JP2020112066A - Power source-free drain system, cooling system and cooling method - Google Patents

Power source-free drain system, cooling system and cooling method Download PDF

Info

Publication number
JP2020112066A
JP2020112066A JP2019002290A JP2019002290A JP2020112066A JP 2020112066 A JP2020112066 A JP 2020112066A JP 2019002290 A JP2019002290 A JP 2019002290A JP 2019002290 A JP2019002290 A JP 2019002290A JP 2020112066 A JP2020112066 A JP 2020112066A
Authority
JP
Japan
Prior art keywords
pump
diesel engine
water
engine
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019002290A
Other languages
Japanese (ja)
Other versions
JP6707787B1 (en
Inventor
喜一 天野
Kiichi Amano
喜一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019002290A priority Critical patent/JP6707787B1/en
Application granted granted Critical
Publication of JP6707787B1 publication Critical patent/JP6707787B1/en
Publication of JP2020112066A publication Critical patent/JP2020112066A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Abstract

To simply make a cooling system of a diesel engine by eliminating an unnecessary auxiliary machine and power supply equipment, while greatly reducing an amount of cooling water, by constructing a primary cooling mode without the need for a secondary cooling water.SOLUTION: A drain system includes: a water supply tank 1 for an engine; a diesel engine 4 arranged in the position lower in the gravity direction than the water supply tank 1 for the engine, and having a pump 5 with a machine; a water supply pipe 7 for sending the water stored in the water supply tank 1 for the engine into the pump 5 with the machine using the gravity as the cooling water; a line pump 26 for sending the cooling water discharged from the diesel engine 4 into the diesel engine 4 again, and complementing the pressure necessary for reflow; a heat exchanger 10 for lowering temperature of the cooling water; first transportation piping (27, 28) for sending the cooling water pressurized with the line pump 26 into the heat exchanger 10; and a reflux pipe 29 for refluxing the cooling water of the temperature lowered by the heat exchanger 10 into the pump 5 with the machine. The pump 5 with the machine works by the torque generated by the diesel engine 4.SELECTED DRAWING: Figure 1

Description

本発明は排水システム、この排水システムに用いる排水ポンプを駆動するディーゼル機関の冷却システム及びディーゼル機関の冷却方法に関する。 The present invention relates to a drainage system, a cooling system for a diesel engine that drives a drainage pump used in this drainage system, and a cooling method for a diesel engine.

排水機場の排水ポンプを駆動する原動機としては、かつて電動モータが主力として用いられていたが、伊勢湾台風の際の水害による停電以後、自己点火の必要がないディーゼル機関が多用されている。排水機場に設置される陸用のディーゼル機関の本体や潤滑油等の冷却には、熱交換器による2次冷却方式が主に採用され、この2次冷却水として例えば地盤の地下水を利用する技術が知られている(非特許文献1参照。)。 Electric motors were once used as the prime mover for driving the drainage pumps of drainage pump stations, but diesel engines that do not require self-ignition after the power failure due to water damage during the typhoon of Isewan are often used. A secondary cooling system using a heat exchanger is mainly adopted for cooling the main body of the land-use diesel engine installed in the drainage pump station, lubricating oil, etc., and is technology that uses groundwater of the ground, for example, as this secondary cooling water. Is known (see Non-Patent Document 1).

例えば、図3に示す2次冷却水を用いる従来の排水システムの場合、外部の井戸等から取水ポンプ18で汲み上げた水を冷却水として1次冷却水槽21に貯水し、貯水した1次冷却水を第1揚水ポンプ12によって汲み上げる必要があり、第1揚水ポンプ12用の電源が必要になる。1次冷却水は、給水管7zを介してディーゼル機関4の位置まで上昇させる。そして冷却水を機付ポンプ5を介してディーゼル機関4の内部に流し、ディーゼル機関4の出口から排水管8を通して熱交換器10に到達させ、熱交換器10で2次冷却水を用いて1次冷却水を冷却する。冷却された1次冷却水は、1次冷却水槽21に再度戻される。一方、2次冷却水は、排水ポンプ11が位置する被排水槽20と連通する2次冷却水槽22に蓄えられており、第2揚水ポンプ13によって汲み上げる必要があり、第2揚水ポンプ13用の電源が必要になる。2次冷却水は、熱交換器10に送り込まれて1次冷却水の冷却に使用された後、廃棄される。 For example, in the case of the conventional drainage system using the secondary cooling water shown in FIG. 3, the water drawn up by the intake pump 18 from an external well or the like is stored as cooling water in the primary cooling water tank 21, and the stored primary cooling water is stored. Needs to be pumped by the first pumping pump 12, and a power source for the first pumping pump 12 is required. The primary cooling water is raised to the position of the diesel engine 4 via the water supply pipe 7z. Then, the cooling water is caused to flow inside the diesel engine 4 through the pump 5 with a machine, reaches the heat exchanger 10 through the drain pipe 8 from the outlet of the diesel engine 4, and the heat exchanger 10 uses the secondary cooling water to Next, cool the cooling water. The cooled primary cooling water is returned to the primary cooling water tank 21 again. On the other hand, the secondary cooling water is stored in the secondary cooling water tank 22 that communicates with the drainage tank 20 in which the drainage pump 11 is located and needs to be pumped up by the second pumping pump 13, You need a power supply. The secondary cooling water is sent to the heat exchanger 10 to be used for cooling the primary cooling water, and then discarded.

本来、ディーゼル機関4は電源フリーであるのに関わらず、第1揚水ポンプ12及び第2揚水ポンプ13用の電源が必要になるという不合理性があり、ディーゼル機関4の利点が生かされていない。このように、2次冷却方式を用いる場合は、排水機場に一定の補機や電源設備等を附帯させる必要性があり、排水機場が複雑化し、故障の発生頻度の高まりや保守作業の煩雑さ等の問題が生じる。さらに、2次冷却方式では1次冷却方式で排出する量の2倍程度にも及ぶ2次冷却水が必要となる場合があるため、非特許文献1の技術を用いて、地下水を無制限に大量に汲み上げて利用すると、地盤の浅層地下水のみずみちが枯渇して空洞化し、地盤沈下の可能性が高まってしまう。すなわち地下水を安定的な水源として用いることは実際上困難である。 Originally, although the diesel engine 4 is power-free, there is an irrationality that the power source for the first pumping pump 12 and the second pumping pump 13 is required, and the advantage of the diesel engine 4 is not utilized. .. As described above, when the secondary cooling method is used, it is necessary to attach a certain auxiliary equipment or power supply equipment to the drainage pump station, which complicates the drainage pump station, increases the frequency of failures, and complicates maintenance work. Problems such as occur. Further, in the secondary cooling system, there may be a case where the secondary cooling water that is about twice as much as the amount discharged in the primary cooling system is required. Therefore, using the technique of Non-Patent Document 1, a large amount of unlimited groundwater can be obtained. If it is pumped up and used, the shallow groundwater in the ground will be depleted and hollowed out, increasing the possibility of ground subsidence. That is, it is practically difficult to use groundwater as a stable water source.

社団法人日本建設機械化協会、「排水ポンプ設備点検保守要領」社団法人日本建設機械化協会、p122〜124、昭和54年Japan Construction Mechanization Association, “Drainage Pump Equipment Inspection and Maintenance Guidelines” Japan Construction Mechanization Association, p122-124, 1979

本発明は上記の問題に着目して為されたものであって、完全電源フリーな排水システム、ディーゼル機関の冷却システム及び冷却方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a drainage system, a cooling system for a diesel engine, and a cooling method that are completely free of power supply.

