JP2020111825A - Copper alloy sheet and method for production thereof - Google Patents

Copper alloy sheet and method for production thereof Download PDF

Info

Publication number
JP2020111825A
JP2020111825A JP2019214405A JP2019214405A JP2020111825A JP 2020111825 A JP2020111825 A JP 2020111825A JP 2019214405 A JP2019214405 A JP 2019214405A JP 2019214405 A JP2019214405 A JP 2019214405A JP 2020111825 A JP2020111825 A JP 2020111825A
Authority
JP
Japan
Prior art keywords
less
alloy plate
crystal grain
mass
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019214405A
Other languages
Japanese (ja)
Other versions
JP7451964B2 (en
Inventor
山本 佳紀
Yoshinori Yamamoto
佳紀 山本
外木 達也
Tatsuya Tonoki
達也 外木
健二 児玉
Kenji Kodama
健二 児玉
加藤 賢一
Kenichi Kato
賢一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2020111825A publication Critical patent/JP2020111825A/en
Application granted granted Critical
Publication of JP7451964B2 publication Critical patent/JP7451964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a new Cu alloy sheet capable of inhibiting coarsening of the crystal grain on the rolling face of a Cu sheet even after heating joint carried out in a joint of the sheet with a ceramic board and suitable for a wiring pattern of a ceramic wiring board or the like, and to provide a method for production of the Cu alloy sheet.SOLUTION: A Cu alloy sheet has a composition comprising Zr of 0.003 mass% or more but less than 0.010 mass% and the balance of Cu with inevitable impurities, has an electric conductivity of 98% IACS or more and has an average crystal grain size in a rolling face after heating at 900°C for one hour of 50 μm or more but 300 μm or less. The above Cu alloy sheet is obtained by: heating a raw material of the alloy sheet having a thickness of 1.4 times or more of final product but 2.0 times or less at a temperature of 750°C or more but lower than 950°C; performing a heat treatment including cooling to 300°C or less at a temperature-lowering speed of 50°C/min or more; controlling the average crystal grain size to 50 μm or more but 300 μm or less; and then rolling the raw material to a product thickness.SELECTED DRAWING: None

Description

本発明は、セラミック配線基板等の配線パターンに用いられるCu合金板およびその製造方法に関するものである。 The present invention relates to a Cu alloy plate used for a wiring pattern such as a ceramic wiring board and a method for manufacturing the same.

パワーデバイスの半導体素子を実装する基板として、セラミック配線基板が広く用いられている。このセラミック配線基板は、セラミック基板と、セラミック基板上に設けられ、例えば、エッチングにより所定箇所が除去されて配線パターン(Cu配線)になるCu板とを備えている。このCu板としては、無酸素銅やタフピッチ銅等の純Cu板が用いられる他、Ni、Zn、ZrまたはSnの何れかを含むCu合金板等が用いられている。 A ceramic wiring board is widely used as a board on which a semiconductor element of a power device is mounted. This ceramic wiring substrate includes a ceramic substrate and a Cu plate which is provided on the ceramic substrate and has a predetermined pattern removed by etching to form a wiring pattern (Cu wiring). As the Cu plate, a pure Cu plate such as oxygen-free copper or tough pitch copper is used, or a Cu alloy plate containing any of Ni, Zn, Zr, and Sn is used.

そして、セラミック基板とCu板との接合方法は、例えば、Tiなどの活性金属を含有したろう材を用いて接合する活性金属ろう付け法がある。また、別の接合方法として、ろう材を用いずにセラミック基板と表面を酸化させたCu板とを接触配置して加熱して、界面に酸化Cuからなる融液層を形成することで接合する直接接合法がある。
上記の各接合方法は、セラミック基板とCu板とを、ろう材もしくは酸化Cuを介して積層して積層体とし、この積層体を、加熱炉中で、例えば、500℃以上1050℃以下の条件で加熱接合される(例えば、特許文献1)。
As a method for joining the ceramic substrate and the Cu plate, there is an active metal brazing method in which a brazing material containing an active metal such as Ti is used for joining. Further, as another joining method, a ceramic substrate and a Cu plate whose surface has been oxidized are placed in contact with each other without using a brazing material and heated to form a melt layer made of Cu oxide at the interface for joining. There is a direct joining method.
In each of the above-described joining methods, a ceramic substrate and a Cu plate are laminated with a brazing material or Cu oxide interposed therebetween to form a laminated body, and the laminated body is heated in a furnace under conditions of, for example, 500° C. or more and 1050° C. or less. Are joined by heating (for example, Patent Document 1).

特開2011−124585号公報JP, 2011-124585, A

このように、セラミック基板とCu板の接合は、上述の加熱接合によって実施されるため、その処理中にCu板の結晶粒が成長して粗大化するという現象が起こる場合がある。例えば、純Cu板の場合は、上述の加熱接合を経ると、配線パターンとなる圧延面の平均結晶粒径が粗大化し、目視で確認できるほどの大きさになる場合がある。
粗大化したCuの結晶粒は、配線パターンの外観検査等で結晶粒界を欠陥であると誤認される不具合が生じる。このため、セラミック配線基板に用いられるCu板は、上述の加熱接合を受けた後でも結晶粒の粗大化を抑える必要がある。
As described above, since the bonding between the ceramic substrate and the Cu plate is carried out by the above-mentioned heating bonding, there may occur a phenomenon that crystal grains of the Cu plate grow and become coarse during the processing. For example, in the case of a pure Cu plate, the average crystal grain size of the rolled surface, which becomes the wiring pattern, may become coarse after the above-mentioned heat bonding, and the size may become visually recognizable.
The coarsened Cu crystal grains cause a problem that the crystal grain boundaries are erroneously recognized as defects in visual inspection of the wiring pattern. Therefore, it is necessary for the Cu plate used for the ceramic wiring board to suppress the coarsening of crystal grains even after undergoing the above-described heat bonding.

