JP2020107743A - Thermoelectric generation device - Google Patents

Thermoelectric generation device Download PDF

Info

Publication number
JP2020107743A
JP2020107743A JP2018245395A JP2018245395A JP2020107743A JP 2020107743 A JP2020107743 A JP 2020107743A JP 2018245395 A JP2018245395 A JP 2018245395A JP 2018245395 A JP2018245395 A JP 2018245395A JP 2020107743 A JP2020107743 A JP 2020107743A
Authority
JP
Japan
Prior art keywords
thermoelectric
photothermal conversion
generation device
temperature side
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018245395A
Other languages
Japanese (ja)
Other versions
JP7234627B2 (en
Inventor
直宏 田中
Naohiro Tanaka
直宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2018245395A priority Critical patent/JP7234627B2/en
Publication of JP2020107743A publication Critical patent/JP2020107743A/en
Application granted granted Critical
Publication of JP7234627B2 publication Critical patent/JP7234627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a thermoelectric generation device capable of converting incident light energy into electrical energy without loss and having a photothermal conversion section capable of reductions in weight and thickness without necessity of a large-scale apparatus or system.SOLUTION: The thermoelectric generation device includes at least a thermoelectric conversion section containing thermoelectric conversion material and a photothermal conversion section containing porous black pigment in this order on a substrate. The thermoelectric conversion section has a high-temperature side in contact with the photothermal conversion section and a low-temperature side not in contact with photothermal conversion section. The high-temperature side and the low-temperature side are electrically connected with each other.SELECTED DRAWING: Figure 1

Description

本発明は、入射した光を熱に変換し、さらに変換された熱を電気エネルギーに変換することが可能であり、かつ、大がかりな光熱変換装置を必要としない、軽量かつ薄膜化が可能な光熱変換部を有する熱電発電デバイスに関する。 INDUSTRIAL APPLICABILITY The present invention is capable of converting incident light into heat, and further converting the converted heat into electric energy, and which does not require a large-scale photothermal conversion device and is light and capable of being made into a thin film. The present invention relates to a thermoelectric power generation device having a converter.

熱電変換材料を用いて熱を電気に変換する熱電変換技術は、自然界における様々な熱に加え、工場・車・家庭から排出される排熱や体温等の微小熱エネルギーを電気として有効活用できるクリーンエネルギーとして注目されている。熱電効果の一つとしては、熱電変換材料に2つの異なる温度を与えた際、その温度差により熱電変換材料内に生じた電子勾配により起電力が発生するゼーベック効果を活用したシステムが主流であるが、そのほか、異常ネルンスト効果や焦電効果を用いたシステムなど開発が進められている。 Thermoelectric conversion technology that converts heat into electricity using thermoelectric conversion materials is a clean system that can effectively use minute heat energy such as exhaust heat and body temperature discharged from factories, cars, and homes as electricity in addition to various heat in the natural world. It is attracting attention as energy. As one of the thermoelectric effects, when a thermoelectric conversion material is given two different temperatures, a system utilizing the Seebeck effect, in which an electromotive force is generated by an electron gradient generated in the thermoelectric conversion material due to the temperature difference, is the mainstream. However, in addition, development of systems using the abnormal Nernst effect and pyroelectric effect is underway.

近年では、電池交換が困難な用途での電力源としても注目され、IoT分野におけるセンサー用自立電源としてのニーズが高まっている。実用化にあたっては、様々な使用環境に適用できるフレキシブル性、大面積化に加え、如何に効果的に熱源を取り出し、電気エネルギーに変換するかが重要となる。 In recent years, it has attracted attention as a power source for applications where battery replacement is difficult, and there is an increasing need for a self-sustaining power source for sensors in the IoT field. In practical application, in addition to the flexibility that can be applied to various usage environments and the increase in area, it is important to effectively take out the heat source and convert it into electric energy.

例えば、特許文献1には、光熱変換層と熱電変換部とを備えた熱型赤外線撮像素子において、赤外線を熱に変換する光熱変換層にケイ酸ガラスを用いることが記載されている。 For example, Patent Document 1 describes the use of silicate glass for the photothermal conversion layer that converts infrared rays into heat in a thermal infrared imaging device that includes a photothermal conversion layer and a thermoelectric conversion unit.

また、特許文献2には、熱電発電モジュールにおいて、黒鉛または無機酸化物と樹脂とを組み合わせた光熱変換基板や、黒鉛または無機酸化物と多孔質樹脂シートまたは多孔質セラミックとを組み合わせた光熱変換基板を、熱電変換モジュール要素と組み合わせることが記載されている。 Further, in Patent Document 2, in a thermoelectric power generation module, a photothermal conversion substrate in which graphite or an inorganic oxide is combined with a resin, or a photothermal conversion substrate in which graphite or an inorganic oxide is combined with a porous resin sheet or a porous ceramic. In combination with a thermoelectric conversion module element.

特開2003−279406号公報JP, 2003-279406, A 国際公開第2018/159696号International Publication No. 2018/159696

しかし、特許文献1に記載の発明は、光熱変換層にケイ酸ガラスを例として使用しており、空気と光熱変換層間の屈折率差が大きいため、入射光は光熱変換層の表面で反射してしまい、光熱変換層内部に取り込まれる光エネルギーは圧倒的に少ない。このため変換される熱エネルギーが小さくなり、変換される電気エネルギーも小さくなるといった課題がある。 However, in the invention described in Patent Document 1, silicate glass is used as an example in the photothermal conversion layer, and since the refractive index difference between air and the photothermal conversion layer is large, incident light is reflected on the surface of the photothermal conversion layer. The light energy taken into the photothermal conversion layer is overwhelmingly small. Therefore, there is a problem that the converted thermal energy becomes small and the converted electric energy also becomes small.

特許文献2に記載の発明は、光熱変換基板に黒鉛または無機酸化物と多孔質樹脂シートまたは多孔質セラミックを使用している。多孔質樹脂シートまたは多孔質セラミックにより光熱変換基板の屈折率は若干低減するが、黒鉛または無機酸化物の屈折率が高いため、光熱変換基板の屈折率の低下は限定的である。そのため、入射光は光熱変換基板の表面で反射してしまい、変換される熱エネルギーも小さくなり、変換される電気エネルギーも少なくなるといった課題がある。 In the invention described in Patent Document 2, graphite or an inorganic oxide and a porous resin sheet or a porous ceramic are used for the photothermal conversion substrate. Although the refractive index of the photothermal conversion substrate is slightly reduced by the porous resin sheet or the porous ceramic, the decrease in the refractive index of the photothermal conversion substrate is limited because the graphite or the inorganic oxide has a high refractive index. Therefore, the incident light is reflected on the surface of the photothermal conversion substrate, so that the converted thermal energy becomes small and the converted electric energy also becomes small.

そこで本発明の課題は、入射光を光熱変換部の表面で反射させることなく光熱変換部内部に取り込み、光熱変換部内部の光吸収機能によって速やかに光エネルギーを熱エネルギーに変換し、さらに変換された熱エネルギーを熱電変換部で電気エネルギーに変換することで、入射した光エネルギーをロスなく電気エネルギーに変換することを可能とし、かつ、大がかりな装置やシステムを必要とせず、軽量かつ薄膜化が可能な光熱変換部を有する熱電発電デバイスを提供することにある。 Therefore, an object of the present invention is to take incident light into the inside of the photothermal conversion unit without reflecting it on the surface of the photothermal conversion unit, and quickly convert light energy into heat energy by the light absorption function inside the photothermal conversion unit, and further converted. By converting the thermal energy into electric energy in the thermoelectric conversion part, it is possible to convert the incident light energy into electric energy without loss, and without the need for a large-scale device or system, it is possible to reduce the weight and thickness. It is to provide a thermoelectric power generation device having a possible photothermal conversion unit.

本発明は、以下の〔1〕〜〔6〕に関する The present invention relates to the following [1] to [6]

〔1〕 基材上に、少なくとも、熱電変換材料を含む熱電変換部、及び多孔質黒色顔料を含む光熱変換部をこの順に有し、
前記熱電変換部は、前記光熱変換部と接している高温側と、前記光熱変換部と接していない低温側とを有し、
前記高温側と、前記低温側とが電気的に接続した熱電発電デバイス。
[1] At least a thermoelectric conversion part containing a thermoelectric conversion material and a photothermal conversion part containing a porous black pigment are provided in this order on a substrate,
The thermoelectric conversion unit has a high temperature side in contact with the photothermal conversion unit, and a low temperature side not in contact with the photothermal conversion unit,
A thermoelectric power generation device in which the high temperature side and the low temperature side are electrically connected.

〔2〕 前記多孔質黒色顔料のBET比表面積が600m/g以上である、〔1〕に記載の熱電発電デバイス。 [2] The thermoelectric power generation device according to [1], wherein the porous black pigment has a BET specific surface area of 600 m 2 /g or more.

