JP4641089B2 - Drainage pump equipment - Google Patents

Drainage pump equipment Download PDF

Info

Publication number
JP4641089B2
JP4641089B2 JP2000210675A JP2000210675A JP4641089B2 JP 4641089 B2 JP4641089 B2 JP 4641089B2 JP 2000210675 A JP2000210675 A JP 2000210675A JP 2000210675 A JP2000210675 A JP 2000210675A JP 4641089 B2 JP4641089 B2 JP 4641089B2
Authority
JP
Japan
Prior art keywords
pump
cooling water
main pump
drainage
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000210675A
Other languages
Japanese (ja)
Other versions
JP2002021792A (en
Inventor
豊 永江
実 小島
哲也 岩崎
和夫 宇賀
正二 大塚
至 天田
晃 山口
周一郎 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2000210675A priority Critical patent/JP4641089B2/en
Publication of JP2002021792A publication Critical patent/JP2002021792A/en
Application granted granted Critical
Publication of JP4641089B2 publication Critical patent/JP4641089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排水ポンプ装置に係り、特に、排水機場等に設置され、雨水など多量の原水を排出,処理する排水ポンプ機場の信頼性を向上するのに好適な排水ポンプ装置に関するものである。
【0002】
【従来の技術】
一般に、排水ポンプ機場の設備機器における冷却水系統に関する従来技術を、立軸雨水排水ポンプを例にとり、図4を参照して説明する。
【0003】
図4は、従来の立軸雨水排水ポンプにおける冷却水系統図である。
【0004】
図4において、1は主ポンプ、2は主ポンプ駆動用原動機、3は動力伝達装置(減速機)、14は管内クーラで、この管内クーラ14は、主ポンプ1に接続する吐出配管15の吐出弁16の上流側に設けられている。10は、冷却水系の揚水ポンプ、11は、揚水ポンプ10で揚水された冷却水を蓄える膨張タンク、12は、冷却水配管系13に具備された機付冷却水ポンプである。
【0005】
なお、本例では主ポンプ1に軸封水、軸受冷却水を供給していない、いわゆる無給水型ポンプである。
【0006】
以下、冷却水の流れを説明する。
【0007】
揚水ポンプ10で揚水された冷却水は、一度膨張タンク11に蓄えられ、自然流下等により機付冷却水ポンプ12を介して、主ポンプ駆動用原動機2および動力伝達装置3に供給され各機器の冷却を行う。機器冷却に伴う熱交換により温度の上昇した冷却水は、管内クーラ14により、主ポンプ1で揚水された取扱液(ポンプ揚水液)と熱交換されたのち、機付冷却水ポンプ12の上流の冷却水配管13へ戻る。このような冷却方式を管内クーラ方式といい、主ポンプの無水化とあわせて、冷却水系統の簡素化を図る場合などに用いられている。
【0008】
ところで排水機場は、その目的上、いかなる時にも確実な排水が要求される。
そのため、排水機場設備の機能を維持することと故障要因を早期発見する観点から、通常、平常時における当該排水機場の設備機器の機能を確認する、いわゆる管理運転が行われている。この管理運転は、各機器の実運転状態を再現することがもっとも好ましいが、排水機場の規模および周辺状況などの要因によつては、部分的な機器の管理運転しか行えない場合が多い。
【0009】
その中でも、主ポンプ駆動用原動機2のみの管理運転を行うことがあるが、この場合、図4に示す上記管内クーラ方式では、管内クーラ14が主ポンプ1の吐出配管15途中に設置されているため、雨水などの少ない平常時においては、主ポンプ1に対する水量が足りなくてポンプ揚水液による冷却効果が得られず、長時間の管理運転を行うことができなかった。また、河川の排水制限などにより、主ポンプによる排水運転ができない場合には、システム全体の管理運転を実施できないという問題があった。
【0010】
一方、近年、排水機場の信頼性向上の観点から、主ポンプ、主ポンプ駆動用原動機、動力伝達装置(減速機)などの主機といわれる機器以外の、いわゆる補機(例えば、冷却水系統の揚水ポンプ等)の数を減らすことが要求されている。
【0011】
主ポンプの運転に必要とする補機が減ることは、それだけ排水機場設備の故障要因が減ると言うことであり、ひいては該設備システムの信頼性を向上させることができることになる。前記管内クーラ方式はこれらの要求に対応しようとしたものである。
【0012】
また、機器については、これら従来技術の問題点に対し、主ポンプでは軸受部にセラミックス軸受、軸封部には無給水軸封装置を用いて無水化を図ることや、減速機については、空冷化により外部からの冷却水を不要とすることなどが開発されてきた。
【0013】
さらに、主ポンプ駆動用原動機についても冷却水が不要なガスタービン機関が実用化され、ポンプ設備の完全無水化が実現できるようになってきた。
【0014】