本発明の目的は、セラミック基板との接合で実施される加熱接合を経ても、Cu板の圧延面における結晶粒の粗大化を抑制できる、セラミック配線基板等の配線パターンに好適な新規のCu合金板およびその製造方法を提供することにある。 An object of the present invention is to provide a novel Cu alloy suitable for a wiring pattern such as a ceramic wiring board, which can suppress the coarsening of crystal grains on the rolled surface of the Cu plate even after the heating and bonding which is performed by bonding with the ceramic substrate. It is to provide a plate and a manufacturing method thereof.

上記の課題を解決するため、本発明は次のように構成される。
本発明のCu合金板は、0.003質量%以上0.010質量%未満のZrを含有し、残部がCuおよび不可避的不純物からなる組成を有し、導電率が98%IACS以上であり、900℃で1時間加熱した後の圧延面における平均結晶粒径が50μm以上300μm以下である。
In order to solve the above problems, the present invention is configured as follows.
The Cu alloy plate of the present invention contains 0.003% by mass or more and less than 0.010% by mass of Zr, and the balance has a composition of Cu and inevitable impurities, and has an electric conductivity of 98% IACS or more, The average crystal grain size on the rolled surface after heating at 900° C. for 1 hour is 50 μm or more and 300 μm or less.

また、本発明のCu合金板は、0.003質量%以上0.010質量%未満のZrと、0.03質量%以上0.08質量%以下のAgを含有し、残部がCuおよび不可避的不純物からなる組成を有し、導電率が98%IACS以上であり、900℃で1時間加熱した後の圧延面における平均結晶粒径が50μm以上300μm以下である。 The Cu alloy plate of the present invention contains 0.003% by mass or more and less than 0.010% by mass of Zr and 0.03% by mass or more and 0.08% by mass or less of Ag, with the balance being Cu and unavoidable. It has a composition of impurities, has a conductivity of 98% IACS or more, and has an average crystal grain size of 50 μm or more and 300 μm or less on the rolled surface after heating at 900° C. for 1 hour.

本発明のCu合金板は、製品板厚の1.4倍以上2.0倍以下の板厚を有する素材を、750℃以上950℃未満で加熱した後、毎分50℃以上の降温速度で300℃以下まで冷却する熱処理を行ない、平均結晶粒径を50μm以上300μm以下にした後、前記素材を前記製品板厚まで圧延することで得ることができる。 The Cu alloy plate of the present invention heats a material having a plate thickness of 1.4 times or more and 2.0 times or less of the product plate thickness at 750° C. or more and less than 950° C., and then at a temperature lowering rate of 50° C. or more per minute. It can be obtained by performing a heat treatment of cooling to 300° C. or lower to make the average grain size 50 μm or more and 300 μm or less, and then rolling the material to the product plate thickness.

本発明によれば、セラミック基板とCu合金板との接合のための加熱接合を経ても、Cu合金板の圧延面における結晶粒が粗大化を抑制することができ、セラミック配線基板等の配線パターンの製造に有用な技術となる。 ADVANTAGE OF THE INVENTION According to this invention, even if it heat-bonds for joining a ceramic substrate and a Cu alloy plate, the crystal grain in the rolling surface of a Cu alloy plate can be suppressed from coarsening, and wiring patterns, such as a ceramic wiring board. It is a useful technology for the production of.

本発明のCu合金板は、0.003質量%以上0.010質量%未満のZrを含有し、残部がCuおよび不可避的不純物からなる組成を有し、導電率が98%IACS以上であり、900℃で1時間加熱した後の圧延面における平均結晶粒径が50μm以上300μm以下である。 The Cu alloy plate of the present invention contains 0.003% by mass or more and less than 0.010% by mass of Zr, and the balance is composed of Cu and inevitable impurities, and has an electric conductivity of 98% IACS or more, The average crystal grain size on the rolled surface after heating at 900° C. for 1 hour is 50 μm or more and 300 μm or less.

上述したように、セラミック配線基板の配線パターンを形成するCu板として、従来から用いられている純Cu板は、セラミック基板との接合のための加熱接合を経ると、結晶粒が粗大化する場合がある。ここで、本発明で規定する900℃で1時間加熱する条件は、セラミック基板とCu合金板とを接合する際の加熱接合を想定した温度で、十分な時間加熱する条件として選択したものである。 As described above, when a pure Cu plate that has been conventionally used as a Cu plate that forms a wiring pattern of a ceramic wiring board has crystal grains that become coarse when subjected to heat bonding for bonding with the ceramic substrate. There is. Here, the condition of heating at 900° C. for 1 hour specified in the present invention is selected as a condition of heating for a sufficient time at a temperature assumed for heat bonding when bonding the ceramic substrate and the Cu alloy plate. ..