上記目的を達成するために、本発明の第1の態様は、(a)機関用給水槽と、(b)機関用給水槽よりも重力方向に低い位置に配置された機関付属冷却水ポンプ(以下「機付ポンプ」という。)を有するディーゼル機関と、(c)ディーゼル機関よりも重力方向に低い位置に配置された被排水槽中に少なく共一部が投入され、ディーゼル機関によって駆動される排水ポンプと、(d)機関用給水槽と機付ポンプの間に設けられ、機関用給水槽に蓄えられた水を冷却水として重力で機付ポンプに送り込む給水管と、(e)機付ポンプによりディーゼル機関に送り込まれ、ディーゼル機関から排出された冷却水を、再度ディーゼル機関に送り込む還流に必要な圧力を補完するラインポンプと、(f)排水ポンプの排水経路に設けられ、冷却水を降温する熱交換器と、(g)ディーゼル機関と熱交換器の間に設けられ、ラインポンプで加圧された冷却水を熱交換器に送り込む第1の輸送配管と、(h)熱交換器とディーゼル機関の間に設けられ、熱交換器によって降温した冷却水を機付ポンプに還流する還流管とを備える排水システムであることを要旨とする。第1の態様に係る排水システムにおいて被排水槽中の水を排水する際に、機付ポンプはディーゼル機関が発生する回転力によって動作する。 In order to achieve the above object, the first aspect of the present invention is (a) a water tank for an engine, and (b) a cooling water pump attached to an engine, which is arranged at a position lower than the water tank for an engine in the direction of gravity. (Hereinafter referred to as "equipment pump"), and (c) a small portion of the same is put into a drainage tank located at a position lower than the diesel engine in the gravity direction and driven by the diesel engine. A drainage pump, (d) a water supply pipe provided between the water tank for the engine and the machine-equipped pump, which feeds water stored in the water tank for the engine to the machine-equipped pump as cooling water by gravity, and (e) the machine The cooling water discharged from the diesel engine is sent to the diesel engine by the pump, and the line pump that complements the pressure necessary for the reflux to send the cooling water to the diesel engine again and (f) the drainage channel of the drainage pump is provided with the cooling water. A heat exchanger for lowering the temperature, (g) a first transportation pipe provided between the diesel engine and the heat exchanger, for feeding the cooling water pressurized by the line pump to the heat exchanger, and (h) the heat exchanger The drainage system is provided between the diesel engine and the diesel engine, and includes a reflux pipe that recirculates the cooling water cooled by the heat exchanger to the on-machine pump. In the drainage system according to the first aspect, when draining the water in the drainage tank, the pump with a machine operates by the rotational force generated by the diesel engine.

本発明の第2の態様は、(a)機関用給水槽と、(b)機関用給水槽よりも重力方向に低い位置に配置された機付ポンプを有するディーゼル機関と、(c)機関用給水槽と機付ポンプの間に設けられ、機関用給水槽に蓄えられた水を冷却水として重力で機付ポンプに送り込む給水管と、(d)機付ポンプによりディーゼル機関に送り込まれ、ディーゼル機関から排出された冷却水を、再度ディーゼル機関に送り込む還流に必要な圧力を補完するラインポンプと、(e)冷却水を降温する熱交換器と、(f)ディーゼル機関と熱交換器の間に設けられ、ラインポンプで加圧された冷却水を熱交換器に送り込む第1の輸送配管と、(g)熱交換器とディーゼル機関の間に設けられ、熱交換器によって降温した冷却水を機付ポンプに還流する還流管を備えるディーゼル機関の冷却システムであることを要旨とする。第2の態様に係るディーゼル機関の冷却システムにおいて、機付ポンプはディーゼル機関が発生する回転力によって動作する。 A second aspect of the present invention is (a) a water tank for an engine, (b) a diesel engine having a pump with a machine arranged at a position lower in the gravity direction than the water tank for an engine, and (c) for an engine. A water supply pipe installed between the water tank and the pump with an engine to feed the water stored in the water tank for the engine to the pump with a gravity as cooling water; The line pump that supplements the pressure required for the reflux of the cooling water discharged from the engine to the diesel engine again, (e) the heat exchanger that cools the cooling water, and (f) the space between the diesel engine and the heat exchanger. The first transport pipe installed in the heat pump to send the cooling water pressurized by the line pump to the heat exchanger, and (g) the cooling water cooled by the heat exchanger installed between the heat exchanger and the diesel engine. The gist is that it is a cooling system for a diesel engine that is equipped with a recirculation pipe that recirculates to a pump with a machine. In the cooling system for a diesel engine according to the second aspect, the on-machine pump operates by the rotational force generated by the diesel engine.

本発明の第3の態様は、(a)機関用給水槽に接続された給水管を経由して、機関用給水槽よりも重力方向に低い位置に配置されたディーゼル機関の機付ポンプに、機関用給水槽に蓄えられた水を冷却水として重力で送り込むステップと、(b)機付ポンプによる冷却水を用いてディーゼル機関を水冷するステップと、(c)ラインポンプを用いて、ディーゼル機関から排出された冷却水の圧力を補完するステップと、(d)圧力を補完された冷却水を降温するステップと、(e)降温した冷却水を機付ポンプに還流するステップを含むディーゼル機関の冷却方法であることを要旨とする。 A third aspect of the present invention is (a) a diesel engine equipped pump arranged at a position lower in a gravity direction than an engine water tank via a water supply pipe connected to the engine water tank, Gravity-feeding water stored in the engine water tank as cooling water; (b) water-cooling the diesel engine using the cooling water by a pump equipped with a machine; and (c) a diesel engine using the line pump. Of the diesel engine including the steps of complementing the pressure of the cooling water discharged from the engine, (d) lowering the temperature of the cooling water whose pressure is complemented, and (e) returning the cooled cooling water to an on-machine pump. The point is that it is a cooling method.

本発明によれば、1次冷却方式による完全電源フリーな排水システムを構築でき、ディーゼル機関の利点を生かした排水システム、ディーゼル機関の冷却システム及び冷却方法を提供することができる。 According to the present invention, it is possible to construct a completely power source-free drainage system by a primary cooling system, and to provide a drainage system, a cooling system for a diesel engine, and a cooling method that make the most of the advantages of the diesel engine.

本発明の実施の形態に係る排水システム及び冷却システムの構成の概略を一部を断面して模式的に説明するブロック図である。It is a block diagram which explains the outline of composition of a drainage system and a cooling system concerning an embodiment of the invention typically in a partial cross section. 本発明の実施の形態に係る排水システム及び冷却システムの機付ポンプの性能曲線を示すグラフ図である。It is a graph which shows the performance curve of the pump with a machine of the drainage system and cooling system which concern on embodiment of this invention. 従来の排水システムの構成の概略を一部を断面して模式的に説明するブロック図である。It is a block diagram which explains the outline of the composition of the conventional drainage system typically in a partial section. 本発明の変形例に係る排水システム及び冷却システムの構成の概略を一部を断面して模式的に説明するブロック図である。It is a block diagram which explains the outline of the composition of the drainage system and the cooling system concerning the modification of the present invention partially in a section.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。又、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar reference numerals are given to the same or similar parts. However, it should be noted that the drawings are schematic and the relationship between the thickness and the plane dimension, the thickness ratio of each layer, and the like are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following description. Further, it is a matter of course that the drawings include portions having different dimensional relationships and ratios. Further, the embodiments described below exemplify a device and a method for embodying the technical idea of the present invention, and the technical idea of the present invention is that the material, shape, structure, The arrangement is not limited to the following. Various changes can be added to the technical idea of the present invention within the technical scope defined by the claims described in the claims. Furthermore, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Therefore, for example, if the paper surface is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper surface is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course,

−−排水システム及びディ−ゼル機関の冷却システムの構造−−
本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムは、図1に示すように、冷却対象であるディーゼル機関4を冷却する冷却水を蓄える機関用給水槽1と、機関用給水槽1よりも重力方向に低い位置に配置された水冷式のディーゼル機関4と、を備える。また本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムは、機関用給水槽1とディーゼル機関4の機付ポンプ5の間に設けられ、機関用給水槽1に蓄えられた水を冷却水として重力でディーゼル機関4に送り込む給水管7と、冷却水をディーゼル機関に送り込むための圧力を補完する第1のラインポンプ26と、被排水槽(吸水槽)20中に少なく共その一部が投入され、ディーゼル機関4によって駆動される排水ポンプ11を備える完全電源フリーシステムである。また本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムは、冷却水を熱交換して降温する熱交換器10と、ディーゼル機関4と熱交換器10の間に設けられ、ディーゼル機関4の内部を通過して昇温した冷却水を熱交換器10に送り込む輸送配管(27,28)と、熱交換器10とディーゼル機関4の間に設けられ、熱交換器10によって降温した冷却水をディーゼル機関4に還流する還流管29と、を備える。
--- Structure of drainage system and cooling system of diesel engine ---
As shown in FIG. 1, a drainage system and a diesel engine cooling system according to an embodiment of the present invention include an engine water tank 1 for storing cooling water for cooling a diesel engine 4 to be cooled, and an engine water tank 1. A water-cooled diesel engine 4 arranged at a position lower than the water supply tank 1 in the direction of gravity. The drainage system and the cooling system for the diesel engine according to the embodiment of the present invention are provided between the engine water tank 1 and the engine-equipped pump 5 of the diesel engine 4, and are stored in the engine water tank 1. A water supply pipe 7 that sends water as cooling water to the diesel engine 4 by gravity, a first line pump 26 that supplements the pressure for sending cooling water to the diesel engine, and a small amount of water in the drainage tank (water absorption tank) 20. It is a completely power-free system that includes a drainage pump 11 that is partially charged and driven by the diesel engine 4. Further, the drainage system and the cooling system for the diesel engine according to the embodiment of the present invention are provided between the heat exchanger 10 for exchanging heat by cooling the cooling water, and between the diesel engine 4 and the heat exchanger 10. It is provided between the heat exchanger 10 and the diesel engine 4, and the transportation pipes (27, 28) for sending the cooling water that has passed through the inside of the diesel engine 4 and has been heated to the heat exchanger 10, and the temperature is lowered by the heat exchanger 10. And a return pipe 29 for returning the cooling water to the diesel engine 4.