このようなシステムおよび機器の技術進歩により、管理運転時に必要であった冷却水の供給が不要となり、また補機を削除できることによる排水機場の信頼性向上も実現可能になってきた。しかし、これらのシステムは未だ高価なものであり、採用に当たっては十分な検討が必要である。また、すでに据え付けられているポンプ設備を前記完全無水化システムに更新するに当たっては、各機器を新たに新製する必要があり、かつ大がかりな工事となるため、はなはだ不経済であった。
【0015】
管理運転を行い得る従来技術としては、例えば、実開平1−141393号公報(実願昭63−38224号)に記載の手段があり、これによつて、システム全体の管理運転が可能である。しかし、上記公報記載の技術は、主ポンプ吸込筒の周壁内に駆動装置の冷却水通路とこの冷却水通路と熱交換を行う熱交換水通路とを形成し、かつ熱交換水通路入口に、ポンプが気中運転しうる最高水位レベル以下の位置に吸込ベルマウスの開口端が配されたサブポンプの吐出口を連結したものである。その方法では、主ポンプ自身に熱交換器が設けられているため、当該熱交換器のメンテナンス時に主ポンプを取り外す必要があり、保守性において問題があった。また、河川の排水制限などにより、主ポンプによる排水運転ができない場合には、システム全体の管理運転を行えない問題は改善されていなかった。
【0016】
また、例えば特開平8−105399号公報記載の先行待機形ポンプの駆動機の冷却装置では、主ポンプの駆動機の冷却水の循環路に迂回路を設け、この迂回路に設けた補助クーラを吸水槽の底部に水没させたものが開示されており、吸水槽の水で冷却水系の水を冷却して駆動機の過熱を防止している。
【0017】
しかし、このような水槽設置式クーラはメンテナンス性に劣るばかりか、水質による影響および異物の堆積による冷却性能の低下などの問題があつた。
【0018】
【発明が解決しようとする課題】
従来の管内クーラ方式によれば、補機を削減することはできるが、管内クーラ設置のために十分な建屋スペースが必要であり、また、主配管途中に設置されるため、メンテナンス性も良くなかった。
【0019】
本発明は、このような問題点を解決するために為されたもので、主ポンプの運転に必要な補機の数を減らすことができ、僅かな設備投資で、保守性、信頼性に優れた排水ポンプ装置を提供することを、その目的とするものである。
【0020】
また、本発明の他の目的は、ポンプ機場の機器全体の管理運転が容易に行え、冷却水系統を自己完結型にすることにより、保守性、信頼性を向上させた排水ポンプ装置を提供することにある。
【0021】
【課題を解決するための手段】
上記第一の目的を達成するために、本発明に係る排水ポンプ装置の第一の構成は、吐出配管を接続した主ポンプと、この主ポンプを動力伝達装置を介して駆動する主原動機と、少なくともこれらの駆動系を冷却する冷却水系統を含む補機とから構成される排水ポンプ装置において、上記主ポンプまたは吐出配管の吐出弁上流側に分岐管を設け、当該分岐管に、ポンプ揚水液と前記冷却水系統内を流動する流体とが熱交換できる熱交換器を設けたものである。
【0022】
また、上記第二の目的を達成するために、本発明に係る排水ポンプ装置の第二の構成は、吸込側を吸水槽に位置し吐出配管を接続した主ポンプと、この主ポンプを動力伝達装置を介して駆動する主原動機と、少なくともこれらの駆動系を冷却する冷却水系統を含む補機とから構成される排水ポンプ装置において、上記主ポンプまたは吐出配管の吐出弁上流側に分岐管を設け、当該分岐管に、ポンプ揚水液と前記冷却水系統内を流動する流体とが熱交換できる熱交換器を設けるとともに、前記分岐管を吸水槽に導いたものである。
【0023】
上記技術的手段による働きは次のとおりである。
【0024】
本発明の排水ポンプ装置では、主ポンプの吐出配管の吐出弁上流側から分岐させた分岐管途中に、当該分岐管に本装置の駆動系を冷却する熱交換器が設けられているため、当該分岐管を用いることにより、排水ポンプ機場の設備機器全体の管理運転を行うことができる。また、主ポンプの揚水により熱交換を行うため、補機の数を減らすことができ、機場の設備の信頼性を向上させることができる。
【0025】
さらに、主ポンプをセラミックス軸受、無給水軸封装置の採用により無水化できれば、既存の設備を新製することなく、熱交換器等の機器を追加することで、システム全体の信頼性を飛躍的に向上させることができる。
【0026】
また、従来の管内クーラ方式に比べ、熱交換器自体を小さくすることができるため、機器が安価であり、かつ設置スペースも小さくすることができることにより、維持管理面においても優位である。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を、図1ないし図3を参照して説明する。
【0028】
〔実施の形態 1〕
図1は、本発明の一実施の形態を示す排水ポンプ装置の冷却水系統図、図2は、本発明を適用する排水ポンプ機場の構成図である。図1において、図4と同一符号のものは従来技術と同等機器を示す。
【0029】
まず、図2を参照して、本発明を適用する排水ポンプ機場の概要を説明する。
【0030】
図2に示す排水ポンプ機場では、吸込水路6から流れ込む流水は、除塵機7によりポンプの運転に支障を来す大きさの異物が取り除かれ、吸水槽8を通って主ポンプ1により汲み上げられ、吐出管15を経て吐出水路9へ排水される。ここで、主ポンプ1は、例えば立軸雨水排水ポンプである。
【0031】
吐出管15には、主ポンプ1の始動、停止時の流水の変化を緩やかにしてサージを軽減するとともに平常時または主ポンプ1の分解時に吐出側を止水するための吐出弁16、主ポンプ1の急停止時の流水の逆流を防ぐための逆流防止弁17が取り付けられている。
【0032】
