、)透明樹脂による内外二重構造の場合を例示する。袋ナット7は不透明樹脂とする。
Next, with respect to the joint body 1 of the T-shaped pipe joint 40 shown in FIG. 1, if it will be described in detail together with FIGS. 3 to 6, the reinforcement provided in a straight shape on the side opposite to the sub-flow path portion S side. The rib 21 and the reinforcing rib 22 attached in a T shape on the front and rear side surfaces are provided on the outer surface in a protruding shape.
Further, the case where the joint body 1 has an inner / outer double structure made of a transparent resin (in FIGS. 1 and 6) is illustrated. The bag nut 7 is made of opaque resin.

また、23は、締め付け状態で袋ナット廻り止めの機能を成す係止小突片であって、継手本体1の熱可塑性樹脂の射出成形によって一体に形成されている。袋ナット7の内端部の内周面には、多数の不等辺三角形の歯が設けられており、袋ナット7の雌ネジ24が雄ネジ6に螺合して、最終締付状態近くで、上記歯が係止小突片23をカチカチと乗り越えて、最終締付状態を最後に維持する構造である。 Reference numeral 23 denotes a locking small projectile that functions to prevent the bag nut from rotating in the tightened state, and is integrally formed by injection molding of the thermoplastic resin of the joint body 1. A large number of unequal-sided triangular teeth are provided on the inner peripheral surface of the inner end of the bag nut 7, and the female screw 24 of the bag nut 7 is screwed into the male screw 6 near the final tightening state. , The structure is such that the above-mentioned teeth click over the locking small protrusion 23 and maintain the final tightening state at the end.

図7〜図11に示したT型継手本体では、図3〜図6に示した補強リブ21,22を省略している。
従って、内部のT字状流路10の中央領域10Pの内面形状(即ち、図2(B)の仮想立体形状)よりも薄い肉厚分だけ大きい外面25を、中央部位に、有する。
In the T-shaped joint main body shown in FIGS. 7 to 11, the reinforcing ribs 21 and 22 shown in FIGS. 3 to 6 are omitted.
Therefore, the central portion has an outer surface 25 that is thinner by a wall thickness than the inner surface shape of the central region 10P of the internal T-shaped flow path 10 (that is, the virtual three-dimensional shape of FIG. 2B).

そして、図3〜図6に示した雄ネジ6が、図7〜図11に示すパイプ挿入筒部5では省略されている。袋ナット7に相当する円筒リング(図示省略)の内端側内周面は、平滑円周面として、パイプ挿入筒部5に外嵌し、接着剤等にて固着一体化する構成である。
また、図11の底面図では、縦一文字状に誘導突隆部Yの稜線が見える。
The male screw 6 shown in FIGS. 3 to 6 is omitted in the pipe insertion tube portion 5 shown in FIGS. 7 to 11. The inner peripheral surface on the inner end side of the cylindrical ring (not shown) corresponding to the bag nut 7 is configured to be externally fitted to the pipe insertion cylinder portion 5 as a smooth circumferential surface and fixed and integrated with an adhesive or the like.
Further, in the bottom view of FIG. 11, the ridgeline of the guided ridge portion Y can be seen in a vertical single character shape.

次に、以上述べた継手本体1についての製造方法、及び、製造装置に関して、以下、説明する。
図12〜図15は、継手本体1を、熱可塑性樹脂の射出成形にて製造する方法、及び、製造装置の実施の一形態を示す。31は、T型(チーズ型)継手本体1を成形する金型を示し、図面の紙面と平行な平面で合体分離自在な一対の入れ子32,32から成る。この金型31は、一対の入れ子32,32の合体によって、射出成形されるべき継手本体1の外面形状に対応した弯曲した(略T字状の)キャビティ33を有する。
Next, the manufacturing method and the manufacturing apparatus for the joint body 1 described above will be described below.
12 to 15 show a method of manufacturing the joint body 1 by injection molding of a thermoplastic resin, and an embodiment of a manufacturing apparatus. Reference numeral 31 denotes a mold for forming the T-shaped (cheese-shaped) joint body 1, and is composed of a pair of nests 32 and 32 that can be combined and separated on a plane parallel to the paper surface of the drawing. The mold 31 has a curved (substantially T-shaped) cavity 33 corresponding to the outer surface shape of the joint body 1 to be injection-molded by combining a pair of nests 32 and 32.