本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムには、図1に示したバルブやセンサ以外にも、図示を省略しているがフート弁や逆阻止弁等、冷却水の経路を形成する際に通常考慮される保守・点検用の各種のバルブ(弁)や装置が設けられている。 In the drainage system and the cooling system for the diesel engine according to the embodiment of the present invention, in addition to the valves and sensors shown in FIG. 1, although not shown, a cooling water such as a foot valve or a reverse blocking valve is provided. There are various valves and devices for maintenance and inspection that are usually taken into consideration when forming the path.

本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムは、例えば、一級・二級河川の流域に、洪水時や満潮時に河川の水量が増加したときの低地帯への浸水を防ぐために設けられ、災害用の雨水を排水する排水機場での複数のディーゼル機関4の冷却に用いられる。排水機場は、図1に示すように、複数階層構造の建屋(機場上屋)を備え、建屋の内部には、複数台の排水ポンプ11と、これらの排水ポンプ11を駆動させるためにそれぞれ必要な動力を発生する複数台のディーゼル機関4とが収納されている。尚、図示したディーゼル機関4以外のディーゼル機関や、排水ポンプ11の保守作業等に用いられる天井クレーン等の装置は、説明の便宜のため、図示を省略している。 A drainage system and a cooling system for a diesel engine according to an embodiment of the present invention, for example, in a basin of a first-class or second-class river, inundation of a low area when the amount of water in the river increases during flood or high tide. It is provided for prevention and is used for cooling a plurality of diesel engines 4 at a drainage station for draining rainwater for disaster. As shown in FIG. 1, the drainage pumping station is provided with a multi-story building (pump shed), and inside the building, a plurality of drainage pumps 11 and each of them are required to drive these drainage pumps 11. A plurality of diesel engines 4 that generate various powers are stored. For convenience of explanation, illustrations of diesel engines other than the illustrated diesel engine 4 and devices such as an overhead crane used for maintenance work of the drainage pump 11 are omitted.

機関設置フロアの下側のポンプフロアには、一床式の立軸型の排水ポンプ11が例示的に設けられている。排水ポンプ11は、例えば12.5トン/秒程度で排水する。また建屋の内部のポンプフロアの下側の貯水フロアには、増水した河川からの水が溜められており、排水機場の被排水槽20をなしている。排水ポンプ11は少なく共その一部が被排水槽20中に投入されていれば、被排水槽20中の水を排水できる。 On the pump floor below the engine installation floor, a single-bed vertical shaft type drainage pump 11 is exemplarily provided. The drainage pump 11 drains water at, for example, about 12.5 tons/sec. In addition, water from the increased river is stored on the water storage floor below the pump floor inside the building, and forms the drainage tank 20 of the drainage station. If there are few drainage pumps 11 and a part thereof is put into the drainage tank 20, the water in the drainage tank 20 can be drained.

ディーゼル機関4と、このディーゼル機関4に対応する排水ポンプ11とは、機関設置フロアの床面上に設けられた減速機14を介して接続されている。排水ポンプ11の内部には、図示を省略したインペラが設けられ、ディーゼル機関4が動作すると、ディーゼル機関4から回転運動がインペラの回転軸19に伝達され、回転軸19を介してインペラが回転し、図1中の下側の白抜き矢印で示すように、被排水槽20から水が汲み上げられる。汲み上げられた水は、図1中の右側の白抜き矢印で示すように、建屋の外部に排出されると共に、更に排水機場の敷地内に設けられ図示を省略した吐出水槽等を介して建屋から離れた場所に放水される。 The diesel engine 4 and the drainage pump 11 corresponding to the diesel engine 4 are connected via a speed reducer 14 provided on the floor surface of the engine installation floor. An impeller (not shown) is provided inside the drainage pump 11, and when the diesel engine 4 operates, the rotary motion is transmitted from the diesel engine 4 to the rotary shaft 19 of the impeller, and the impeller rotates via the rotary shaft 19. As shown by the white arrow on the lower side of FIG. 1, water is pumped from the drainage tank 20. The pumped water is discharged to the outside of the building as shown by the white arrow on the right side of FIG. 1, and is also discharged from the building through a discharge water tank, etc. (not shown) provided in the site of the drainage pump station. Water is discharged to a remote place.

機関設置フロアの上方に位置する建屋の屋上の一部又は全部の領域には、機関用給水槽1が設けられている。機関用給水槽1よりも下のレベルには、補助給水槽2が設けられている。機関用給水槽1の底部の一部には、機関用給水槽1の全面のスペースに降り注いだ雨水を導く排水路が補助給水槽2へ通じるように設けられ、この排水路には、濾過装置3が排水路の上部を覆うようにして取り付けられている。濾過装置3としては例えばルーフドレイン等を使用できる。濾過装置3により、屋上の全面に降雨し機関用給水槽1に導かれた雨水を、ゴミ等の夾雑物を排除しながら機関用給水槽1の内部に注入するようにして蓄えることができる。 A water tank 1 for an engine is provided in a part or the whole area of the roof of a building located above the engine installation floor. An auxiliary water tank 2 is provided at a level lower than the engine water tank 1. At a part of the bottom of the engine water tank 1, a drainage channel for guiding rainwater that has poured into the entire space of the engine water tank 1 is provided so as to lead to the auxiliary water tank 2, and the drainage channel has a filtering device. 3 is attached so as to cover the upper part of the drainage channel. As the filtering device 3, for example, a roof drain or the like can be used. By the filtering device 3, rainwater that has rained all over the roof and is guided to the water tank 1 for the engine can be stored by injecting it into the water tank 1 for the engine while removing foreign matters such as dust.

補助給水槽2の側壁の下部には貫通孔が設けられており、この貫通孔から機関設置フロアの位置まで下降して延びる給水管7が取り付けられている。給水管7を介して機関用給水槽1に蓄えられた雨水が、排水処理のために動作して昇温したディーゼル機関4に対して冷却水として供給される。 A through hole is provided in the lower portion of the side wall of the auxiliary water supply tank 2, and a water supply pipe 7 that descends from the through hole and extends to the position of the engine installation floor is attached. Rainwater stored in the engine water tank 1 is supplied via the water supply pipe 7 to the diesel engine 4, which has been operated for drainage treatment and has a high temperature, as cooling water.

機関用給水槽1は、排水機場が稼働する必要が生じる程度に大規模な降水量を伴う降雨が発生した際に、この降水量を積極的に活用して、ディーゼル機関4用の冷却水を大量に蓄える。機関用給水槽1の内部には、雨水が常時一定の貯水量で保持されており、ディーゼル機関4へ冷却水を安定供給できるように構成されている。冷却水は、給水管7の内側を重力に従って、屋上から機関設置フロアの床面近傍の高さまで下降して移動するので、電力は一切消費されない完全電源フリーシステムが構築できる。 The engine water tank 1 positively utilizes this precipitation when a rainfall accompanied by a large amount of precipitation occurs to the extent that the drainage pump station is required to operate, and supplies cooling water for the diesel engine 4 to the engine. Store a large amount. Rainwater is always stored in the engine water tank 1 at a constant amount, and the diesel engine 4 can be stably supplied with cooling water. The cooling water descends from the roof to a height near the floor surface of the engine installation floor according to gravity inside the water supply pipe 7, and thus a completely power-free system in which no electric power is consumed can be constructed.