〔3〕 前記光熱変換部の、熱電変換部と接していない面の表面粗さパラメーターRtが0.15〜5μmであり、Raが0.01〜0.5μmである、〔1〕又は〔2〕に記載の熱電発電デバイス。 [3] The surface roughness parameter Rt of the surface of the photothermal conversion portion which is not in contact with the thermoelectric conversion portion is 0.15 to 5 μm, and Ra is 0.01 to 0.5 μm, [1] or [2] ] The thermoelectric power generation device of description.

〔4〕 前記光熱変換部の、熱電変換部と接していない面の400nm〜700nmにおける正反射率の最大値が0.8%以下であり、散乱反射率の最大値が2%以下である、〔1〕〜〔3〕いずれか1項に記載の熱電発電デバイス。 [4] The maximum value of the regular reflectance at 400 nm to 700 nm of the surface of the photothermal conversion portion that is not in contact with the thermoelectric conversion portion is 0.8% or less, and the maximum value of the scattering reflectance is 2% or less, [1] to [3] The thermoelectric power generation device according to any one of items.

〔5〕 前記光熱変換部が、さらにバインダー成分を含む、〔1〕〜〔4〕いずれか1項に記載の熱電発電デバイス。 [5] The thermoelectric power generation device according to any one of [1] to [4], wherein the photothermal conversion unit further contains a binder component.

〔6〕 前記基材がフレキシブル基材である、〔1〕〜〔5〕いずれか1項に記載の熱電発電デバイス。 [6] The thermoelectric power generation device according to any one of [1] to [5], wherein the base material is a flexible base material.

本発明により、入射した光エネルギーを高効率で熱エネルギーに変換する光熱変換部を有し、熱エネルギーを電気エネルギーとして効率よく変換することが可能で、更に可撓性を有する熱電発電デバイスを提供することができる。 The present invention provides a thermoelectric power generation device having a photothermal conversion unit that converts incident light energy into heat energy with high efficiency, can efficiently convert heat energy into electric energy, and has flexibility. can do.

図1は、本発明による熱電発電デバイスを示す断面図である。FIG. 1 is a sectional view showing a thermoelectric power generation device according to the present invention. 図2は、本発明による熱電発電デバイスを示す断面図である。FIG. 2 is a sectional view showing a thermoelectric power generation device according to the present invention. 図3は、本発明による熱電発電デバイスを示す断面図である。FIG. 3 is a sectional view showing a thermoelectric power generation device according to the present invention. 図4は、本発明による熱電発電デバイスを示す平面図である。FIG. 4 is a plan view showing a thermoelectric power generation device according to the present invention. 図5は、本発明による熱電発電デバイスを示す断面図であるFIG. 5 is a sectional view showing a thermoelectric power generation device according to the present invention.

本発明の熱電発電デバイスは、基材上に、少なくとも、熱電変換部、及び光熱変換部をこの順に有し、前記熱電変換部は、前記光熱変換部と接している高温側と、前記光熱変換部と接していない低温側とを有し、前記高温側と、前記低温側とが電気的に接続した熱電発電デバイスであって、前記光熱変換部が、多孔質黒色顔料を含むことを特徴とする。 The thermoelectric power generation device of the present invention has at least a thermoelectric conversion unit and a photothermal conversion unit in this order on a base material, and the thermoelectric conversion unit has a high temperature side in contact with the photothermal conversion unit and the photothermal conversion. A low temperature side not in contact with a portion, the high temperature side, a thermoelectric power generation device electrically connected to the low temperature side, wherein the photothermal conversion portion contains a porous black pigment, To do.

<熱電変換部>
熱電変換部は熱電変換材料を含み、熱エネルギーを電気エネルギーに変換する能力を有するものであれば特に制限されず、例えば、ゼーベック効果を発現し、一般に熱電変換材料として用いられている物質を用いることができる。
<Thermoelectric converter>
The thermoelectric conversion part includes a thermoelectric conversion material and is not particularly limited as long as it has the ability to convert heat energy into electric energy. For example, a substance that exhibits the Seebeck effect and is generally used as a thermoelectric conversion material is used. be able to.

[熱電変換材料]
熱電変換材料は、無機熱電変換材料、有機熱電変換材料の種別があるが、使用温度環境や用途に応じて適宜選択することができる。
[Thermoelectric conversion material]
The thermoelectric conversion material is classified into an inorganic thermoelectric conversion material and an organic thermoelectric conversion material, but can be appropriately selected according to the use temperature environment and the application.

(無機熱電変換材料)
無機熱電変換材料としては、特に限定されないが、例えば、Bi−Te化合物、Pb−Te化合物、Sb−Te化合物等のテルル系化合物;Co−Sb化合物、Fe−Sb化合物、Zn−Sb化合物、スクッテルダイト化合物等のアンチモン系化合物;Fe−Si化合物、Ge−Si化合物、Mn−Si化合物、Mg−Si化合物等のシリコン系化合物;六ホウ化物等のホウ素化合物、クラスレート化合物等のガリウム系化合物;ホイスラー化合物、Alクラスレート化合物等のアルミニウム系化合物;ハーフホイスラー金属間化合物等の錫系・希土類系化合物;Co酸化物、Ti酸化物、V酸化物、Zn酸化物等の金属酸化物系;等が挙げられる。
上記無機熱電変換材料は、不純物を加えて、極性(p型、n型)や導電率を制御して利用しても良い。
(Inorganic thermoelectric conversion material)
The inorganic thermoelectric conversion material is not particularly limited, but examples thereof include tellurium-based compounds such as Bi-Te compounds, Pb-Te compounds, and Sb-Te compounds; Co-Sb compounds, Fe-Sb compounds, Zn-Sb compounds, and scut Antimony compounds such as terdite compounds; Silicon compounds such as Fe-Si compounds, Ge-Si compounds, Mn-Si compounds, Mg-Si compounds; Boron compounds such as hexaboride; Gallium compounds such as clathrate compounds Aluminum compounds such as Heusler compounds and Al clathrate compounds; tin and rare earth compounds such as half-Heusler intermetallic compounds; metal oxides such as Co oxides, Ti oxides, V oxides, and Zn oxides; Etc.
The inorganic thermoelectric conversion material may be used by controlling the polarity (p-type, n-type) or conductivity by adding impurities.

(有機熱電変換材料)
有機熱電変換材料としては、特に限定されないが、例えば、カーボンナノチューブやフラーレン等の炭素材料、有機導電性低分子材料、有機導電性高分子等の有機導電性材料、高分子複合材料等の有機熱電変換材料、及びそれらの誘導体が挙げられる。
有機導電性材料としては、例えば、チオフェン及びその誘導体を骨格にもつポリマー;フェニレンビニレン及びその誘導体を骨格にもつポリマー;アニリン及びその誘導体を骨格にもつポリマー;ピロール及びその誘導体を骨格にもつオリゴマーやポリマー;アセチレン及びその誘導体を骨格にもつオリゴマーやポリマー;ヘプタジエン及びその誘導体を骨格にもつポリマー;フタロシアニン類及びそれらの誘導体;ジアミン類、フェニルジアミン類及びそれらの誘導体;ペンタセン及びその誘導体;ポルフィリン及びその誘導体;シアニン、キノン、ナフトキノン等の低分子;等が利用され得るが、製造性並びに大気下での安定性、電荷移動度等の観点から、ポリチオフェン及びその誘導体もしくは炭素材料が特に有利に使用できる。
(Organic thermoelectric conversion material)
The organic thermoelectric conversion material is not particularly limited, but examples thereof include carbon materials such as carbon nanotubes and fullerenes, organic conductive low-molecular materials, organic conductive materials such as organic conductive polymers, and organic thermoelectric materials such as polymer composite materials. Conversion materials and their derivatives are mentioned.
Examples of the organic conductive material include polymers having thiophene and its derivatives in the skeleton; polymers having phenylene vinylene and its derivatives in the skeleton; polymers having aniline and its derivatives in the skeleton; and oligomers having pyrrole and its derivatives in the skeleton. Polymers; oligomers and polymers having acetylene and its derivatives in the skeleton; polymers having heptadiene and its derivatives in the skeleton; phthalocyanines and their derivatives; diamines, phenyldiamines and their derivatives; pentacene and its derivatives; porphyrins and their Derivatives; low molecular weight compounds such as cyanine, quinone, and naphthoquinone; and the like can be used, but polythiophene and its derivatives or carbon materials can be particularly advantageously used from the viewpoints of manufacturability, stability in the air, charge mobility, and the like. ..

これらの熱電変換材料は、単独で用いても良く、複数の材料を組み合わせて用いることもでき、複数の材料を複合化して用いることもできる。 These thermoelectric conversion materials may be used alone, a plurality of materials may be used in combination, or a plurality of materials may be used in combination.