Cu合金板の圧延面における結晶粒が粗大化した場合は、結晶粒が目視で確認できるほどの大きさになり、Cu合金板の表面は結晶粒界が目立った外観を呈するようになる。このような状態のCu合金板の表面について、外観検査を機械的な画像処理で実施した場合は、結晶粒界と疵との判別が難しくなり、結晶粒界をCu合金板表面の疵と誤認することが数多く発生する。
本発明のCu合金板は、900℃で1時間加熱した後の圧延面における平均結晶粒径を300μm以下にする。これにより、本発明のCu合金板は、その圧延面の結晶粒が目視で確認することの困難な程に十分細かく、外観検査の画像処理において、結晶粒界と疵との判別が容易になる。また、上記と同様の理由から、本発明の実施形態にかかるCu合金板は、900℃で1時間加熱した後の圧延面における平均結晶粒径を280μm以下が好ましく、260μm以下がより好ましい。
When the crystal grains on the rolled surface of the Cu alloy plate are coarsened, the crystal grains have a size that can be visually confirmed, and the surface of the Cu alloy plate has a noticeable appearance of crystal grain boundaries. When a visual inspection is performed on the surface of the Cu alloy plate in such a state by mechanical image processing, it becomes difficult to distinguish between a crystal grain boundary and a flaw, and the crystal grain boundary is erroneously recognized as a flaw on the surface of the Cu alloy sheet. There are many things to do.
The Cu alloy sheet of the present invention has an average crystal grain size of 300 μm or less on the rolled surface after heating at 900° C. for 1 hour. As a result, the Cu alloy sheet of the present invention is sufficiently fine that the crystal grains on the rolled surface are difficult to visually confirm, and it becomes easy to distinguish the crystal grain boundaries from the flaws in the image processing of the visual inspection. .. For the same reason as above, the Cu alloy sheet according to the embodiment of the present invention preferably has an average crystal grain size of 280 μm or less on the rolled surface after heating at 900° C. for 1 hour, and more preferably 260 μm or less.

本発明のCu合金板は、900℃で1時間加熱した後の圧延面における平均結晶粒径を50μm以上にすることで、過度な硬さの上昇が抑制され、Cu合金板の割れや欠けの誘発を抑制できる。
また、セラミック基板とCu合金板では熱膨張率が異なるため、上述の加熱接合により接合されたセラミック基板とCu合金板との接合体が冷却される際に、Cu合金板がセラミック基板よりもより大きく収縮しようとする。本発明のCu合金板は、上述の平均結晶粒径を50μm以上にすることで、加熱接合後の冷却における、セラミック基板とCu合金板の収縮量の差を吸収させることができ、接合部の剥がれやセラミック基板の破損を抑制することができる。
The Cu alloy sheet of the present invention has an average grain size of 50 μm or more on the rolled surface after being heated at 900° C. for 1 hour, thereby suppressing an excessive increase in hardness and preventing the Cu alloy sheet from cracking or chipping. The induction can be suppressed.
Further, since the ceramic substrate and the Cu alloy plate have different coefficients of thermal expansion, when the bonded body of the ceramic substrate and the Cu alloy plate bonded by the above-described heat bonding is cooled, the Cu alloy plate is more excellent than the ceramic substrate. I try to shrink a lot. In the Cu alloy plate of the present invention, by setting the average crystal grain size to 50 μm or more, it is possible to absorb the difference in shrinkage amount between the ceramic substrate and the Cu alloy plate in the cooling after heating and bonding, and the bonding portion It is possible to suppress peeling and damage to the ceramic substrate.

また、セラミック配線基板は、パワーデバイス等に使用される場合において、搭載した半導体素子が通電によって発熱して温度上昇した際に、セラミック基板とCu合金板との熱膨張差や、Cu合金板における結晶粒成長の助長化によって、接合部に剥がれようとする力が生じる場合がある。
これに対し、本発明のCu合金板は、Cu合金板の900℃で1時間加熱した後の圧延面における平均結晶粒径を50μm以上にすることで、半導体素子の発熱によって生じる、セラミック基板とCu合金板との熱膨張差を緩和できることに加え、Cu合金板における結晶粒成長の助長化を抑制できる。このため、本発明のCu合金板は、セラミック基板との接合部の剥がれや、セラミック基板の破損を抑制できる。また、過度な硬さの上昇を抑え、Cu合金板を製造する際のハンドリング時に生じる割れや欠けを抑制する観点から、本発明の実施形態にかかるCu合金板は、900℃で1時間加熱した後の圧延面における平均結晶粒径を200μm以上にすることが好ましく、220μm以上がより好ましい。
Further, in the case where the ceramic wiring board is used for a power device or the like, when a mounted semiconductor element generates heat due to energization and its temperature rises, a difference in thermal expansion between the ceramic board and the Cu alloy plate or a Cu alloy plate Due to the promotion of crystal grain growth, there is a case where a force to peel off is generated at the joint.
On the other hand, the Cu alloy plate of the present invention is a ceramic substrate produced by heat generation of a semiconductor element by setting the average crystal grain size on the rolled surface after heating the Cu alloy plate at 900° C. for 1 hour to 50 μm or more. In addition to alleviating the difference in thermal expansion from the Cu alloy plate, it is possible to suppress the promotion of crystal grain growth in the Cu alloy plate. For this reason, the Cu alloy plate of the present invention can suppress peeling of the joint with the ceramic substrate and damage to the ceramic substrate. Further, from the viewpoint of suppressing an excessive increase in hardness and suppressing cracks and chips that occur during handling when manufacturing a Cu alloy plate, the Cu alloy plate according to the embodiment of the present invention was heated at 900° C. for 1 hour. The average grain size on the subsequent rolled surface is preferably 200 μm or more, more preferably 220 μm or more.