また、主ポンプ1の動力は、主ポンプ駆動用原動機2から動力伝達装置(減速機)3を介して主ポンプ1に伝達される。
【0033】
このような排水機場における排水ポンプ装置の冷却水系統を図1を参照して説明する。図1,2において、同一機器は同一符号を付している。
【0034】
図1において、1は主ポンプ、2は主ポンプ駆動用原動機、3は動力伝達装置である。
【0035】
11は、水源からの冷却水を蓄える膨張タンク、12(12a,12bの総称)は、冷却水配管系13(13a,13bの総称)に具備された機付冷却水ポンプである。
【0036】
20は、主ポンプ1に接続する吐出配管15の吐出弁16の上流側から分岐した分岐管で、この分岐管20は、図2に示すように吸水槽8に導かれている。21は、21−1,21−2よりなる熱交換器で、この熱交換器21(21−1,21−2の総称)は、分岐管20に設けられている。
【0037】
なお、本例では主ポンプ1に軸封水、軸受冷却水を供給していない、いわゆる無給水型ポンプである。
【0038】
主ポンプ1は、主ポンプ駆動用原動機2で発生した動力を動力伝達装置(減速機)3を介してもらい受け、水を揚水する。主ポンプ駆動用原動機2および動力伝達装置3などの駆動系は、それぞれ運転時に熱が発生するため、膨張タンク11から自然流下を利用し冷却水配管13aにより冷却水を供給する。この冷却水は、主ポンプ駆動用原動機2に付属の機付冷却水ポンプ12a,12bにより主ポンプ駆動用原動機2および動力伝達装置3に供給され、各機器との間で熱交換を行ったのち、熱交換器14(14−1,14−2)でポンプ揚水液と冷却水系統配管内を流動する原水とで再度熱交換を行い、所定の水温に戻されてから戻り冷却水配管13bにより機付冷却水ポンプ12の上流の膨張タンク11に戻る。これらの冷却水系の流れがポンプ運転時常に行われている。
【0039】
本方式によれば、冷却水系統において、ポンプ運転時起動が必要な補機、例えば従来必要としていた二次冷却水系統の機器が必要でなく、少なくとも、図4の従来技術で示した揚水ポンプ10は無くてもよく、主ポンプ駆動用原動機2が運転されることにより、前記機付冷却水ポンプ12で冷却水が各機器に供給されるようになっている。このため、ポンプ起動スピードが大幅にアップする。また、補機の数が少なくなることにより、故障等のトラブルを起こす要因が減少するため、排水ポンプ設備機器の信頼性が向上する。
【0040】
熱交換器21は、図2に示すように、排水機場の陸上、例えばポンプ据付床面などに設置されるもので、かつ主ポンプ1または吐出配管15の吐出弁16上流側に設けられた分岐管20の途中に設置されている。このため、前記特開平8−105399号公報記載の如き、従来の水槽設置式クーラ(吸水槽・吐出槽クーラ)に比べ、メンテナンス性がよく、また機器の据付においても、既存の建屋寸法内に設置可能であるため、工事等のコスト面においても優位である。
【0041】
〔実施の形態 2〕
図3は、本発明の他の実施の形態を示す排水ポンプ装置の冷却水系統図である。図中、図1と同一符号のものは先の第一の実施の形態と同等機器であるから、その説明を省略する。
【0042】
図3において、8は吸水槽を示し、分岐管20とは別に、吐出配管15の吐出弁16上流側から吸水槽8へ第2の分岐管22が配設されている。
【0043】
図3に示す排水ポンプ設備では、熱交換器21(21−1,21−2)は主ポンプ1に接続する吐出配管15の吐出弁16上流側から分岐された分岐管20の途中に設置されており、当該分岐管20は吸水槽8へ戻っている。また、第2の分岐管22も吸水槽8へ戻っている。このため、吐出弁16を閉じて運転すれば、揚水を吐出側へ排水することなく吸水槽8へ戻すことができ、ポンプの実負荷運転を行うことができる。
【0044】
すなわち、出水制限などにより揚水を吐出水路9へ排水できない場合の排水ポンプ設備の管理運転において、吐出弁16を閉じた状態でも、熱交換器21により駆動系の冷却効果が得られるため、機能維持を確認するための管理運転が可能である。このように、排水機場の機能確認を主ポンプ個々に行うことができるため、排水ポンプ機場の機能維持の面で信頼性を向上することができる。
【0045】
なお、本実施形態の排水機場のポンプ設備は、主ポンプ、主ポンプ駆動用原動機、減速機からなる主機構成のものを説明したが、本構成だけに限定されるものではない。
【0046】
本発明の実施の形態によれば、排水ポンプ機場の設備において次の効果が得られる。
【0047】
(1)従来の水槽設置式クーラを用いた冷却方式では、水質による影響および異物の堆積による冷却性能の低下などの問題があり、使用条件が制約される。それに対して、本発明の実施形態では、クーラ(熱交換器)自体を陸上に設けることで、前述の条件による影響を低減されることができる。
【0048】
(2)主ポンプ1に接続する吐出配管15に具備された吐出弁16の上流側から分岐させた分岐管20途中に熱交換器21を設け、吐出配管15に代わる第2の分岐管22を吸水槽8へ導くことにより、吐出水路9側に排水することなく、排水ポンプ機場全体の管理運転が可能となり、設備の機能維持の点においても信頼性を向上させることができる。
【0049】
(3)既設ポンプ機場の改造において、本方式は構成機器が安価かつ軽量にすることができるため、建屋の拡大等の大がかりな工事を必要とせず、容易に設備機器の改善を行うことができる。
【0050】
【発明の効果】
以上詳細に説明したように、本発明によれば、主ポンプの運転に必要な補機の数を減らすことができ、僅かな設備投資で、保守性、信頼性に優れた排水ポンプ装置を提供することができる。
【0051】
また、本発明によれば、ポンプ機場の機器全体の管理運転が容易に行え、冷却水系統を自己完結型にすることにより、保守性、信頼性を向上させた排水ポンプ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す排水ポンプ装置の冷却水系統図である。