このキャビティ33は、前記分岐用中央領域10P(図6参照)に対応した継手本体外面中央部を成形するための(点々をもって示した)継手外面中央形成部33Aと、この中央形成部33Aから三方へ延設される(図6のパイプ挿入筒部5,5,5を成形するための)パイプ挿入筒部形成部33Bと、から成る。そして、90°を成す3方向に、金型31から開口する開口端33M,33S,33Mを有する。開口端33M,33Mは、180°反対側に配設されて、図6に示す継手本体1のメイン流路部Mの開口端の位置に対応する。開口端33Mは、図6の副流路部Sの開口端の位置に対応する。35,35は、キャビティ33の開口端33M,33Mに対して、直線往復しつつ接近分離自在な一対の作動ピンである。即ち、同一軸心Lm上に、かつ、相反する方向から接近分離するように、一対の作動ピン35,35が、配設され、図12から図13のように、金型31の開口端33M,33Mに対して直線作動しつつ接近し、先端部35Aが侵入し、また、図13から図14を経て、図15にまで、引抜(後退)作動し、開口端33Mから分離する。 The cavity 33 includes a joint outer surface center forming portion 33A (indicated by dots) for forming the joint body outer surface central portion corresponding to the branching central region 10P (see FIG. 6), and three sides from the central forming portion 33A. It is composed of a pipe insertion cylinder portion forming portion 33B (for forming the pipe insertion cylinder portions 5, 5 and 5 of FIG. 6) extending to. Then, it has opening ends 33M, 33S, 33M that open from the mold 31 in three directions forming 90 °. The opening ends 33M and 33M are arranged on opposite sides by 180 ° and correspond to the positions of the opening ends of the main flow path portion M of the joint body 1 shown in FIG. The opening end 33M corresponds to the position of the opening end of the subchannel portion S in FIG. Reference numerals 35 and 35 are a pair of actuating pins that can be approached and separated while reciprocating in a straight line with respect to the open ends 33M and 33M of the cavity 33. That is, a pair of operating pins 35, 35 are arranged on the same axis Lm and so as to approach and separate from opposite directions, and as shown in FIGS. 12 to 13, the open end 33M of the mold 31 is provided. , 33M approaches 33M while operating linearly, the tip 35A invades, and pulls out (backward) from FIG. 13 to FIG. 14 to FIG. 15 to separate from the opening end 33M.

この作動ピン35は、図20に示すように基本円柱部35Bと4角板片状の基盤部35Cと、先端面35Dから切欠状に形成された凹溝35Eによって形成された一対の横断面三ケ月型突片部35F,35Fと、を一体に有している。しかも、先端部35Aの突片部35F,35Fには、図20(A)の側面図に示すように、ピン軸心35Gに対して、所定の傾斜角度θ35を成すカム孔(カム溝)35Hが設けられている(図20(C)参照)。 As shown in FIG. 20, the actuating pin 35 is a pair of cross-sectional three months formed by a basic columnar portion 35B, a square plate piece-shaped base portion 35C, and a concave groove 35E formed in a notch shape from the tip surface 35D. It has the mold projecting pieces 35F and 35F integrally. Moreover, as shown in the side view of FIG. 20 (A), the projecting pieces 35F and 35F of the tip portion 35A have cam holes (cam grooves) forming a predetermined inclination angle θ 35 with respect to the pin axis 35G. 35H is provided (see FIG. 20C).

このような作動ピン35の先端部35Aには、横断面円形の円弧状コアピン51が付設されている。
具体的には、図16に示すように、コアピン51は、基端に突片部42が、連設されている。また、突片部42には貫孔43が設けられる。
An arcuate core pin 51 having a circular cross section is attached to the tip end portion 35A of such an operating pin 35.
Specifically, as shown in FIG. 16, the core pin 51 has a projecting piece portion 42 continuously provided at the base end. Further, the projecting piece portion 42 is provided with a through hole 43.

図12〜図15に示すように、作動ピン35の先端部35Aに形成された前記カム孔35Hに嵌合して、移動自在なカム軸44が、円弧状コアピン51に連設された突片部42の貫孔43に、挿入(圧入)固着されている。
つまり、円弧状コアピン51は、カム孔35Hとカム軸44によって、基端側の動きが規制される。
As shown in FIGS. 12 to 15, a projecting piece in which a movable cam shaft 44 is fitted to the cam hole 35H formed in the tip portion 35A of the operating pin 35 and is continuously provided to the arcuate core pin 51. It is inserted (press-fitted) and fixed to the through hole 43 of the portion 42.
That is, the movement of the arcuate core pin 51 on the proximal end side is regulated by the cam hole 35H and the cam shaft 44.

