JP2020107652A - Electric circuit board and power module - Google Patents

Electric circuit board and power module Download PDF

Info

Publication number
JP2020107652A
JP2020107652A JP2018242641A JP2018242641A JP2020107652A JP 2020107652 A JP2020107652 A JP 2020107652A JP 2018242641 A JP2018242641 A JP 2018242641A JP 2018242641 A JP2018242641 A JP 2018242641A JP 2020107652 A JP2020107652 A JP 2020107652A
Authority
JP
Japan
Prior art keywords
metal member
main surface
circuit board
electric circuit
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018242641A
Other languages
Japanese (ja)
Inventor
直樹 堀之内
Naoki Horinouchi
直樹 堀之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018242641A priority Critical patent/JP2020107652A/en
Publication of JP2020107652A publication Critical patent/JP2020107652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To improve heat radiation properties and low thermal stress properties of an electric circuit board.SOLUTION: An electric circuit board 10 comprises: an insulating substrate 1 that has a first principal surface 1A and a second principal surface 1B; a metal member 2; and a heat conduction member g1. The metal member joined to the first principal surface includes a first metal member 2A and a second metal member 2B that are separated across a gap a1 along a direction parallel to the first principal surface. The metal member joined to the second principal surface includes a third metal member 2D arranged at a position on the opposite side of the first metal member, and a fourth metal member 2E arranged at a position on the opposite side of the second metal member. The third metal member and the fourth metal member are joined to a heat conduction member arranged at a position on the opposite side of the gap. The heat conduction member (graphite) has properties including a larger thermal conductivity than that of the metal member and a smaller thermal expansivity than that of the metal member, with respect to at least a direction (X) separating the third metal member and the fourth metal member from each other.SELECTED DRAWING: Figure 1

Description

本開示は、配線材としての金属板が絶縁基板に接合された電気回路基板及びこれを用いたパワーモジュールに関するものである。 The present disclosure relates to an electric circuit board in which a metal plate as a wiring member is joined to an insulating substrate, and a power module using the electric circuit board.

従来、IGBT(Insulated Gate Bipolar Transistor)等の電子部品が搭載されたパワーモジュール等の電子装置に用いられる電気回路基板として、例えば、セラミック焼結体等からなる絶縁基板の上面に銅等の金属材料からなる金属部材(金属板)が接合された電気回路基板が用いられている。
特許文献1に記載されるように、絶縁基板と金属部材との接合は、金属部材をろう材を介して絶縁基板に積層し、ろう付けすることで行われる。
Conventionally, as an electric circuit board used for an electronic device such as a power module in which electronic components such as an IGBT (Insulated Gate Bipolar Transistor) are mounted, for example, a metal material such as copper is formed on an upper surface of an insulating substrate made of a ceramic sintered body or the like. An electric circuit board to which a metal member (metal plate) made of is bonded is used.
As described in Patent Document 1, the joining of the insulating substrate and the metal member is performed by laminating the metal member on the insulating substrate via a brazing material and brazing.

特許第2797011号公報Japanese Patent No. 2797011

近年、パワーモジュールは電気自動車等の開発を背景に小型、高出力化が要求されており、それに伴いパワーモジュール用の電気回路基板における導体厚の増大化が進んでいる。
電子部品が実装される金属板の厚肉化によって、金属板の熱膨張による熱応力の影響が大きくなる。
今後、パワーモジュールはますます小型、高出力化が求められるに伴い、金属板の厚肉化が進むとともに動作温度が上昇し熱的環境変化が激しくなる。
2. Description of the Related Art In recent years, power modules have been required to be small in size and have high output with the background of development of electric vehicles and the like, and accordingly, the thickness of conductors in electric circuit boards for power modules has been increasing.
The thickening of the metal plate on which the electronic component is mounted increases the influence of thermal stress due to the thermal expansion of the metal plate.
In the future, as power modules are required to be smaller and have higher output, the operating temperature will rise and the thermal environment will change drastically as the thickness of metal plates increases.

パワーモジュールとして図17(a)(b)に示すように、絶縁基板1の第一主面1Aにろう材3を介して金属部材2(2A,2B)が接合され、第一主面1Aの反対面である絶縁基板1の第二主面1Bにろう材3を介して金属部材2(2C)が接合された電気回路基板を含む構造を考える。第一主面1A上には、発熱部となる電子部品40が搭載される金属部材2A、他の金属部材2Bを含め回路パターンが形成される。第一主面1A上において、第一主面1Aに平行な方向に沿って金属部材2Aと金属部材2Bとが間隙a1を介して隔てられている。
一方、第二主面1B上には、金属部材2Cが設けられている。金属部材2Cは、第一主面1A側の金属部材2A、間隙a1、金属部材2Bに対する反対側の範囲に連続して設けられている。金属部材2Cを介して放熱用部品を接続するために、このように金属部材2Cは大面積に設けられる。
このような構造にあっては、電子部品40で発生した熱が、金属部材2A、ろう材3、絶縁基板1、ろう材3を介して金属部材2Cの全体に広がって伝搬しやすく、放熱用部品への熱伝導性を高めてパワーモジュールの放熱性を向上することができる。
As shown in FIGS. 17(a) and (b) as a power module, the metal member 2 (2A, 2B) is joined to the first main surface 1A of the insulating substrate 1 via the brazing material 3 to form the first main surface 1A. Consider a structure including an electric circuit board in which the metal member 2 (2C) is bonded to the second main surface 1B of the insulating substrate 1 which is the opposite surface via the brazing material 3. A circuit pattern is formed on the first main surface 1A, including a metal member 2A on which the electronic component 40 serving as a heat generating portion is mounted and another metal member 2B. On the first main surface 1A, the metal member 2A and the metal member 2B are separated by a gap a1 along a direction parallel to the first main surface 1A.
On the other hand, the metal member 2C is provided on the second main surface 1B. The metal member 2C is continuously provided in a range on the opposite side to the metal member 2A, the gap a1, and the metal member 2B on the first main surface 1A side. In order to connect the heat radiation component via the metal member 2C, the metal member 2C is thus provided in a large area.
In such a structure, the heat generated in the electronic component 40 easily spreads and propagates to the entire metal member 2C through the metal member 2A, the brazing material 3, the insulating substrate 1, and the brazing material 3 for heat dissipation. It is possible to improve the heat conductivity to the components and improve the heat dissipation of the power module.

しかし、絶縁基板1と金属部材2と熱膨張率の相違に基づき熱応力が発生する。熱応力は、まず金属部材2のろう付けの後の残留応力として発生し、またその後のパワーモジュールの動作により発生する。第一主面1A側に間隙a1があり、間隙a1に対応した第二主面1B側は金属部材2Cが連続しているという不均衡に基づき、絶縁基板1の表裏で熱応力が異なるから、絶縁基板1に反りを発生させたり、図17(b)に示すように間隙a1内のろう材3の縁位置にクラックa2を発生させたりするという不具合が生じることがある。 However, thermal stress occurs due to the difference in thermal expansion coefficient between the insulating substrate 1 and the metal member 2. The thermal stress is first generated as a residual stress after brazing the metal member 2, and is also generated by the subsequent operation of the power module. Since there is a gap a1 on the first main surface 1A side and the second main surface 1B side corresponding to the gap a1 is continuous with the metal member 2C, thermal stress differs between the front and back of the insulating substrate 1, There may be a problem that the insulating substrate 1 is warped or a crack a2 is generated at an edge position of the brazing material 3 in the gap a1 as shown in FIG. 17(b).

以上のような熱応力を低減するために、図17(c)に示すように絶縁基板1の表裏で金属部材2を同一パターンとすることが考えられる。
しかしこの場合、図17(c)に示すように発熱部である電子部品40が搭載された金属部材2Aの裏の金属部材2Dのみが主な熱伝導部となって熱伝導範囲が小面積化してしまい、放熱性が低下するという問題がある。
In order to reduce the thermal stress as described above, it is conceivable that the metal member 2 has the same pattern on the front and back of the insulating substrate 1 as shown in FIG. 17(c).
However, in this case, as shown in FIG. 17(c), only the metal member 2D on the back of the metal member 2A on which the electronic component 40, which is the heat generating portion, is mounted becomes the main heat conducting portion, and the heat conducting area is reduced in area. Therefore, there is a problem that the heat dissipation is lowered.