【図2】本発明を適用する排水ポンプ機場の断面図である。
【図3】本発明の他の実施の形態を示す排水ポンプ装置の冷却水系統図である。
【図4】従来の立軸雨水排水ポンプにおける冷却水系統図である。
【符号の説明】
1…主ポンプ、2…主ポンプ駆動用原動機、3…動力伝達装置、8…吸水槽、11…膨張タンク、12,12a,12b…機付冷却水ポンプ、13…冷却水配管系、15…吐出配管、16…吐出弁、20…分岐管、21,21−1,21−2…熱交換器。22…第2の分岐管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drainage pump device, and more particularly, to a drainage pump device suitable for improving the reliability of a drainage pump station that is installed in a drainage station or the like and discharges and processes a large amount of raw water such as rainwater.
[0002]
[Prior art]
In general, the prior art relating to the cooling water system in the equipment of the drainage pump station will be described with reference to FIG. 4, taking a vertical rainwater drainage pump as an example.
[0003]
FIG. 4 is a cooling water system diagram in a conventional vertical axis rainwater drainage pump.
[0004]
In FIG. 4, 1 is a main pump, 2 is a prime mover for driving a main pump, 3 is a power transmission device (reduction gear), 14 is a pipe cooler, and this pipe cooler 14 is discharged from a discharge pipe 15 connected to the main pump 1. It is provided on the upstream side of the valve 16. Reference numeral 10 is a cooling water pump, 11 is an expansion tank for storing cooling water pumped by the pump 10, and 12 is a machine-mounted cooling water pump provided in the cooling water piping system 13.
[0005]
In this example, the main pump 1 is a so-called non-water supply type pump that does not supply shaft seal water or bearing cooling water.
[0006]
Hereinafter, the flow of the cooling water will be described.
[0007]
The cooling water pumped up by the pumping pump 10 is once stored in the expansion tank 11 and is supplied to the main pump driving motor 2 and the power transmission device 3 through the cooling water pump 12 with a natural flow or the like and supplied to each device. Cool down. Cooling water whose temperature has increased due to heat exchange accompanying equipment cooling is heat-exchanged with the handling liquid (pumped liquid) pumped by the main pump 1 by the in-pipe cooler 14 and then upstream of the on-machine cooling water pump 12. Return to the cooling water pipe 13. Such a cooling method is called an in-pipe cooler method, and is used for simplification of the cooling water system in conjunction with the dehydration of the main pump.
[0008]
By the way, for the purpose of the drainage station, reliable drainage is required at any time.