また、一般的に知られている熱電変換材料は、半導体としての性質を有することが多い。その場合に、p型半導体単独、n型半導体単独、又は、p型半導体とn型半導体とを組合せて使用することができる。より大きな電位差を得るために、p型半導体とn型半導体とを組合せて使用することが好ましい。 Further, generally known thermoelectric conversion materials often have properties as a semiconductor. In that case, the p-type semiconductor alone, the n-type semiconductor alone, or a combination of the p-type semiconductor and the n-type semiconductor can be used. In order to obtain a larger potential difference, it is preferable to use the p-type semiconductor and the n-type semiconductor in combination.

中でも、大面積用途やフレキシブル用途に用いる場合は、フレキシブル性及び製造容易性の観点から、印刷や塗布が可能であることが好ましく、有機熱電変換材料が好ましく用いられる。 Among them, when used for a large area application or a flexible application, it is preferable that printing or coating is possible from the viewpoint of flexibility and ease of production, and an organic thermoelectric conversion material is preferably used.

<光熱変換部>
本発明の熱電発電デバイスは、多孔質黒色顔料を含む光熱変換部を有することを特徴とする。光熱変換部に光熱変換材料である多孔質黒色顔料を含むことで、入射した光エネルギーが熱エネルギーに変換され、発電を行うことが可能となる。
<Photothermal conversion part>
The thermoelectric power generation device of the present invention is characterized by having a photothermal conversion portion containing a porous black pigment. By including the porous black pigment, which is a light-heat conversion material, in the light-heat conversion section, incident light energy is converted into heat energy, and power can be generated.

[多孔質黒色顔料]
多孔質黒色顔料を用いた光熱変換のメカニズムについて説明する。
多孔質材料は、空隙率が高いほど、空気の屈折率に近づく。すなわち、空隙率の高い多孔質材料を含む膜の屈折率は空気の屈折率である1に近づく。通常、空気層から膜に入射する光は、空気層と膜との屈折率差に応じた反射率で反射される。膜の屈折率を空気層の屈折率に近づけることにより、光の反射界面が極小化され反射率は小さくなる。また、多孔質材料として多孔質黒色顔料を使用する場合、膜中の多孔質黒色顔料が光を効果的に吸収することにより、いったん膜内に入射した光が外部に出ない構造をつくることが可能となる。
すなわち、本発明における光熱変換部とは、多孔質黒色顔料を含む低反射膜であり、低反射性を高めることで、入射した光は効率的に膜中の多孔質黒色顔料に吸収され、熱に変換される。
[Porous black pigment]
The mechanism of photothermal conversion using the porous black pigment will be described.
The higher the porosity of a porous material, the closer it is to the refractive index of air. That is, the refractive index of a film containing a porous material having a high porosity approaches 1 which is the refractive index of air. Usually, the light incident on the film from the air layer is reflected with a reflectance according to the difference in the refractive index between the air layer and the film. By bringing the refractive index of the film close to the refractive index of the air layer, the light reflection interface is minimized and the reflectance is reduced. In addition, when a porous black pigment is used as the porous material, the porous black pigment in the film effectively absorbs light, which may create a structure in which the light once entering the film does not go out. It will be possible.
That is, the photothermal conversion unit in the present invention is a low reflective film containing a porous black pigment, by increasing the low reflectivity, incident light is efficiently absorbed by the porous black pigment in the film, heat Is converted to.

本発明に使用することができる多孔質黒色顔料は、特に制限されず、カーボンブラック、黒鉛、および公知の酸化物系黒色顔料、並びに、これら黒色顔料を骨格としたエアロゲルのような形態を持つ多孔質体等を使用できる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。特に多孔質カーボンブラックを単独で使用することが好ましい。
前述したように、空隙率が高くなるほど、多孔質黒色顔料の屈折率は空気層の屈折率に近づくため、空隙率は50%以上であることが好ましく、より好ましくは75%以上である。
The porous black pigment that can be used in the present invention is not particularly limited, and carbon black, graphite, and known oxide-based black pigments, and porous materials having a morphology such as airgel having these black pigments as a skeleton. It is possible to use a body. These may be used alone or in combination of two or more. In particular, it is preferable to use the porous carbon black alone.
As described above, the higher the porosity is, the closer the refractive index of the porous black pigment is to the refractive index of the air layer. Therefore, the porosity is preferably 50% or more, more preferably 75% or more.

非多孔質黒色顔料を併用してもよいが、低反射性発現の観点から、その添加量は多孔質黒色顔料100質量部に対し、50質量部以下が好ましい。非多孔質黒色顔料は黒色を呈するものであれば特に制限されず、カーボンブラック、黒鉛、および公知の酸化物系黒色顔料等が挙げられる。 Although a non-porous black pigment may be used in combination, the addition amount thereof is preferably 50 parts by mass or less based on 100 parts by mass of the porous black pigment from the viewpoint of exhibiting low reflectivity. The non-porous black pigment is not particularly limited as long as it exhibits a black color, and examples thereof include carbon black, graphite, and known oxide-based black pigments.

空隙率は、物理ガス吸着法、tプロット法、およびBJH法等の既知の方法によって算出することができる。 The porosity can be calculated by a known method such as a physical gas adsorption method, a t plot method, and a BJH method.

多孔質黒色顔料の比表面積は、600m/g以上であることが好ましく、より好ましくは1200m/g以上である。比表面積が高いほど多孔質黒色顔料の表面に微細な凹凸が形成され、この部分に空気が多く含まれるため、低反射性の観点から望ましい。 The specific surface area of the porous black pigment is preferably 600 m 2 /g or more, more preferably 1200 m 2 /g or more. The higher the specific surface area, the finer the irregularities are formed on the surface of the porous black pigment, and this portion contains much air, which is desirable from the viewpoint of low reflectivity.

[バインダー成分]
本発明の光熱変換部は、多孔質黒色顔料の他に必要に応じてバインダー成分を含むことができる。
多孔質黒色顔料とバインダー成分との占有体積比率は、50:50〜100:0であることが好ましく、より好ましくは65:35〜100:0であり、特に好ましくは85:15〜95:5である。50:50の比率より多く多孔質黒色顔料が配合されることで、膜の屈折率を低下させることができ、低反射性を発現できる。さらに65:35の比率より多く多孔質黒色顔料が配合されることで、より一層の膜の低屈折率を達成でき、反射率を大きく低下させることが可能となる。また、上記比率内でバインダー成分を添加することで膜の強度を良好とすることができる
[Binder component]
The photothermal conversion part of the present invention may contain a binder component, if necessary, in addition to the porous black pigment.
The occupied volume ratio of the porous black pigment and the binder component is preferably 50:50 to 100:0, more preferably 65:35 to 100:0, and particularly preferably 85:15 to 95:5. Is. By mixing the porous black pigment in an amount of more than 50:50, the refractive index of the film can be lowered and low reflectivity can be exhibited. Further, by mixing the porous black pigment in a ratio of more than 65:35, it is possible to achieve a further lower refractive index of the film and significantly reduce the reflectance. Further, the strength of the film can be improved by adding the binder component within the above ratio.

各成分の占有体積比率は、各成分の質量と比重から理論的に求めることができる。なお、多孔質黒色顔料以外の成分の比重は、「1(g/cm)」と概算する。
例えば、多孔質黒色顔料の占有体積比率は、以下のようにして理論的に求めることができる。
(1)多孔質黒色顔料の体積=質量(g)÷(1−空隙率)
例えば、空隙率が80%の多孔質黒色顔料1gの占める体積は、
1(g)÷(1−0.8)(g/cm)=5cm
(2)多孔質黒色顔料以外の成分の体積=質量(g)÷1(g/cm
例えば、バインダー成分1gの占める体積は、
1(g)÷1(g/cm)=1cm
多孔質黒色顔料をA(g)、バインダー成分をB(g)用いる場合、両者の占有体積比は、(1)×A:(2)×Bとなる。
The occupied volume ratio of each component can be theoretically obtained from the mass and specific gravity of each component. The specific gravity of components other than the porous black pigment is estimated to be “1 (g/cm 3 )”.
For example, the occupied volume ratio of the porous black pigment can be theoretically obtained as follows.
(1) Volume of porous black pigment=mass (g)/(1-porosity)
For example, the volume occupied by 1 g of a porous black pigment having a porosity of 80% is
1(g)÷(1-0.8)(g/cm 3 )=5 cm 3
(2) porous black pigment other than the component volume = mass (g) ÷ 1 (g / cm 3)
For example, the volume occupied by 1 g of the binder component is
1 (g)÷1 (g/cm 3 )=1 cm 3
When A(g) is used as the porous black pigment and B(g) is used as the binder component, the occupied volume ratio of both is (1)×A:(2)×B.