本開示の1つの態様の電気回路基板は、第一主面と当該第一主面の反対側の第二主面とを有する絶縁基板と、前記第一主面に接合された金属部材と、前記第二主面に接合された金属部材と、熱伝導部材とを備え、
前記第一主面に接合した前記金属部材は、前記第一主面に平行な方向に沿って間隙を介して隔てられた第一金属部材と第二金属部材とを含み、
前記第二主面に接合した前記金属部材は、前記第一金属部材に対する反対側の位置に配置された第三金属部材と、前記第二金属部材に対する反対側の位置に配置された第四金属部材とを含み、
前記第三金属部材及び前記第四金属部材は、前記間隙に対する反対側の位置に配置された前記熱伝導部材に接合し、
前記熱伝導部材は、少なくとも前記第三金属部材と前記第四金属部材とを隔てる方向について、熱伝導率が前記金属部材より大きく、熱膨張率が前記金属部材よりも小さい特性を有する。
An electric circuit board according to one aspect of the present disclosure includes an insulating substrate having a first main surface and a second main surface opposite to the first main surface, and a metal member bonded to the first main surface, A metal member joined to the second main surface, and a heat conducting member,
The metal member joined to the first main surface includes a first metal member and a second metal member separated by a gap along a direction parallel to the first main surface,
The metal member joined to the second main surface is a third metal member arranged at a position opposite to the first metal member, and a fourth metal member arranged at a position opposite to the second metal member. Including members,
The third metal member and the fourth metal member are joined to the heat conducting member arranged at a position opposite to the gap,
The heat-conducting member has characteristics that the heat conductivity is higher than that of the metal member and the coefficient of thermal expansion is lower than that of the metal member in at least the direction separating the third metal member and the fourth metal member.

本開示の電気回路基板によれば、熱伝導部材の熱伝導率が金属部材より大きい特性により、第三金属部材と第四金属部材との間の熱伝導が良好となり放熱性が向上する。また、熱伝導部材の熱膨張率が金属部材より小さい特性により、熱応力が低減する。したがって、放熱性良好で、低熱応力性の電気回路基板、これを用いたパワーモジュールが提供される。 According to the electric circuit board of the present disclosure, the heat conductivity of the heat conducting member is larger than that of the metal member, so that the heat conduction between the third metal member and the fourth metal member is good, and the heat dissipation is improved. Further, the thermal expansion coefficient of the heat conducting member is smaller than that of the metal member, so that the thermal stress is reduced. Therefore, an electric circuit board having good heat dissipation and low thermal stress, and a power module using the same are provided.

(a)は本発明の一実施形態に係る電気回路基板及び電子部品を示す断面図である。(b)は熱伝導部材であるグラファイトの配向を示す斜視図である。(a) is a sectional view showing an electric circuit board and an electronic component according to an embodiment of the present invention. (b) is a perspective view showing the orientation of graphite, which is a heat conducting member. 本発明の他の一実施形態に係る電気回路基板及び電子部品を示す断面図である。It is sectional drawing which shows the electric circuit board and electronic component which concern on other one Embodiment of this invention. 本発明の一実施形態に係る電気回路基板の平面図である。It is a top view of the electric circuit board concerning one embodiment of the present invention. 本発明の他の配線パターンの実施形態に係る電気回路基板の平面図である。ろう材の図示を省略する。It is a top view of the electric circuit board concerning the embodiment of other wiring patterns of the present invention. Illustration of the brazing material is omitted. 比較例と本発明例に係る熱分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the heat distribution which concerns on a comparative example and this invention example. 比較例と本発明例に係る応力分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the stress distribution which concerns on a comparative example and this invention example. 本発明例に係る熱分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the heat distribution which concerns on the example of this invention. 本発明例に係る応力分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the stress distribution which concerns on the example of this invention. 熱シミュレーションモデルを示す斜視図である。It is a perspective view which shows a thermal simulation model. 図9に示したモデルの各部の熱伝達率を示した表である。10 is a table showing the heat transfer coefficient of each part of the model shown in FIG. 9. 応力シミュレーションモデルの半身部分を示す斜視図である。It is a perspective view which shows the half body part of a stress simulation model. 図11に示したモデルの各部の熱膨張率、ヤング率、ポアソン比を示した表である。12 is a table showing the coefficient of thermal expansion, Young's modulus, and Poisson's ratio of each part of the model shown in FIG. 11. 本発明例に係る応力分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the stress distribution which concerns on the example of this invention. パワーモジュールの一例を示す斜視図である。It is a perspective view showing an example of a power module. (a)は図14に示すパワーモジュールの上面図であり、(b)は(a)のC−C線における断面図である。(a) is a top view of the power module shown in FIG. 14, (b) is sectional drawing in the CC line of (a). (a)および(b)は、いずれもパワーモジュールの他の一例を示す断面図である。(a) And (b) is sectional drawing which shows another example of a power module. 従来例に係る電気回路基板及び電子部品を示す断面図である。It is sectional drawing which shows the electric circuit board and electronic component which concern on a prior art example.

本開示の実施形態の電気回路基板及びパワーモジュールについて図面を参照して説明する。なお、以下の説明における上下の区別は便宜的なものであり、実際に電気回路基板が使用される際の上下を限定するものではない。 An electric circuit board and a power module according to embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the distinction between upper and lower sides in the following description is for convenience, and does not limit the upper and lower sides when the electric circuit board is actually used.

〔電気回路基板及びパワーモジュール〕
図1(a)に示すように本実施形態の電気回路基板10は、絶縁基板1と、絶縁基板1の第一主面(上面)1Aにろう材3で接合されている金属部材2(2A,2B)と、第一主面1Aの反対側の第二主面(下面)1Bにろう材3で接合されている金属部材2(2D,2E)と、熱伝導部材g1とを備えている。絶縁基板1に平行なXY座標と、絶縁基板1の厚み方向を示すZ座標を図示する。なお、第一主面(上面)1Aと第二主面(下面)1Bは互いに平行である。
[Electrical circuit board and power module]
As shown in FIG. 1A, an electric circuit board 10 according to the present embodiment includes an insulating substrate 1 and a metal member 2 (2A that is joined to a first main surface (upper surface) 1A of the insulating substrate 1 with a brazing material 3. , 2B), a metal member 2 (2D, 2E) joined by a brazing material 3 to a second main surface (lower surface) 1B opposite to the first main surface 1A, and a heat conducting member g1. .. The XY coordinates parallel to the insulating substrate 1 and the Z coordinate indicating the thickness direction of the insulating substrate 1 are illustrated. The first main surface (upper surface) 1A and the second main surface (lower surface) 1B are parallel to each other.

金属部材2は、銅、銅合金、アルミニウム、アルミニウム合金等で形成される。
第一主面1Aに接合した金属部材は、第一主面1Aに平行な方向(X方向とする)に沿って間隙a1を介して隔てられた第一金属部材2Aと第二金属部材2Bとを含む。
第二主面1Bに接合した金属部材は、第一金属部材2Aに対する反対側の位置に配置された第三金属部材2Dと、第二金属部材2Bに対する反対側の位置に配置された第四金属部材2Eとを含む。
第一金属部材2Aには電子部品40がボンディングされて実装されている。電子部品40としては、IGBT等のパワー半導体デバイスである。
The metal member 2 is formed of copper, copper alloy, aluminum, aluminum alloy, or the like.
The metal member joined to the first main surface 1A includes a first metal member 2A and a second metal member 2B that are separated by a gap a1 along a direction (X direction) parallel to the first main surface 1A. including.
The metal member joined to the second main surface 1B is a third metal member 2D arranged at a position opposite to the first metal member 2A, and a fourth metal member arranged at a position opposite to the second metal member 2B. The member 2E is included.
An electronic component 40 is bonded and mounted on the first metal member 2A. The electronic component 40 is a power semiconductor device such as an IGBT.

第三金属部材2D及び第四金属部材2Eは、間隙a1に対する反対側の位置に配置された熱伝導部材g1にろう材3を介して接合している。すなわち、第三金属部材2Dの側面と熱伝導部材g1の側面とがろう材3を介して接合し、第四金属部材2Eの側面と熱伝導部材g1の側面とがろう材3を介して接合している。 The third metal member 2D and the fourth metal member 2E are joined via the brazing material 3 to the heat conducting member g1 arranged at a position opposite to the gap a1. That is, the side surface of the third metal member 2D and the side surface of the heat conducting member g1 are joined together via the brazing material 3, and the side surface of the fourth metal member 2E and the side surface of the heat conducting member g1 are joined together via the brazing material 3. doing.