尚、機関用給水槽1は、排水機場を新設する場合には屋上の一隅に設ければよいし、既設の排水機場を改造して新たに増設する場合には、例えば排水機場内の余剰スペースを活用して設置すればよい。屋上以外の場所に機関用給水槽1を設置する場合、既設の排水溝や配水管を適宜改造又は組み合わせて用いて、機関用給水槽1に雨水を導く経路を別途形成する。 It should be noted that the water tank 1 for the engine may be provided at one corner of the roof when a drainage station is newly constructed. When the existing drainage station is modified and newly added, for example, a surplus space in the drainage station is used. Can be installed by utilizing. When the water tank 1 for an engine is installed at a place other than the rooftop, an existing drainage channel or water distribution pipe is appropriately modified or combined and used to separately form a route for introducing rainwater to the water tank 1 for an engine.

機関設置フロアの側壁には貫通孔が設けられており、この貫通孔の高さで給水管7が曲がって、貫通孔を通って第1のバイパス配管9に接続されている。給水管7は、貯水フロアの位置で、複数台のディーゼル機関4にそれぞれ接続するように、ディーゼル機関4の台数に応じて分岐するように構成してもよい。第1のバイパス配管9は給水管7と還流管29の間をバイパス接続する。給水管7から重力エネルギーで供給された冷却水は、給水管7及び第1のバイパス配管9を経由し、機付ポンプ5に至る。 A through hole is provided in the side wall of the engine installation floor, and the water supply pipe 7 is bent at the height of the through hole and is connected to the first bypass pipe 9 through the through hole. The water supply pipe 7 may be configured to branch depending on the number of diesel engines 4 so as to be connected to each of the plurality of diesel engines 4 at the position of the water storage floor. The first bypass pipe 9 connects the water supply pipe 7 and the reflux pipe 29 by bypass. The cooling water supplied by gravity energy from the water supply pipe 7 reaches the pump 5 with a machine via the water supply pipe 7 and the first bypass pipe 9.

機付ポンプ5は、ディーゼル機関4に内蔵されており冷却水を内部に引き込む。ディーゼル機関4は例えば、図2の上側の性能曲線で示すように、定格点が、吐出量が約63m/時間、全揚程が約24.7mである。また図2中の下側に示した機関内部圧力損失の曲線から分かるように、このディーゼル機関4の定格点では、約6mの損失が生じる。 The machine-equipped pump 5 is built in the diesel engine 4 and draws cooling water inside. For example, as shown in the upper performance curve of FIG. 2, the diesel engine 4 has a rated point of a discharge amount of about 63 m 3 /hour and a total head of about 24.7 m. Further, as can be seen from the curve of the engine internal pressure loss shown in the lower side of FIG. 2, a loss of about 6 m occurs at the rated point of the diesel engine 4.

この機付ポンプ5を介して、図1中に模式的に点線で示すように、ディーゼル機関4の内部の冷却水の通り道に送り込まれる。冷却水の通り道の途中には、ディーゼル機関に付属する機付オイルクーラ6が設けられている。尚、冷却水の通り道は、ディーゼル機関4の入口を通過した後、内部で2本以上に分岐してもよく、機付オイルクーラ6側の経路以外に、例えば、燃焼室周囲で高温になったシリンダを冷却するためのウォータージャケットを流れるジャケット側の経路等が設けられてよい。 The cooling water inside the diesel engine 4 is fed into the passage of the diesel engine 4 through the machine-equipped pump 5 as schematically shown by the dotted line in FIG. An oil cooler 6 equipped with a diesel engine is provided in the middle of the passage of the cooling water. The passage of the cooling water may branch into two or more inside after passing through the inlet of the diesel engine 4. For example, the passage of the cooling water may become high in temperature around the combustion chamber, other than the passage on the oil cooler 6 side. There may be provided a jacket-side passage or the like through the water jacket for cooling the cylinder.

ディーゼル機関4の内部から外側に出た冷却水は、第1配管27を通って第1のラインポンプ26に送り出される。第1のラインポンプ26と熱交換器10の間には、第2配管28が設けられている。第2配管28は、機関設置フロアの床に設けられた貫通孔を通って、機関設置フロアの床に沿って熱交換器10まで延びている。第1配管27及び第2配管28は本発明の「第1の輸送配管」に相当する。 The cooling water flowing out from the inside of the diesel engine 4 is sent out to the first line pump 26 through the first pipe 27. A second pipe 28 is provided between the first line pump 26 and the heat exchanger 10. The second pipe 28 extends to the heat exchanger 10 along the floor of the engine installation floor through a through hole provided in the floor of the engine installation floor. The 1st piping 27 and the 2nd piping 28 are equivalent to the "1st transportation piping" of the present invention.

第1のラインポンプ26は、ディーゼル機関4の回転力を利用して駆動される。具体的には、回転軸19に、回転力を伝達するスプロケット等の第1の伝達装置23を設け、この第1の伝達装置23と第1のラインポンプ駆動装置25とを、チェーン等の第1の従動部材24を介して連結し、ディーゼル機関4の回転力を伝達すればよい。 The first line pump 26 is driven by utilizing the rotational force of the diesel engine 4. Specifically, the rotary shaft 19 is provided with a first transmission device 23 such as a sprocket that transmits a rotational force, and the first transmission device 23 and the first line pump drive device 25 are connected to a first transmission device such as a chain. The rotational force of the diesel engine 4 may be transmitted by connecting via the driven member 24 of No. 1.

熱交換器10は、排水ポンプ11の排水側のパイプの外周面に巻き付けて設けられていても、或いは、排水側のパイプの内周面に設けられていてもよい。熱交換器10は、排水フロアの水を2次冷却用の水源として用いて、ディーゼル機関4の内部で昇温し、熱交換器10に送り込まれた冷却水を降温させる。また熱交換器10の冷却水の出口には還流管29が接続されている。還流管29は排水フロアの上部で排水フロアの側壁に向かって延び、還流管29の熱交換器10と反対側の端部は第1のバイパス配管9に分岐する箇所を経由したのち、排水管39に接続されている。 The heat exchanger 10 may be provided by being wound around the outer peripheral surface of the drain side pipe of the drain pump 11, or may be provided on the inner peripheral surface of the drain side pipe. The heat exchanger 10 uses the water of the drainage floor as a water source for secondary cooling, raises the temperature inside the diesel engine 4, and lowers the temperature of the cooling water sent to the heat exchanger 10. A reflux pipe 29 is connected to the outlet of the cooling water of the heat exchanger 10. The reflux pipe 29 extends toward the side wall of the drainage floor at the upper part of the drainage floor, and the end of the reflux pipe 29 on the side opposite to the heat exchanger 10 passes through a part branching to the first bypass pipe 9 and then the drainage pipe. It is connected to 39.

貯水フロアの側壁の機関設置フロアの床面近傍の位置には貫通孔が設けられ、この貫通孔を通って排水管39は屋外に延びている。また機関設置フロアの床のディーゼル機関4の機付ポンプ5の近傍には貫通孔が設けられ、この貫通孔を通って、還流管29の第1のバイパス配管9側に分岐した部分が延びている。 A through hole is provided on the side wall of the water storage floor near the floor surface of the engine installation floor, and the drain pipe 39 extends to the outside through the through hole. Further, a through hole is provided in the vicinity of the engine-equipped pump 5 of the diesel engine 4 on the floor of the engine installation floor, and a portion of the reflux pipe 29 branched to the first bypass pipe 9 side extends through the through hole. There is.

−−排水システム及びディ−ゼル機関の冷却システムの動作−−
次に、本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムの動作を、図1で示したディーゼル機関4を例示的に用いて説明する。まず予め、機関用給水槽1には一定量の冷却水が蓄えられたものとする。次に、機関用給水槽1に貯えられた冷却水を、濾過装置3を介して補助給水槽2に移動させた後、高所から給水管7の垂直立ち下がり箇所の内部を重力により落下させ、給水管7及び第1のバイパス配管9を経由して、機付ポンプ5に送り込む。
--- Operation of the drainage system and the cooling system of the diesel engine ---
Next, the operation of the drainage system and the cooling system of the diesel engine according to the embodiment of the present invention will be described by using the diesel engine 4 shown in FIG. 1 as an example. First, it is assumed that a predetermined amount of cooling water is stored in the engine water supply tank 1 in advance. Next, the cooling water stored in the engine water supply tank 1 is moved to the auxiliary water supply tank 2 through the filtration device 3, and then the inside of the vertically falling portion of the water supply pipe 7 is dropped by gravity from a high place. , Through the water supply pipe 7 and the first bypass pipe 9 into the machine-equipped pump 5.