本発明のCu合金板は、導電率が98%IACS以上である。セラミック配線基板の配線パターンに用いられるCu板として、上述した純Cu板の導電率は、100%IACS前後であり、本発明のCu合金板は、これに近似した優れた導電性を維持する。ここで、導電性の良否は、熱伝導性の良否と強い相関関係があるため、本発明のCu合金板は、熱伝導性においても純Cu板と同等の優れた特性を維持するものである。
そして、パワーデバイスの実装基板として用いられるセラミック配線基板では、Cu配線に大きな電流が流れるため、上述した純Cu板に相当する優れた導電性や熱伝導性を具備する材料を、配線パターンの材料として用いることが求められる。このため、本発明のCu合金板は、こうした要求に合ったものであるといえる。そして、本発明のCu合金板は、導電率が99%IACS以上であることが好ましい。
The Cu alloy plate of the present invention has an electric conductivity of 98% IACS or more. As the Cu plate used for the wiring pattern of the ceramic wiring board, the above-mentioned pure Cu plate has a conductivity of about 100% IACS, and the Cu alloy plate of the present invention maintains excellent conductivity close to this. Here, since the quality of conductivity has a strong correlation with the quality of thermal conductivity, the Cu alloy plate of the present invention maintains the same excellent properties as the pure Cu plate in terms of thermal conductivity. ..
In a ceramic wiring board used as a mounting board for a power device, a large current flows through the Cu wiring. Therefore, a material having excellent electrical conductivity and thermal conductivity corresponding to the pure Cu plate described above is used as a wiring pattern material. It is required to be used as. Therefore, it can be said that the Cu alloy plate of the present invention meets these requirements. And, the Cu alloy plate of the present invention preferably has an electric conductivity of 99% IACS or more.

本発明のCu合金板は、0.003質量%以上0.010質量%未満のZrを含有し、残部がCuおよび不可避的不純物からなる組成を有する。
Cu合金板中に含まれる微量成分の種類とその含有量は、Cu合金板の導電率や加熱接合した後の結晶粒径に大きく影響を及ぼす。一般に、微量成分の含有量が多くなるほど導電率は低下する一方、同時に、加熱接合において結晶粒が粗大化することを抑制する効果が得られる。
本発明のCu合金板は、上記の特性を得るためにZrを採用する。そして、Cu合金板におけるZrの含有量は、0.003質量%以上にすることで、900℃で1時間加熱した後の平均結晶粒径を300μm以下に抑えることができる。また、上記と同様の理由から、Zrの含有量は、0.005質量%以上にすることが好ましい。
一方、Cu合金板へのZrの含有量は、0.010質量%未満にすることで、98%IACS以上の導電率を安定して維持することができる。また、Cu合金板へのZrの含有量は、0.010質量%未満にすることで、過度な硬さの上昇が抑制され、Cu合金板の切断時のバリの発生を抑制できる上、割れや欠けの誘発を抑制できる。また、上記と同様の理由から、Zrの含有量は、0.009質量%以下にするこが好ましい。
The Cu alloy plate of the present invention has a composition containing 0.003% by mass or more and less than 0.010% by mass of Zr, and the balance of Cu and unavoidable impurities.
The kind and content of the trace components contained in the Cu alloy plate have a great influence on the electrical conductivity of the Cu alloy plate and the crystal grain size after heat bonding. Generally, the conductivity decreases as the content of the trace component increases, and at the same time, the effect of suppressing the coarsening of the crystal grains in the heat bonding can be obtained.
The Cu alloy plate of the present invention employs Zr to obtain the above characteristics. When the Zr content in the Cu alloy plate is 0.003 mass% or more, the average crystal grain size after heating at 900° C. for 1 hour can be suppressed to 300 μm or less. For the same reason as above, the Zr content is preferably 0.005 mass% or more.
On the other hand, by setting the Zr content in the Cu alloy plate to less than 0.010 mass %, it is possible to stably maintain a conductivity of 98% IACS or more. Moreover, when the content of Zr in the Cu alloy plate is less than 0.010 mass %, an excessive increase in hardness can be suppressed, and the occurrence of burrs at the time of cutting the Cu alloy plate can be suppressed, and cracks can be generated. It can suppress the induction of chipping. For the same reason as above, the Zr content is preferably 0.009 mass% or less.

また、本発明の実施形態にかかるCu合金板は、上記のZrに加えて、0.03質量%以上0.08質量%以下のAgを含有し、残部がCuおよび不可避的不純物からなる組成を有する。
Agは、Zrよりも含有量に対する導電率の低下が少ない元素である。また、Agは、高温加熱において結晶粒が粗大化することを抑制する効果も持つ。本発明の実施形態にかかるCu合金板は、Zrと共にAgを複合で含有させることにより、導電率のさらなる低下を抑制しつつ、結晶粒の粗大化を抑制する効果を高めることができる。
ここで、Cu合金板へのAgの含有量は、0.03質量%以上にすることで、結晶粒の粗大化を抑制する効果を維持することができる。上記と同様の理由から、Agの含有量は、0.04質量%以上にすることが好ましい。
一方、Cu合金板へのAgの含有量は、0.08質量%以下にすることで、導電率の低下を抑制できる。また、上記と同様の理由から、Agの含有量は、0.06質量%以下にすることが好ましい。
Further, the Cu alloy plate according to the embodiment of the present invention has a composition containing 0.03 mass% or more and 0.08 mass% or less Ag in addition to the above Zr, and the balance being Cu and inevitable impurities. Have.
Ag is an element whose conductivity decreases less with respect to its content than Zr. Further, Ag also has an effect of suppressing coarsening of crystal grains when heated at a high temperature. In the Cu alloy plate according to the embodiment of the present invention, by containing Ag in combination with Zr, the effect of suppressing coarsening of crystal grains can be enhanced while suppressing further decrease in conductivity.
Here, when the content of Ag in the Cu alloy plate is 0.03 mass% or more, the effect of suppressing the coarsening of crystal grains can be maintained. For the same reason as above, the content of Ag is preferably 0.04 mass% or more.
On the other hand, when the content of Ag in the Cu alloy plate is 0.08 mass% or less, the decrease in conductivity can be suppressed. For the same reason as above, the content of Ag is preferably 0.06 mass% or less.