本発明に使用することができるバインダー成分は特に制限されず、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、ウレタンウレア樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン−アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ギルソナイト、スチレン−無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル/酢酸ビニル共重合体樹脂、塩化ビニル/酢酸ビニル/マレイン酸共重合体樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、エチレン/ビニルアルコール樹脂、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、および塩素化ポリウレタン樹脂等が挙げられる。 The binder component that can be used in the present invention is not particularly limited, and examples thereof include polyurethane resin, polyester resin, polyester urethane resin, urethane urea resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic. Resin, styrene resin, nitrocellulose, benzyl cellulose, cellulose (tri)acetate, casein, shellac, gilsonite, styrene-maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyacetic acid Vinyl resin, ethylene vinyl acetate resin, vinyl chloride/vinyl acetate copolymer resin, vinyl chloride/vinyl acetate/maleic acid copolymer resin, fluororesin, silicone resin, epoxy resin, phenoxy resin, phenol resin, maleic acid resin, Urea resin, melamine resin, benzoguanamine resin, ketone resin, petroleum resin, rosin, rosin ester, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose. , Carboxymethylethyl cellulose, carboxymethyl nitrocellulose, ethylene/vinyl alcohol resin, polyolefin resin, chlorinated polyolefin resin, modified chlorinated polyolefin resin, and chlorinated polyurethane resin.

本発明には必要に応じて、硬化剤を使用することができる。使用できる硬化剤は特に制限されず、ポリイソシアネートおよびエポキシ樹脂等が挙げられる。 In the present invention, a curing agent can be used if necessary. The curing agent that can be used is not particularly limited, and examples thereof include polyisocyanate and epoxy resin.

バインダー成分として、オリゴマーおよび/またはモノマーを含む電子線または紫外線硬化性材料を用いてもよい。
単官能モノマーとしては特に制限されず、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ラウリル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、インデシル(メタ)アクリレート、イソクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、エトキシ化ノニフェノール(メタ)アクリレート、プロポキシ化ノニルフェノール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレン(メタ)アクリレート、エチレンオキサイド変性ノニルフェニル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エチレンオキサイド2−エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、およびジプロピレングリコール(メタ)アクリレート等が挙げられる。
本明細書において、「(メタ)アクリレート」はメタクリレートおよびアクリレートを意味し、「(メタ)アクリロイル」はメタクリロイルおよびアクリロイルを意味する。
An electron beam or ultraviolet ray curable material containing an oligomer and/or a monomer may be used as the binder component.
The monofunctional monomer is not particularly limited, and 2-(2-ethoxyethoxy)ethyl (meth)acrylate, stearyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, lauryl (meth)acrylate, 2-phenoxyethyl (meth ) Acrylate, indecyl (meth)acrylate, isooctyl (meth)acrylate, tridecyl (meth)acrylate, caprolactone (meth)acrylate, 4-hydroxybutyl (meth)acrylate, ethoxylated noniphenol (meth)acrylate, propoxylated nonylphenol (meth) ) Acrylate, phenoxyethyl (meth)acrylate, phenoxydiethylene (meth)acrylate, ethylene oxide-modified nonylphenyl (meth)acrylate, methoxytriethylene glycol (meth)acrylate, ethylene oxide 2-ethylhexyl (meth)acrylate, isobornyl (meth) Examples thereof include acrylate and dipropylene glycol (meth)acrylate.
In the present specification, “(meth)acrylate” means methacrylate and acrylate, and “(meth)acryloyl” means methacryloyl and acryloyl.

二官能モノマーとしては、1 ,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、(水素化)ビスフェノールAジ(メタ)アクリレート、(水素化)エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、(水素化)プロピレングリコール変性ビスフェノールAジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、2−エチル,2−ブチル−プロパンジオールジ(メタ)アクリレート、および1,9−ノナンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional monomer include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di. (Meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, (hydrogenated) bisphenol A di(meth)acrylate , (Hydrogenated) ethylene oxide modified bisphenol A di(meth)acrylate, (hydrogenated) propylene glycol modified bisphenol A di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-ethyl, 2-butyl -Propanediol di(meth)acrylate, and 1,9-nonanediol di(meth)acrylate.

多官能モノマーとしては、トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性グリセリルトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパン(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパン(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルイソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタ(メタ)アクリレートエステル、およびジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional monomer include tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, and propylene oxide-modified glyceryltri. (Meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane(meth)acrylate, ethylene oxide modified trimethylolpropane(meth)acrylate, propylene oxide modified trimethylolpropane(meth)acrylate, tris(meth)acryloyloxyethyl Isocyanurate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol hydroxypenta(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, penta(meth)acrylate ester, and dipenta Examples thereof include erythritol hexa(meth)acrylate.

ラジカル重合性の架橋成分を、紫外線を用いて架橋させる場合に用いられる光重合開始剤としては特に制限されず、例えば、アセトフェノン類、ベンゾフェノン類、チオキサントン類、芳香族ジアゾニウム塩、およびメタロセン等が挙げられる。重合促進剤として、アミン類およびホスフィン類等を併用してもよい。電子線を用いて架橋させる場合にはこれらを配合しなくてもよい。
カチオン反応性の成分を、紫外線を用いて架橋させる場合に用いられるカチオン系開始剤としては、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩、ルイス酸のホスホニウム塩、その他のハロゲン化物、トリアジン系開始剤、ボーレート系開始剤、およびその他の光酸発生剤等が挙げられる。電子線を用いて架橋させる場合にはこれらを配合しなくてもよい。
Radical polymerizable cross-linking component, is not particularly limited as a photopolymerization initiator used when cross-linked using ultraviolet rays, for example, acetophenones, benzophenones, thioxanthones, aromatic diazonium salts, and metallocenes. To be As the polymerization accelerator, amines and phosphines may be used in combination. When crosslinking is performed using an electron beam, these may not be blended.
Cationic reactive components, as the cationic initiator used when cross-linked using ultraviolet rays, diazonium salts of Lewis acids, iodonium salts of Lewis acids, sulfonium salts of Lewis acids, phosphonium salts of Lewis acids, other Examples thereof include halides, triazine-based initiators, borate-based initiators, and other photoacid generators. When crosslinking is performed using an electron beam, these may not be blended.

これらバインダー樹脂、オリゴマー、およびモノマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。 These binder resins, oligomers, and monomers can be used alone or in combination of two or more.

また、フレキシブル性を有する熱電発電デバイスとして使用する場合、加工時や搬送時の割れを抑制するために、柔軟性や引張強度が求められる。このような諸物性を発現するためには、バインダー成分として、塗膜形成が容易であることから熱可塑性樹脂を好ましく使用できる。熱可塑性樹脂としては、塩化ビニル系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン系樹脂、エチレン酢酸ビニル共重合、スチレン・ブタジエン系樹脂、ポリスチレン系樹脂、ポリブタジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリカーボネート系樹脂等が挙げられる。 Further, when used as a thermoelectric power generation device having flexibility, flexibility and tensile strength are required in order to suppress cracking during processing and transportation. In order to express such various physical properties, a thermoplastic resin can be preferably used as a binder component because it is easy to form a coating film. As the thermoplastic resin, vinyl chloride resin, acrylic resin, urethane resin, olefin resin, ethylene vinyl acetate copolymer, styrene-butadiene resin, polystyrene resin, polybutadiene resin, polyester resin, polyamide resin , Polyimide resin, polycarbonate resin, polycarbonate resin, and the like.

光熱変換部はさらに、顔料分散剤、界面活性剤、カップリング剤、または顔料誘導体を含有していてもよい。顔料誘導体とは、カラーインデックスに記載されている有機顔料の残基に特定の置換基を導入したものである。 The photothermal conversion section may further contain a pigment dispersant, a surfactant, a coupling agent, or a pigment derivative. The pigment derivative is one in which a specific substituent is introduced into the residue of the organic pigment described in the color index.

光熱変換部には必要に応じて、難燃剤、充填剤、およびその他各種添加剤を含むことができる。難燃剤としては例えば、水酸化アルミニウム、水酸化マグネシウム、およびリン酸化合物等が挙げられる。
添加剤として例えば、基材密着性を高めるためのカップリング剤、吸湿時または高温時の信頼性を高めるためのイオン捕捉剤または酸化防止剤、およびレベリング剤等が挙げられる。
A flame retardant, a filler, and other various additives can be contained in the light-to-heat conversion part, if necessary. Examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, phosphoric acid compounds and the like.
Examples of the additive include a coupling agent for increasing the adhesion of the substrate, an ion scavenger or an antioxidant for increasing the reliability when absorbing moisture or at high temperature, and a leveling agent.