Therefore, from the viewpoint of maintaining the function of the drainage station facility and detecting the cause of failure at an early stage, so-called management operation is usually performed to confirm the function of the equipment at the drainage station at normal times. In this management operation, it is most preferable to reproduce the actual operation state of each device. However, depending on factors such as the size of the drainage station and the surrounding situation, only a partial device management operation can be performed in many cases.
[0009]
Among them, there is a case where only the main pump driving prime mover 2 is operated. In this case, in the pipe cooler system shown in FIG. 4, the pipe cooler 14 is installed in the middle of the discharge pipe 15 of the main pump 1. For this reason, in normal times when there is little rain water or the like, the amount of water for the main pump 1 is insufficient, and the cooling effect by the pumped pumping liquid cannot be obtained, and long-term management operation cannot be performed. In addition, there is a problem that the management operation of the entire system cannot be performed when the drainage operation by the main pump cannot be performed due to the drainage restriction of the river.
[0010]
On the other hand, in recent years, from the viewpoint of improving the reliability of the drainage station, so-called auxiliary equipment (for example, pumping of the cooling water system) other than the main equipment such as the main pump, the prime mover for driving the main pump, and the power transmission device (reduction gear) It is required to reduce the number of pumps.
[0011]
A reduction in the number of auxiliary equipment required for the operation of the main pump means that the cause of failure of the drainage station equipment is reduced accordingly, and as a result, the reliability of the equipment system can be improved. The in-pipe cooler system is intended to meet these requirements.
[0012]
In addition, with respect to these problems in the prior art, the main pumps can be dehydrated by using ceramic bearings in the bearings and non-water supply shaft seals in the shaft seals. It has been developed to eliminate the need for external cooling water.
[0013]
Furthermore, a gas turbine engine that does not require cooling water has also been put into practical use for the prime mover for driving the main pump, and complete dehydration of the pump equipment has been realized.
[0014]
Due to such technological advances in systems and equipment, it has become possible to eliminate the supply of cooling water, which was necessary during management operation, and to improve the reliability of the drainage station by removing auxiliary equipment. However, these systems are still expensive and need to be fully studied before they are adopted. In addition, when replacing the already installed pump equipment with the complete dehydration system, it is necessary to newly manufacture each device and it is a large-scale construction, which is very uneconomical.
[0015]
As a conventional technique capable of performing the management operation, for example, there is a means described in Japanese Utility Model Laid-Open No. 1-1141393 (Japanese Utility Model Application No. 63-38224), which enables the management operation of the entire system. However, the technique described in the above publication forms a cooling water passage of the driving device and a heat exchange water passage for heat exchange with the cooling water passage in the peripheral wall of the main pump suction cylinder, and at the heat exchange water passage inlet, The discharge port of the sub pump in which the opening end of the suction bell mouth is arranged at a position below the maximum water level at which the pump can be operated in the air is connected. In this method, since the heat exchanger is provided in the main pump itself, it is necessary to remove the main pump during maintenance of the heat exchanger, which causes a problem in maintainability. In addition, when drainage operation by the main pump is not possible due to river drainage restrictions etc., the problem that management operation of the entire system cannot be performed has not been improved.
[0016]
Further, for example, in the cooling device for the drive device of the standby standby pump described in JP-A-8-105399, a bypass circuit is provided in the circulation path of the cooling water for the drive device of the main pump, and the auxiliary cooler provided in this bypass circuit is provided. What was submerged in the bottom part of the water absorption tank is disclosed, and the water of the cooling water system is cooled with the water of the water absorption tank to prevent overheating of the drive unit.
[0017]
However, such a water tank installed type cooler is not only inferior in maintainability, but also has problems such as an influence of water quality and a decrease in cooling performance due to accumulation of foreign matters.
[0018]
[Problems to be solved by the invention]
According to the conventional in-pipe cooler system, auxiliary equipment can be reduced, but sufficient building space is required for installing the in-pipe cooler, and because it is installed in the middle of the main pipe, maintenance is not good. It was.
[0019]
The present invention has been made to solve such problems, and can reduce the number of auxiliary machines necessary for the operation of the main pump, and is excellent in maintainability and reliability with a small capital investment. It is an object of the present invention to provide a drainage pump device.
[0020]
In addition, another object of the present invention is to provide a drainage pump device that can easily perform the management operation of the entire equipment of the pumping station and has improved maintainability and reliability by making the cooling water system self-contained. There is.
[0021]
[Means for Solving the Problems]
In order to achieve the first object, the first configuration of the drainage pump device according to the present invention includes a main pump connected to a discharge pipe, a main prime mover that drives the main pump via a power transmission device, In a drainage pump device comprising at least an auxiliary machine including a cooling water system for cooling these drive systems, a branch pipe is provided on the upstream side of the discharge valve of the main pump or the discharge pipe, and a pump pump liquid is provided in the branch pipe. And a heat exchanger capable of exchanging heat between the fluid flowing in the cooling water system.