熱伝導部材g1は、熱伝導率が金属部材2より大きく、熱膨張率が金属部材2よりも小さい特性を有する。同特性を有する材料としてグラファイト又はグラファイトを成分とする複合材料が適用される。
グラファイトとしては、化学気相成長法により製造される積層構造を有するものが知られる。面方向に共有結合し、面方向が高熱伝導性に構成され、積層方向が低熱伝導性に構成されるものである。複合材料としては、金属(銅、アルミニウム)とグラファイトの複合材料が適用できる。図1(b)に示すように熱伝導部材g1は、高熱伝導方向である面方向を絶縁基板1に平行な方向(XY方向)に、低熱伝導方向である積層方向を絶縁基板1に垂直な方向(Z方向)にして配置される。これにより、第三金属部材2Dと第四金属部材2Eとの間の熱伝導が良好となる。そのため、電子部品40で発生した熱が、熱伝導部材g1を介して金属部材2Eにも伝搬しやすく、放熱性が向上する。
The thermal conductive member g1 has a characteristic that the thermal conductivity is higher than that of the metal member 2 and the thermal expansion coefficient thereof is lower than that of the metal member 2. As a material having the same characteristics, graphite or a composite material containing graphite as a component is applied.
As graphite, one having a laminated structure manufactured by a chemical vapor deposition method is known. It is covalently bonded in the plane direction, the plane direction has high thermal conductivity, and the stacking direction has low thermal conductivity. As the composite material, a composite material of metal (copper, aluminum) and graphite can be applied. As shown in FIG. 1B, the heat conducting member g1 has a plane direction, which is a high heat conducting direction, in a direction parallel to the insulating substrate 1 (XY direction), and a stacking direction, which is a low heat conducting direction, is perpendicular to the insulating substrate 1. Are arranged in the direction (Z direction). Thereby, the heat conduction between the third metal member 2D and the fourth metal member 2E becomes good. Therefore, the heat generated in the electronic component 40 easily propagates to the metal member 2E via the heat conducting member g1 and the heat dissipation is improved.

また、熱伝導部材g1の熱膨張率が金属部材より小さい特性により、熱応力が低減する。したがって、放熱性良好で、低熱応力性の電気回路基板10、これを用いたパワーモジュールが提供される。 Further, the thermal stress is reduced due to the characteristic that the thermal expansion coefficient of the heat conducting member g1 is smaller than that of the metal member. Therefore, the electric circuit board 10 having good heat dissipation and low thermal stress, and the power module using the same are provided.

図2に示すように熱伝導部材g1の第二主面1Bに対向する面が、第二主面1Bにろう材3を介して接合されている構造も実施し得る。さらに放熱性、低熱応力性を向上できる。 As shown in FIG. 2, a structure in which the surface of the heat conducting member g1 that faces the second main surface 1B is joined to the second main surface 1B via the brazing material 3 may also be implemented. Furthermore, heat dissipation and low thermal stress can be improved.

図3に示すように第一主面1Aを垂直視して、間隙a1が第一金属部材2Aと第二金属部材2Bとを隔てる方向Xに垂直な方向Yの当該間隙a1の終端a3,a4が、第一金属部材2Aと第二金属部材2Bとの分離のまま終了している構造を実施し得る。
この場合に、間隙a1の終端a3(a4)に近い熱伝導部材g1の終端g2(g3)が、間隙a1内の範囲に後退配置されている構造を採用することができる。
絶縁基板1の平面視において応力が集中しやすい第一金属部材2A及び第二金属部材2Bのコーナー部に近い、間隙a1の終端a3(a4)を第二主面1B側でも間隙とすることで、この部位における応力をさらに低減することができる。
通常、図3に示すように第一金属部材2A及び第二金属部材2Bが間隙a1の終端a3(a4)においてコーナー円弧部を形成することで、コーナー部に集中しやすい応力を緩和する。第一主面1Aを垂直視して、熱伝導部材g1の終端g2(g3)が、当該コーナー円弧部2A1,2B1(2A2,2B2)よりも間隙a1内奥の範囲に後退配置されていることが好ましい。コーナー円弧部2A1,2B1(2A2,2B2)に集中しやすい応力を緩和するためである。
As shown in FIG. 3, when the first main surface 1A is viewed vertically, the ends a3, a4 of the gap a1 in the direction Y perpendicular to the direction X in which the gap a1 separates the first metal member 2A and the second metal member 2B. However, it is possible to implement a structure in which the first metal member 2A and the second metal member 2B are left as separated.
In this case, it is possible to adopt a structure in which the end g2 (g3) of the heat conducting member g1 near the end a3 (a4) of the gap a1 is set back within the range of the gap a1.
By arranging the end a3 (a4) of the gap a1 near the corners of the first metal member 2A and the second metal member 2B where stress is likely to be concentrated in a plan view of the insulating substrate 1 also on the second main surface 1B side. The stress in this portion can be further reduced.
Generally, as shown in FIG. 3, the first metal member 2A and the second metal member 2B form a corner arc portion at the terminal end a3 (a4) of the gap a1 to relieve stress that tends to concentrate on the corner portion. When the first main surface 1A is viewed vertically, the end g2 (g3) of the heat conducting member g1 is set back within the gap a1 inside the corner arc portions 2A1, 2B1 (2A2, 2B2). Is preferred. This is to relieve stress that tends to concentrate on the corner arc portions 2A1, 2B1 (2A2, 2B2).

図4(a)(b)(c)に示すように、第一主面1Aに平行な方向(補助線d1,d2,d3の方向)に沿って間隙a1を介して隔てられた第一金属部材2Aと第二金属部材2との構造は、第一主面1Aに接合した金属部材2が繋がったパターンでも生じうる。
図4(a)に示す金属部材2のパターン例は、間隙a1は片側で金属部材が繋がることで終了しており、他の片側で金属部材が分離したまま終了した構造である。
図4(b)に示す金属部材2のパターン例は、金属部材2のコーナー部の応力を緩和するために金属部材2のコーナー部が凹形状の外形に形成された構造である。
図4(c)に示す金属部材2のパターン例は、金属部材2のコーナー部の応力を緩和するために金属部材2のコーナー部に孔が形成された構造である。
以上のような構造であっても、補助線d1,d2,d3に沿った方向に、第一主面1A側では間隙a1が、第二主面1B側では熱伝導部材g1が金属部材間に介在するように配置することで、同様に放熱性向上と熱応力低減の効果が得られる。
As shown in FIGS. 4(a)(b)(c), the first metal separated by a gap a1 along a direction parallel to the first principal surface 1A (direction of auxiliary lines d1, d2, d3). The structure of the member 2A and the second metal member 2 can also occur in a pattern in which the metal member 2 joined to the first main surface 1A is connected.
The pattern example of the metal member 2 shown in FIG. 4A has a structure in which the gap a1 ends when the metal members are connected on one side and ends while the metal members are separated on the other side.
The pattern example of the metal member 2 shown in FIG. 4B has a structure in which the corner portion of the metal member 2 is formed in a concave shape in order to relieve stress in the corner portion of the metal member 2.
The pattern example of the metal member 2 shown in FIG. 4(c) has a structure in which holes are formed in the corner portions of the metal member 2 in order to relieve stress in the corner portions of the metal member 2.
Even with the structure as described above, in the direction along the auxiliary lines d1, d2, d3, the gap a1 is formed on the first main surface 1A side and the heat conduction member g1 is formed between the metal members on the second main surface 1B side. By arranging so as to intervene, the effects of improving heat dissipation and reducing thermal stress are similarly obtained.