<光熱変換部の製造>
多孔質黒色顔料を含む光熱変換部の製造方法は特に限定されないが、例えば、多孔質黒色顔料と、バインダー成分と、分散媒とを含む光熱変換部形成用組成物を塗工・乾燥することで製造することができる。光熱変換部形成用組成物は、多孔質黒色顔料の平均粒子径を適切な大きさに制御するために、塗工する前の工程で分散機を用いて分散しても良い。
<Manufacture of photothermal conversion part>
The method for producing the light-heat conversion section containing a porous black pigment is not particularly limited, but for example, by coating and drying a composition for forming a light-heat conversion section containing a porous black pigment, a binder component, and a dispersion medium. It can be manufactured. The composition for forming a photothermal conversion portion may be dispersed using a disperser in a step before coating in order to control the average particle diameter of the porous black pigment to an appropriate size.

[分散媒]
光熱変換部形成用組成物は、多孔質黒色顔料を分散するための分散媒を含むことが好ましい。使用する分散媒としては、25℃で液状の媒体が好ましい。具体的には、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、およびプロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤;メタノール、エタノール、n−プロパノール、イソプロパノール、およびn−ブタノール等のアルコール系溶剤;ベンゼン、トルエン、およびキシレン等の芳香族系溶剤;アセトン、メチルエチルケトン、ジイソプロピルケトン、およびシクロヘキサノン等のケトン系溶剤;n−オクタン等の炭化水素系溶剤等の公知の溶剤等が挙げられる。これらは、1種を単独でまたは複数種を組み合わせて使用できる。
[Dispersion medium]
It is preferable that the composition for forming a photothermal conversion portion contains a dispersion medium for dispersing the porous black pigment. The dispersion medium used is preferably a liquid medium at 25°C. Specifically, ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, and propylene glycol monomethyl ether acetate; alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol. Aromatic solvents such as benzene, toluene, and xylene; ketone solvents such as acetone, methyl ethyl ketone, diisopropyl ketone, and cyclohexanone; known solvents such as hydrocarbon solvents such as n-octane. These can be used individually by 1 type or in combination of 2 or more types.

光熱変換部形成用組成物は、様々な方法で得ることができる。例えば、多孔質黒色顔料を分散媒に分散する方法;多孔質黒色顔料を分散媒に分散した分散液に、バインダー成分、または、バインダー成分を分散媒に溶解したバインダー溶液を添加する方法;バインダー成分を分散媒に溶解したバインダー溶液に多孔質黒色顔料を分散する方法が挙げられる。 The composition for forming a photothermal conversion portion can be obtained by various methods. For example, a method of dispersing a porous black pigment in a dispersion medium; a method of adding a binder component or a binder solution in which a binder component is dissolved in a dispersion medium to a dispersion liquid in which a porous black pigment is dispersed in a dispersion medium; A method in which a porous black pigment is dispersed in a binder solution in which is dissolved in a dispersion medium is used.

光熱変換部形成用組成物を得る際、使用できる分散機としては特に制限はなく、例えば、ニーダー;アトライター;ボールミル;ガラスビーズおよびジルコニアビーズ等を使用したサンドミル、スキャンデックス、アイガーミル、ペイントコンディショナー、およびペイントシェイカー等のメディア分散機;コロイドミル等が使用できる。 There are no particular restrictions on the disperser that can be used when obtaining the composition for forming a light-to-heat conversion portion, and examples thereof include a kneader; an attritor; a ball mill; a sand mill using glass beads and zirconia beads, a scandex, an Eiger mill, a paint conditioner, A media disperser such as a paint shaker and a colloid mill can be used.

光熱変換部形成用組成物の多孔質黒色顔料の平均分散粒子径(d50)は、0.3〜5μmであることが好ましい。d50が0.3μm以上の光熱変換部形成用組成物を用いることで、膜の表面粗さパラメーターであるRt及びRaを充分に大きくすることができ、正反射率と散乱反射率の両方を小さくすることができ、高い光熱変換機能を示す。d50が5μm以下の光熱変換部形成用組成物を用いることで、表面粗さが大きくなりすぎず(すなわち、Rt、Raが過大にならず)、膜を適度に平滑にでき、散乱反射率を小さくすることが可能となる。 The average dispersed particle diameter (d50) of the porous black pigment of the composition for forming a light-heat conversion portion is preferably 0.3 to 5 μm. By using the composition for forming a photothermal conversion part having a d50 of 0.3 μm or more, the surface roughness parameters Rt and Ra of the film can be sufficiently increased, and both regular reflectance and scattered reflectance can be reduced. Can exhibit high photothermal conversion function. By using the composition for forming a photothermal conversion part having a d50 of 5 μm or less, the surface roughness does not become too large (that is, Rt and Ra do not become excessive), the film can be appropriately smoothed, and the scattering reflectance can be improved. It is possible to make it smaller.

光熱変換部形成用組成物の平均分散粒子径(d50)は、レーザー回折・散乱式の粒子径分布測定装置、例えば、マイクロトラックMT3000II(マイクロトラック・ベル社製)を用いて求められる。測定は、分散液に用いた分散媒を用いて希釈したサンプルに対して、25℃で行う。 The average dispersed particle diameter (d50) of the composition for forming the light-heat conversion portion is obtained by using a laser diffraction/scattering particle diameter distribution measuring device, for example, Microtrac MT3000II (manufactured by Microtrac Bell). The measurement is performed at 25° C. on the sample diluted with the dispersion medium used for the dispersion liquid.

光熱変換部は、前述の通り多孔質黒色顔料を含むものであり、低反射性を発揮し光熱変換性を高めるために、光熱変換部の熱電変換部と接していない面の表面粗さパラメーターRt及びRaのうち、Rtが0.15〜5μmであり、0.15〜2μmであることがより好ましい。Rtが0.15μm以上であることで、膜表面の凸部が充分な大きさを有し、正反射を低減させることができる。Rtが5μm以下であることで、散乱反射を低下させることができ、かつ外観上平滑感がある膜が得られる。Rtが2μm以下であることで、正反射と散乱反射を低減することができる。
Raは0.01〜0.5μmであることが好ましく、0.01〜0.15μmであることがより好ましい。Raが0.01μm以上であることで、膜表面の凸部が充分な大きさを有し、正反射を低減させることができる。Raが0.5μm以下であることで、散乱反射を低下させることができ、かつ外観上平滑感がある膜が得られる。Raが0.15μm以下であることで、正反射と散乱反射を低減することができる。
本来、正反射と散乱反射はトレードオフの関係にあるものが、Rt、Raを適切な値とすることでトレードオフの関係を解消することができ、高い低反射性、すなわち光熱変換機能を示す。
The photothermal conversion part contains the porous black pigment as described above, and in order to exhibit low reflectivity and enhance photothermal conversion, the surface roughness parameter Rt of the surface of the photothermal conversion part which is not in contact with the thermoelectric conversion part. And Ra, Rt is 0.15 to 5 μm, and more preferably 0.15 to 2 μm. When Rt is 0.15 μm or more, the projections on the film surface have a sufficient size, and specular reflection can be reduced. When Rt is 5 μm or less, scattered reflection can be reduced, and a film having a smooth appearance can be obtained. When Rt is 2 μm or less, specular reflection and scattered reflection can be reduced.
Ra is preferably 0.01 to 0.5 μm, and more preferably 0.01 to 0.15 μm. When Ra is 0.01 μm or more, the projections on the film surface have a sufficient size, and specular reflection can be reduced. When Ra is 0.5 μm or less, scattered reflection can be reduced, and a film having a smooth appearance can be obtained. When Ra is 0.15 μm or less, specular reflection and scattered reflection can be reduced.
Originally, there is a trade-off relationship between specular reflection and scattered reflection, but the trade-off relationship can be eliminated by setting Rt and Ra to appropriate values, and high low reflectivity, that is, a photothermal conversion function is exhibited. ..

光熱変換部の粗さパラメーターであるRt及びRaは、JIS B0601:2001に準拠した方法で測定した値を示す。Rtは粗さ曲線の最大断面高さを表し、評価長さにおける輪郭曲線の山高さZpの最大値と谷深さZvの最大値との和であり、次の式によって求められる値である。Raは算術平均粗さを表し、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分について、平均線の方向にX軸を、縦倍率の方向にZ軸を取り、粗さ曲線を式:Z=f(x)で表したときに、次の式によって求められる値である。 Rt and Ra, which are roughness parameters of the photothermal conversion section, represent values measured by a method according to JIS B0601:2001. Rt represents the maximum cross-sectional height of the roughness curve, and is the sum of the maximum value of the peak height Zp and the maximum value of the valley depth Zv of the contour curve in the evaluation length, and is a value obtained by the following formula. Ra represents the arithmetic mean roughness, and only the reference length is extracted from the roughness curve in the direction of the average line, and the X-axis is taken in the direction of the average line and the Z-axis is taken in the direction of longitudinal magnification for this extracted portion. When the roughness curve is expressed by the formula: Z=f(x), it is a value obtained by the following formula.