初期運転には、例えば消防車等による給水を行って機付ポンプ5を動作させれば、以降の冷却水の供給処理は、重力の効果が利用でき、給水後はディーゼル機関4のクランク軸の回転によって機付ポンプ5も駆動されるようになるので、専用の電源を用いることなく電力フリーで機付ポンプ5の運動を継続することが可能である。 For initial operation, if water is supplied by, for example, a fire engine and the pump 5 is operated, the cooling water supply process thereafter can utilize the effect of gravity, and after water supply, the crankshaft of the diesel engine 4 can be used. Since the pump 5 with the machine is also driven by the rotation, it is possible to continue the motion of the pump 5 with the machine without using a dedicated power source.

ディーゼル機関4に重力で送り込まれた冷却水は、機付ポンプ5によって、冷却水の通り道である機付オイルクーラ6を流れてオイルを冷却することによりディーゼル機関4を冷却する。機付オイルクーラ6を流れた冷却水は、ディーゼル機関4の出口から第1配管27を経由して外部に流れ出て、第1のラインポンプ26によって加圧される。第1のラインポンプ26の動作によりディーゼル機関4の出口側で冷却水が吸引されるので、ディーゼル機関4の内部の冷却水の実効コンダクタンスが増大する。尚、冷却水の温度は、例えば機関用給水槽1で20℃程度であれば、下降してきてディーゼル機関4の入口の位置では23℃程度でなる。更に図2で例示したディーゼル機関4の内部を通過して昇温した冷却水の温度は、ディーゼル機関4の出口で35℃程度である。 The cooling water sent to the diesel engine 4 by gravity flows through the engine-equipped pump 5 to the engine-equipped oil cooler 6 which is a passage of the cooling water to cool the oil, thereby cooling the diesel engine 4. The cooling water that has flowed through the machined oil cooler 6 flows out from the outlet of the diesel engine 4 via the first pipe 27 to the outside and is pressurized by the first line pump 26. Since the cooling water is sucked at the outlet side of the diesel engine 4 by the operation of the first line pump 26, the effective conductance of the cooling water inside the diesel engine 4 increases. If the temperature of the cooling water is, for example, about 20° C. in the engine water supply tank 1, the temperature of the cooling water is lowered and becomes about 23° C. at the inlet of the diesel engine 4. Furthermore, the temperature of the cooling water that has passed through the inside of the diesel engine 4 and illustrated in FIG. 2 and has risen in temperature is about 35° C. at the outlet of the diesel engine 4.

第1配管27を経由してディーゼル機関4の外部に流れ出た冷却水は、第1のラインポンプ26によって加圧された後、第2配管28を流れ、熱交換器10に到達する。熱交換器10で、冷却水は、被排水槽20の水によって、機関用給水槽1における水温と同程度の20℃程度に降温する。降温した冷却水は、還流管29を通って第1のバイパス配管9に還流する。そして還流した冷却水を、機関用給水槽1から供給された冷却水と合流させて機付ポンプ5に再び送り込み、ディーゼル機関4の冷却に使用する。 The cooling water flowing out of the diesel engine 4 via the first pipe 27 is pressurized by the first line pump 26, then flows through the second pipe 28, and reaches the heat exchanger 10. In the heat exchanger 10, the cooling water is cooled by the water in the drainage tank 20 to about 20° C., which is similar to the water temperature in the engine water supply tank 1. The cooled cooling water flows back to the first bypass pipe 9 through the reflux pipe 29. Then, the recirculated cooling water is combined with the cooling water supplied from the engine water supply tank 1 and sent again to the machine-equipped pump 5 to be used for cooling the diesel engine 4.

ディーゼル機関4に送り込む冷却水の温度が一定温度以上に高くなる等、冷却水を新たに交換する必要が生じた際には、それぞれの配管に取り付けられたバルブ等の開閉装置を適宜操作して、排水管39を介して冷却水を排水する。そしてディーゼル機関4が所定の冷却目標温度に到達するまで、機関用給水槽1からの冷却水の供給処理及び熱交換器10による1次冷却水の冷却処理を繰り返しながら、ディーゼル機関4を冷却する。 When it becomes necessary to replace the cooling water, such as when the temperature of the cooling water sent to the diesel engine 4 rises above a certain temperature, the opening/closing device such as a valve attached to each pipe is appropriately operated. The cooling water is drained through the drain pipe 39. Then, the diesel engine 4 is cooled while repeating the supply process of the cooling water from the engine water tank 1 and the cooling process of the primary cooling water by the heat exchanger 10 until the diesel engine 4 reaches a predetermined cooling target temperature. ..

本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムは、排水機場の屋上に設けられた機関用給水槽1に、屋上に降った雨水を、濾過装置3等を介して又は直接、大量に蓄えるようにし、安定的な冷却水の水源として用いる。このため水道水を高所に汲み上げたり、地下水を地上に汲み上げたりするような電力を一切必要としない。また冷却水の蓄水に雨水を利用するので、付帯設備を少なくして非常に簡素な蓄水設備を構成可能である。 A drainage system and a cooling system for a diesel engine according to an embodiment of the present invention use a water tank 1 for an engine provided on a rooftop of a drainage pump station to store rainwater that has fallen on the rooftop through a filter device 3 or the like. It is used as a stable water source for cooling water by storing a large amount directly. Therefore, no electricity is required to pump tap water to high places or ground water to the ground. In addition, since rainwater is used to store cooling water, it is possible to configure a very simple water storage facility by reducing incidental equipment.

そのため、無尽蔵の海水を1次冷却水として用いる舶用のディーゼル機関の場合と同様に、陸用のディーゼル機関であっても重力エネルギーを利用して冷却水を安定供給して機付ポンプ5に押し込むことが可能となり、2次冷却水を一切必要としない。よって陸用のディーゼル機関4であっても、1次冷却方式で冷却することが可能となり、冷却水量を従来に比し大幅に低減させると共に、不要な補機や電源設備を省いて設備投資コストを抑えた簡素な排水機場を構成することができる。 Therefore, as in the case of a marine diesel engine that uses inexhaustible seawater as primary cooling water, even a land-based diesel engine uses gravity energy to stably supply cooling water and push it into the motorized pump 5. It is possible and does not require any secondary cooling water. Therefore, even the land diesel engine 4 can be cooled by the primary cooling method, which significantly reduces the amount of cooling water compared to the conventional method, and eliminates unnecessary auxiliary equipment and power supply equipment, thereby reducing the capital investment cost. It is possible to configure a simple drainage pump station that suppresses this.

また本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムでは、冷却水をディーゼル機関4に送り込むに際し、機付ポンプ5とは別に第1のラインポンプ26を用いることにより、機付ポンプ5の負荷や過剰な圧力の要請を抑えることができる。そのため1次冷却方式であっても比較的低圧でディーゼル機関4に大容量の冷却水を送り込むことが可能になる。また機付ポンプ5の過剰な圧力の発生によって機関内部の圧力が過上昇することを抑制し、機関内の漏水を防止することができる。 Further, in the drainage system and the cooling system for the diesel engine according to the embodiment of the present invention, when the cooling water is sent to the diesel engine 4, the first line pump 26 is used separately from the machine-equipped pump 5, so that It is possible to suppress the load of the attached pump 5 and the request for excessive pressure. Therefore, even with the primary cooling system, a large amount of cooling water can be sent to the diesel engine 4 at a relatively low pressure. Further, it is possible to prevent the internal pressure of the engine from excessively rising due to the generation of excessive pressure of the machine-equipped pump 5, and to prevent water leakage inside the engine.