図12〜図15及び図17に於て、36,36は、図外のシリンダ等のアクチュエータによって、矢印N,Nのように直線往復動する作動ブロックであり、前記作動ピン35が挿入固着される孔部36Aを有する。また、この作動ブロック36には、作動ピン35用の孔部36Aと同心状として、金型31に当接する一面に、凹所36Bが形成され、この凹所36Bにガイドキャップ37(図18参照)が嵌入固着される。
このガイドキャップ37は、先端に孔部37Aを有する内鍔部37Bを備え、このガイドキャップ37内を(軸心方向に)直線往復移動可能として、第2のコアピン52が、内嵌状として、組付けられている。
At a 12 to 15 and 17, 36 and 36, by an actuator such as an unillustrated cylinder, a hydraulic block that linearly reciprocates as shown by an arrow N 6, N 7, said actuating pin 35 is inserted It has a hole 36A to be fixed. Further, in the actuating block 36, a recess 36B is formed on one surface in contact with the mold 31 so as to be concentric with the hole 36A for the actuating pin 35, and a guide cap 37 (see FIG. 18) is formed in the recess 36B. ) Is fitted and fixed.
The guide cap 37 is provided with an inner flange portion 37B having a hole 37A at the tip thereof, and the guide cap 37 can be linearly reciprocated (in the axial direction) in the guide cap 37, and the second core pin 52 is formed as an inner fitting shape. It is assembled.

つまり、前述した円弧状コアピン51を第1のコアピンと呼ぶと共に、この直線往復移動するコアピン52を、第2のコアピンと呼ぶ。
第2のコアピン52は、図19に示すような形状であって、基端に、非回転とするための正方形板片部52Aを外鍔状に有し、作動ピン35が挿入自在な孔部52Bを略全長にわたって有する。また、複数段の外周面を有する筒状体であり、図6又は図10に示すように、メイン流路部Mの開口端附近、つまり、パイプ挿入筒部5の内部の孔部を、段付形状に形成する。
That is, the arc-shaped core pin 51 described above is referred to as a first core pin, and the core pin 52 that moves linearly back and forth is referred to as a second core pin.
The second core pin 52 has a shape as shown in FIG. 19, and has a square plate piece portion 52A for non-rotation at the base end in the shape of an outer collar, and a hole into which the operating pin 35 can be inserted. It has 52B over almost the entire length. Further, it is a tubular body having a plurality of steps of outer peripheral surfaces, and as shown in FIG. 6 or 10, a step is formed in the vicinity of the opening end of the main flow path portion M, that is, the hole inside the pipe insertion cylinder portion 5. Form in a shape.

そして、第2のコアピン52の先端には、誘導用円形孔52Cを有するガイド板52Dが付設される。
コアピン52は、このガイド板52Dに貫設された誘導用円形孔52Cによって、先端側の動きが規制される。
A guide plate 52D having a guiding circular hole 52C is attached to the tip of the second core pin 52.
The movement of the core pin 52 on the tip side is regulated by the guiding circular hole 52C formed through the guide plate 52D.

即ち、図12〜図20に示す管継手製造装置にあっては、円弧状コアピン51が、図12と図13に示したキャビティ33の円弧状軸心L33に沿って揺動しつつ、挿入され、かつ、引抜かれる円弧状運動強制手段Zを、具備している。
この円弧状運動強制手段Zは、ガイド板52Dの誘導用円形孔52Cと、カム孔35Hとカム軸44のカム機構Kとから、構成される(図14,図19参照)。
言い換えれば、上記キャビティ33の円弧状軸心L33は、図2に於て既に述べた仮想合体形状15の弯曲状軸心L11に、一致していると言える。
That is, in the pipe joint manufacturing apparatus shown in FIGS. 12 to 20, the arc-shaped core pin 51 is inserted while swinging along the arc-shaped axis L 33 of the cavity 33 shown in FIGS. 12 and 13. It is provided with an arcuate motion forcing means Z that is pulled out and is pulled out.
The arcuate motion forcing means Z is composed of a guiding circular hole 52C of the guide plate 52D, a cam hole 35H, and a cam mechanism K of the cam shaft 44 (see FIGS. 14 and 19).
In other words, it can be said that the arcuate axis L 33 of the cavity 33 coincides with the curved axis L 11 of the virtual united shape 15 already described in FIG.