なお、絶縁基板1は、セラミック焼結体からなり、高い機械的強度および高い伝熱特性(冷却特性)などの特性を有するものがよい。セラミック焼結体としては、公知の材料を用いることができ、例えば、アルミナ(Al)質焼結体、窒化アルミニウム(AlN)質焼結体、窒化ケイ素(Si)質焼結体および炭化珪素(SiC)質焼結体などを用いることができる。このような絶縁基板1は、公知の製造方法によって製造することができ、例えば、アルミナ粉末に焼結助剤を添加した原料粉末に有機バインダー等を加えて混練して、基板状に成形したのち、焼成することで製造することができる。
ろう材3としては、例えば、金属部材2が銅(Cu)または銅合金からなる場合であれば、銀―銅(Ag−Cu)合金ろうに、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)等の活性金属を含む活性金属ろうを用いることができる。金属部材2がアルミニウム(Al)またはアルミニウム合金からなる場合は、Al−Si系合金またはAl−Ge系合金のろう材を用いることができる。
The insulating substrate 1 is preferably made of a ceramic sintered body and has characteristics such as high mechanical strength and high heat transfer characteristics (cooling characteristics). Known materials can be used as the ceramic sintered body, for example, alumina (Al 2 O 3 ) sintered body, aluminum nitride (AlN) sintered body, silicon nitride (Si 3 N 4 ) sintered body. A sintered body, a silicon carbide (SiC)-based sintered body, or the like can be used. Such an insulating substrate 1 can be manufactured by a known manufacturing method. For example, a raw material powder obtained by adding a sintering aid to alumina powder is kneaded with an organic binder or the like, and then molded into a substrate shape. It can be manufactured by firing.
As the brazing material 3, for example, when the metal member 2 is made of copper (Cu) or a copper alloy, a silver-copper (Ag-Cu) alloy brazing material, titanium (Ti), hafnium (Hf), zirconium ( Active metal brazes containing active metals such as Zr) can be used. When the metal member 2 is made of aluminum (Al) or an aluminum alloy, a brazing material of Al-Si alloy or Al-Ge alloy can be used.

金属部材2の表面には、その表面の保護のため、あるいはボンディングワイヤー等の接合性の向上のためにめっき層をもうけてもよい。めっき層は、パラジウム、ニッケル、銀等の金属めっき層とすることができる。
なお、電気回路基板10は、いわゆる多数個取りの形態で作製してこれを分割することで作製することもできる。
A plating layer may be provided on the surface of the metal member 2 in order to protect the surface or improve the bondability of a bonding wire or the like. The plating layer can be a metal plating layer of palladium, nickel, silver or the like.
The electric circuit board 10 can also be manufactured by forming a so-called multi-cavity form and dividing it.

〔シミュレーション〕
次に、熱シミュレーション及び応力シミュレーションを開示する。
(シミュレーション1)
(熱分布)
図5は、上記電子部品40としてのチップを発熱部とした場合のパワーモジュールの熱分布のシミュレーション結果を表示したものである。図5(a)は間隙a1に相当する部位の第二主面(下面)側に金属部材を連続して形成した比較例C1、図5(b)は間隙a1に相当する部位の第二主面(下面)側を同じく間隙とした比較例C2、図5(c)は上記実施形態(図2)に従い間隙a1に相当する部位の第二主面(下面)側に上記熱伝導部材g1としてのグラファイトを図1(b)に示す向きで配置して第三金属部材2Dおよび第四金属部材2Eおよび第二主面(下面)にろう付けした本発明例D1である。
それぞれ最高温度は発熱中心に生じ、比較例C1では171.8℃、比較例C2では178.4℃、本発明例D1では171.1℃となった。比較例C1に対して比較例C2では第二主面(下面)側にも間隙が設けられたことで、第四金属部材2E相当部分への熱伝搬が悪化し、さらに第二金属部材2B相当部分への熱伝搬も悪化したことで最高温度が高くなってしまった。
本発明例D1では、熱伝導部材g1としてのグラファイトに熱伝搬し、さらに第四金属部材2E、絶縁基板1を介して第二金属部材2Bへと熱伝搬するので、熱が広く拡散し、比較例C1よりも最高温度が低くなった。
したがって、発熱部である電子部品40の放熱性が、本発明例D1で最も優れていることが分かった。
〔simulation〕
Next, thermal simulation and stress simulation will be disclosed.
(Simulation 1)
(Heat distribution)
FIG. 5 shows the simulation result of the heat distribution of the power module when the chip as the electronic component 40 is used as the heat generating portion. 5(a) is a comparative example C1 in which a metal member is continuously formed on the second main surface (lower surface) side of the portion corresponding to the gap a1, and FIG. 5(b) is the second main portion of the portion corresponding to the gap a1. In Comparative Example C2 in which the surface (lower surface) side is also the same, FIG. 5(c) shows the heat conduction member g1 on the second main surface (lower surface) side of the portion corresponding to the clearance a1 according to the embodiment (FIG. 2). Is a third example of the present invention D1 in which the graphite is placed in the direction shown in FIG. 1(b) and brazed to the third metal member 2D, the fourth metal member 2E and the second main surface (lower surface).
The highest temperature occurred at the exothermic center, which was 171.8° C. in Comparative Example C1, 178.4° C. in Comparative Example C2, and 171.1° C. in Inventive Example D1. In Comparative Example C2 as compared with Comparative Example C1, a gap was also provided on the second main surface (lower surface) side, which deteriorated heat transfer to the portion corresponding to the fourth metal member 2E, and further corresponded to the second metal member 2B. The maximum temperature increased due to the deterioration of heat transfer to the part.
In Example D1 of the present invention, heat propagates to graphite as the heat conductive member g1 and further propagates to the second metal member 2B via the fourth metal member 2E and the insulating substrate 1, so that heat is widely diffused, and comparison is made. The maximum temperature was lower than that of Example C1.
Therefore, it was found that the heat dissipation of the electronic component 40, which is the heat generating portion, was the best in the invention sample D1.

(応力分布)
図5と同じモデルについての応力分布のシミュレーション結果を図6に示す。
間隙a1の幅方向中央位置の絶縁基板1に生じる応力を比較すると、比較例C1では784MPa.比較例C2では0MPa、本発明例D1では428MPaとなった。
表裏同じ位置に間隙がある比較例C2では応力はゼロとなったが、図5に示したように放熱性が低下する。
これに対し、本発明例D1では、図5に示したように放熱性を向上した上で、間隙部の絶縁基板1に生じる応力も比較例C1に比較して大幅に低減することができた。
(Stress distribution)
FIG. 6 shows the simulation result of the stress distribution for the same model as in FIG.
Comparing the stress generated in the insulating substrate 1 at the center position of the gap a1 in the width direction, 784 MPa. The pressure was 0 MPa in Comparative Example C2 and 428 MPa in Invention Example D1.
In the comparative example C2 in which the gaps are at the same positions on the front and back, the stress was zero, but as shown in FIG. 5, the heat dissipation property deteriorates.
On the other hand, in Example D1 of the present invention, the heat dissipation was improved as shown in FIG. 5, and the stress generated in the insulating substrate 1 in the gap was also significantly reduced as compared with Comparative Example C1. ..

以上の熱分布、応力分布のシミュレーションにより、比較例C1,C2に対して本発明例D1の方が放熱性及び低熱応力性につき優れていることが分かった。 From the above simulation of heat distribution and stress distribution, it was found that the invention sample D1 was superior to the comparative samples C1 and C2 in heat dissipation and low thermal stress.

(シミュレーション2)
本発明例につきグラファイト(g1)の向きを変えて同様に熱分布と応力分布のシミュレーションを行った。その結果を図7(熱分布)、図8(応力分布)に示す。
図7(a)及び図8(a)に示す本発明例D1は、グラファイト(g1)を、その低熱伝導方向である積層方向を絶縁基板1に垂直な方向(Z方向)にして配置したモデルである。したがって、図7(a)は図5(a)と同じ結果、図8(a)は図6(a)と同じ結果である。
図7(b)及び図8(b)に示す本発明例D2は、グラファイト(g1)を、その低熱伝導方向である積層方向を間隙a1の長手方向(Y方向)にして配置したモデルである。
図7(c)及び図8(c)に示す本比較例C3は、グラファイト(g1)を、その低熱伝導方向である積層方向を間隙a1の幅方向(X方向)にして配置したモデルである。
図7に示すように最高温度は、本発明例D1の171.1℃に対し、本発明例D2で171.5℃、比較例C3で173.1℃となった。
間隙a1の幅方向中央位置の絶縁基板1に生じる応力を比較すると、本発明例D1の428MPaに対し、本発明例D2で938MPa、比較例C3で1610MPaとなった。
(Simulation 2)
In the present invention example, the heat distribution and the stress distribution were similarly simulated by changing the direction of graphite (g1). The results are shown in FIG. 7 (heat distribution) and FIG. 8 (stress distribution).
Inventive Example D1 shown in FIGS. 7(a) and 8(a) is a model in which graphite (g1) is arranged with the stacking direction, which is the low heat conduction direction, being perpendicular to the insulating substrate 1 (Z direction). Is. Therefore, FIG. 7A shows the same result as FIG. 5A, and FIG. 8A shows the same result as FIG. 6A.
The invention sample D2 shown in FIGS. 7(b) and 8(b) is a model in which graphite (g1) is arranged with the laminating direction, which is the low heat conduction direction, being the longitudinal direction (Y direction) of the gap a1. ..
The comparative example C3 shown in FIGS. 7(c) and 8(c) is a model in which graphite (g1) is arranged with the laminating direction, which is the low heat conduction direction, being the width direction (X direction) of the gap a1. ..
As shown in FIG. 7, the maximum temperature was 171.5° C. in Example D2 of the present invention and 173.1° C. in Comparative Example C3 as compared with 171.1° C. of Example D1 of the present invention.
Comparing the stress generated in the insulating substrate 1 at the center position in the width direction of the gap a1, it was 938 MPa in the invention sample D2 and 1610 MPa in the comparative sample C3, compared with 428 MPa of the invention sample D1.