一方、図3に示す従来の排水システムの場合、すでに述べたとおり、第1揚水ポンプ12及び第2揚水ポンプ12用の電源が必要となる。図3に示す従来の排水システムでは外部の井戸等から取水ポンプ18で汲み上げた水を冷却水として1次冷却水槽21に貯水し、貯水した1次冷却水を第1揚水ポンプ12によって汲み上げ、給水管7zを介してディーゼル機関4の位置まで上昇させる。そして冷却水を機付ポンプ5を介してディーゼル機関4の内部に流し、ディーゼル機関4の出口から排水管8を通して熱交換器10に到達させ、熱交換器10で2次冷却水を用いて1次冷却水を冷却する。冷却された1次冷却水は、1次冷却水槽21に再度戻される。一方、2次冷却水は、排水ポンプ11が位置する被排水槽20と連通する2次冷却水槽22に蓄えられており、第2揚水ポンプ13によって汲み上げられ、熱交換器10に送り込まれて1次冷却水の冷却に使用された後、廃棄される。 On the other hand, in the case of the conventional drainage system shown in FIG. 3, the power supply for the first pumping pump 12 and the second pumping pump 12 is required as described above. In the conventional drainage system shown in FIG. 3, water pumped up by an intake pump 18 from an external well or the like is stored as cooling water in a primary cooling water tank 21, and the stored primary cooling water is pumped by a first pumping pump 12 to supply water. It is raised to the position of the diesel engine 4 via the pipe 7z. Then, the cooling water is caused to flow inside the diesel engine 4 through the pump 5 with a machine, reaches the heat exchanger 10 through the drain pipe 8 from the outlet of the diesel engine 4, and the heat exchanger 10 uses the secondary cooling water to Next, cool the cooling water. The cooled primary cooling water is returned to the primary cooling water tank 21 again. On the other hand, the secondary cooling water is stored in the secondary cooling water tank 22 communicating with the drainage tank 20 in which the drainage pump 11 is located, and is pumped up by the second pumping pump 13 and sent to the heat exchanger 10 to It is used to cool the next cooling water and then discarded.

このように従来のディ−ゼル機関の冷却処理の場合、昇温した1次冷却水はタンク等の貯水設備に戻されるか、或いは捨てられていた。この点、本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムによれば、例えば1次冷却水が35℃程度であれば、1次冷却水を熱交換器10によって20℃程度まで降温させ、再び機付ポンプ5に戻してディーゼル機関4の冷却に再利用する。また排水ポンプ11の排水を用いた熱交換器10を用いて1次冷却水を降温するので、2次冷却水を別途貯蔵したり汲み上げたりする必要がない。そのため付帯設備等を少なくすると共に、冷却水全体の使用量を大きく低減し、限られた量の冷却水であっても効率よく使用することが可能になり、冷却水の安定供給力を大きく高めることができる。 As described above, in the case of the conventional cooling process of the diesel engine, the raised primary cooling water is returned to the water storage facility such as a tank or is discarded. In this respect, according to the drainage system and the cooling system for a diesel engine according to the embodiment of the present invention, if the primary cooling water is about 35° C., the primary cooling water is heated to 20° C. by the heat exchanger 10. The temperature is lowered to a certain degree, and it is returned to the on-machine pump 5 and reused for cooling the diesel engine 4. Further, since the temperature of the primary cooling water is lowered by using the heat exchanger 10 using the drainage of the drainage pump 11, it is not necessary to separately store or pump up the secondary cooling water. As a result, the number of incidental equipment, etc. can be reduced, the total amount of cooling water used can be greatly reduced, and even a limited amount of cooling water can be used efficiently, greatly increasing the stable supply of cooling water. be able to.

また従来、大量の冷却水確保の問題から、排水ポンプに冷却水が不要なガスタービンを採用する場合があり、その場合には、電気点火式のガスタービンを停電時でも駆動させるため、自家発電機等の付帯設備を別途準備しなければならなかった。またガスタービンは、使用電力コストや単位出力あたりのコストにおいて、ディーゼル機関より嵩むという不利益も有する。本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムによれば、自己点火式のディーゼル機関4を用いた排水機場を、冷却水の使用量を抑えて容易に構成可能となるので、停電時であっても確実に、かつ、ディーゼル機関の利点を生かして経済的に、排水ポンプ11を駆動することができる。 In the past, due to the problem of securing a large amount of cooling water, a gas turbine that does not require cooling water may be used for the drainage pump.In that case, an electric ignition type gas turbine is driven even during a power outage, so private power generation is required. It was necessary to separately prepare incidental equipment such as machines. Further, the gas turbine has a disadvantage that it is bulkier than a diesel engine in terms of power consumption and cost per unit output. According to the drainage system and the cooling system for the diesel engine according to the embodiment of the present invention, the drainage pump station using the self-ignition type diesel engine 4 can be easily configured while suppressing the amount of cooling water used. Therefore, the drainage pump 11 can be driven reliably and economically by utilizing the advantages of the diesel engine even during a power failure.

(変形例)
上記した本発明の実施の形態に係る排水システム及びディ−ゼル機関の冷却システムでは、ディーゼル機関4のみを冷却する場合を例示したが、これに限定されず減速機14を同時に冷却することも可能である。例えば本発明の変形例に係る冷却システムは、図4に示すように、機付ポンプ5と減速機14を接続し、給水管7から供給される冷却水の一部を減速機14に送り込む第2のバイパス配管30を更に備える。
(Modification)
The drainage system and the cooling system for the diesel engine according to the embodiment of the present invention described above exemplify the case where only the diesel engine 4 is cooled, but the invention is not limited to this, and the speed reducer 14 can be simultaneously cooled. Is. For example, as shown in FIG. 4, the cooling system according to the modified example of the present invention connects the pump 5 with the speed reducer 14 and sends a part of the cooling water supplied from the water supply pipe 7 to the speed reducer 14. The second bypass pipe 30 is further provided.

またディーゼル機関4と減速機14を接続する回転軸19には第2の伝達装置33が設けられ、第2の伝達装置33には第2の従動部材34が取り付けられ、第2の従動部材34には第2のラインポンプ駆動装置及び第2のラインポンプ36が取り付けられている。第2の伝達装置33、第2の従動部材34、第2のラインポンプ駆動装置35及び第2のラインポンプ36はそれぞれ、図1中に示した第1の伝達装置23、第1の従動部材24、第1のラインポンプ駆動装置25及び第1のラインポンプ26と等価な構造であるため、重複説明を省略する。 Further, a second transmission device 33 is provided on the rotary shaft 19 that connects the diesel engine 4 and the speed reducer 14, a second driven member 34 is attached to the second transmission device 33, and a second driven member 34 is attached. A second line pump driving device and a second line pump 36 are attached to the. The second transmission device 33, the second driven member 34, the second line pump drive device 35, and the second line pump 36 are respectively the first transmission device 23 and the first driven member shown in FIG. 24, the first line pump driving device 25, and the first line pump 26 have an equivalent structure, and thus redundant description will be omitted.

また減速機14と第2のラインポンプ36は第3配管37で連結され、第2のラインポンプ36と熱交換器10は第4配管38で連結されている。第3配管37及び第4配管38は本発明の「第2の輸送配管」に相当する。減速機14の内部で昇温した冷却水は、第3配管37及び第4配管38を通って第2配管28に流れ込み、ディーゼル機関4側から流れる冷却水と合流して熱交換器10に流れ込む。すなわち本発明の変形例に係る冷却システムによれば、ディーゼル機関4の回転を用いて第1のラインポンプ26及び第2のラインポンプ36を同時に駆動し、ディーゼル機関4の冷却に加え、更に減速機14の冷却を同時に効率よく行うことができる。 The speed reducer 14 and the second line pump 36 are connected by a third pipe 37, and the second line pump 36 and the heat exchanger 10 are connected by a fourth pipe 38. The third pipe 37 and the fourth pipe 38 correspond to the "second transportation pipe" of the present invention. The cooling water heated in the speed reducer 14 flows into the second pipe 28 through the third pipe 37 and the fourth pipe 38, merges with the cooling water flowing from the diesel engine 4 side, and flows into the heat exchanger 10. .. That is, according to the cooling system of the modified example of the present invention, the first line pump 26 and the second line pump 36 are simultaneously driven by using the rotation of the diesel engine 4 to cool the diesel engine 4 and further reduce the speed. The machine 14 can be cooled simultaneously and efficiently.

(その他の実施の形態)
本発明は上記の実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになると考えられるべきである。
(Other embodiments)
Although the present invention has been described by the above embodiments, it should not be understood that the description and drawings forming a part of this disclosure limit the present invention. From this disclosure, it should be considered that various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.