光熱変換部の、熱電変換部と接していない面の400〜700nmにおける正反射率の最大値は、0.8%以下であることが好ましく、より好ましくは0.4%以下、さらに好ましくは0.1%以下である。正反射率が0.8%以下であることで、低反射性が発現し、光熱変換効率が高くなる。
また、光熱変換部の、熱電変換部と接していない面の400〜700nmにおける散乱反射率の最大値は、2%以下であることが好ましく、より好ましくは1.3%以下、さらに好ましくは0.9%以下である。散乱反射率が2%以下であることで、低反射性が発現し、高い光熱変換機能を示す。
The maximum value of the regular reflectance at 400 to 700 nm of the surface of the photothermal conversion portion that is not in contact with the thermoelectric conversion portion is preferably 0.8% or less, more preferably 0.4% or less, and further preferably 0. It is less than 1%. When the regular reflectance is 0.8% or less, low reflectivity is exhibited and the photothermal conversion efficiency is increased.
Further, the maximum value of the scattering reflectance at 400 to 700 nm of the surface of the photothermal conversion portion which is not in contact with the thermoelectric conversion portion is preferably 2% or less, more preferably 1.3% or less, and further preferably 0. It is below 9%. When the scattering reflectance is 2% or less, low reflectivity is exhibited and a high light-heat conversion function is exhibited.

光熱変換部の正反射率および散乱反射率は、分光測色計(例えば、コニカミノルタ株式会社製、CM−700d)を用いて測定される。正反射率とは、入射光に対する正反射光の割合であり、正反射光は、全反射光から散乱反射光を除外した反射光である。散乱反射率とは、入射光に対する散乱反射光(拡散光)の割合であり、散乱反射光(拡散光)とは、全反射光から正反射光を除外した反射光である。 The regular reflectance and scattered reflectance of the photothermal conversion unit are measured using a spectrocolorimeter (for example, CM-700d manufactured by Konica Minolta Co., Ltd.). The specular reflectance is the ratio of specular reflected light to incident light, and specular reflected light is reflected light obtained by removing scattered reflected light from total reflected light. The scattered reflectance is a ratio of scattered reflected light (diffused light) to incident light, and the scattered reflected light (diffused light) is reflected light obtained by removing specular reflected light from total reflected light.

光熱変換部形成用組成物は、グラビア印刷、フレキソ印刷、インクジェット印刷、コーター塗工、スプレー塗工、およびスピンコーター塗工等の既知の方式で塗工することができる。具体的には例えば、本発明の光熱変換部は、上記光熱変換部形成用組成物を、基材の一主面上に、ロールコート法、スピンコート法、ディップコート法、スプレーコート法、バーコート法、スリットコート法、スリットスピンコート法、フローコート法、およびダイコート法等の各種塗工法により塗工して塗工膜を形成し、この塗工膜から有機溶媒等の分散媒を揮発等により除去して膜を形成し、必要に応じてこの膜を硬化処理することにより、容易に得ることができる。 The composition for forming a light-heat converting portion can be applied by a known method such as gravure printing, flexographic printing, inkjet printing, coater coating, spray coating, and spin coater coating. Specifically, for example, the light-heat conversion part of the present invention comprises the composition for forming a light-heat conversion part formed on one main surface of a substrate by a roll coating method, a spin coating method, a dip coating method, a spray coating method, a bar. A coating film is formed by applying various coating methods such as coating method, slit coating method, slit spin coating method, flow coating method, and die coating method, and a dispersion medium such as an organic solvent is volatilized from the coating film. It can be easily obtained by removing the above to form a film, and curing the film if necessary.

また、光熱変換部を、剥離基材の上に塗工、乾燥させた後に、熱電変換部と直接若しくは粘着層を介して貼り合せ、ラミネート、熱プレス等、圧着若しくは熱圧着することもできる。剥離性基材としては、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、及びポリイミドフィルム等の樹脂フィルムに離型処理したものが挙げられる。 In addition, after the photothermal conversion section is coated on the release substrate and dried, it may be bonded to the thermoelectric conversion section directly or via an adhesive layer, and laminated by pressure, thermocompression or the like. Examples of the releasable substrate include those obtained by subjecting a resin film such as a polyester film, a polyethylene film, a polypropylene film, and a polyimide film to a release treatment.

光熱変換部の厚みは、用途に応じて適宜選択できるが、好ましくは0.3μm以上であり、より好ましくは1μm以上である。膜厚が0.3μm以上であると、光熱変換部中の多孔質黒色顔料の含有量が、良好な低反射性を発現するのに十分な量となる。 The thickness of the photothermal conversion portion can be appropriately selected depending on the application, but is preferably 0.3 μm or more, more preferably 1 μm or more. When the film thickness is 0.3 μm or more, the content of the porous black pigment in the photothermal conversion portion is an amount sufficient to exhibit good low reflectivity.

<熱電発電デバイス>
本発明の熱電発電デバイスは、基材上に、少なくとも熱電変換材料を含む熱電変換部、及び、多孔質黒色顔料を含む光熱変換部をこの順に有し、光熱変換部と接している高温側と、光熱変換部と接していない低温側とが電気的に接続している。光熱変換部から放出された熱エネルギーは、熱電変換部に伝わり、熱電変換部の光熱変換部と接する高温側の熱電変換部と、光熱変換部と接していない低温側の熱電変換部で生じた温度差により起電力が得られる。
<Thermoelectric power generation device>
The thermoelectric power generation device of the present invention, on the base material, at least a thermoelectric conversion portion containing a thermoelectric conversion material, and a photothermal conversion portion containing a porous black pigment in this order, the high temperature side in contact with the photothermal conversion portion. , The photothermal conversion unit is electrically connected to the low temperature side not in contact with the photothermal conversion unit. The thermal energy emitted from the photothermal conversion section is transmitted to the thermoelectric conversion section, and is generated in the thermoelectric conversion section on the high temperature side in contact with the photothermal conversion section of the thermoelectric conversion section and the thermoelectric conversion section on the low temperature side not in contact with the photothermal conversion section. An electromotive force is obtained due to the temperature difference.

ここで、「電気的に接続する」とは、互いに接合しているか、又は、ワイヤ等の他の構成部材を介して通電できる状態であることを意味する。接続の形態に関しては特に制限されないが、例えば、熱電変換材料を用いて得た熱電変換部と電気的に接続する一対の電極を介して接続することができる。 Here, “electrically connected” means being in a state in which they are joined to each other or can be energized via another component such as a wire. The form of connection is not particularly limited, but the connection can be made, for example, via a pair of electrodes that are electrically connected to the thermoelectric conversion portion obtained by using the thermoelectric conversion material.

電極の材料は、炭素材料、金属、合金、及び半導体から選択することができる。導電率が高いこと、熱電変換材料との接触抵抗が低いことから、金属及び合金が好ましい。金属及び合金の種類は特に制限されないが、例えば、金、銀、銅、及びアルミニウムからなる群から選択される少なくとも1種を含むことが好ましく、銀を含むことが特に好ましい。 The material of the electrodes can be selected from carbon materials, metals, alloys, and semiconductors. Metals and alloys are preferable because of their high conductivity and low contact resistance with the thermoelectric conversion material. The type of metal and alloy is not particularly limited, but for example, it is preferable to contain at least one selected from the group consisting of gold, silver, copper, and aluminum, and it is particularly preferable to contain silver.

電極は、真空蒸着法、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料の微粒子を分散したペーストの塗布等の方法によって形成することができる。プロセスが簡便な観点で、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料を分散したペーストの塗布による形成方法が好ましい。 The electrode can be formed by a method such as a vacuum vapor deposition method, thermocompression bonding of an electrode material foil or a film having an electrode material film, and application of a paste in which fine particles of the electrode material are dispersed. From the viewpoint of simple process, a forming method by thermocompression bonding of a film having an electrode material foil or a film having an electrode material film and application of a paste in which an electrode material is dispersed is preferable.

また、本発明の熱電発電デバイスは、基材上に、少なくとも、熱電変換材料を含む熱電変換部、及び多孔質黒色顔料を含む光熱変換部をこの順に有していればよく、各部材の間に別の部材や層を設けてもよい。例えば、基材と熱電変換部との間にプライマー層等を設けてもよいし、熱電変換部と光熱変換部とが、前述のように、熱エネルギーの伝導を妨げない範囲で、粘着層等の間接層を介して接していてもよい。 Further, the thermoelectric power generation device of the present invention may have at least a thermoelectric conversion part containing a thermoelectric conversion material and a photothermal conversion part containing a porous black pigment on the base material in this order, and between each member. Further, another member or layer may be provided. For example, a primer layer or the like may be provided between the base material and the thermoelectric conversion unit, and the thermoelectric conversion unit and the photothermal conversion unit are, as described above, within a range that does not hinder the conduction of heat energy, etc. May be in contact with each other via the indirect layer.