以上の熱シミュレーションのモデル図を図9に、各部の熱伝達率を図10に示す。電気回路基板の下面の金属部材(Cu)がグリース11を介してヒートシンク12に接合した構成であり、チップ(40)での発熱量は200W、ヒートシンク12から空気中への熱伝達係数を800W/m・℃とした。
以上の応力シミュレーションのモデル図(半身図)を図11に、各部の熱膨張率、ヤング率、ポアソン比を図12に示す。
グラファイト(g1)は、方向により熱伝達率及び熱膨張率が異なる。図10、図12に本発明例D1,D2及び比較例C3の場合の各方向X,Y,Zの熱伝達率、熱膨張率を示す。
グラファイト(g1)は、低熱伝導である積層方向の熱伝導率が7W/m・℃、高熱伝導である面方向の熱伝導率が1700W/m・℃のものを適用した。同グラファイト(g1)は、低熱伝導方向(積層方向)で高熱膨張率であり25ppm/℃の熱膨張率を有し、高熱伝導方向(面方向)で低熱膨張率であり−0.6ppm/℃の熱膨張率を有する。
FIG. 9 shows a model diagram of the above heat simulation, and FIG. 10 shows the heat transfer coefficient of each part. The metal member (Cu) on the lower surface of the electric circuit board is bonded to the heat sink 12 via the grease 11, the heat generation amount of the chip (40) is 200 W, and the heat transfer coefficient from the heat sink 12 to the air is 800 W/ m 2 ·°C.
FIG. 11 shows a model diagram (half body diagram) of the above stress simulation, and FIG. 12 shows the thermal expansion coefficient, Young's modulus, and Poisson's ratio of each part.
The heat transfer coefficient and the thermal expansion coefficient of graphite (g1) differ depending on the direction. 10 and 12 show the heat transfer coefficient and the thermal expansion coefficient in the respective directions X, Y, Z in the cases of the present invention examples D1 and D2 and the comparative example C3.
As the graphite (g1), a material having a low thermal conductivity, a thermal conductivity in the stacking direction of 7 W/m·° C., and a high thermal conductivity, a thermal conductivity in the plane direction of 1700 W/m·° C. was applied. The graphite (g1) has a high coefficient of thermal expansion of 25 ppm/° C. in the low heat conduction direction (stacking direction) and a low coefficient of thermal expansion of −0.6 ppm/° C. in the high heat conduction direction (plane direction). Has a coefficient of thermal expansion of.

本発明例D1に対して本発明例D2では、図10に示すようにY方向に低熱伝導方向が配置されたことで、若干最高温度が上昇したが、第三金属部材2Dから第四金属部材2Eへの方向(X方向)ではないので、影響は少なかったと考えられる。
これに対し、比較例C3では、図10に示すようにX方向に低熱伝導方向が配置されたことで、第三金属部材2Dから第四金属部材2Eへの方向(X方向)が低熱伝導方向となり、本発明例D2に対してもさらに最高温度が上昇したと考えられる。
In the invention sample D2, as compared with the invention sample D1, since the low heat conduction direction was arranged in the Y direction as shown in FIG. 10, the maximum temperature slightly increased, but the third metal member 2D to the fourth metal member It is considered that the influence was small because the direction was not 2E (X direction).
On the other hand, in Comparative Example C3, the low heat conduction direction is arranged in the X direction as shown in FIG. 10, so that the direction from the third metal member 2D to the fourth metal member 2E (X direction) is the low heat conduction direction. Therefore, it is considered that the maximum temperature was further increased in the invention sample D2.

本発明例D1に対して本発明例D2では、図12に示すようにY方向に高熱膨張方向が配置されたこと、ポアソン比等に基づきX方向の膨張もあることにより、応力値が大きく上昇した。
さらに比較例C3では、図12に示すようにX方向に高熱膨張方向が配置されたことで、本発明例D2に対しても応力値が大きく上昇した。
In the invention sample D1 as compared with the invention sample D1, the high thermal expansion direction was arranged in the Y direction as shown in FIG. 12, and the expansion in the X direction also occurred due to the Poisson's ratio, etc. did.
Further, in Comparative Example C3, the high thermal expansion direction was arranged in the X direction as shown in FIG. 12, so that the stress value also greatly increased compared to Invention Example D2.

以上のシミュレーション2の結果により、図1(b)に示すようにグラファイト(g1)は、高熱伝導方向である面方向を絶縁基板1に平行な方向(XY方向)に、低熱伝導方向である積層方向を絶縁基板1に垂直な方向(Z方向)にして配置されることが良いことが分かった。
本発明例D1,D2のように熱伝導部材g1が、少なくとも第三金属部材2Dと第四金属部材2Eとを隔てる方向Xについて、熱伝導率が金属部材2より大きく、熱膨張率が金属部材2よりも小さい特性を有することで、有利な結果が得られた。
From the results of the above simulation 2, as shown in FIG. 1B, the graphite (g1) has a low heat conduction direction in which the plane direction that is the high heat conduction direction is parallel to the insulating substrate 1 (XY direction). It has been found that it is preferable that the direction is set to be the direction (Z direction) perpendicular to the insulating substrate 1.
As in the invention examples D1 and D2, the thermal conductive member g1 has a thermal conductivity higher than that of the metallic member 2 and a thermal expansion coefficient of the metallic member at least in the direction X separating the third metallic member 2D and the fourth metallic member 2E. Advantageous results have been obtained with properties less than two.

(シミュレーション3)
図2に示した熱伝導部材g1と絶縁基板1とがろう材3を介して接合する実施形態に従った本発明例D1と、図1に示した熱伝導部材g1と絶縁基板1との間が空隙である実施形態に従った本発明例D3との応力分布を比較した。そのシミュレーションの結果を図13(a)(本発明例D1)、図13(b)(本発明例D3)に示す。図13(a)は、図6(c)、図8(a)と同じである。
間隙a1の幅方向中央位置の絶縁基板1に生じる応力を比較すると、本発明例D1の428MPaに対し、本発明例D4では492MPaと上昇した。
絶縁基板1に平行な方向の熱膨張率が小さいグラファイト(g1)と絶縁基板(Si)1との間をろう材3を介して接合することで、変形が小さくなるため、本発明例D3に対して本発明例D1の方が応力が低下することが分かった。
したがって、熱伝導部材g1の第二主面1Bに対向する面が、第二主面1Bにろう材3を介して接合されている構造とする方が、応力低減の点では優れていることが分かった。
(Simulation 3)
Between the heat conducting member g1 shown in FIG. 2 and the insulating substrate 1 according to an embodiment in which the heat conducting member g1 and the insulating substrate 1 are joined via the brazing filler metal 3, and the heat conducting member g1 and the insulating substrate 1 shown in FIG. The stress distribution was compared with invention sample D3 according to an embodiment where is a void. The results of the simulation are shown in FIG. 13A (invention sample D1) and FIG. 13B (invention sample D3). FIG. 13(a) is the same as FIG. 6(c) and FIG. 8(a).
Comparing the stress generated in the insulating substrate 1 at the center position of the gap a1 in the width direction, the stress increased to 492 MPa in the invention sample D4 compared to 428 MPa in the invention sample D1.
Since the graphite (g1) having a small coefficient of thermal expansion in the direction parallel to the insulating substrate 1 and the insulating substrate (Si 3 N 4 ) 1 are bonded to each other via the brazing filler metal 3 , the deformation is reduced, so that the present invention It was found that the stress of the invention sample D1 was lower than that of the sample D3.
Therefore, the structure in which the surface of the heat conducting member g1 facing the second main surface 1B is joined to the second main surface 1B via the brazing material 3 is superior in terms of stress reduction. Do you get it.