次に、本発明のCu合金板の製造方法について説明する。
本発明のCu合金板は、上述した添加元素の含有量を調整したCu合金を鋳造し、これに熱間圧延を行なった後、熱処理を挿んだ冷間圧延を行ない、目的の製品板厚まで加工することにより得る。ここで、本発明の意図する特性を安定して得るためには、先ず、熱間圧延を行なった後、熱処理を挿んだ冷間圧延により、最終的な製品板厚の1.4倍以上2.0倍以下の板厚まで加工して素材を得る。そして、この素材を750℃以上950℃未満に加熱してから、毎分50℃以上の降温速度で300℃以下まで冷却する熱処理を行ない、圧延面における平均結晶粒径を50μm以上300μm以下に調整する。そして、この素材を製品板厚まで冷間圧延することで、本発明のCu合金板を得ることができる。
Next, a method for manufacturing the Cu alloy plate of the present invention will be described.
The Cu alloy plate of the present invention is obtained by casting a Cu alloy in which the content of the above-mentioned additive element is adjusted, hot rolling the cast Cu alloy, and then performing cold rolling with heat treatment to obtain a desired product plate thickness. It is obtained by processing up to. Here, in order to stably obtain the characteristics intended by the present invention, first, hot rolling is performed, and then cold rolling including heat treatment is performed to obtain 1.4 times or more the final product sheet thickness. Material is obtained by processing to a plate thickness of 2.0 times or less. Then, this material is heated to 750° C. or higher and lower than 950° C. and then heat-treated to cool it to a temperature of 50° C. or more per minute to 300° C. or less to adjust the average grain size on the rolled surface to 50 μm or more and 300 μm or less. To do. Then, the Cu alloy plate of the present invention can be obtained by cold rolling this material to a product plate thickness.

本発明のCu合金板の製造方法において、熱処理を行なう素材の板厚を、製品板厚の1.4倍以上2.0倍以下にするのは、熱処理後の冷間圧延において、Cu合金板に蓄積される歪みの量を適正な範囲にするためである。
ここで、結晶粒の粗大化に影響する因子の一つとして、Cu合金板の内部に蓄積された歪みがあり、この歪みの蓄積量が多くなると、結晶粒が粗大化しやすくなる。一方、歪みの蓄積量が少なくなると、Cu合金板は軟らかくなるため、切断時にバリを発生させたり、ハンドリング時に変形を誘発させたりする等、製造する際の取り扱いが難しくなる。
In the method for producing a Cu alloy plate of the present invention, the thickness of the material to be heat treated is set to 1.4 times or more and 2.0 times or less the product sheet thickness in the cold rolling after the heat treatment. This is to keep the amount of distortion accumulated in a proper range.
Here, as one of the factors that influence the coarsening of crystal grains, there is strain accumulated inside the Cu alloy plate, and when the accumulated amount of this strain increases, the crystal grains tend to coarsen. On the other hand, when the amount of accumulated strain becomes small, the Cu alloy plate becomes soft, and thus it becomes difficult to handle during manufacturing, such as producing burrs during cutting or inducing deformation during handling.

本発明の製造方法において、熱処理を行なう素材の板厚は、得ようとする製品板厚の2.0倍以下にすることで、冷間圧延でCu合金板に蓄積される歪みの量を抑制でき、得られるCu合金板を加熱接合した際にも結晶粒の粗大化を抑制できる。
また、本発明の製造方法において、熱処理を行なう素材の板厚は、得ようとする製品板厚の1.4倍以上にすることで、Cu合金板に蓄積される歪みの量を適性化でき、Cu合金板の硬さを適正に維持でき、切断時のバリの発生を抑制できる上、ハンドリング時の変形を抑制できる等、製造する際の取り扱いが容易になる。
In the manufacturing method of the present invention, the plate thickness of the material to be heat treated is set to 2.0 times or less the product plate thickness to be obtained, thereby suppressing the amount of strain accumulated in the Cu alloy plate during cold rolling. It is possible to suppress the coarsening of crystal grains even when the obtained Cu alloy plates are heat-bonded.
Further, in the manufacturing method of the present invention, the plate thickness of the material to be heat treated is 1.4 times or more the product plate thickness to be obtained, so that the amount of strain accumulated in the Cu alloy plate can be optimized. , The hardness of the Cu alloy plate can be properly maintained, the occurrence of burrs at the time of cutting can be suppressed, and the deformation at the time of handling can be suppressed.

本発明の製造方法では、素材に施す熱処理を、750℃以上950℃未満の条件で行なう。熱処理の加熱温度は、750℃以上にすることで、その目的である加工中の歪みの開放を促進することができ、続く冷間圧延で疵が発生することを抑制できる他、加熱接合時の結晶粒粗大化を抑制できる。
一方、熱処理の加熱温度は、950℃未満にすることで、Zrの析出物を微細にすることができ、加熱接合時の結晶粒粗大化を抑制できることに加え、導電率の低下を抑えることもできる。
In the manufacturing method of the present invention, the heat treatment applied to the material is performed at a temperature of 750°C or higher and lower than 950°C. By setting the heating temperature of the heat treatment to 750° C. or higher, it is possible to accelerate the release of the strain during processing, which is the purpose of the heat treatment, and it is possible to suppress the occurrence of flaws in the subsequent cold rolling. It is possible to suppress crystal grain coarsening.
On the other hand, by setting the heating temperature of the heat treatment to less than 950° C., the Zr precipitates can be made finer, the crystal grain coarsening at the time of heat bonding can be suppressed, and the decrease in conductivity can also be suppressed. it can.