[基材]
基材としては、特に限定されるものではないが、例えば、ガラス基材、プラスチック基材のほか、金属基材、紙基材、木基材(木製基材)、石基材、布基材、皮革基材等を上げることができる。また、その形状としては、平板、フィルム状、シート状、立体形状、繊維上等が挙げられ、用途や使用条件に基づいて適宜選択することができる。
熱源への追従性やセンサーとして使用する際の装着感等を考慮すると、基材は可撓性を有するフレキシブル基材であることが好ましい。
[Base material]
The base material is not particularly limited, and examples thereof include glass base materials, plastic base materials, metal base materials, paper base materials, wood base materials (wood base materials), stone base materials, cloth base materials, and leather. The base material etc. can be raised. The shape may be a flat plate, a film shape, a sheet shape, a three-dimensional shape, a fiber shape, or the like, and can be appropriately selected based on the application and use conditions.
The base material is preferably a flexible base material having flexibility in consideration of the ability to follow the heat source and the feeling of wearing when used as a sensor.

また、本発明の熱電発電デバイスは、熱電変換部の低温側から効率良く熱を逃がすことで高温側と低温側との温度差を保ち、発電効率を上げる目的で、低温側にヒートシンク機能を持たせてよい。ヒートシンク機能を持たせる方法について、特に制限はないが、伝熱特性の良いアルミニウム、鉄、銅等の金属を用いたフィン等の空冷構造を有する部材や水冷部材を接触もしくは貼り付ける方法、また、酸化アルミニウムなど放熱機能を有するフィラーが樹脂中に分散した、放熱シートや放熱塗料等を塗布又は貼り付ける方法等が挙げられる。 Further, the thermoelectric power generation device of the present invention has a heat sink function on the low temperature side for the purpose of increasing the power generation efficiency by keeping the temperature difference between the high temperature side and the low temperature side by efficiently releasing heat from the low temperature side of the thermoelectric conversion section. You can let me. The method of providing a heat sink function is not particularly limited, but a method of contacting or pasting a member having an air cooling structure such as fins using a metal such as aluminum, iron, or copper having good heat transfer characteristics or a water cooling member, or Examples include a method of applying or sticking a heat dissipation sheet, heat dissipation paint, or the like in which a filler having a heat dissipation function such as aluminum oxide is dispersed in a resin.

また、熱電変換材料は、直列に接続することで高い電圧を発生させることが可能となり、並列に接続することで大きな電流を発生させることが可能となる。同様に、熱電変換部を2つ以上接続して使用することもできる。 Further, the thermoelectric conversion material can generate a high voltage when connected in series, and can generate a large current when connected in parallel. Similarly, two or more thermoelectric conversion units can be connected and used.

以下、本発明の代表的な一例による熱電発電デバイスについて、図1〜図5を用いて説明する。 Hereinafter, a thermoelectric power generation device according to a typical example of the present invention will be described with reference to FIGS. 1 to 5.

図1は、本発明による熱電発電デバイスを示す断面図である。熱電変換デバイス100は、基材110上に、熱電変換部120、及び多孔質黒色顔料131を含む光熱変換部130を有し、熱電変換部120は、光熱変換部と接している高温側120aと、光熱変換部と接していない低温側120bとを有し、高温側120aと低温側120bとが、電気的に接続している。 FIG. 1 is a sectional view showing a thermoelectric power generation device according to the present invention. The thermoelectric conversion device 100 has a thermoelectric conversion section 120 and a photothermal conversion section 130 containing a porous black pigment 131 on a base material 110. The thermoelectric conversion section 120 has a high temperature side 120a in contact with the photothermal conversion section. , The low-temperature side 120b that is not in contact with the photothermal conversion portion, and the high-temperature side 120a and the low-temperature side 120b are electrically connected.

図2及び図3は、本発明による熱電発電デバイスを示す断面図であり、基材110と熱電変換部120との間、熱電変換部120と光熱変換部130との間に、電極140を有しており、電極を介して高温側120aと低温側120bとが電気的に接続している。 2 and 3 are cross-sectional views showing a thermoelectric power generation device according to the present invention, in which an electrode 140 is provided between the base material 110 and the thermoelectric conversion unit 120, and between the thermoelectric conversion unit 120 and the photothermal conversion unit 130. Therefore, the high temperature side 120a and the low temperature side 120b are electrically connected via the electrodes.

図4は、本発明による熱電発電デバイスを示す平面図である。熱電変換デバイス100は、基材110上に、複数の熱電変換部120、及び光熱変換部130を有し、複数の熱電変換部120は、それぞれ、光熱変換部と接している高温側120aと、光熱変換部と接していない低温側120bとを有し、第1の熱電変換部120における高温側120aと、第2の熱電変換部120における低温側120bとが電気的に接続し、それらが複数直列に接続している。 FIG. 4 is a plan view showing a thermoelectric power generation device according to the present invention. The thermoelectric conversion device 100 has a plurality of thermoelectric conversion units 120 and a photothermal conversion unit 130 on a base material 110, and the plurality of thermoelectric conversion units 120 each have a high temperature side 120a in contact with the photothermal conversion unit, It has a low temperature side 120b that is not in contact with the photothermal conversion unit, and the high temperature side 120a in the first thermoelectric conversion unit 120 and the low temperature side 120b in the second thermoelectric conversion unit 120 are electrically connected, and they are plural. They are connected in series.

図5は、本発明による熱電発電デバイスを示す断面図である。熱電変換デバイス100は、基材110上に、熱電変換部120、及び光熱変換部130を有し、熱電変換部120は屈曲し、光熱変換部と接している高温側120aと、光熱変換部と接していない低温側120bとを有し、高温側120aと低温側120bとが、電気的に接続している。 FIG. 5 is a sectional view showing a thermoelectric power generation device according to the present invention. The thermoelectric conversion device 100 has a thermoelectric conversion part 120 and a photothermal conversion part 130 on a base material 110, the thermoelectric conversion part 120 is bent, and a high temperature side 120a in contact with the photothermal conversion part and a photothermal conversion part. It has the low temperature side 120b which is not in contact, and the high temperature side 120a and the low temperature side 120b are electrically connected.

本発明の熱電変換デバイスは、高温側120aと低温側120bとの間で生じた温度差により起電力が得られる。高温側120aと低温側120bとは、熱電変換部と光熱変換部とが接することにより、熱電変換部に生じた温度差(温度勾配)であり、温度勾配の向きは、熱電変換部120の膜厚方向又は面内方向のいずれであってもよく、用途や目的に応じて適宜選択できる。
図1〜図5において、図1〜図3の温度差(温度勾配)の向きは、熱電変換部120の膜厚方向であり、図4及び図5の温度差(温度勾配)の向きは、熱電変換部120の面内方向である。
In the thermoelectric conversion device of the present invention, electromotive force is obtained due to the temperature difference between the high temperature side 120a and the low temperature side 120b. The high temperature side 120a and the low temperature side 120b are the temperature difference (temperature gradient) generated in the thermoelectric conversion section due to the contact of the thermoelectric conversion section and the photothermal conversion section, and the direction of the temperature gradient is the film of the thermoelectric conversion section 120. It may be either in the thickness direction or the in-plane direction, and can be appropriately selected depending on the application or purpose.
1 to 5, the direction of the temperature difference (temperature gradient) in FIGS. 1 to 3 is the film thickness direction of the thermoelectric conversion unit 120, and the direction of the temperature difference (temperature gradient) in FIGS. 4 and 5 is It is the in-plane direction of the thermoelectric conversion unit 120.

また、光熱変換部130は、熱電変換部120に温度差(温度勾配)を生じさせるものであり、熱電変換部の少なくとも一部分と接触していればよく、パターン形成されていてもよい。パターン形成する際は、図3のように、電極140を介して熱電変換部120上にパターンを形成してもよいし、熱電変換部120上に直接パターンを形成してもよい。 Further, the photothermal conversion unit 130 causes a temperature difference (temperature gradient) in the thermoelectric conversion unit 120, and may be in contact with at least a part of the thermoelectric conversion unit, and may be patterned. When forming a pattern, as shown in FIG. 3, the pattern may be formed on the thermoelectric conversion unit 120 via the electrode 140, or the pattern may be formed directly on the thermoelectric conversion unit 120.