〔パワーモジュールの他の例〕
以下に説明するようなパワーモジュール100,101,102を実施することができる。
電気回路基板10にパワー系の電子部品40を搭載することで、パワーモジュールとなる。以下に3例のパワーモジュール100,101,102を開示する。
パワーモジュール100は、例えば、自動車などに用いられ、ECU(engine control unit)およびパワーアシストハンドル、モータドライブなどの各種制御ユニットに使用される。パワーモジュール100は、このような車載の制御ユニットに限られるものではなく、例えば、その他の各種インバータ制御回路、電力制御回路、パワーコンディショナー等に用いられる。
[Other examples of power module]
Power modules 100, 101, 102 as described below can be implemented.
A power module is formed by mounting the power electronic components 40 on the electric circuit board 10. The three power modules 100, 101, 102 will be disclosed below.
The power module 100 is used, for example, in an automobile or the like, and is used in various control units such as an ECU (engine control unit), a power assist steering wheel, and a motor drive. The power module 100 is not limited to such a vehicle-mounted control unit, but is used for other various inverter control circuits, power control circuits, power conditioners, and the like.

図14および図15に示す例のパワーモジュール100においては、セラミック基板(1)の表面(上面)の中央部に接合された金属部材2(121)の上に、1つの電子部品40が搭載されている。電子部品40が搭載された金属部材2(121)を挟むように配置されて接合された金属部材2(122)と電子部品40とはボンディングワイヤー41によって電気的に接続されている。この外側の金属部材2(122)は、外部の電気回路と接続するための端子として機能する。また、電子部品40で発生した熱は、セラミック基板(1)の上面に接合された金属部材2(121,122)およびセラミック基板(1)を介してセラミック基板(1)の下面に接合された金属部材2(123,124)及びグラファイト(g1)に伝わり、さらに外部へ放熱することができる。つまり、セラミック基板(1)の下面に接合された金属部材2(123,124)とグラファイト(g1)の複合体は放熱板として機能する。電子部品40の数、大きさおよび搭載位置等については、図14および図15に示す例に限られるものではない。 In the power module 100 of the example shown in FIGS. 14 and 15, one electronic component 40 is mounted on the metal member 2 (121) joined to the central portion of the surface (upper surface) of the ceramic substrate (1). ing. The metal member 2 (122) arranged and bonded so as to sandwich the metal member 2 (121) on which the electronic component 40 is mounted and the electronic component 40 are electrically connected by the bonding wire 41. The metal member 2 (122) on the outer side functions as a terminal for connecting to an external electric circuit. Further, the heat generated in the electronic component 40 is bonded to the lower surface of the ceramic substrate (1) via the metal members 2 (121, 122) bonded to the upper surface of the ceramic substrate (1) and the ceramic substrate (1). The heat can be transmitted to the metal member 2 (123, 124) and the graphite (g1) and further radiated to the outside. That is, the composite of the metal member 2 (123, 124) and graphite (g1) bonded to the lower surface of the ceramic substrate (1) functions as a heat dissipation plate. The number, size and mounting position of the electronic components 40 are not limited to the examples shown in FIGS. 14 and 15.

電子部品40は、例えばパワー半導体であり、上記のような各種制御ユニットにおいて、電力制御のために用いられる。例えばSiを用いたMOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)やIGBTといったトランジスタ、あるいはSiCやGaNを用いたパワー素子があげられる。
電子部品40は、接合材(図9に示した40aに相当)によって電気回路基板10の金属部材2に接合されて固定される。接合材は、例えば、はんだまたは銀ナノペーストを用いることができる。金属部材2の表面に部分的に金属皮膜を設ける場合は、平面視での電子部品40の大きさが金属皮膜の大きさより小さいと、電子部品40の側面から金属皮膜の上面にかけて接合材のフィレットが形成されるので、電子部品40の金属部材2(金属皮膜)への接合強度を高めることができる。また、金属皮膜の表面は接合材によって覆われて露出しないので、後述する封止樹脂50の接合性が向上する。
The electronic component 40 is, for example, a power semiconductor and is used for power control in various control units as described above. For example, a transistor such as a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) or IGBT using Si, or a power element using SiC or GaN can be used.
The electronic component 40 is bonded and fixed to the metal member 2 of the electric circuit board 10 by a bonding material (corresponding to 40a shown in FIG. 9). As the bonding material, for example, solder or silver nano paste can be used. When the metal coating is partially provided on the surface of the metal member 2, if the size of the electronic component 40 in plan view is smaller than the size of the metal coating, the fillet of the bonding material extends from the side surface of the electronic component 40 to the upper surface of the metal coating. Thus, the bonding strength of the electronic component 40 to the metal member 2 (metal coating) can be increased. Further, since the surface of the metal film is covered with the bonding material and is not exposed, the bonding property of the sealing resin 50 described later is improved.

ボンディングワイヤー41は、電子部品40の端子電極(不図示)と金属部材2とを電気的に接続する、接続部材である。ボンディングワイヤー41としては、例えば、銅もしくはアルミニウム製のものを用いることができる。
図16(a)に示す例のパワーモジュール101は、図14および図15に示す例のパワーモジュール100が、上面から下面の外周部にかけて封止樹脂50で覆われて、電子部品40が封止されているものである。封止樹脂50は、セラミック基板(1)の下面に接合された金属部材2(123,124)及びグラファイト(g1)の主面(下面)は覆っていない。そのため、放熱板として機能する金属部材2(123,124)とグラファイト(g1)の複合体を外部の放熱体等に直接に熱的に接続することができるので、放熱性に優れたパワーモジュール101とすることができる。また、端子として機能する金属部材2(122)は、絶縁基板1からはみ出す長さであり、封止樹脂50からもはみ出している。これによって、端子として機能する金属部材2(122)と外部の電気回路との電気的に接続が容易に可能となっている。
封止樹脂50には、熱伝導性、絶縁性、耐環境性および封止性の点から、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、イミド樹脂などの熱硬化性樹脂を使用することができる。
The bonding wire 41 is a connection member that electrically connects a terminal electrode (not shown) of the electronic component 40 and the metal member 2. As the bonding wire 41, for example, one made of copper or aluminum can be used.
In the power module 101 of the example shown in FIG. 16A, the power module 100 of the example shown in FIGS. 14 and 15 is covered with the sealing resin 50 from the upper surface to the outer peripheral portion of the lower surface to seal the electronic component 40. It has been done. The sealing resin 50 does not cover the metal member 2 (123, 124) joined to the lower surface of the ceramic substrate (1) and the main surface (lower surface) of the graphite (g1). Therefore, the composite of the metal member 2 (123, 124) functioning as a heat dissipation plate and the graphite (g1) can be directly and thermally connected to an external heat dissipation body or the like, and thus the power module 101 having excellent heat dissipation performance. Can be The metal member 2 (122) functioning as a terminal has a length protruding from the insulating substrate 1 and also protruding from the sealing resin 50. As a result, the metal member 2 (122) functioning as a terminal can be easily electrically connected to an external electric circuit.
As the sealing resin 50, a thermosetting resin such as a silicone resin, an epoxy resin, a phenol resin, or an imide resin can be used from the viewpoints of thermal conductivity, insulation, environment resistance, and sealing property.