Cu合金板中のZrは、Cuに固溶した状態、もしくはZr単体や化合物として析出した状態で存在する。ここで、析出した状態で存在するZrは、微細な析出物として存在する場合には加熱接合での結晶粒粗大化を抑える効果に寄与する一方、粗大に成長した析出物として存在する場合には結晶粒粗大化を抑える効果に寄与することは困難となる。
本発明の主旨である、加熱接合後の結晶粒粗大化を抑制する効果を安定して得るためには、Zrの析出物を大きく成長させないことが重要である。ここで、Cu中のZrは、400℃以上600℃以下の範囲で加熱保持されると析出し、析出物の成長が進む。このため、本発明の製造方法において、400℃以上600℃以下の温度領域で加熱される時間をなるべく短くすることが重要である。
したがって、本発明の製造方法において、素材に施す熱処理は、毎分50℃以上の降温速度で300℃以下まで冷却する。これにより、本発明の製造方法は、得られるCu合金板のZrの析出物の成長を抑制でき、加熱接合後の結晶粒粗大化を抑制できる。
Zr in the Cu alloy plate exists in the state of being solid-solved in Cu or in the state of being precipitated as a Zr simple substance or a compound. Here, Zr existing in the precipitated state contributes to the effect of suppressing the coarsening of the crystal grains in the heat bonding when it exists as a fine precipitate, while when it exists as a coarsely grown precipitate, It becomes difficult to contribute to the effect of suppressing the crystal grain coarsening.
In order to stably obtain the effect of suppressing the crystal grain coarsening after heating and joining, which is the gist of the present invention, it is important that the Zr precipitate is not grown large. Here, Zr in Cu precipitates when heated and held in the range of 400° C. or higher and 600° C. or lower, and the growth of the precipitate proceeds. Therefore, in the manufacturing method of the present invention, it is important to shorten the heating time in the temperature range of 400° C. or more and 600° C. or less as much as possible.
Therefore, in the manufacturing method of the present invention, the heat treatment applied to the material is cooled to 300° C. or less at a temperature decrease rate of 50° C. or more per minute. Thereby, the production method of the present invention can suppress the growth of Zr precipitates in the obtained Cu alloy plate, and can suppress the crystal grain coarsening after heat bonding.

本発明のCu合金板は、セラミック配線基板の配線パターンとなる部材として好適である。セラミック配線基板は、Cu板またはCu合金板と、セラミック基板とが接合されている。ここで、セラミック基板としては、例えば、アルミナ(Al)や窒化アルミニウム(AlN)等で構成されるセラミック焼結体が用いられる。
本発明のCu合金板は、セラミック基板との間に、接合層を介して接合される。そして、その接合層は、直接接合法または活性金属ろう付け法等によって形成できる。
The Cu alloy plate of the present invention is suitable as a member to be a wiring pattern of a ceramic wiring board. In the ceramic wiring board, a Cu plate or a Cu alloy plate and a ceramic substrate are joined. Here, as the ceramic substrate, for example, a ceramic sintered body made of alumina (Al 2 O 3 ) or aluminum nitride (AlN) is used.
The Cu alloy plate of the present invention is bonded to the ceramic substrate via a bonding layer. Then, the bonding layer can be formed by a direct bonding method, an active metal brazing method, or the like.

直接接合法は、接合面を酸化させたCu合金板と、セラミック基板を積層して所定の条件(例えば、500℃以上1100℃以下の温度で1分加熱)で加熱して、接合界面に酸化Cuからなる融液層を形成した後に冷却することで接合する方法である。そして、本発明のCu合金板に、この直接接合法を適用すると、Cu合金板とセラミック基板の間に形成される接合層は、酸化Cu合金となる。
また、活性金属ろう付け法は、Cu板とセラミック基板をTiなどの活性金属を含むろう材を挿んで積層し、所定の条件(例えば800℃以上1000℃以下の温度で5分加熱など)で加熱して、ろう材を溶融した後に冷却することで接合する方法である。そして、本発明のCu合金板に、この活性金属ろう付け法を適用すると、Cu合金板とセラミック基板の間に形成される接合層は、ろう材層となる。
In the direct bonding method, a Cu alloy plate whose bonding surface is oxidized and a ceramic substrate are laminated and heated under predetermined conditions (for example, heating at a temperature of 500° C. or more and 1100° C. or less for 1 minute) to oxidize the bonding interface. This is a method of joining by forming a melt layer of Cu and then cooling. When this direct bonding method is applied to the Cu alloy plate of the present invention, the bonding layer formed between the Cu alloy plate and the ceramic substrate becomes a Cu oxide alloy.
In the active metal brazing method, a Cu plate and a ceramic substrate are stacked by inserting a brazing material containing an active metal such as Ti and laminated under predetermined conditions (for example, heating at a temperature of 800° C. or higher and 1000° C. or lower for 5 minutes). In this method, the brazing filler metal is heated and then melted, and then the brazing filler metal is cooled to join the brazing filler metal. Then, when this active metal brazing method is applied to the Cu alloy plate of the present invention, the joining layer formed between the Cu alloy plate and the ceramic substrate becomes a brazing material layer.