100 熱電発電デバイス
110 基材
120 熱電変換部
120a 熱電変換部(光熱変換部と接している高温側)
120b 熱電変換部(光熱変換部と接していない低温側)
130 光熱変換部
131 多孔質黒色顔料
132 バインダー成分
140 電極


100 thermoelectric power generation device 110 base material 120 thermoelectric conversion part 120a thermoelectric conversion part (high temperature side in contact with the photothermal conversion part)
120b Thermoelectric converter (low temperature side not in contact with photothermal converter)
130 Photothermal conversion part 131 Porous black pigment 132 Binder component 140 Electrode


Claims (6)

基材上に、少なくとも、熱電変換材料を含む熱電変換部、及び多孔質黒色顔料を含む光熱変換部をこの順に有し、
前記熱電変換部は、前記光熱変換部と接している高温側と、前記光熱変換部と接していない低温側とを有し、
前記高温側と、前記低温側とが電気的に接続した熱電発電デバイス。
On the base material, at least, a thermoelectric conversion portion containing a thermoelectric conversion material, and a photothermal conversion portion containing a porous black pigment in this order,
The thermoelectric conversion unit has a high temperature side in contact with the photothermal conversion unit, and a low temperature side not in contact with the photothermal conversion unit,
A thermoelectric power generation device in which the high temperature side and the low temperature side are electrically connected.
前記多孔質黒色顔料のBET比表面積が600m/g以上である、請求項1に記載の熱電発電デバイス。 The thermoelectric power generation device according to claim 1, wherein the BET specific surface area of the porous black pigment is 600 m 2 /g or more. 前記光熱変換部の、熱電変換部と接していない面の表面粗さパラメーターRtが0.15〜5μmであり、Raが0.01〜0.5μmである、請求項1又は2に記載の熱電発電デバイス。 The thermoelectric converter according to claim 1 or 2, wherein a surface roughness parameter Rt of a surface of the photothermal conversion portion which is not in contact with the thermoelectric conversion portion is 0.15 to 5 µm and Ra is 0.01 to 0.5 µm. Power generation device. 前記光熱変換部の、熱電変換部と接していない面の400nm〜700nmにおける正反射率の最大値が0.8%以下であり、散乱反射率の最大値が2%以下である、請求項1〜3いずれか1項に記載の熱電発電デバイス。 The maximum value of specular reflectance at 400 nm to 700 nm of the surface of the photothermal conversion unit that is not in contact with the thermoelectric conversion unit is 0.8% or less, and the maximum value of scattering reflectance is 2% or less. The thermoelectric power generation device according to any one of to 3. 前記光熱変換部が、さらにバインダー成分を含む、請求項1〜4いずれか1項に記載の熱電発電デバイス。 The thermoelectric power generation device according to claim 1, wherein the photothermal conversion unit further contains a binder component. 前記基材がフレキシブル基材である、請求項1〜5いずれか1項に記載の熱電発電デバイス。

The thermoelectric power generation device according to claim 1, wherein the base material is a flexible base material.

JP2018245395A 2018-12-27 2018-12-27 thermoelectric generator Active JP7234627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245395A JP7234627B2 (en) 2018-12-27 2018-12-27 thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245395A JP7234627B2 (en) 2018-12-27 2018-12-27 thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2020107743A true JP2020107743A (en) 2020-07-09
JP7234627B2 JP7234627B2 (en) 2023-03-08

Family

ID=71449388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245395A Active JP7234627B2 (en) 2018-12-27 2018-12-27 thermoelectric generator

Country Status (1)

Country Link
JP (1) JP7234627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234136A (en) * 2020-09-15 2021-01-15 武汉纺织大学 High-efficiency fiber-based thermoelectric energy supply material and preparation method thereof
WO2022224879A1 (en) * 2021-04-19 2022-10-27 国立大学法人東京大学 Sensor element, and sensor device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058899A1 (en) * 2002-12-25 2004-07-15 Fuji Xerox Co., Ltd. Liquid mixture, structure, and method for forming structure
JP2009257753A (en) * 2008-04-18 2009-11-05 Qinghua Univ Solar collector and solar heating system using same
JP2010282128A (en) * 2009-06-08 2010-12-16 Fuji Xerox Co Ltd Display medium and display device
JP2012069625A (en) * 2010-09-22 2012-04-05 Panasonic Corp Pipe type photothermal power generation device
JP2012092688A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Heat collection receiver and solar power generation device
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
JP2012201589A (en) * 2011-03-28 2012-10-22 Shinshu Univ Light absorbing film, method for producing the same and solar heat collector using the same
JP2013254940A (en) * 2012-05-11 2013-12-19 Osaka Prefecture Univ Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected
JP2014095506A (en) * 2012-11-09 2014-05-22 Nagoya Univ Vaporization cooling device
JP2014522994A (en) * 2011-06-17 2014-09-08 アバリスキャン ゲーエムベーハー Positioning device and system for directing beams
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
JP2015195300A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 thermoelectric conversion material
JP2018026914A (en) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 Actuator with film structure
JP2018129512A (en) * 2014-05-08 2018-08-16 公立大学法人大阪府立大学 Assembling apparatus and assembling method, apparatus for manufacturing microscopic object assembly structure, apparatus for assembling and removing microorganism, apparatus for detecting detection target substance, apparatus for separating separation target substance, and apparatus for introducing introduction target substance
WO2018159696A1 (en) * 2017-03-03 2018-09-07 浩明 中弥 Thermoelectric conversion module provided with photothermal conversion substrate

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058899A1 (en) * 2002-12-25 2004-07-15 Fuji Xerox Co., Ltd. Liquid mixture, structure, and method for forming structure
JP2009257753A (en) * 2008-04-18 2009-11-05 Qinghua Univ Solar collector and solar heating system using same
JP2010282128A (en) * 2009-06-08 2010-12-16 Fuji Xerox Co Ltd Display medium and display device
JP2012069625A (en) * 2010-09-22 2012-04-05 Panasonic Corp Pipe type photothermal power generation device
JP2012092688A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Heat collection receiver and solar power generation device
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
JP2012201589A (en) * 2011-03-28 2012-10-22 Shinshu Univ Light absorbing film, method for producing the same and solar heat collector using the same
JP2014522994A (en) * 2011-06-17 2014-09-08 アバリスキャン ゲーエムベーハー Positioning device and system for directing beams
JP2013254940A (en) * 2012-05-11 2013-12-19 Osaka Prefecture Univ Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected
JP2014095506A (en) * 2012-11-09 2014-05-22 Nagoya Univ Vaporization cooling device
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
JP2015195300A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 thermoelectric conversion material
JP2018129512A (en) * 2014-05-08 2018-08-16 公立大学法人大阪府立大学 Assembling apparatus and assembling method, apparatus for manufacturing microscopic object assembly structure, apparatus for assembling and removing microorganism, apparatus for detecting detection target substance, apparatus for separating separation target substance, and apparatus for introducing introduction target substance
JP2018026914A (en) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 Actuator with film structure
WO2018159696A1 (en) * 2017-03-03 2018-09-07 浩明 中弥 Thermoelectric conversion module provided with photothermal conversion substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234136A (en) * 2020-09-15 2021-01-15 武汉纺织大学 High-efficiency fiber-based thermoelectric energy supply material and preparation method thereof
WO2022224879A1 (en) * 2021-04-19 2022-10-27 国立大学法人東京大学 Sensor element, and sensor device

Also Published As

Publication number Publication date
JP7234627B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
TWI541828B (en) Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
Chen et al. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites
TWI577037B (en) Process for producing electrically conductive bonds between solar cells
TWI535800B (en) Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
TWI511921B (en) Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
TWI495716B (en) Graphene dissipation structure
US8715536B2 (en) Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition
JP2015528753A (en) Base film and heating and baking method
JP7234627B2 (en) thermoelectric generator
Parchine et al. Large area colloidal photonic crystals for light trapping in flexible organic photovoltaic modules applied using a roll-to-roll Langmuir-Blodgett method
TW201511377A (en) Organic thin film solar cell and method of producing organic thin film solar cell
Han et al. Desolvation‐Triggered Versatile Transfer‐Printing of Pure BN Films with Thermal–Optical Dual Functionality
KR20180124495A (en) Structure with various patterns and manufacturing method thereoff
Chhetri et al. Flexible graphite nanoflake/polydimethylsiloxane nanocomposites with promising solar–thermal conversion performance
Wu et al. Smart window structures based on highly conductive, transparent metal nanomeshes and thermochromic perovskite films
CN112510142B (en) Boron alkene-based photo-thermal-electric conversion thin film device and preparation method thereof
EP3159944B1 (en) Photoelectronic device using hybrid structure of silica nanoparticles-graphene quantum dots and method of manufacturing the same
KR101733575B1 (en) wavelength converting film for solar cell
JP5002778B2 (en) Method for producing transparent conductive film substrate and method for producing transparent laminate
Zhong et al. Super-absorbers by randomly distributed titanium spheres
JP2020088176A (en) Electro-thermal power generation device
Liao et al. Bio‐Inspired Ultrathin Perfect Absorber for High‐Performance Photothermal Conversion
JP3408354B2 (en) Solar cell manufacturing method
JP2020181845A (en) Thermoelectric conversion member, thermoelectric conversion element, and thermoelectric conversion device
JP2012142539A (en) Back electrode tape for thin film solar cell and manufacturing method of thin film solar cell using back electrode tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R151 Written notification of patent or utility model registration

Ref document number: 7234627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151