図16(b)に示す例のパワーモジュール102は、図14および図15に示す例のパワーモジュール100が、内側空間を有する筐体60の内部空間に配置され、内部空間に封止樹脂50が充填されて電子部品40および電気回路基板10が封止されている例である。
図16(a)および図16(b)に示す例のように、電子部品40、金属部材2および絶縁基板1を覆う封止樹脂50を備えるパワーモジュール101,102とすることができる。封止樹脂50によって電子部品40の耐環境性が向上し、また隣接する金属板121,122間の絶縁性が向上したものとなる。
筐体60は、枠体61と、この枠体61の一方の開口を塞ぐ放熱板62とで構成されており、枠体61と放熱板62とで囲まれた空間が内側空間となる。また、内側空間から筐体60の枠体61を貫通して外部へ導出されたリード端子63を備えている。そして、リード端子63の内部空間内の端部と電気回路基板10の金属部材2とがボンディングワイヤー41で接続されている。これにより、電子部品40と外部の電気回路とが電気的に接続可能となっている。
枠体61は、樹脂材料、金属材料またはこれらの混合材料からなり、放熱板62により一方の開口が塞がれて電気回路基板10を収納する内側空間を形成している。枠体61に用いられる材料としては、放熱性、耐熱性、耐環境性および軽量性の点から、銅、アルミニウムなどの金属材料またはポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイト(PPS)などの樹脂材料を使用することができる。これらの中でも、入手しやすさの点から、PBT樹脂を用いることが望ましい。また、PBT樹脂には、ガラス繊維を添加して繊維強化樹脂とすることが、機械的強度が増大するので好ましい。
In the power module 102 of the example shown in FIG. 16B, the power module 100 of the example shown in FIGS. 14 and 15 is arranged in the internal space of the housing 60 having an inner space, and the sealing resin 50 is placed in the internal space. In this example, the electronic component 40 and the electric circuit board 10 are filled and sealed.
As in the example shown in FIGS. 16A and 16B, the power modules 101 and 102 can be provided with the sealing resin 50 that covers the electronic component 40, the metal member 2 and the insulating substrate 1. The sealing resin 50 improves the environmental resistance of the electronic component 40 and also improves the insulation between the adjacent metal plates 121 and 122.
The housing 60 includes a frame body 61 and a heat dissipation plate 62 that closes one opening of the frame body 61, and a space surrounded by the frame body 61 and the heat dissipation plate 62 is an inner space. In addition, a lead terminal 63 is provided that extends from the inner space to the outside through the frame 61 of the housing 60. Then, the ends of the lead terminals 63 in the internal space and the metal members 2 of the electric circuit board 10 are connected by the bonding wires 41. As a result, the electronic component 40 and the external electric circuit can be electrically connected.
The frame 61 is made of a resin material, a metal material, or a mixed material thereof, and one opening is closed by the heat dissipation plate 62 to form an inner space for housing the electric circuit board 10. The material used for the frame 61 is a metal material such as copper or aluminum or a resin such as polybutylene terephthalate (PBT) or polyphenylene sulfite (PPS) from the viewpoint of heat dissipation, heat resistance, environment resistance and light weight. Materials can be used. Among these, it is preferable to use the PBT resin from the viewpoint of easy availability. Further, it is preferable to add glass fibers to the PBT resin to obtain a fiber reinforced resin because the mechanical strength increases.

リード端子63は、内側空間から枠体61を貫通して外部へ導出するように取り付けられている、導電性の端子である。このリード端子63の内側空間側の端部は電気回路基板10の金属部材2と電気的に接続され、外部側の端部は外部の電気回路(図示せず)または電源装置(図示せず)などと電気的に接続される。このリード端子63は、導電性端子に用いられる各種の金属材料は、例えばCuおよびCu合金、AlおよびAl合金、FeおよびFe合金、ステンレススチール(SUS)等を用いることができる。
放熱板62は、動作時に電子部品40で生じた熱を、パワーモジュール102の外部に放熱するためのものである。この放熱板62には、Al、Cu、Cu−Wなどの高熱伝導性材料を使用することができる。特に、AlはFeなどの一般的な構造材料としての金属材料と比べて熱伝導性が高く、電子部品40で生じた熱をより効率的にパワーモジュール102の外部に放熱できるので、電子部品40を安定して正常に動作させることが可能となる。また、AlはCuあるいはCu−Wなどの他の高熱伝導性材料と比較して、入手しやすく安価であることから、パワーモジュール102の低コスト化にも有利になる点で優れている。
The lead terminal 63 is a conductive terminal that is attached so as to penetrate the frame 61 from the inner space and lead out to the outside. An end of the lead terminal 63 on the inner space side is electrically connected to the metal member 2 of the electric circuit board 10, and an end on the outer side is an external electric circuit (not shown) or a power supply device (not shown). It is electrically connected to. Various metal materials used for the conductive terminals of the lead terminal 63 may be Cu and Cu alloys, Al and Al alloys, Fe and Fe alloys, and stainless steel (SUS).
The heat dissipation plate 62 is for dissipating the heat generated in the electronic component 40 during operation to the outside of the power module 102. A high heat conductive material such as Al, Cu, or Cu—W can be used for the heat dissipation plate 62. In particular, Al has a higher thermal conductivity than a metal material as a general structural material such as Fe, and can dissipate the heat generated in the electronic component 40 to the outside of the power module 102 more efficiently. Can be stably operated normally. Further, Al is superior in that it is advantageous in reducing the cost of the power module 102 because it is easily available and inexpensive as compared with other high thermal conductivity materials such as Cu and Cu-W.

放熱板62と電気回路基板10の金属部材2(123,124)及びグラファイト(g1)とは、不図示の伝熱性接合材で熱的に接続されている。伝熱性接合材としては、ろう材を用いて熱的に接続するとともに機械的に強固に接合してもよく、グリースなどで熱的に接続し、機械的には比較的弱く接合してもよく、さらに後述のように封止樹脂50によって接合してもよい。
封止樹脂50は、内側空間に充填され、電気回路基板10に搭載された電子部品40を封止して保護するものである。電気回路基板10と放熱板62との機械的な接合と内側空間の封止とを同じ封止樹脂50で行なってもよい。この場合、電気回路基板10と放熱板62との機械的な強固な接合と樹脂封止とを同一工程で行うことができる。
The heat dissipation plate 62, the metal members 2 (123, 124) of the electric circuit board 10 and the graphite (g1) are thermally connected by a heat conductive bonding material (not shown). As the heat conductive bonding material, a brazing material may be used to thermally connect and mechanically bond strongly, or grease may be used to thermally bond and mechanically bond relatively weakly. Further, they may be joined by the sealing resin 50 as described later.
The sealing resin 50 is filled in the inner space and seals and protects the electronic component 40 mounted on the electric circuit board 10. The same sealing resin 50 may be used to mechanically bond the electric circuit board 10 and the heat dissipation plate 62 and to seal the inner space. In this case, the mechanical and firm joining of the electric circuit board 10 and the heat dissipation plate 62 and the resin sealing can be performed in the same step.

パワーモジュール102は、さらに放熱特性を向上させるために、放熱板62の、電気回路基板10が接合されている側とは反対側の露出した面に、伝熱性接合材71を介して冷却器70を接合してもよい。この伝熱性接合材71は上記した、放熱板62と電気回路基板10の金属部材2(123)とを接続する伝熱性接合材と同様のものを用いることができる。図16(b)に示す例では、冷却器70は金属等のブロック体に水等の冷媒を通過させる流路を設けたものを示しているが、これ以外の、例えば冷却フィンであってもよい。このような冷却器70は、図14および図15または図16(a)に示す例のパワーモジュール100,101にも適用することができ、金属部材2(123,124)とグラファイト(g1)の複合体に接続すればよい。この場合は、平板状のもの、すなわち図16(b)に示す放熱板62だけを冷却器70として適用することもできる。
なお、電気回路基板10およびパワーモジュール100は、上記実施形態に記載された例に限定されるものではなく、本開示の要旨の範囲内で種々の変更は可能である。
In the power module 102, in order to further improve the heat dissipation characteristics, the cooler 70 is provided on the exposed surface of the heat dissipation plate 62 opposite to the side to which the electric circuit board 10 is bonded, with the heat conductive bonding material 71 interposed therebetween. May be joined together. As the heat conductive bonding material 71, the same heat conductive bonding material as described above that connects the heat dissipation plate 62 and the metal member 2 (123) of the electric circuit board 10 can be used. In the example shown in FIG. 16(b), the cooler 70 has a block body made of metal or the like provided with a flow path for allowing a coolant such as water to pass through. However, other than this, for example, a cooling fin may be used. Good. Such a cooler 70 can also be applied to the power modules 100 and 101 of the examples shown in FIG. 14 and FIG. 15 or FIG. It may be connected to the complex. In this case, a flat plate, that is, only the heat dissipation plate 62 shown in FIG. 16B can be applied as the cooler 70.
The electric circuit board 10 and the power module 100 are not limited to the examples described in the above embodiment, and various modifications can be made within the scope of the present disclosure.