無酸素銅を母材にして、表1に示すZr、Agを添加し、高周波溶解炉を用いて窒素雰囲気下で溶製し、厚さ25mm、幅30mm、長さ150mmのインゴットを得た。
このインゴットを加熱して、厚さ5mmまで熱間圧延した後、冷間圧延によって厚さ0.5mmまで加工して、Cu合金素材を得た。各Cu合金素材に対して、表1に示す条件で加熱した後、各降温速度で300℃以下まで冷却する熱処理を行なった。
熱処理後の各Cu合金素材の結晶組織を観察し、熱処理後の圧延面における平均結晶粒径を測定した。
Zr and Ag shown in Table 1 were added to oxygen-free copper as a base material, and the mixture was melted in a nitrogen atmosphere using a high-frequency melting furnace to obtain an ingot having a thickness of 25 mm, a width of 30 mm, and a length of 150 mm.
The ingot was heated and hot-rolled to a thickness of 5 mm, and then cold-rolled to a thickness of 0.5 mm to obtain a Cu alloy material. Each Cu alloy material was heated under the conditions shown in Table 1, and then heat-treated by cooling to 300° C. or less at each temperature decrease rate.
The crystal structure of each Cu alloy material after the heat treatment was observed, and the average crystal grain size on the rolled surface after the heat treatment was measured.

平均結晶粒径の測定は、JIS−H0501「伸銅品結晶粒度試験方法」に規定された切断法によって実施した。具体的には、被測定試料の圧延面を研磨後にエッチングして結晶組織を鮮明化し、その結晶組織を金属顕微鏡で25倍に拡大して撮影した。そして、その結晶組織の写像(写真)上において、その写像(写真)の中心を通り互いが直交するように、その写像(写真)の水平方向(圧延方向)および上下方向(圧延幅方向)に直線を引いた。次いで、水平方向の直線の写像(写真)内の線分の長さL1と、上下方向の直線の写像(写真)内の線分の長さL2を求め、線分の全長L(L1+L2)を算定した。また、長さL1の線分が通過する結晶粒の個数P1および長さL2の線分が通過する結晶粒の個数P2を求め、結晶粒の総数P(P1+P2)を算定した。そして、結晶粒1個あたりの切断長さ、つまり、全長L/総数Pの値を求め、その値を平均結晶粒径とした。 The average grain size was measured by the cutting method specified in JIS-H0501, "Crystal grain size test method for copper alloy products". Specifically, the rolled surface of the sample to be measured was polished and then etched to clarify the crystal structure, and the crystal structure was magnified 25 times with a metallurgical microscope and photographed. Then, on the map (photo) of the crystal structure, in the horizontal direction (rolling direction) and the vertical direction (rolling width direction) of the map (photo) so that they pass through the center of the map (photo) and are orthogonal to each other. I drew a straight line. Next, the length L1 of the line segment in the horizontal straight line mapping (photograph) and the length L2 of the line segment in the vertical straight line mapping (photograph) are obtained, and the total length L (L1+L2) of the line segment is obtained. Calculated. Further, the number P1 of crystal grains through which the line segment of length L1 passes and the number P2 of crystal grains through which the line segment of length L2 passes were obtained, and the total number P (P1+P2) of crystal grains was calculated. Then, the cutting length per one crystal grain, that is, the value of the total length L/total number P was obtained, and the value was taken as the average crystal grain size.

そして、上記で得た各Cu合金素材について、表1の板厚比欄に示した熱処理前板厚/製品板厚の値に合わせて冷間圧延をして、本発明例となる試料No.1〜No.10、従来例となる試料No.11、および比較例となる試料No.12〜No.24のCu合金板を得た。 Then, each of the Cu alloy materials obtained above was cold-rolled in accordance with the value of the plate thickness before heat treatment/product plate thickness shown in the plate thickness ratio column of Table 1, and sample No. 1-No. Sample No. 10 as a conventional example. 11, and sample No. 11 as a comparative example. 12-No. 24 Cu alloy plates were obtained.

各Cu合金板の導電率を測定した。また、各Cu合金板を900℃で1時間加熱し、圧延面の結晶組織を観察し、平均結晶粒径を測定した。その結果を表1に示す。
従来例となる試料No.11の純CuからなるCu板は、900℃で1時間加熱後の平均結晶径が700μmを超える程度まで大きく成長していた。
比較例となる試料No.12、No.13、No.15、No.22〜No.24は、いずれも、導電率が96%IACS以下であった。また、比較例となる試料No.14、No.16〜No.24は、いずれも、900℃で1時間加熱後の平均結晶粒径が300μmを超えていた。
The conductivity of each Cu alloy plate was measured. Further, each Cu alloy plate was heated at 900° C. for 1 hour, the crystal structure of the rolled surface was observed, and the average crystal grain size was measured. The results are shown in Table 1.
Conventional sample No. The Cu plate consisting of pure Cu of No. 11 had grown to an extent that the average crystal diameter after heating for 1 hour at 900° C. exceeded 700 μm.
Sample No. as a comparative example. 12, No. 13, No. 15, No. 22-No. In all 24, the conductivity was 96%IACS or less. In addition, sample No. 14, No. 16-No. In all Nos. 24, the average crystal grain size after heating at 900° C. for 1 hour exceeded 300 μm.

これに対して、本発明例となるCu合金板は、セラミック基板とCu合金板とを接合する際の熱処理を想定した900℃で1時間の加熱接合を経ても、平均結晶粒径が300μm以下であった。このため、本発明のCu合金板は、圧延面の結晶粒の粗大化が抑えられ、外観検査の画像処理において、結晶粒界が欠陥であると誤認される不具合が抑制できる。
また、本発明のCu合金板は、従来の純Cu板に相当する優れた導電性を維持できることも確認できた。
On the other hand, the Cu alloy plate of the example of the present invention has an average crystal grain size of 300 μm or less even after heat bonding for 1 hour at 900° C. assuming heat treatment for bonding the ceramic substrate and the Cu alloy plate. Met. Therefore, the Cu alloy sheet of the present invention can suppress the coarsening of the crystal grains on the rolled surface, and can suppress the problem that the crystal grain boundaries are erroneously recognized as defects in the image processing of the visual inspection.
It was also confirmed that the Cu alloy plate of the present invention can maintain excellent conductivity corresponding to that of a conventional pure Cu plate.