[0022]
In order to achieve the second object, a second configuration of the drainage pump device according to the present invention includes a main pump in which a suction side is located in a water absorption tank and a discharge pipe is connected, and the main pump transmits power. In a drainage pump device comprising a main prime mover driven through a device and an auxiliary machine including at least a cooling water system for cooling these drive systems, a branch pipe is provided upstream of the discharge valve of the main pump or the discharge pipe. And a heat exchanger capable of exchanging heat between the pumped liquid and the fluid flowing in the cooling water system is provided in the branch pipe, and the branch pipe is led to a water absorption tank.
[0023]
The functions of the above technical means are as follows.
[0024]
In the drainage pump device of the present invention, a heat exchanger for cooling the drive system of the device is provided in the branch pipe in the middle of the branch pipe branched from the discharge valve upstream side of the discharge pipe of the main pump. By using the branch pipe, the management operation of the entire equipment of the drainage pump station can be performed. Moreover, since heat exchange is performed by pumping the main pump, the number of auxiliary machines can be reduced, and the reliability of the equipment on the machine can be improved.
[0025]
Furthermore, if the main pump can be dehydrated through the use of ceramic bearings and non-water supply shaft seals, the reliability of the entire system can be dramatically improved by adding equipment such as heat exchangers without newly creating existing equipment. Can be improved.
[0026]
In addition, since the heat exchanger itself can be made smaller than the conventional in-pipe cooler method, the equipment is inexpensive and the installation space can be reduced, which is advantageous in terms of maintenance.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
[0028]
[Embodiment 1]
FIG. 1 is a cooling water system diagram of a drainage pump device showing an embodiment of the present invention, and FIG. 2 is a configuration diagram of a drainage pump station to which the present invention is applied. In FIG. 1, the same reference numerals as those in FIG.
[0029]
First, an outline of a drainage pump station to which the present invention is applied will be described with reference to FIG.
[0030]
In the drainage pump station shown in FIG. 2, the flowing water flowing in from the suction channel 6 is removed by a dust remover 7 to remove foreign matters having a size that hinders the operation of the pump, and is pumped up by the main pump 1 through the water tank 8. The water is discharged to the discharge water channel 9 through the discharge pipe 15. Here, the main pump 1 is a vertical axis rainwater drainage pump, for example.
[0031]
The discharge pipe 15 includes a discharge valve 16 for reducing the surge by gradually changing the flowing water when the main pump 1 is started and stopped, and for stopping the discharge side during normal time or when the main pump 1 is disassembled. A backflow prevention valve 17 for preventing backflow of running water at the time of sudden stop 1 is attached.
[0032]
The power of the main pump 1 is transmitted from the main pump driving prime mover 2 to the main pump 1 via a power transmission device (reduction gear) 3.
[0033]
The cooling water system of the drainage pump device in such a drainage station will be described with reference to FIG. 1 and 2, the same devices are assigned the same reference numerals.
[0034]
In FIG. 1, 1 is a main pump, 2 is a prime mover for driving a main pump, and 3 is a power transmission device.
[0035]
Reference numeral 11 denotes an expansion tank that stores cooling water from a water source, and 12 (a general name for 12a and 12b) is a machine-equipped cooling water pump provided in the cooling water piping system 13 (a general name for 13a and 13b).
[0036]
20 is a branch pipe branched from the upstream side of the discharge valve 16 of the discharge pipe 15 connected to the main pump 1, and this branch pipe 20 is led to the water absorption tank 8 as shown in FIG. Reference numeral 21 denotes a heat exchanger composed of 21-1, 21-2, and the heat exchanger 21 (generic name of 21-1, 21-2) is provided in the branch pipe 20.
[0037]
In this example, the main pump 1 is a so-called non-water supply type pump that does not supply shaft seal water or bearing cooling water.
[0038]
The main pump 1 receives the power generated by the prime mover 2 for driving the main pump through a power transmission device (reduction gear) 3 and pumps water. Drive systems such as the main pump driving motor 2 and the power transmission device 3 generate heat during operation, and thus supply cooling water from the expansion tank 11 through the cooling water pipe 13a using natural flow. The cooling water is supplied to the main pump driving motor 2 and the power transmission device 3 by the machine-equipped cooling water pumps 12a and 12b attached to the main pump driving motor 2, and after exchanging heat with each device. In the heat exchanger 14 (14-1, 14-2), heat exchange is performed again between the pumped liquid and the raw water flowing in the cooling water system pipe, and after returning to a predetermined water temperature, the return cooling water pipe 13b is used. Return to the expansion tank 11 upstream of the machine-equipped cooling water pump 12. These cooling water system flows are always performed during pump operation.