ところで、図12〜図15に於て、第3コアピン53が付加されている。この第3コアピン53は、副流路部Sに対応したパイプ挿入筒部形成部33Bに対して、直線往復運動しつつ、挿入・退出する直線運動ピンである。
この第3コアピン53は、図19に示した第2コアピン52の孔部52B及び円形孔52Cを、埋め込んだ中実棒状体としたものであり、しかも、先端に小径の位置決め用突出子53Aを、一体に有する。第3コアピン53の直線運動は、図外のシリンダ等のアクチュエータにて行えば良い。
By the way, in FIGS. 12 to 15, the third core pin 53 is added. The third core pin 53 is a linear motion pin that inserts and exits while linearly reciprocating with respect to the pipe insertion tube portion forming portion 33B corresponding to the subchannel portion S.
The third core pin 53 is a solid rod-like body in which the hole portion 52B and the circular hole 52C of the second core pin 52 shown in FIG. 19 are embedded, and a small-diameter positioning protrusion 53A is provided at the tip thereof. , Have one. The linear motion of the third core pin 53 may be performed by an actuator such as a cylinder (not shown).

また、図16に示すように、円弧状の第1コアピン51は、横断面円形の弯曲ピン本体部51Aを有するのであるが、この弯曲ピン本体部51Aの先端は、略直角に交わる第1先端面51Bと第2先端面51Cをもって、形成されている。
図13に示した射出成形状態では、一対の第1コアピン51,51は、その第1先端面51B,51Bが密に圧接状態となる。さらに、第2先端面51Cは、上記第3コアピン53の先端に密に圧接する。
Further, as shown in FIG. 16, the arc-shaped first core pin 51 has a curved pin main body 51A having a circular cross section, and the tip of the curved pin main body 51A intersects at a substantially right angle. It is formed with a surface 51B and a second tip surface 51C.
In the injection-molded state shown in FIG. 13, the pair of first core pins 51 and 51 are in a state of close pressure contact with the first tip surfaces 51B and 51B. Further, the second tip surface 51C is in close contact with the tip of the third core pin 53.

ところが、第1コアピン51の第2先端面51Cには、小さな半円形の凹窪部51Dが形成され、上述のように、一対のコアピン51,51が、その第1先端面51B,51Bが圧接した状態では、一対の凹窪部51D,51Dによって、小円形状凹部が形成され、その小円形状凹部に対して、図13に示したように、第3コアピン53の突出子53Aが嵌合し、この嵌合によって、一対の第1コアピン51,51の先端が確実に正確な位置に保持(センタリング)される。つまり、図19に示す第2コアピン52の円形孔52C、及び、カム軸44によって、第1コアピン51の基端寄りは、比較的安定して位置決め(センタリング)されているといえども、第1コアピン51の先端が振らつくことで、センタリングが難しい。このような問題点を、直線運動しつつ侵入して、安定してセンタリングが確実な第3コアピン53の先端と、一対の第1コアピン51,51の先端とを、相互に係合(嵌合)状態とすることで、解決できる。 However, a small semicircular recess 51D is formed on the second tip surface 51C of the first core pin 51, and as described above, the pair of core pins 51 and 51 are pressure-welded to the first tip surfaces 51B and 51B. In this state, a pair of concave recesses 51D and 51D form a small circular recess, and the protrusion 53A of the third core pin 53 is fitted to the small circular recess as shown in FIG. However, this fitting ensures that the tips of the pair of first core pins 51, 51 are held (centered) in the correct position. That is, even though the circular hole 52C of the second core pin 52 and the cam shaft 44 shown in FIG. 19 position the first core pin 51 near the base end relatively stably, the first one. Centering is difficult because the tip of the core pin 51 fluctuates. The tip of the third core pin 53, which penetrates such a problem while linearly moving and is stably centered, and the tip of the pair of first core pins 51, 51 are engaged (fitted) with each other. ) It can be solved by setting it to the state.

図12の状態から、金型31へ第1コアピン51,51と第3コアピン53を挿入し、半円形凹窪部51D,51Dによって形成された小円形凹窪部に対して、小円形突出子53Aを密に嵌合させた、図13に示したような一対の第1コアピン51,51と一本の第3コアピン53の合体状態下で、熱可塑性樹脂を射出成形すれば、均等の肉厚をもって、T字状流路10の包囲(周囲)壁を、成形可能となる。 From the state shown in FIG. 12, the first core pins 51 and 51 and the third core pin 53 are inserted into the mold 31, and the small circular protrusions are provided with respect to the small circular recesses 51D and 51D formed by the semicircular recesses 51D and 51D. If the thermoplastic resin is injection-molded under the combined state of the pair of first core pins 51 and 51 and one third core pin 53 as shown in FIG. 13 in which 53A is tightly fitted, the meat is equal. With the thickness, the surrounding (surrounding) wall of the T-shaped flow path 10 can be formed.

なお、射出成形後は、図13から図14に示す如く、矢印N7方向に作動ブロック36,36を後退させれば、円弧運動しつつ第1コアピン51,51は引抜かれて、図15の状態となる。
冷却後、金型31を、図面の紙面をパーティングラインとして、分離開放して、成形品としての継手本体1を取出す。
Incidentally, after the injection molding, as shown in FIG. 14 from FIG. 13, if retraction of the actuation block 36 in the arrow N 7 direction, the first core pin 51 and 51 with circular motion is withdrawn, in FIG. 15 It becomes a state.
After cooling, the mold 31 is separated and opened with the paper surface of the drawing as a parting line, and the joint body 1 as a molded product is taken out.

図23(B)は、上述の継手本体1を使用したT型管継手40にて、配管を行った配管接続図である。図23(B)では、3個のT型管継手40を、メインパイプP,P,P,Pによって順次接続して、メイン流路26を構成し、さらに、T型管継手40の各々に、分岐パイプP20,P21,P22を接続して、分岐流路27,27,27を構成した場合を図示する。
図1及び図23(B)に於て、矢印Fmはメイン流路26を流れる流体の(メイン側の)流量を示し、矢印Fsは分岐流路27を流れる流体の(分岐側の)流量を示す。
FIG. 23B is a pipe connection diagram in which piping is performed in the T-shaped pipe joint 40 using the above-mentioned joint body 1. In FIG. 23 (B), three T-shaped pipe joints 40 are sequentially connected by main pipes P 0 , P 1 , P 2 , and P 3 to form a main flow path 26, and further, T-type pipe joints are formed. The case where branch pipes P 20 , P 21 , and P 22 are connected to each of 40 to form branch flow paths 27, 27, and 27 is shown.
In FIGS. 1 and 23 (B), the arrow Fm indicates the flow rate (on the main side) of the fluid flowing through the main flow path 26, and the arrow Fs indicates the flow rate (on the branch side) of the fluid flowing through the branch flow path 27. Shown.

上述の継手本体1では、既述したような誘導突隆部Yを備えていることによって、分岐側の流量Fsが、メイン側の流量Fmに比べて、極端に少なくなるといった問題が解決されている。即ち、FsがFmに比べて、十分な値が得られている。また、Fsが零となったり、さらには、マイナスとなる(逆流する)といった虞れもなくなった。このように、T型管継手40を、配管接続に用いれば、分岐流路27の先に接続された蛇口や温水機等が使用できなくなるといった問題も解決できることを、図23は示している。 Since the above-mentioned joint body 1 is provided with the guided ridge portion Y as described above, the problem that the flow rate Fs on the branch side is extremely smaller than the flow rate Fm on the main side is solved. There is. That is, a sufficient value of Fs is obtained as compared with Fm. In addition, there is no fear that Fs becomes zero or even negative (backflow). The good sea urchin, a T-fitting 40, by using the pipe connection, that can be solved problem previously connected faucets and warm water machine or the like of the branch channel 27 can not be used, Figure 23 shows.

本発明の製造装置によって、メインパイプから直角に分岐する分岐パイプ(副パイプ)にも、均等に、流体が流れるT型継手本体が、確実かつ能率的に、製造可能となった。The manufacturing apparatus of the present invention has made it possible to reliably and efficiently manufacture a T-shaped joint body in which a fluid flows evenly in a branch pipe (secondary pipe) that branches at a right angle from the main pipe.

本発明を用いて製造される管継手は、以上詳述したように、合成樹脂製の継手本体1を備え、該継手本体1が、180°反対側から流体が流入・流出するメイン流路部Mと、該メイン流路部Mから直交方向へ分岐する副流路部Sと、から成るT字状流路10を備えたT型管継手に於て、上記メイン流路部Mを通過する流体の一部を、上記副流路部Sへ偏向誘導する誘導突隆部Yを、上記メイン流路部Mにおける反分岐側内面Xに形成したので、副流路部S側に接続された配管(分岐流路27)へ十分な流体流れが得られないといった従来の問題点を、簡易な形状(構成)をもって、解決できた。 As described in detail above, the pipe joint manufactured by using the present invention includes a joint body 1 made of synthetic resin, and the main flow path portion where the fluid flows in and out from the opposite side of the joint body 1 by 180 °. In a T-shaped pipe joint including a T-shaped flow path 10 including M, a sub-flow path portion S branching in a direction orthogonal to the main flow path portion M, and passing through the main flow path portion M. Since the induction ridge portion Y that deflects and guides a part of the fluid to the sub-flow path portion S is formed on the anti-branch side inner surface X of the main flow path portion M, it is connected to the sub-channel portion S side. The conventional problem that sufficient fluid flow cannot be obtained in the pipe (branch flow path 27) can be solved with a simple shape (configuration).

また、横断面円形の一対の仮想エルボ体11,11を、各々の一端面12,12を180°反対の方向へ向けた背中合せ姿勢で、面対称に配置して、相互接近させ、各々の他端面13,13が一致するように合体させた仮想合体形状15に;上記T字状流路10の分岐用中央領域10Pの内面形状を、設定し;しかも、上記一端面12,12を上記メイン流路部M側とすると共に、上記他端面13を上記副流路部S側として、対応させ;上記仮想合体形状15における背中側弯曲略V字谷18に対応した凸部形状をもって、上記誘導突隆部Yが、構成されているので、T字状流路10における流体圧力損失が著しく低減でき、一層円滑に、分岐流路27側へ十分な流体流れが行われる。しかも、誘導突隆部Yの形成、及び、横断面円形の一対の仮想エルボ体11,11を背中合せで合体した仮想合体形状15に一致する分岐用中央領域10Pの形成を、比較的簡単な円弧状コアピン51と第3コアピン53等を使用した製造装置(図12〜図15参照)によって、同時に行い得る。
特に、図22に示した従来の樹脂製の継手本体75では、メイン流路部78から分岐流路部79への曲がりが、直角エッジ83に沿って急激に方向変換するために、直角エッジ83近くの乱流による圧力損失も大きく、分岐流路部79への流量がさらに減少していたのに対して、本発明では、横断面円形を保持しつつ、かつ、弯曲内周側には上記直角エッジ83が全く存在せず、小さな圧力損失をもって、一層、多い目の流量が分岐流量27へ送られる。しかも、全体がコンパクトな継手本体1となる利点もある。
In addition, a pair of virtual elbow bodies 11 and 11 having a circular cross section are arranged symmetrically in a back-to-back posture with one end surfaces 12 and 12 facing 180 ° in opposite directions, and are brought close to each other. The virtual united shape 15 in which the end faces 13 and 13 are united so as to coincide with each other; the inner surface shape of the branching central region 10P of the T-shaped flow path 10 is set; and the one end surfaces 12 and 12 are used as the main. Corresponding to the flow path portion M side and the other end surface 13 as the sub flow path portion S side; with a convex portion shape corresponding to the back side curvature substantially V-shaped valley 18 in the virtual united shape 15, the guidance Since the protruding portion Y is configured, the fluid pressure loss in the T-shaped flow path 10 can be remarkably reduced, and sufficient fluid flow is more smoothly performed to the branch flow path 27 side. Moreover, the formation of the induction ridge Y and the formation of the central region 10P for branching that matches the virtual united shape 15 in which the pair of virtual elbow bodies 11 and 11 having a circular cross section are united back to back are relatively simple circles. It can be performed at the same time by a manufacturing apparatus (see FIGS. 12 to 15) using the arcuate core pin 51 and the third core pin 53 or the like.
In particular, in the conventional resin joint body 75 shown in FIG. 22, the bend from the main flow path portion 78 to the branch flow path portion 79 suddenly changes direction along the right-angled edge 83, so that the right-angled edge 83 The pressure loss due to the nearby turbulence was also large, and the flow rate to the branch flow path portion 79 was further reduced, whereas in the present invention, while maintaining the circular cross section, the above is on the inner peripheral side of the curve. There is no right-angled edge 83 at all, and with a small pressure drop, a higher flow rate is sent to the branch flow rate 27. Moreover, there is an advantage that the entire joint body 1 is compact.

1 継手本体
10 T字状流路
10P 分岐用中央領域
11 仮想エルボ体
12 一端面
13 他端面
15 仮想合体形状
18 背中側弯曲V字谷
31 金型
33 キャビティ
33B パイプ挿入筒部形成部
33M 開口端
35 作動ピン
35A 先端部
51 円弧状コアピン(第1コアピン)
51D 凹窪部
52 第2コアピン
52C 誘導用円形孔
53 第3コアピン
53A 位置決め用小円形突出子
K カム機構
33 円弧状軸心
M メイン流路部
S 副流路部(分岐流路部)
X 反分岐側内面
Y 誘導突隆部
Z 円弧状運動強制手段
1 Fitting body
10 T-shaped flow path
Central area for 10P branching
11 Virtual elbow body
12 One end
13 The other end
15 Virtual coalescence shape
18 Back side curve V-shaped valley
31 mold
33 Cavity
33B Pipe insertion tube forming part
33M opening edge
35 Acting pin
35A tip
51 Arc-shaped core pin (first core pin)
51D concave
52 2nd core pin
52C Circular hole for guidance
53 3rd core pin
53A Small circular protrusion for positioning
K cam mechanism
L 33 Arc-shaped axis M Main flow path S Sub flow path (branch flow path)
X Anti-branch side inner surface Y Guide ridge
Z Arc-shaped motion forcing means

Claims (1)

180°反対側から流体が流入・流出するメイン流路部(M)と、該メイン流路部(M)から直交方向へ分岐する副流路部(S)と、から成るT字状流路(10)を備えたT型継手本体(1)を熱可塑性樹脂の射出成形にて成形する金型(31)を備え、該金型(31)は、上記継手本体(1)の外面形状に対応した弯曲した略T字状のキャビティ(33)を有し、
該キャビティ(33)の上記メイン流路部(M)の上記180°反対側の2箇所の開口端(33M)(33M)に対して、直線往復しつつ接近分離自在な一対の作動ピン(35)(35)が配設され、さらに、上記各作動ピン(35)の先端部(35A)には、横断面円形の円弧状コアピン(51)が付設され、
第1コアピンとしての上記円弧状コアピン(51)の基端側を包囲する第2コアピン(52)を、上記キャビティ(33)の上記開口端(33M)に対して侵入脱退自在に配設し、さらに、上記第2コアピン(52)は、上記作動ピン(35)に対して同一軸心に沿って直線往復摺動自在として、外嵌され、
上記作動ピン(35)の先端の上記開口端(33M)への接近乃至侵入に伴って、上記円弧状コアピン(51)が上記略T字状のキャビティ(33)の円弧状軸心(L 33 )に沿って揺動しつつ挿入されると共に、上記作動ピン(35)の先端の上記開口端(33M)からの分離乃至脱出に伴って、上記円弧状コアピン(51)が上記円弧状軸心(L 33 )に沿って揺動しつつ上記キャビティ(33)から外方へ引抜かれる円弧状運動強制手段(Z)を、具備し、
上記第2のコアピン(52)の先端には、誘導用円形孔(52C)を有するガイド板(52D)が付設され、上記円弧状運動強制手段(Z)は、上記誘導用円形孔(52C)と、上記円弧状コアピン(51)の基端と上記作動ピン(35)の先端とを連動連結するカム機構(K)とから、構成されており、
上記副流路部(S)に対応したパイプ挿入筒部形成部(33B)に対して直線往復運動する第3コアピン(53)を備え、
一対の上記円弧状第1コアピン(51)(51)の各々の先端に、小さな半円形の凹窪部(51D)が形成され、
上記第3コアピン(53)は、先端に位置決め用小円形突出子(53A)を、一体に有し、
上記180°反対側の2箇所の開口端(33M)(33M)に対して上記円弧状コアピン(51)(51)を挿入すると共に、上記副流路部(S)に対応したパイプ挿入筒部形成部(33B)に対して直線往復運動する上記第3コアピン(53)を挿入し、一対の上記半円形凹窪部(51D)(51D)によって形成された小円形凹窪部に対して、上記小円形突出子(53A)を密に嵌合させた、一対の上記円弧状コアピン(51)(51)と一本の上記第3コアピン(53)の合体状態下で、熱可塑性樹脂を射出成形して上記T字状流路(10)の周囲壁を成形するように構成したことを特徴とするT型継手本体の製造装置。
A T-shaped flow consisting of a main flow path portion (M) in which fluid flows in and out from the opposite side of 180 ° and a sub flow path portion (S) branching in the orthogonal direction from the main flow path portion (M). A mold (31) for molding a T-shaped joint body (1) provided with a path (10) by injection molding of a thermoplastic resin is provided, and the mold (31) has an outer surface shape of the joint body (1). Has a curved approximately T-shaped cavity (33) corresponding to
A pair of actuating pins (35) that can be approached and separated while linearly reciprocating with respect to two open ends (33M) (33M) on the 180 ° opposite side of the main flow path portion (M) of the cavity (33). ) (35) are arranged, and an arcuate core pin (51) having a circular cross section is attached to the tip (35A) of each of the operating pins (35).
A second core pin (52) surrounding the base end side of the arcuate core pin (51) as the first core pin is disposed with respect to the open end (33M) of the cavity (33) so as to be able to enter and leave. Further, the second core pin (52) is externally fitted so as to be linearly reciprocating and slidable along the same axis with respect to the operating pin (35).
As the tip of the actuating pin (35) approaches or invades the open end (33M), the arcuate core pin (51) becomes the arcuate axis (L 33 ) of the substantially T-shaped cavity (33). ), And the arcuate core pin (51) becomes the arcuate axis as the tip of the actuating pin (35) separates or escapes from the open end (33M). A circular motion forcing means (Z) that is pulled out from the cavity (33) while swinging along (L 33 ) is provided.
A guide plate (52D) having a guiding circular hole (52C) is attached to the tip of the second core pin (52), and the arc-shaped motion forcing means (Z) is the guiding circular hole (52C). It is composed of a cam mechanism (K) that interlocks and connects the base end of the arcuate core pin (51) and the tip of the actuating pin (35).
A third core pin (53) that reciprocates linearly with respect to the pipe insertion cylinder portion forming portion (33B) corresponding to the subchannel portion (S) is provided.
A small semicircular recess (51D) is formed at the tip of each of the pair of arcuate first core pins (51) and (51).
The third core pin (53) integrally has a small circular protrusion (53A) for positioning at the tip thereof.
The arc-shaped core pins (51) and (51) are inserted into the two open ends (33M) (33M) on the opposite sides of the 180 °, and the pipe insertion tube portion corresponding to the sub-flow path portion (S). The third core pin (53) that reciprocates linearly with respect to the forming portion (33B) is inserted, and the small circular concave recess formed by the pair of semicircular concave recesses (51D) (51D) is formed. The thermoplastic resin is injected under the combined state of the pair of arcuate core pins (51) (51) and one of the third core pins (53) in which the small circular protrusion (53A) is tightly fitted. An apparatus for manufacturing a T-shaped joint body, characterized in that the peripheral wall of the T-shaped flow path (10) is formed by molding .
JP2019004553A 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body Active JP6807111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019004553A JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019004553A JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Publications (2)

Publication Number Publication Date
JP2020112233A JP2020112233A (en) 2020-07-27
JP6807111B2 true JP6807111B2 (en) 2021-01-06

Family

ID=71666560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019004553A Active JP6807111B2 (en) 2019-01-15 2019-01-15 Manufacturing equipment for T-shaped joint body

Country Status (1)

Country Link
JP (1) JP6807111B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1009987A (en) * 1948-07-20 1952-06-05 Connection and elbow for pipes
JPH07158786A (en) * 1993-11-22 1995-06-20 Taiko Kikai Kogyo Kk T-shapred fitting
US6182326B1 (en) * 1999-02-10 2001-02-06 Emerson Electric Co. Workshop dust collection apparatus and method
JP4796447B2 (en) * 2006-07-18 2011-10-19 積水化学工業株式会社 Plastic branch joint
KR101326839B1 (en) * 2011-12-07 2013-11-11 현대자동차주식회사 Air intake hose for vehicle and production method thereof
JP6790450B2 (en) * 2015-05-20 2020-11-25 株式会社オンダ製作所 Fitting manufacturing equipment and fitting manufacturing method
DE102016118579A1 (en) * 2016-09-30 2018-04-05 Sig Technology Ag Device for controlling the flow direction of fluids
JP6939374B2 (en) * 2017-10-06 2021-09-22 株式会社オンダ製作所 Fitting manufacturing equipment
JP6422610B1 (en) * 2018-05-10 2018-11-14 井上 智史 Pipe fitting manufacturing equipment

Also Published As

Publication number Publication date
JP2020112233A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
US20170045160A1 (en) Two-shot tube retention pocket tube clamp mold and molding method
US20170347860A1 (en) Suction valve
JP2022003278A (en) Resin elbow joint
JP7136665B2 (en) Method for manufacturing mold device and flow path member
JP6807111B2 (en) Manufacturing equipment for T-shaped joint body
JP2021181836A (en) Resin elbow joint and pipe cover
JP7196984B2 (en) Joint manufacturing apparatus and joint manufacturing method
JP2014151471A (en) Connector member
EP3632648A1 (en) Injection molding die, resin member, and method for producing resin article
KR102405086B1 (en) resin pipe joint
JP6939194B2 (en) Resin elbow fitting
US20160223117A1 (en) Conduit having integral, monolithic flow regulation features
US11105434B2 (en) Flow rib in valves
JP6422610B1 (en) Pipe fitting manufacturing equipment
JP6419518B2 (en) Insert molding method using insert mold
JP5015358B1 (en) Manufacturing method of joints
TW201405040A (en) Tube joint and joint unit
US11135753B2 (en) Injection mold, resin member, and method for producing resin product
JP7107919B2 (en) Valve housing, valve and method for manufacturing valve housing
JP6736449B2 (en) Filter member manufacturing method
JP7425563B2 (en) Channel structure
JP7460449B2 (en) Manufacturing method of resin pipe
JP2022101221A (en) Manufacturing method for resin pipe
JP2002018911A (en) Method for molding resin tube and mold
CN112403068B (en) Filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6807111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250