Figure 2020111825
Figure 2020111825

Claims (3)

0.003質量%以上0.010質量%未満のZrを含有し、残部がCuおよび不可避的不純物からなる組成を有し、導電率が98%IACS以上であり、900℃で1時間加熱した後の圧延面における平均結晶粒径が50μm以上300μm以下であるCu合金板。 After containing 0.003% by mass or more and less than 0.010% by mass of Zr, and the balance of Cu and unavoidable impurities, the conductivity is 98% IACS or more, and after heating at 900° C. for 1 hour. A Cu alloy plate having an average crystal grain size of 50 μm or more and 300 μm or less on the rolled surface. 0.003質量%以上0.010質量%未満のZrと、0.03質量%以上0.08質量%以下のAgを含有し、残部がCuおよび不可避的不純物からなる組成を有し、導電率が98%IACS以上であり、900℃で1時間加熱した後の圧延面における平均結晶粒径が50μm以上300μm以下であるCu合金板。 Zr of 0.003% by mass or more and less than 0.010% by mass and Ag of 0.03% by mass or more and 0.08% by mass or less are contained, and the balance is composed of Cu and inevitable impurities. Is 98% IACS or more and the average crystal grain size on the rolled surface after heating at 900° C. for 1 hour is 50 μm or more and 300 μm or less. 製品板厚の1.4倍以上2.0倍以下の板厚を有する素材を、750℃以上950℃未満で加熱した後、毎分50℃以上の降温速度で300℃以下まで冷却する熱処理を行ない、平均結晶粒径を50μm以上300μm以下にした後、前記素材を前記製品板厚まで圧延する請求項1または請求項2に記載のCu合金板の製造方法。 A heat treatment of heating a material having a plate thickness of 1.4 times or more and 2.0 times or less of the product plate thickness to 750° C. or more and less than 950° C., and then cooling it to 300° C. or less at a cooling rate of 50° C. or more per minute. The method for producing a Cu alloy sheet according to claim 1 or 2, wherein the material is rolled to an average crystal grain size of 50 µm or more and 300 µm or less and then the material is rolled to the product sheet thickness.
JP2019214405A 2019-01-16 2019-11-27 Cu alloy plate and its manufacturing method Active JP7451964B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005123 2019-01-16
JP2019005123 2019-01-16

Publications (2)

Publication Number Publication Date
JP2020111825A true JP2020111825A (en) 2020-07-27
JP7451964B2 JP7451964B2 (en) 2024-03-19

Family

ID=71626953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214405A Active JP7451964B2 (en) 2019-01-16 2019-11-27 Cu alloy plate and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7451964B2 (en)
CN (1) CN111440962B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177461A1 (en) * 2020-03-06 2021-09-10 三菱マテリアル株式会社 Pure copper plate, copper/ceramic joined body, and insulated circuit substrate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550148B1 (en) 2009-03-13 2010-09-22 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
JP5506806B2 (en) 2009-09-28 2014-05-28 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5587646B2 (en) 2010-03-26 2014-09-10 Dowaホールディングス株式会社 Copper-titanium-hydrogen alloy and method for producing the same
KR101529417B1 (en) * 2011-05-13 2015-06-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5380621B1 (en) 2013-03-25 2014-01-08 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5427971B1 (en) 2013-03-25 2014-02-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6425404B2 (en) * 2014-04-16 2018-11-21 株式会社Shカッパープロダクツ Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate
JP6278812B2 (en) 2014-04-21 2018-02-14 株式会社Shカッパープロダクツ Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
JP6464742B2 (en) 2014-12-26 2019-02-06 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP6446011B2 (en) * 2016-10-03 2018-12-26 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts and heat dissipation parts
KR102104252B1 (en) * 2017-06-07 2020-04-24 가부시키가이샤 에스에이치 카퍼프로덕츠 Oxygen free copper plate and ceramics wiring board
JP6237950B1 (en) * 2017-08-09 2017-11-29 日立金属株式会社 Clad material and method for producing the clad material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177461A1 (en) * 2020-03-06 2021-09-10 三菱マテリアル株式会社 Pure copper plate, copper/ceramic joined body, and insulated circuit substrate

Also Published As

Publication number Publication date
CN111440962A (en) 2020-07-24
CN111440962B (en) 2021-11-23
JP7451964B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7380550B2 (en) pure copper plate
JP7020595B2 (en) Pure copper plate
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
KR102104252B1 (en) Oxygen free copper plate and ceramics wiring board
JP6984799B1 (en) Pure copper plate, copper / ceramic joint, insulated circuit board
WO2021177461A1 (en) Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
JP6744174B2 (en) Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
TW202138575A (en) Pure copper plate
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP6425404B2 (en) Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate
JP7242996B2 (en) Copper alloy
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
KR20230030578A (en) Copper alloys, plastically processed copper alloys, parts for electronic and electrical devices, terminals, bus bars, lead frames, and heat dissipation boards
JP5211314B2 (en) Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
JP5236976B2 (en) Method for improving conductivity of Al-Cu alloy
JP2004232069A (en) Copper-based alloy, and material for heat radiating plate obtained by using the copper-based alloy
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP2019173091A (en) Copper alloy
JP5755892B2 (en) Method for producing copper alloy sheet
JP2009149966A (en) METHOD FOR PRODUCING Cr-Cu ALLOY SHEET
JP2994230B2 (en) Copper alloy for semiconductor lead frame with excellent Ag plating properties
JP2002363667A (en) Copper alloy having excellent hot workability and machinability
JP2006104495A (en) Copper alloy, manufacturing method therefor, and heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7451964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150