[0039]
According to this method, in the cooling water system, an auxiliary machine that needs to be started during pump operation, for example, a secondary cooling water system that has been conventionally required, is not required, and at least the pump shown in the prior art in FIG. No. 10 may be omitted, and when the main pump driving motor 2 is operated, the cooling water pump 12 with the machine supplies cooling water to each device. For this reason, the pump starting speed is greatly increased. In addition, since the number of auxiliary machines is reduced, the cause of troubles such as failure is reduced, so that the reliability of the drainage pump equipment is improved.
[0040]
As shown in FIG. 2, the heat exchanger 21 is installed on the ground of the drainage station, for example, on the floor where the pump is installed, and is provided on the upstream side of the discharge valve 16 of the main pump 1 or the discharge pipe 15. It is installed in the middle of the pipe 20. For this reason, as described in Japanese Patent Laid-Open No. 8-105399, the maintainability is better than the conventional water tank installation type cooler (water absorption tank / discharge tank cooler), and the installation of equipment is within the existing building dimensions. Since it can be installed, it is advantageous in terms of construction costs.
[0041]
[Embodiment 2]
FIG. 3 is a cooling water system diagram of a drainage pump device showing another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same devices as those in the first embodiment, and the description thereof is omitted.
[0042]
In FIG. 3, reference numeral 8 denotes a water absorption tank, and a second branch pipe 22 is provided from the upstream side of the discharge valve 16 of the discharge pipe 15 to the water absorption tank 8 separately from the branch pipe 20.
[0043]
In the drainage pump facility shown in FIG. 3, the heat exchanger 21 (21-1, 21-2) is installed in the middle of the branch pipe 20 branched from the upstream side of the discharge valve 16 of the discharge pipe 15 connected to the main pump 1. The branch pipe 20 returns to the water absorption tank 8. Further, the second branch pipe 22 also returns to the water absorption tank 8. For this reason, if the discharge valve 16 is closed and operated, the pumped water can be returned to the water absorption tank 8 without draining to the discharge side, and the actual load operation of the pump can be performed.
[0044]
In other words, in the management operation of the drainage pump facility when the pumped water cannot be drained to the discharge water channel 9 due to the water discharge restriction or the like, the heat exchanger 21 can provide the cooling effect of the drive system even when the discharge valve 16 is closed, so that the function is maintained. Management operation to confirm Thus, since the function check of the drainage pump station can be performed for each main pump, the reliability can be improved in terms of maintaining the function of the drainage pump station.
[0045]
In addition, although the pump installation of the drainage station of this embodiment demonstrated the thing of the main machine structure which consists of a main pump, the motor for driving a main pump, and a reduction gear, it is not limited only to this structure.
[0046]
According to the embodiment of the present invention, the following effects can be obtained in the facility of the drainage pump station.
[0047]
(1) In the conventional cooling method using a water tank-installed cooler, there are problems such as the influence of water quality and a decrease in cooling performance due to the accumulation of foreign matter, and the usage conditions are restricted. On the other hand, in the embodiment of the present invention, by providing the cooler (heat exchanger) itself on land, the influence of the above-described conditions can be reduced.
[0048]
(2) A heat exchanger 21 is provided in the middle of the branch pipe 20 branched from the upstream side of the discharge valve 16 provided in the discharge pipe 15 connected to the main pump 1, and a second branch pipe 22 instead of the discharge pipe 15 is provided. By guiding to the water absorption tank 8, the entire drainage pump station can be managed without draining to the discharge water channel 9 side, and the reliability can be improved in terms of maintaining the functions of the facilities.
[0049]
(3) When remodeling an existing pumping station, the components can be made inexpensive and lightweight, so large-scale construction such as building expansion is not required, and equipment can be improved easily. .
[0050]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to reduce the number of auxiliary machines required for the operation of the main pump, and to provide a drainage pump device excellent in maintainability and reliability with a small capital investment. can do.
[0051]
In addition, according to the present invention, it is possible to provide a drainage pump device that can easily perform the management operation of the entire equipment of the pumping station and improve the maintainability and reliability by making the cooling water system self-contained. it can.
[Brief description of the drawings]
FIG. 1 is a cooling water system diagram of a drainage pump device showing an embodiment of the present invention.
FIG. 2 is a sectional view of a drainage pump station to which the present invention is applied.
FIG. 3 is a cooling water system diagram of a drainage pump device showing another embodiment of the present invention.
FIG. 4 is a cooling water system diagram in a conventional vertical axis rainwater drainage pump.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Main pump, 2 ... Main motor for driving main pump, 3 ... Power transmission device, 8 ... Water absorption tank, 11 ... Expansion tank, 12, 12a, 12b ... Cooling water pump with machine, 13 ... Cooling water piping system, 15 ... Discharge piping, 16 ... discharge valve, 20 ... branch pipe, 21, 21-1, 21-2 ... heat exchanger. 22: Second branch pipe.

Claims (2)

吐出配管を接続した主ポンプと、この主ポンプを動力伝達装置を介して駆動する主原動機と、少なくともこれらの駆動系を冷却する冷却水系統を含む補機とから構成される排水ポンプ装置において、上記主ポンプまたは吐出配管の吐出弁上流側に分岐管を設け、当該分岐管に、ポンプ揚水液と前記冷却水系統内を流動する流体とが熱交換できる熱交換器を設けたことを特徴とする排水ポンプ装置。  In a drainage pump device comprising a main pump connected to a discharge pipe, a main prime mover that drives the main pump via a power transmission device, and an auxiliary machine that includes at least a cooling water system that cools these drive systems, A branch pipe is provided upstream of the main pump or the discharge valve of the discharge pipe, and a heat exchanger capable of exchanging heat between the pumped liquid and the fluid flowing in the cooling water system is provided in the branch pipe. Drainage pump device to do. 吸込側を吸水槽に位置し吐出配管を接続した主ポンプと、この主ポンプを動力伝達装置を介して駆動する主原動機と、少なくともこれらの駆動系を冷却する冷却水系統を含む補機とから構成される排水ポンプ装置において、上記主ポンプまたは吐出配管の吐出弁上流側に分岐管を設け、当該分岐管に、ポンプ揚水液と前記冷却水系統内を流動する流体とが熱交換できる熱交換器を設けるとともに、前記分岐管を吸水槽に導いたことを特徴とする排水ポンプ装置。From a main pump having a suction side located in a water absorption tank and connected to a discharge pipe, a main prime mover that drives the main pump via a power transmission device, and an auxiliary machine that includes at least a cooling water system that cools these drive systems In the constructed drainage pump apparatus, a branch pipe is provided on the upstream side of the discharge valve of the main pump or the discharge pipe, and heat exchange that allows heat exchange between the pumping liquid and the fluid flowing in the cooling water system is performed in the branch pipe. And a drainage pump device characterized in that the branch pipe is led to a water absorption tank.
JP2000210675A 2000-07-06 2000-07-06 Drainage pump equipment Expired - Lifetime JP4641089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210675A JP4641089B2 (en) 2000-07-06 2000-07-06 Drainage pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210675A JP4641089B2 (en) 2000-07-06 2000-07-06 Drainage pump equipment

Publications (2)

Publication Number Publication Date
JP2002021792A JP2002021792A (en) 2002-01-23
JP4641089B2 true JP4641089B2 (en) 2011-03-02

Family

ID=18706909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210675A Expired - Lifetime JP4641089B2 (en) 2000-07-06 2000-07-06 Drainage pump equipment

Country Status (1)

Country Link
JP (1) JP4641089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068984B2 (en) * 2018-10-05 2022-05-17 株式会社クボタ Pump equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186799U (en) * 1985-05-13 1986-11-21

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186799A (en) * 1985-02-14 1986-08-20 猿川 嘉男 Combination gun having various idea and conception enabling repeating fire shot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186799U (en) * 1985-05-13 1986-11-21

Also Published As

Publication number Publication date
JP2002021792A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
US4517804A (en) Condenser vacuum retaining apparatus for steam power plant
CN105841408B (en) Closed-type circulating cooling water energy-saving driving system and method
CN106949753B (en) A kind of control method of the changeable vacuum system of Air-cooled Unit full working scope
JP4641089B2 (en) Drainage pump equipment
JPH09287590A (en) Vertical shaft pump
JP2001141329A (en) Sea water cooling system
CN112556303A (en) Cooling water circulation system
JP4533818B2 (en) Remodeling method for emergency auxiliary cooling system
JPH11324967A (en) Vertical shaft pump
CN217978320U (en) Lubricating oil cooler system device
JP2003120571A (en) Pump facility
JP4314131B2 (en) Cooling mechanism for engine-driven oil-free compressor
CN220956147U (en) Centrifugal pump mechanical seal flushing device
JP6707787B1 (en) Completely power-free drainage system, cooling system and cooling method
EA001235B1 (en) Hybrid cooling plant
CN213392546U (en) Mechanical seal water recovery system
CN217107140U (en) Gravity self-circulation cooling system for lubricating oil of steam turbine of coal-fired power plant
CN214371837U (en) Fresh water closed cooling system of motor cooler
JP4485454B2 (en) Pump station system and its management method in combined sewer
JP3019734B2 (en) Corrosion protection system for plumbing equipment in water supply and distribution systems.
JP2553852Y2 (en) Water-sealing mechanism of water-sealed vacuum pump for deaerator
JP2001271795A5 (en)
JPH075844Y2 (en) Sealed water cooling system for deoxidizer
JPH06113503A (en) Hermetically sealed lubricator for electric rotating machine
JP3230624B2 (en) Valve lubricating oil cooling system for turbine generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term