1 絶縁基板
1A 第一主面
1B 第二主面
2 金属部材
2A 第一金属部材
2B 第二金属部材
2D 第三金属部材
2E 第四金属部材
2E 金属部材
3 ろう材
10 電気回路基板
40 電子部品
C1,C2、C3 比較例
D1,D2,D3 本発明例
a1 間隙
g1 熱伝導部材(グラファイト)
DESCRIPTION OF SYMBOLS 1 Insulation board 1A 1st main surface 1B 2nd main surface 2 Metal member 2A 1st metal member 2B 2nd metal member 2D 3rd metal member 2E 4th metal member 2E Metal member 3 Brazing material 10 Electric circuit board 40 Electronic component C1 , C2, C3 Comparative examples D1, D2, D3 Inventive example a1 Gap g1 Heat conducting member (graphite)

Claims (11)

第一主面と当該第一主面の反対側の第二主面とを有する絶縁基板と、前記第一主面に接合された金属部材と、前記第二主面に接合された金属部材と、熱伝導部材とを備え、
前記第一主面に接合した前記金属部材は、前記第一主面に平行な方向に沿って間隙を介して隔てられた第一金属部材と第二金属部材とを含み、
前記第二主面に接合した前記金属部材は、前記第一金属部材に対する反対側の位置に配置された第三金属部材と、前記第二金属部材に対する反対側の位置に配置された第四金属部材とを含み、
前記第三金属部材及び前記第四金属部材は、前記間隙に対する反対側の位置に配置された前記熱伝導部材に接合し、
前記熱伝導部材は、少なくとも前記第三金属部材と前記第四金属部材とを隔てる方向について、熱伝導率が前記金属部材より大きく、熱膨張率が前記金属部材よりも小さい特性を有する電気回路基板。
An insulating substrate having a first main surface and a second main surface opposite to the first main surface, a metal member joined to the first main surface, and a metal member joined to the second main surface. , And a heat conduction member,
The metal member joined to the first main surface includes a first metal member and a second metal member separated by a gap along a direction parallel to the first main surface,
The metal member joined to the second main surface is a third metal member arranged at a position opposite to the first metal member, and a fourth metal member arranged at a position opposite to the second metal member. Including members,
The third metal member and the fourth metal member are joined to the heat conducting member arranged at a position opposite to the gap,
The heat conducting member has an electric circuit board having a characteristic that the coefficient of thermal conductivity is larger than that of the metallic member and the coefficient of thermal expansion is smaller than that of the metallic member in at least the direction separating the third metallic member and the fourth metallic member. ..
前記熱伝導部材の前記第二主面に対向する面が、前記第二主面に接合されている請求項1に記載の電気回路基板。 The electric circuit board according to claim 1, wherein a surface of the heat conducting member facing the second main surface is joined to the second main surface. 前記第一主面を垂直視して、前記間隙が前記第一金属部材と前記第二金属部材とを隔てる方向に垂直な方向の当該間隙の終端が、前記第一金属部材と前記第二金属部材との分離のまま終了しており、当該間隙の終端に近い前記熱伝導部材の終端が、当該間隙内の範囲に後退配置されている請求項1又は請求項2に記載の電気回路基板。 When the first main surface is viewed vertically, the end of the gap in the direction perpendicular to the direction in which the gap separates the first metal member and the second metal member is the first metal member and the second metal. The electric circuit board according to claim 1 or 2, wherein the end of the heat conducting member, which is terminated as being separated from the member, close to the end of the gap is set back within a range within the gap. 前記第一金属部材及び前記第二金属部材が前記終端においてコーナー円弧部を形成しており、前記第一主面を垂直視して、前記熱伝導部材の終端が、当該コーナー円弧部よりも前記間隙内奥の範囲に後退配置されている請求項3に記載の電気回路基板。 The first metal member and the second metal member form a corner arc portion at the end, and the end of the heat conducting member is more than the corner arc portion when the first main surface is viewed vertically. The electric circuit board according to claim 3, wherein the electric circuit board is arranged so as to recede within a gap. 前記熱伝導部材は、グラファイト又はグラファイトを成分とする複合材料からなる請求項1から請求項4のうちいずれか一に記載の電気回路基板。 The electric circuit board according to claim 1, wherein the heat conductive member is made of graphite or a composite material containing graphite as a component. 前記熱伝導部材は、高熱伝導方向である面方向を前記第二主面に平行な方向に、低熱伝導方向である積層方向を前記第二主面に垂直な方向にして配置された請求項5に記載の電気回路基板。 The heat conducting member is arranged such that a surface direction which is a high heat conducting direction is parallel to the second main surface and a laminating direction which is a low heat conducting direction is a direction perpendicular to the second main surface. The electric circuit board according to. 前記絶縁基板と前記金属部材との接合、前記熱伝導部材と前記金属部材との接合は、ろう材を介した接合である請求項1から請求項6のうちいずれか一に記載の電気回路基板。 The electrical circuit board according to any one of claims 1 to 6, wherein the joining of the insulating substrate and the metal member and the joining of the heat conducting member and the metal member are joining via a brazing material. .. 前記絶縁基板と前記金属部材との接合、前記熱伝導部材と前記金属部材との接合、前記熱伝導部材と前記絶縁基板との接合は、ろう材を介した接合である請求項2に記載の電気回路基板。 The bonding between the insulating substrate and the metal member, the bonding between the heat conducting member and the metal member, and the bonding between the heat conducting member and the insulating substrate are bonding via a brazing material. Electrical circuit board. 請求項1から請求項8のうちいずれか一に記載の電気回路基板と、
前記第一金属部材に実装された電子部品と、を備えるパワーモジュール。
An electric circuit board according to any one of claims 1 to 8,
A power module comprising: an electronic component mounted on the first metal member.
前記電子部品、及び前記電子部品が実装された前記金属部材を封止する封止樹脂を備える請求項9に記載のパワーモジュール。 The power module according to claim 9, further comprising a sealing resin that seals the electronic component and the metal member on which the electronic component is mounted. 前記第二主面に接合した前記金属部材に実装された放熱用部品を、前記絶縁基板を介して前記電子部品の反対面に備える請求項9又は請求項10に記載のパワーモジュール。 The power module according to claim 9 or 10, wherein a heat dissipation component mounted on the metal member bonded to the second main surface is provided on the opposite surface of the electronic component via the insulating substrate.
JP2018242641A 2018-12-26 2018-12-26 Electric circuit board and power module Pending JP2020107652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018242641A JP2020107652A (en) 2018-12-26 2018-12-26 Electric circuit board and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242641A JP2020107652A (en) 2018-12-26 2018-12-26 Electric circuit board and power module

Publications (1)

Publication Number Publication Date
JP2020107652A true JP2020107652A (en) 2020-07-09

Family

ID=71449432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242641A Pending JP2020107652A (en) 2018-12-26 2018-12-26 Electric circuit board and power module

Country Status (1)

Country Link
JP (1) JP2020107652A (en)

Similar Documents

Publication Publication Date Title
JP6300978B2 (en) Power semiconductor module
WO2017119226A1 (en) Power semiconductor device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2007173680A (en) Semiconductor device
KR20090004738A (en) Heat dissipation plate for semiconductor package and semiconductor device
JP3390661B2 (en) Power module
KR102387210B1 (en) Board and power module for power module with heat sink
JP7040032B2 (en) Semiconductor device
JP2022000871A (en) Electrical circuit board and power module
CN113169144B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN108735689A (en) The chip module of heat conduction fixing body with space limitation
JP2013149684A (en) Semiconductor device and method for manufacturing the same
JP7237647B2 (en) Circuit boards and electronic devices
US8450842B2 (en) Structure and electronics device using the structure
JP7018756B2 (en) Power module board and power module
JP7117960B2 (en) Substrates for power modules and power modules
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2010199505A (en) Electronic circuit device
JP2020072130A (en) Electric circuit board and power module
JP2020107652A (en) Electric circuit board and power module
US20230094926A1 (en) Electronic Module and Method for Producing an Electronic Module
JP7221401B2 (en) Electric circuit board and power module
WO2019163941A1 (en) Substrate for power modules, and power module
JP2018006377A (en) Composite substrate, electronic device, and electronic module
JP6983119B2 (en) Heat dissipation plate, semiconductor package and semiconductor device