また本発明の冷却システムは、排水機場の排水ポンプや排水ポンプを駆動するディーゼル機関は1台に限定されるものではなく、複数台の排水ポンプや複数台の排水ポンプを駆動する複数台のディーゼル機関が備えられていてよい。この場合は、図1に示した第1配管27の途中から複数の第2の給水管が分岐するようにし、それぞれの分岐に第1のバイパス配管9をそれぞれ接続して、複数の第1のバイパス配管9を経由して、複数のディーゼル機関のそれぞれの機付ポンプ5に至るようにすればよい。 Further, in the cooling system of the present invention, the drainage pump of the drainage pumping station and the diesel engine that drives the drainage pump are not limited to one, but a plurality of drainage pumps or a plurality of diesel engines that drive a plurality of drainage pumps. Institution may be provided. In this case, the plurality of second water supply pipes are branched from the middle of the first pipe 27 shown in FIG. 1, and the first bypass pipes 9 are connected to the respective branches, so that the plurality of first water supply pipes are connected. It suffices to reach the respective machine-equipped pumps 5 of a plurality of diesel engines via the bypass pipe 9.

そして、複数のディーゼル機関のそれぞれにラインポンプを設け、ディーゼル機関のそれぞれの出口から排出された冷却水をそれぞれのラインポンプによって加圧し、熱交換器10に到達するようにすればよい。熱交換器10で、被排水槽20の水によって降温した冷却水は、それぞれの還流管を通ってそれぞれの第1のバイパス配管に還流するようにすれば、還流した冷却水を、機関用給水槽1から供給された冷却水と合流させてそれぞれの機付ポンプに再度供給できる。 Then, a line pump may be provided in each of the plurality of diesel engines so that the cooling water discharged from each outlet of the diesel engine is pressurized by each line pump and reaches the heat exchanger 10. In the heat exchanger 10, the cooling water cooled by the water in the drainage tank 20 is returned to the respective first bypass pipes through the respective return pipes. The cooling water supplied from the water tank 1 can be merged and supplied again to each pump with a machine.

また本発明の冷却システムは、排水機場の排水ポンプを駆動するディーゼル機関に限定されることなく、例えば発電装置(発電機)用のディーゼル機関でもよい。又、灌漑用水設備の揚水ポンプを駆動するディーゼル機関等、排水ポンプ以外の他のポンプを駆動するディーゼル機関を水冷する場合に適用可能である。 Further, the cooling system of the present invention is not limited to the diesel engine that drives the drainage pump of the drainage pumping station, and may be, for example, a diesel engine for a power generator (generator). Further, it is applicable to the case of water-cooling a diesel engine that drives a pump other than the drainage pump, such as a diesel engine that drives a pump for pumping irrigation water equipment.

他にも、排水機場の建屋の屋上や敷地内の遊休スペースに、例えば太陽光発電ユニット等の自然エネルギー発電装置を設けてもよい。発電装置により発電した電力を、各種の電源或いは流路切替制御を行うための装置等の電源等に用いることにより、排水機場で必要な電力を自ら賄うことができる。発電された電力のうち余剰電力は、別途、電力会社等に販売してもよい。 In addition, a natural energy power generation device such as a solar power generation unit may be provided on the rooftop of the building of the drainage pump station or on an idle space on the premises. By using the electric power generated by the power generator as a power source for various power sources or a device for performing flow path switching control, the power required at the drainage pump station can be covered by itself. The surplus power of the generated power may be sold separately to a power company or the like.

以上のとおり本発明は、本明細書及び図面に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention includes various embodiments not described in the present specification and the drawings, and the technical scope of the present invention is to specify the invention according to the scope of claims appropriate from the above description. It is defined only by.

1 機関用給水槽
2 補助給水槽
3 濾過装置
4 ディーゼル機関
5 機付ポンプ
6 機付オイルクーラ
7,7z 給水管
8 排水管
9 第1のバイパス配管
10 熱交換器
11 排水ポンプ
12 第1揚水ポンプ
13 第2揚水ポンプ
14 減速機
19 回転軸
17 開閉装置
18 取水ポンプ
20 被排水槽
21 1次冷却水槽
22 2次冷却水槽
23 第1の伝達装置
24 第1の従動部材
25 第1のラインポンプ駆動装置
26 第1のラインポンプ
27 第1配管
28 第2配管
29 還流管
30 第2のバイパス配管
33 第2の伝達装置
34 第2の従動部材
35 第2のラインポンプ駆動装置
36 第2のラインポンプ
37 第3配管
38 第4配管
39 排水管
1 Water tank for engine 2 Auxiliary water tank 3 Filtration device 4 Diesel engine 5 Pump with machine 6 Oil cooler with machine 7, 7z Water supply pipe 8 Drain pipe 9 First bypass pipe 10 Heat exchanger 11 Drain pump 12 First pump 13 2nd pumping pump 14 Reducer 19 Rotating shaft 17 Opening/closing device 18 Water intake pump 20 Drained tank 21 Primary cooling water tank 22 Secondary cooling water tank 23 First transmission device 24 First driven member 25 First line pump drive Device 26 First line pump 27 First pipe 28 Second pipe 29 Reflux pipe 30 Second bypass pipe 33 Second transmission device 34 Second driven member 35 Second line pump drive device 36 Second line pump 37 Third pipe 38 Fourth pipe 39 Drain pipe

Claims (8)

機関用給水槽と、
前記機関用給水槽よりも重力方向に低い位置に配置された、機付ポンプを有するディーゼル機関と、
前記ディーゼル機関よりも重力方向に低い位置に配置された被排水槽中に少なく共一部が投入され、前記ディーゼル機関によって駆動される排水ポンプと、
前記機関用給水槽と前記機付ポンプの間に設けられ、前記機関用給水槽に蓄えられた水を冷却水として重力で前記機付ポンプに送り込む給水管と、
前記機付ポンプにより前記ディーゼル機関に送り込まれ、前記ディーゼル機関から排出された前記冷却水を、再度前記ディーゼル機関に送り込む還流に必要な圧力を補完するラインポンプと、
前記排水ポンプの排水経路に設けられ、前記冷却水を降温する熱交換器と、
前記ディーゼル機関と前記熱交換器の間に設けられ、前記ラインポンプで加圧された前記冷却水を前記熱交換器に送り込む第1の輸送配管と、
前記熱交換器と前記ディーゼル機関の間に設けられ、前記熱交換器によって降温した前記冷却水を前記機付ポンプに還流する還流管と、
を備え、前記被排水槽中の水を排水する際、前記機付ポンプは前記ディーゼル機関が発生する回転力によって動作することを特徴とする排水システム。
An engine water tank,
A diesel engine having a pump with a machine, which is arranged at a position lower in the gravity direction than the water tank for the engine,
Drainage pump driven by the diesel engine, a small portion of which is put in a drainage tank located at a position lower in the gravity direction than the diesel engine,
A water supply pipe provided between the water tank for the engine and the pump with the machine, for feeding water stored in the water tank for the engine to the machine pump by gravity as cooling water,
A line pump that is sent to the diesel engine by the machined pump, the cooling water discharged from the diesel engine is complemented with a pressure necessary for recirculation to be sent to the diesel engine again,
A heat exchanger provided in the drainage path of the drainage pump to cool the cooling water,
A first transport pipe provided between the diesel engine and the heat exchanger, for feeding the cooling water pressurized by the line pump to the heat exchanger,
A reflux pipe that is provided between the heat exchanger and the diesel engine, and recirculates the cooling water whose temperature has been lowered by the heat exchanger to the machine pump,
And a drainage system, wherein the pump with a machine is operated by a rotational force generated by the diesel engine when the water in the drainage tank is drained.
機関用給水槽と、
前記機関用給水槽よりも重力方向に低い位置に配置された、機付ポンプを有するディーゼル機関と、
前記機関用給水槽と前記機付ポンプの間に設けられ、前記機関用給水槽に蓄えられた水を冷却水として重力で前記機付ポンプに送り込む給水管と、
前記機付ポンプにより前記ディーゼル機関に送り込まれ、前記ディーゼル機関から排出された前記冷却水を、再度前記ディーゼル機関に送り込む還流に必要な圧力を補完するラインポンプと、
前記冷却水を降温する熱交換器と、
前記ディーゼル機関と前記熱交換器の間に設けられ、前記ラインポンプで加圧された前記冷却水を前記熱交換器に送り込む第1の輸送配管と、
前記熱交換器と前記ディーゼル機関の間に設けられ、前記熱交換器によって降温した前記冷却水を前記機付ポンプに還流する還流管と、
を備え、前記機付ポンプは前記ディーゼル機関が発生する回転力によって動作することを特徴とする冷却システム。
An engine water tank,
A diesel engine having a pump with a machine, which is arranged at a position lower in the gravity direction than the water tank for the engine,
A water supply pipe provided between the water tank for the engine and the pump with the machine, for feeding water stored in the water tank for the engine to the machine pump by gravity as cooling water,
A line pump that is sent to the diesel engine by the machined pump, the cooling water discharged from the diesel engine is complemented with a pressure necessary for recirculation to be sent to the diesel engine again,
A heat exchanger for cooling the cooling water,
A first transport pipe provided between the diesel engine and the heat exchanger, for feeding the cooling water pressurized by the line pump to the heat exchanger,
A reflux pipe that is provided between the heat exchanger and the diesel engine, and recirculates the cooling water whose temperature has been lowered by the heat exchanger to the machine pump,
The cooling system, wherein the pump with a motor is operated by a rotational force generated by the diesel engine.
更に、前記ディーゼル機関が発生する回転力によって前記ラインポンプを駆動する駆動装置を備えることを特徴とする請求項2に記載の冷却システム。 The cooling system according to claim 2, further comprising a drive device that drives the line pump by a rotational force generated by the diesel engine. 前記機関用給水槽が前記ディーゼル機関を収納する建屋の屋上に設けられ、前記機関用給水槽に降雨時の雨水を蓄えることを特徴とする請求項2又は3に記載の冷却システム。 4. The cooling system according to claim 2, wherein the engine water supply tank is provided on a roof of a building that houses the diesel engine, and rainwater is stored in the engine water supply tank when it rains. 更に、前記機関用給水槽と前記給水管の間に前記雨水を濾過する濾過装置を備えることを特徴とする請求項4に記載の冷却システム。 The cooling system according to claim 4, further comprising a filter device that filters the rainwater between the engine water tank and the water supply pipe. 更に、前記給水管の前記冷却水を前記ディーゼル機関の減速機を冷却するために前記減速機に送り込むバイパス配管と、
前記減速機と前記熱交換器の間に設けられ、前記減速機の内部を通過して昇温した前記冷却水を前記熱交換器に送り込む第2の輸送配管と、を備えることを特徴とする請求項3〜5のいずれか1項に記載の冷却システム。
Furthermore, a bypass pipe for sending the cooling water of the water supply pipe to the speed reducer for cooling the speed reducer of the diesel engine,
A second transport pipe that is provided between the speed reducer and the heat exchanger, and that sends the cooling water that has passed through the speed reducer and has been heated to the heat exchanger. The cooling system according to any one of claims 3 to 5.
前記第2の輸送配管に設けられ、前記冷却水を前記減速機に送り込むための圧力を補完する第2のラインポンプと、を備えることを特徴とする請求項6に記載の冷却システム。 The 2nd line pump which is provided in the said 2nd transportation piping and complements the pressure for sending the said cooling water to the said reducer, The cooling system of Claim 6 characterized by the above-mentioned. 機関用給水槽に接続された給水管を経由して、前記機関用給水槽よりも重力方向に低い位置に配置されたディーゼル機関の機付ポンプに、前記機関用給水槽に蓄えられた水を冷却水として重力で送り込むステップと、
前記冷却水を用いて前記ディーゼル機関を水冷するステップと、
ラインポンプを用いて、前記ディーゼル機関から排出された前記冷却水の圧力を補完するステップと、
圧力を補完された前記冷却水を降温するステップと、
降温した前記冷却水を前記機付ポンプに還流するステップと、
を含むことを特徴とする冷却方法。
Via the water supply pipe connected to the engine water tank, the water pump stored in the engine water tank to the engine-equipped pump of the diesel engine arranged at a position lower in the gravity direction than the engine water tank. The step of sending by gravity as cooling water,
Water cooling the diesel engine with the cooling water;
Using a line pump to supplement the pressure of the cooling water discharged from the diesel engine;
Lowering the temperature of the cooling water supplemented with pressure,
Refluxing the cooled cooling water to the pump with machine;
A cooling method comprising:
JP2019002290A 2019-01-10 2019-01-10 Completely power-free drainage system, cooling system and cooling method Expired - Fee Related JP6707787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019002290A JP6707787B1 (en) 2019-01-10 2019-01-10 Completely power-free drainage system, cooling system and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019002290A JP6707787B1 (en) 2019-01-10 2019-01-10 Completely power-free drainage system, cooling system and cooling method

Publications (2)

Publication Number Publication Date
JP6707787B1 JP6707787B1 (en) 2020-06-10
JP2020112066A true JP2020112066A (en) 2020-07-27

Family

ID=70976315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019002290A Expired - Fee Related JP6707787B1 (en) 2019-01-10 2019-01-10 Completely power-free drainage system, cooling system and cooling method

Country Status (1)

Country Link
JP (1) JP6707787B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332667A (en) * 2001-05-07 2002-11-22 Kiichi Amano Method for purifying and feeding raw water
JP2008297920A (en) * 2007-05-29 2008-12-11 Ebara Yoshikura Hydro-Tech Co Ltd Pump facility
JP2011021534A (en) * 2009-07-15 2011-02-03 Torishima Pump Mfg Co Ltd Pump
JP2013213816A (en) * 2012-03-07 2013-10-17 Hitoshi Tominaga Cooling water supply device for isolation condenser, fuel storage pool, and reactor pressure vessel
JP2016200073A (en) * 2015-04-13 2016-12-01 株式会社電業社機械製作所 Cooling facility of drainage pump station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332667A (en) * 2001-05-07 2002-11-22 Kiichi Amano Method for purifying and feeding raw water
JP2008297920A (en) * 2007-05-29 2008-12-11 Ebara Yoshikura Hydro-Tech Co Ltd Pump facility
JP2011021534A (en) * 2009-07-15 2011-02-03 Torishima Pump Mfg Co Ltd Pump
JP2013213816A (en) * 2012-03-07 2013-10-17 Hitoshi Tominaga Cooling water supply device for isolation condenser, fuel storage pool, and reactor pressure vessel
JP2016200073A (en) * 2015-04-13 2016-12-01 株式会社電業社機械製作所 Cooling facility of drainage pump station

Also Published As

Publication number Publication date
JP6707787B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
KR20110031400A (en) Combined operation devices of direct pumping or generation from tidal power with the water turbines
CN104900380B (en) A kind of cooling system of offshore wind farm main transformer
JP6707787B1 (en) Completely power-free drainage system, cooling system and cooling method
KR101114220B1 (en) High efficiency geothermal hybrid system and operating method thereof
CN209056292U (en) Spent nuclear fuel in nuclear power plant pond emergency cooling system and emergency cooling system
CN209483444U (en) A kind of steam turbine building based on coal base distributing-supplying-energy system
CN207332958U (en) A kind of natural gas afterheat power generation water circulation system
JP7270116B1 (en) Recycling hydroelectric power generation system
JP7220322B1 (en) Recycling hydroelectric power generation system
CN109488395B (en) Steam turbine room based on coal-based distributed energy supply system
CN206478920U (en) A kind of circulating water pumping system for possessing energy-saving function
CN105297669B (en) A kind of irrigation and drainage system
CN217978320U (en) Lubricating oil cooler system device
JP7492387B2 (en) Oil-containing wastewater purification system
CN111725948B (en) Cooling system based on hydropower station plane cooler, and control method and system
CN205349597U (en) Cooling tower return water power generation facility
CN205973936U (en) Drainage waste energy recovery utilizes system after coal fired power plant seawater desulfurization system
DE102018008256A1 (en) Level turbine
CN204740934U (en) Marine wind power offshore transformer water -cooling and accident oil extraction system
CN216617924U (en) Energy-saving high-power desalination water station
CN111628429B (en) Novel cooling system with pressure steel pipe for small hydropower station
JP4641089B2 (en) Drainage pump equipment
KR102460996B1 (en) Combined cycle power plant
CN114108745A (en) Forced ventilation cooling direct current water taking and draining system
JPH11323884A (en) Discharge pump system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200221

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6707787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees