JP2020107427A - Secondary battery electrode for operand measurement - Google Patents

Secondary battery electrode for operand measurement Download PDF

Info

Publication number
JP2020107427A
JP2020107427A JP2018243111A JP2018243111A JP2020107427A JP 2020107427 A JP2020107427 A JP 2020107427A JP 2018243111 A JP2018243111 A JP 2018243111A JP 2018243111 A JP2018243111 A JP 2018243111A JP 2020107427 A JP2020107427 A JP 2020107427A
Authority
JP
Japan
Prior art keywords
thin film
electrode
active material
electrode active
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018243111A
Other languages
Japanese (ja)
Other versions
JP7264342B2 (en
Inventor
英司 細野
Eiji Hosono
英司 細野
松田 弘文
Hirofumi Matsuda
弘文 松田
朝倉 大輔
Daisuke Asakura
大輔 朝倉
雄悟 三石
Yugo Mitsuishi
雄悟 三石
慈久 原田
Shigehisa Harada
慈久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018243111A priority Critical patent/JP7264342B2/en
Publication of JP2020107427A publication Critical patent/JP2020107427A/en
Application granted granted Critical
Publication of JP7264342B2 publication Critical patent/JP7264342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide an oxygen-free current collector thin film which is not deteriorated due to high temperature treatment in forming a film of an electrode active material, and also to provide an electrode structure which is formed by laminating an oxygen-free current collector thin film and an electrode active material thin film on a base material that can transmit soft X-rays and vacuum ultraviolet rays, the electrode structure being capable of allowing an operand measurement of the electron state of oxygen in an electrode active material, in addition to that of the electron state of transition metal, to be performed.SOLUTION: A thin film current collector has a thin film of Si3 N4 or SiC on a Si substrate, and has, on the thin film, a thin film of a two-layer structure comprising a TiN or ZrN thin film and an Au thin film on the TiN or ZrN thin film. In the thin film current collector, even if an electrode active material is further deposited at high temperatures, the components thereof are not oxidized, and low resistance required for operand measurement is maintained. Thus, by a working electrode using the thin film current collector, operand measurement of the electron state of transition metal in an electrode active material can be performed in addition to that of the electron state of oxygen.SELECTED DRAWING: Figure 4

Description

本発明は、Liイオン二次電池などの電池の充放電機構解明に不可欠な電池電極の電子状態解析に関するものである。また、本発明は、そのための薄膜構造を有する電池電極およびその製造方法に関するものである。 The present invention relates to an electronic state analysis of a battery electrode, which is indispensable for elucidating a charge/discharge mechanism of a battery such as a Li-ion secondary battery. The present invention also relates to a battery electrode having a thin film structure therefor and a manufacturing method thereof.

持続的発展可能な低炭素社会の実現に向けて、クリーンエネルギーの研究が活発に行われ、その中で、例えば自動車等においても、従来の化石燃料を用いるエンジンに替えて駆動エネルギーとして電気を用いる研究開発が注目されている。このような電気エネルギーを利用する技術においては、特に、高性能二次電池の開発が重要であり、電池用電極などの材料開発に加えて、電池の評価技術の進展もめざましい。このような最先端評価技術の一つに、放射光を利用した、デバイス動作下のオペランド測定が挙げられる。
例えば高電圧動作を特徴とするLiイオン電池等に対しては、電池を分解して個別の材料特性を評価する従来技術では電位状態の維持が困難なことから、充放電メカニズム解明のためには動作状態で構成材料の評価を行うオペランド測定が重要である。
Research on clean energy is being actively conducted toward the realization of a sustainable low-carbon society. Among them, in automobiles, for example, electricity is used as driving energy instead of conventional fossil fuel engines. Research and development is drawing attention. In such a technology using electric energy, development of a high-performance secondary battery is particularly important, and in addition to development of materials such as battery electrodes, development of battery evaluation technology is remarkable. One of such state-of-the-art evaluation techniques is the measurement of operands during device operation using synchrotron radiation.
For example, for Li-ion batteries, etc. that are characterized by high voltage operation, it is difficult to maintain the potential state with the conventional technology of disassembling the batteries and evaluating individual material characteristics. Operand measurements, which evaluate the constituent materials under operating conditions, are important.

電池の電極活物質の電子状態を測定するためにX線を用いる方法が知られている。電子状態解析の手法としては、比較的エネルギーが高く(約20−100keV)透過性の強い硬X線を用いる方法が一般的であるが、電池の電極活物質としてよく用いられる遷移金属化合物の電子状態の解析には、比較的エネルギーが低く透過性の弱い軟X線(約100eV−2keV)や真空紫外線(約40eV−100eV)(以下、この明細書では、軟X線等と総称することがある)の方が適しており、これにより、遷移金属3d−酸素2p混成軌道の情報を詳細に知ることができる。 A method using X-rays to measure the electronic state of the electrode active material of a battery is known. As a method for analyzing the electronic state, a method using a hard X-ray having a relatively high energy (about 20 to 100 keV) and a strong permeability is generally used, but an electron of a transition metal compound often used as an electrode active material of a battery is used. For the analysis of the state, soft X-rays (about 100 eV-2 keV) and vacuum ultraviolet rays (about 40 eV-100 eV) having relatively low energy and low permeability (hereinafter, collectively referred to as soft X-rays in this specification). Yes) is more suitable, and this makes it possible to obtain detailed information about the transition metal 3d-oxygen 2p hybrid orbital.

軟X線等の利用には高真空が必要とされる。このため、軟X線等を用いて大気圧下で試料の電子状態をオペランド解析するためには、軟X線等を透過させつつ、真空相と大気相の隔離が可能なシリコンナイトライド(Si)やシリコンカーバイド(SiC)を主体とする薄膜窓材を用い、大気相側の試料に当該窓材を介して軟X線等を入射し、試料からの発光X線等を、当該窓材を介して観察し、試料の電子状態を解析する。Liイオン電池のように液体(電解液)を用いる電池の動作下測定(オペランド測定)の場合には、軟X線等が透過可能な厚さ150nm程度のSiやSiC窓にて超高真空を隔て、その上に/集電体/電極活物質膜の作用極と電解液、対極というセル構成が必要とされる。 A high vacuum is required for using soft X-rays and the like. Therefore, in order to perform an operand analysis of the electronic state of a sample under atmospheric pressure using soft X-rays or the like, silicon nitride (Si) that can separate the vacuum phase and the atmospheric phase while transmitting the soft X-rays or the like is used. 3 N 4 ) or a silicon carbide (SiC)-based thin film window material is used, and a soft X-ray or the like is incident on the sample on the atmosphere phase side through the window material to emit the emitted X-ray or the like from the sample. Observe through the window material and analyze the electronic state of the sample. In the case of operating measurement (operand measurement) of a battery using a liquid (electrolyte solution) such as a Li-ion battery, it is possible to use a Si 3 N 4 or SiC window with a thickness of about 150 nm that allows transmission of soft X-rays. A cell structure is required in which a working electrode of the current collector/electrode active material film, an electrolytic solution, and a counter electrode are provided on a high vacuum.

上記セル構成において、電極活物質の電子状態をオペランド解析するためには、集電体および電極活物質膜は、軟X線等の透過性の窓材に対し密着している必要があり、このためには、電極活物質である遷移金属化合物を高温で集電体上に膜形成させる必要がある。しかしながら、従来のTi、Cr等からなる密着層およびAuからなる集電体層の2層構造を有する集電体薄膜は、この高温処理により劣化し、導電性が低下するため、この方法では、電極活物質の電子状態をオペランド解析することができなかった。 In the above cell structure, in order to perform an operand analysis of the electronic state of the electrode active material, the current collector and the electrode active material film must be in close contact with a transparent window material such as soft X-ray. For this purpose, it is necessary to form a film of a transition metal compound, which is an electrode active material, on the current collector at high temperature. However, a conventional current collector thin film having a two-layer structure of an adhesion layer made of Ti, Cr or the like and a current collector layer made of Au is deteriorated by this high temperature treatment and conductivity is lowered. Operand analysis of the electronic state of the electrode active material could not be performed.

これに対し、本発明者らは、先に、当該集電体薄膜を、Alからなるバッファー層、Ti、Cr等からなる密着層、およびAuからなる集電体層の3層構造とすることにより、電極活物質を膜形成させる際の高温処理により劣化することのない集電体薄膜を提供することに成功し、これを用いることで、電極活物質の電子状態をオペランド解析することを可能とした(特許文献1、非特許文献1)。 On the other hand, the present inventors previously prepared the current collector thin film with a three-layer structure of a buffer layer made of Al 2 O 3 , an adhesion layer made of Ti, Cr, etc., and a current collector layer made of Au. In this way, we succeeded in providing a current collector thin film that is not deteriorated by high-temperature treatment when forming a film of the electrode active material. By using this, the electronic state of the electrode active material is subjected to operand analysis. This is possible (Patent Document 1, Non-Patent Document 1).

特開2016−040763号公報JP, 2016-040763, A

Electrochemistry Communications 2015, 50, 93-96.Electrochemistry Communications 2015, 50, 93-96.

本発明者らが先に開発した上述の技術では、集電体薄膜に酸素が含まれており、軟X線等により当該集電体中の酸素も励起されるため、Liイオン電池等の電極活物質(多くは遷移金属と酸素から構成される。正極の場合は、これらに加えてLi元素、Na電池の場合は、Liの代わりにNa元素が含まれる)のオペランド測定にあたっては、電極活物質中の酸素の電子状態に加えて、当該集電体中の酸素の電子状態も計測されることとなり、電極活物質中の酸素の電子状態のみをそこから取り出して計測することができず、このため、オペランド測定ができるのは、遷移金属の電子状態に限られていた。
しかしながら、Liイオン電池等の充放電メカニズムの解明や、酸素の酸化還元反応を利用した更なる充放電容量拡大を検討するためには、電極活物質中の酸素の電子状態解析も重要である。
酸素を含まず、かつ、電極活物質を膜形成させる際の高温処理により劣化することのない集電体薄膜を提供することができれば、活物質中の酸素の解析が可能となる。
本発明は、このような集電体薄膜を提供することを課題とし、これを用いることで、軟X線等が透過可能な基材上に酸素を含まない集電体薄膜と電極活物質薄膜を積層してなる、電極活物質中の遷移金属の電子状態に加えて、酸素の電子状態をもオペランド測定することが可能な電極構造体を提供することを課題とする。
In the above-mentioned technique developed by the present inventors, oxygen is contained in the current collector thin film, and oxygen in the current collector is also excited by soft X-rays or the like. In measuring the operand of the active material (mostly composed of transition metal and oxygen. In the case of the positive electrode, in addition to these, Li element, and in the case of Na battery, Na element is contained instead of Li), the electrode activity is measured. In addition to the electronic state of oxygen in the substance, the electronic state of oxygen in the current collector will also be measured, and it is not possible to take out and measure only the electronic state of oxygen in the electrode active material, Therefore, the operand measurement was limited to the electronic state of the transition metal.
However, in order to elucidate the charging/discharging mechanism of a Li-ion battery or to study further expansion of charging/discharging capacity by utilizing oxygen redox reaction, analysis of the electronic state of oxygen in the electrode active material is also important.
If it is possible to provide a current collector thin film that does not contain oxygen and is not deteriorated by high temperature treatment when forming a film of an electrode active material, it is possible to analyze oxygen in the active material.
An object of the present invention is to provide such a current collector thin film, and by using the current collector thin film, a current collector thin film and an electrode active material thin film that do not contain oxygen on a base material that can transmit soft X-rays and the like. It is an object of the present invention to provide an electrode structure which is obtained by stacking the above and is capable of performing operand measurement not only on the electronic state of the transition metal in the electrode active material but also on the electronic state of oxygen.

本発明者らは、軟X線等を透過することができる程度の厚みを有するSi薄膜上に、TiN薄膜またはZrN薄膜を堆積させ、ついで、Au薄膜を堆積させることによって、軟X線を透過することができ、かつ、後の高温加熱を伴う工程でその上に遷移金属酸化物などの遷移金属化合物からなる電極活物質層を形成させても電子伝導性を維持し得る、酸素を含まない集電体薄膜層を形成することができることを見出した。 The present inventors deposit a TiN thin film or a ZrN thin film on a Si 3 N 4 thin film having a thickness that allows transmission of soft X-rays and the like, and then deposit an Au thin film to form a soft X-ray. Oxygen that can transmit a wire and that can maintain electron conductivity even when an electrode active material layer made of a transition metal compound such as a transition metal oxide is formed thereon in a step involving subsequent high temperature heating. It has been found that a current collector thin film layer containing no can be formed.

具体的には、本発明者らは、厚さ150nmのSi薄膜を表面に設けたSi基板をスパッタ装置内に取り付け、5×10−5Paまで減圧することにより、残存大気を排除した後、Arガスを用いた逆スパッタリングにより基板上のSi薄膜表面を清浄化し、ついで、5×10−5Pa程度以下の減圧下、基板を400℃に加熱・保持し、当該温度にて、Arガスを用いたスパッタリングにより厚さ25nmのTiN薄膜またはZrN薄膜を堆積させ、ついで、基板を650℃に加熱して、1×10−4Pa程度まで減圧・保持し、当該温度にて、Arガスを用いたスパッタリングにより厚さ15nmのAu薄膜を堆積させることによって、集電体薄膜層を形成し(実施例1、2)、Si薄膜上に集電体薄膜を設けた当該Si基板をスパッタ装置内に取り付け、5×10−5Paまで減圧することにより、残存大気を排除した後、Arガスを用いた逆スパッタリングにより基板上のAu薄膜表面を清浄化し、ついで、1×10−4Pa程度以下の減圧下、基板を650℃に加熱・保持し、当該温度にて、Arガスを用いたスパッタリングにより当該集電体薄膜層上にLiFePOなどのOlivine型構造を有する遷移金属化合物からなる、厚さ75nm程度の電極活物質層を堆積させ(実施例3、4)、あるいは、1×10−4Pa程度以下の減圧下、基板を600℃に加熱・保持し、当該温度にて、所定の割合のAr及びOガス雰囲気下、スパッタリングにより当該集電体薄膜層上にLiMnなどのSpinel型構造を有する遷移金属酸化物からなる、厚さ50nm程度の電極活物質層を堆積させ(実施例5〜7)、これらの層が設けられた反対側からSi基板にSi薄膜に至る窓部を設けることでオペランド測定用電極を形成し(実施例8)、当該電極を電解液及び対向電極と組み合わせて充放電試験を行うと、正常に充放電し、電池として機能すること(実施例9)、また、Si基板上に設けた窓部からSi薄膜を介して軟X線を入射することにより、当該電極に十分な軟X線が入射され、当該電極からの発光を測定することにより、当該電極における酸素の電子状態を測定できること(実施例10)を見出した。
本発明は、本発明者らによるこれらの知見に基づいて、なされたものである。
Specifically, the present inventors installed a Si substrate having a Si 3 N 4 thin film having a thickness of 150 nm on the surface in a sputtering apparatus and reduced the pressure to 5×10 −5 Pa to eliminate residual air. After that, the Si 3 N 4 thin film surface on the substrate is cleaned by reverse sputtering using Ar gas, and then the substrate is heated and held at 400° C. under a reduced pressure of about 5×10 −5 Pa or less, and the temperature is reduced. At 25° C., a TiN thin film or a ZrN thin film having a thickness of 25 nm is deposited by sputtering using Ar gas, and then the substrate is heated to 650° C. and depressurized and held to about 1×10 −4 Pa, and then the temperature is reached. Then, an Au thin film having a thickness of 15 nm is deposited by sputtering using Ar gas to form a current collector thin film layer (Examples 1 and 2), and the current collector thin film is provided on the Si 3 N 4 thin film. The Si substrate was mounted in a sputtering apparatus, the pressure was reduced to 5×10 −5 Pa to eliminate residual air, and then the Au thin film surface on the substrate was cleaned by reverse sputtering using Ar gas. The substrate is heated and held at 650° C. under a reduced pressure of about 1×10 −4 Pa or less, and at that temperature, an Olivine type structure such as LiFePO 4 is formed on the current collector thin film layer by sputtering using Ar gas. An electrode active material layer having a thickness of about 75 nm made of the transition metal compound is deposited (Examples 3 and 4), or the substrate is heated and held at 600° C. under a reduced pressure of about 1×10 −4 Pa or less. A transition metal oxide having a Spinel-type structure such as LiMn 2 O 4 on the current collector thin film layer formed by sputtering in a predetermined ratio of Ar and O 2 gas atmosphere at a temperature of about 50 nm. Of the electrode active material layer (Examples 5 to 7), and the window for reaching the Si 3 N 4 thin film is provided on the Si substrate from the opposite side where these layers are provided to form the operand measurement electrode ( Example 8) shows that when the electrode is combined with an electrolytic solution and a counter electrode and a charge/discharge test is performed, the electrode is normally charged/discharged to function as a battery (Example 9), and a window portion provided on a Si substrate is used. Sufficient soft X-rays are incident on the electrode by injecting soft X-rays through the Si 3 N 4 thin film, and the light emission from the electrode is measured to measure the electronic state of oxygen at the electrode. The thing that can be done (Example 10) was found.
The present invention has been made based on these findings by the present inventors.

集電体上に、集電体に密着した遷移金属酸化物などの遷移金属化合物からなる電極活物質を形成するには、通常500℃程度以上の高温の熱処理を行う必要がある。
図1に示した、公知の技術を用いて作成したTi、Cr等の密着層及びAuからなる集電体層の2層構造の集電体膜を用いると、この熱処理工程で電極活物質直下のAuが移動し、Au層が連続した膜からいたるところで分断された構造へと変化してしまうことで、集電体が高抵抗化し、電極活物質を電位操作してオペランド測定を行うことが困難となる。Au膜厚を例えば50nm程度以上にすることで抵抗を低く保つことは可能であるが、これにより軟X線等の透過が妨げられ、スペクトル測定が不可能となる。
In order to form an electrode active material made of a transition metal compound such as a transition metal oxide adhered to the current collector on the current collector, it is usually necessary to perform high-temperature heat treatment at about 500° C. or higher.
When the current collector film having the two-layer structure of the adhesion layer made of Ti, Cr, etc. and the current collector layer made of Au shown in FIG. Au migrates and the Au layer changes from a continuous film to a structure that is divided everywhere, so that the resistance of the current collector becomes high, and the potential of the electrode active material is manipulated to perform operand measurement. It will be difficult. Although it is possible to keep the resistance low by setting the Au film thickness to, for example, about 50 nm or more, this obstructs the transmission of soft X-rays and the like, making spectrum measurement impossible.

図2に示す、本発明者らが先行して開発した技術(特許文献1)では、Au膜厚を厚くせず、かつ熱処理による高抵抗化を抑制するため、軟X線等を透過するSiやSiC薄膜とTi、Cr等の密着層の間に、Alからなるバッファー層を設け、Al、Ti又はCr、及びAuの3層構造とすることで、Au層を強固に固定し、電極活物質を形成する際の高温処理においても、連続した膜構造の維持を可能としている。しかしながら、この方法では、バッファー層のAlに酸素が含まれ、また、密着層のTiが電極活物質を形成する際の高温処理において容易に酸化されることにより、密着層にも酸素が含まれることとなる。このため、この方法で作成された電極について酸素の電子状態をオペランド測定する場合、図3に示すように密着層やバッファー層からの信号が発生し、電極活物質中の酸素の信号との識別が困難であった。 In the technique (Patent Document 1) previously developed by the inventors of the present invention shown in FIG. 2, Si that transmits soft X-rays or the like does not increase the Au film thickness and suppresses an increase in resistance due to heat treatment. 3 N 4 or SiC thin film and Ti, while the adhesion layer such as Cr, provided the buffer layer of Al 2 O 3, by a three-layer structure of Al 2 O 3, Ti or Cr, and Au, Au The layer is firmly fixed, and it is possible to maintain a continuous film structure even at high temperature treatment when forming the electrode active material. However, in this method, Al 2 O 3 in the buffer layer contains oxygen, and Ti in the adhesive layer is easily oxidized during the high temperature treatment for forming the electrode active material, so that oxygen is also contained in the adhesive layer. Will be included. Therefore, when performing an operand measurement of the electronic state of oxygen on the electrode formed by this method, a signal from the adhesion layer or the buffer layer is generated as shown in FIG. 3, and it is distinguished from the signal of oxygen in the electrode active material. Was difficult.

これに対し、図4に示した、本発明の技術では、密着層として、構成元素として酸素を含まないTiNやZrNを用いることで、Alからなるバッファー層を設けることなく、電極活物質形成時の熱処理においてもAu層の移動を抑制することができ、これにより、軟X線等を用い、電極活物質を電位操作することで、電極活物質に含まれる遷移金属のみならず酸素の電子状態についてもオペランド測定を行うことが可能となる。 On the other hand, in the technique of the present invention shown in FIG. 4, by using TiN or ZrN that does not contain oxygen as a constituent element for the adhesion layer, it is possible to perform electrode activation without providing a buffer layer made of Al 2 O 3. The movement of the Au layer can be suppressed even in the heat treatment during the formation of the substance. Therefore, by operating the potential of the electrode active material using soft X-rays or the like, not only the transition metal contained in the electrode active material but also oxygen can be reduced. Operand measurement can be performed for the electronic state of.

本発明による上記集電体薄膜は、成膜装置内部の残存大気を排除したのち、基板表面のSiまたはSiCの薄膜上に、清浄で均質な界面を有するTiNやZrNの密着層結晶薄膜を作製し、続いて、当該密着層上に、Au薄膜を作製することにより、製造することができる。 The current collector thin film according to the present invention eliminates residual air inside the film forming apparatus, and then adheres to the thin film of Si 3 N 4 or SiC on the substrate surface to form a TiN or ZrN adhesion layer crystal having a clean and uniform interface. It can be manufactured by forming a thin film and subsequently forming an Au thin film on the adhesion layer.

本発明による集電体薄膜は、また、上述の電極活物質を膜形成させる程度の高温にさらされても、導電性が低下することがないという優れた特性を有することから、上述の、電極活物質の電子状態をオペランド測定するための電極に限られず、耐熱性の必要な各種の用途において、用い得るものである。 The current collector thin film according to the present invention also has excellent characteristics that the conductivity does not decrease even when exposed to a high temperature for forming a film of the above-mentioned electrode active material. It is not limited to an electrode for measuring the electronic state of an active material as an operand, and can be used in various applications requiring heat resistance.

すなわち、この出願は、以下の発明を提供するものである。
〈1〉Si基板上にSiまたはSiCの薄膜を有し、当該薄膜上に、TiNまたはZrNの薄膜及び当該TiNまたはZrNの薄膜上のAuの薄膜からなる二層構造の薄膜を有する、高温で電極活物質を成膜した後にも低抵抗を示す薄膜集電体。
〈2〉表面にSiまたはSiCの薄膜を設けたSi基板を成膜装置内に配置し、残存大気を排除したのち、基板表面のSi薄膜上に、TiNまたはZrNの密着層薄膜を成膜し、続いて、当該密着層薄膜上にAu薄膜を成膜することを特徴とする、〈1〉に記載の薄膜集電体の作製方法。
〈3〉Si基板表面のSiまたはSiCの薄膜上に、〈1〉に記載の薄膜集電体を有し、その上に電極活物質層を有する、電池用薄膜電極。
〈4〉Si基板表面のSiまたはSiCの薄膜上に設けた〈1〉に記載の薄膜集電体上に、さらに電極活物質を高温で成膜して電極活物質層を設けることを特徴とする、〈3〉に記載の電池用薄膜電極の作製方法。
〈5〉電極活物質がLiイオン電池の正極用活物質である、〈4〉に記載の電池用薄膜電極の作製方法。
〈6〉電極活物質がLiイオン電池の負極用活物質である、〈4〉に記載の電池用薄膜電極の作製方法。
〈7〉〈3〉に記載の電池用薄膜電極の、SiまたはSiCの薄膜、薄膜集電体、及び電極活物質層を有する側と反対側のSi基板表面に、当該表面から当該SiまたはSiCの薄膜に至る部分のSiが取り除かれ、その底面に当該SiまたはSiCの薄膜が露出した、軟X線及び真空紫外線透過性の窓部を有することを特徴とする、電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極。
〈8〉〈7〉に記載の、軟X線及び真空紫外線透過性の窓部を有することを特徴とする、電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極の作製方法であって、
〈3〉に記載の電池用薄膜電極の、SiまたはSiCの薄膜、薄膜集電体、及び電極活物質層を有する側と反対側のSi基板表面の窓部形成部位を除く部分を保護しながら、当該窓部形成部位のSi基板を当該SiまたはSiCの薄膜層が露出するまでエッチングすることによって、軟X線及び真空紫外線透過性の窓部を形成することを特徴とする、方法。
〈9〉〈7〉に記載の電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極を作用極とし、これと電解質及び対向電極とを組み合わせて電気化学オペランド測定用セルを構成し、当該セルを充放電させ、当該セルの作用極の軟X線及び真空紫外線透過性の窓部を通して、電極活物質中の遷移金属及び酸素を励起させる波長スペクトルの軟X線及び/又は真空紫外線を作用極に照射し、充放電時に電極活物質中の遷移金属及び酸素が発光する軟X線及び/又は真空紫外線の波長スペクトルを、当該窓部を通して測定し、電極活物質中の遷移金属及び酸素の電子状態を解析することを特徴とする、軟X線及び/又は真空紫外線電気化学オペランド分光測定方法。
〈10〉酸素の周辺環境が電極活物質中とは異なる、酸素含有電解質を用いることを特徴とする、〈9〉に記載の軟X線及び/又は真空紫外線電気化学オペランド分光測定方法。
That is, this application provides the following inventions.
<1> A thin film of Si 3 N 4 or SiC is formed on a Si substrate, and a thin film having a two-layer structure is formed on the thin film, which is a thin film of TiN or ZrN and a thin film of Au on the thin film of TiN or ZrN. , A thin film current collector that exhibits low resistance even after forming an electrode active material at high temperature.
<2> Place a Si substrate having a Si 3 N 4 or SiC thin film on the surface in a film forming apparatus to eliminate residual air, and then adhere TiN or ZrN to the Si 3 N 4 thin film on the substrate surface. The method for producing a thin film current collector according to <1>, wherein a layer thin film is formed, and then an Au thin film is formed on the adhesion layer thin film.
<3> A thin film electrode for a battery, which has the thin film current collector described in <1> on a thin film of Si 3 N 4 or SiC on the surface of a Si substrate and has an electrode active material layer on the thin film current collector.
<4> To provide an electrode active material layer by further forming an electrode active material at a high temperature on the thin film current collector described in <1> provided on the Si 3 N 4 or SiC thin film on the Si substrate surface. <3> A method for producing a thin film electrode for a battery according to <3>.
<5> The method for producing a thin film electrode for a battery according to <4>, wherein the electrode active material is a positive electrode active material for a Li-ion battery.
<6> The method for producing a thin film electrode for a battery according to <4>, wherein the electrode active material is an active material for a negative electrode of a Li-ion battery.
<7> From the surface to the Si substrate surface on the side opposite to the side having the thin film of Si 3 N 4 or SiC, the thin film current collector, and the electrode active material layer of the battery thin film electrode according to <3>, It is characterized in that it has a window portion that is transparent to X-rays and vacuum ultraviolet rays, in which Si in a portion reaching a thin film of Si 3 N 4 or SiC is removed, and the thin film of Si 3 N 4 or SiC is exposed on the bottom surface thereof. Electrode for electrochemical operand soft X-ray and/or VUV absorption/emission spectroscopy.
<8> A method for producing an electrode for electrochemical operand soft X-ray and/or VUV absorption/emission spectroscopy measurement, characterized in that it has a soft X-ray and VUV-transparent window part according to <7>. And
The portion of the thin film electrode for a battery according to <3>, which is opposite to the side having the thin film of Si 3 N 4 or SiC, the thin film current collector, and the electrode active material layer, except the window forming portion on the surface of the Si substrate. While protecting, the Si substrate at the window portion forming portion is etched until the thin film layer of Si 3 N 4 or SiC is exposed, thereby forming a window portion that is transparent to soft X-rays and vacuum ultraviolet rays. how to.
<9> An electrochemical operand measurement cell according to <7>, wherein the electrochemical operand soft X-ray and/or vacuum ultraviolet absorption/emission spectroscopy measurement electrode is used as a working electrode, and this is combined with an electrolyte and a counter electrode. Then, the cell is charged and discharged, and the soft X-ray and/or vacuum of the wavelength spectrum for exciting the transition metal and oxygen in the electrode active material through the soft X-ray and vacuum UV permeable window of the working electrode of the cell. The transition metal in the electrode active material is measured by irradiating the working electrode with ultraviolet rays and measuring the wavelength spectrum of the transition metal in the electrode active material and oxygen emitted from the soft X-rays and/or vacuum ultraviolet rays during the charging and discharging through the window. And a soft X-ray and/or vacuum ultraviolet electrochemical operand spectroscopic measurement method characterized by analyzing the electronic state of oxygen.
<10> The soft X-ray and/or vacuum ultraviolet electrochemical operand spectroscopic measurement method according to <9>, wherein an oxygen-containing electrolyte having an oxygen surrounding environment different from that in the electrode active material is used.

上述のとおり、高電圧動作を特徴とするLiイオン電池などの電池に対しては、充放電メカニズム解明のためには動作状態で構成材料の評価を行うオペランド測定が重要である。
本発明者らが先行して開発した技術では、集電体部分に酸素を含むことから、電極活物質の分光学的分析においては遷移金属のみを対象とすることが可能で、活物質中の酸素を集電体部分の酸素から分離して分析できず、電極の構成要素である遷移金属について元素選択的な軟X線及び/又は真空紫外線発光・吸収スペクトルをオペランド測定し、これに基づきFermi準位近傍の電子状態解析を行っていた。
本発明では、電極活物質中の酸素をも分析対象とすることが可能となり、従来の遷移金属に加え、酸素の軟X線及び/又は真空紫外線発光・吸収スペクトルのオペランド測定と電子状態解析を選択的に行うことができる。
これにより、例えば、遷移金属についてのオペランド測定の結果と酸素についてのオペランド測定の結果を合わせることにより導かれる、Fermi準位近傍の電子状態の解析結果を、想定された遷移金属−酸素からなる分子モデルを用いて計算されたFermi準位近傍の電子状態と対比することで、想定された分子モデルの正誤を検証する等により、電池の充放電の過程における遷移金属−酸素の分子レベルの構造について、より詳細な考察を行うことが可能となる。
これにより、オペランド測定法を、Liイオン電池等におけるエネルギーの貯蔵・利用メカニズム解明に向けたより基礎的な評価手法として発展させることができ、得られた知見を用いた革新材料開発指針の立案への展開を促進させることが期待される。
As described above, for batteries such as Li-ion batteries characterized by high voltage operation, operand measurement for evaluating constituent materials in an operating state is important for clarifying charge/discharge mechanism.
In the technique developed by the present inventors in advance, since the current collector portion contains oxygen, it is possible to target only the transition metal in the spectroscopic analysis of the electrode active material. Oxygen could not be separated from oxygen in the current collector and analyzed, and element-selective soft X-ray and/or VUV emission/absorption spectra of the transition metal, which is a component of the electrode, were operand-measured, and based on this, Fermi The electronic state near the level was analyzed.
In the present invention, it becomes possible to analyze oxygen in the electrode active material, and in addition to conventional transition metals, operand measurement of soft X-ray and/or VUV emission/absorption spectrum of oxygen and electronic state analysis can be performed. It can be done selectively.
Thereby, for example, the analysis result of the electronic state in the vicinity of the Fermi level, which is derived by combining the results of the operand measurement for the transition metal and the results of the operand measurement for the oxygen, shows the expected transition metal-oxygen molecule. By comparing the electronic state near the Fermi level calculated using the model and verifying the correctness of the assumed molecular model, the transition metal-oxygen molecular level structure during the charging and discharging process of the battery , It becomes possible to make a more detailed consideration.
As a result, the operand measurement method can be developed as a more basic evaluation method for elucidating the mechanism of energy storage and use in Li-ion batteries, etc., and it is possible to develop innovative material development guidelines using the obtained knowledge. Expected to accelerate deployment.

公知の集電体膜を用いて電極膜を形成する際に、高温熱処理により集電体Au層の電気抵抗が増大する機構を示す図。The figure which shows the mechanism in which the electrical resistance of a collector Au layer increases by high temperature heat processing, when forming an electrode film using a well-known collector film. 本発明者らが先に開発したオペランド測定用電極チップの構成とその作成手順を示す図。The figure which shows the structure of the electrode chip for operand measurement which the present inventors developed previously, and its preparation procedure. 本発明者らが先に開発したオペランド測定用電極チップを用いて分光測定する際の問題点を示す図:集電体膜中に酸素が存在することにより、電極活物質中の酸素の分光データのみを取得することができず、酸素の分光測定が阻害される。The figure which shows the problem at the time of performing a spectroscopic measurement using the electrode tip for operand measurement which the present inventors developed previously: Spectral data of oxygen in an electrode active material due to the presence of oxygen in a collector film. It is not possible to obtain only the oxygen and the spectroscopic measurement of oxygen is disturbed. 本発明者らが今回開発したオペランド測定用電極チップの構成とその作成手順を示す図:電極膜形成温度と同等の高温で酸素フリーの密着層および集電体層を積層して集電体膜を形成したのち、LiFePO、LiMnFe1−xPO、LiCoFe1−xPO、LiMn4、LiAlMn2−x、LiNi0.5Mn1.5等を基板加熱成膜し電極膜を形成することで、酸素フリー集電体膜を有するオペランド測定用電極チップを実現する。これにより、電極材料中の遷移金属、および酸素の電子状態の分光測定が可能となる。The figure which shows the structure of the electrode tip for operand measurement which this inventors developed this time, and its preparation procedure: The collector film which laminated|stacks the oxygen free adhesive layer and collector layer at the high temperature equivalent to the electrode film formation temperature. After forming the, LiFePO 4, LiMn x Fe 1 -x PO 4, LiCo x Fe 1-x PO 4, LiMn 2 O 4, LiAl x Mn 2-x O 4, LiNi 0.5 Mn 1.5 O 4 An electrode chip for operand measurement having an oxygen-free current collector film is realized by heating and the like to form an electrode film by heating the substrate. This enables spectroscopic measurement of the electronic states of the transition metal and oxygen in the electrode material. 本発明による電極チップ破断面の走査電子顕微鏡(SEM)像:Si基板上に150nm厚のSi窓材層があり、その上にAu/TiNの2層からなる、全体で40nm程度の厚みの集電体膜が密着形成され、その上に、Olivine型構造のLiFePOの結晶粒子からなる、75nm程度の厚みの電極膜が均質に形成されている。なお、顕微鏡像は、チップの斜め上方から撮影されているため、電極膜の厚みは像中の二本の白線で示された間隔となる。Scanning electron microscope (SEM) image of a fracture surface of an electrode tip according to the present invention: A Si 3 N 4 window material layer having a thickness of 150 nm is formed on a Si substrate, and two layers of Au/TiN having a total thickness of about 40 nm are formed thereon. A current collector film having a thickness is closely formed, and an electrode film having a thickness of about 75 nm, which is composed of crystal particles of LiFePO 4 having an Olivine type structure, is uniformly formed on the current collector film. Since the microscopic image is taken obliquely from above the chip, the thickness of the electrode film is at the intervals indicated by the two white lines in the image. 本発明による電極チップ破断面の走査電子顕微鏡(SEM)像:Si基板上に150nm厚のSi窓材層があり、その上にAu/TiNの2層からなる、全体で40nm程度の厚みの集電体膜が密着形成され、その上に、Olivine型構造のLiMn0.5Fe0.5POの結晶粒子からなる、75nm程度の厚みの電極膜が均質に形成されている。なお、顕微鏡像は、チップの斜め上方から撮影されているため、電極膜の厚みは像中の二本の白線で示された間隔となる。Scanning electron microscope (SEM) image of a fracture surface of an electrode tip according to the present invention: A Si 3 N 4 window material layer having a thickness of 150 nm is formed on a Si substrate, and two layers of Au/TiN having a total thickness of about 40 nm are formed thereon. A current collector film having a thickness is closely formed, and an electrode film having a thickness of about 75 nm, which is made of LiMn 0.5 Fe 0.5 PO 4 crystal particles having an Olivine type structure, is uniformly formed on the current collector film. Since the microscopic image is taken obliquely from above the chip, the thickness of the electrode film is at the intervals indicated by the two white lines in the image. 本発明による電極チップ破断面の走査電子顕微鏡(SEM)像:Si基板上に150nm厚のSi窓材層があり、その上にAu/TiNの2層からなる、全体で40nm程度の厚みの集電体膜が密着形成され、その上に、Spinel型構造のLiMnの結晶粒子からなる、50nm程度の厚みの電極膜が均質に形成されている。なお、顕微鏡像は、チップの斜め上方から撮影されているため、電極膜の厚みは像中の二本の白線で示された間隔となる。Scanning electron microscope (SEM) image of a fracture surface of an electrode tip according to the present invention: A Si 3 N 4 window material layer having a thickness of 150 nm is formed on a Si substrate, and two layers of Au/TiN having a total thickness of about 40 nm are formed thereon. A current collector film having a thickness is closely formed, and an electrode film having a thickness of about 50 nm, which is composed of LiMn 2 O 4 crystal particles having a Spinel structure, is uniformly formed on the current collector film. Since the microscopic image is taken obliquely from above the chip, the thickness of the electrode film is at the intervals indicated by the two white lines in the image. 本発明による電極チップ破断面の走査電子顕微鏡(SEM)像:Si基板上に150nm厚のSi窓材層があり、その上にAu/TiNの2層からなる、全体で40nm程度の厚みの集電体膜が密着形成され、その上に、Spinel型構造のLiNi0.5Mn1.5の結晶粒子からなる、50nm程度の厚みの電極膜が均質に形成されている。なお、顕微鏡像は、チップの斜め上方から撮影されているため、電極膜の厚みは像中の二本の白線で示された間隔となる。Scanning electron microscope (SEM) image of a fracture surface of an electrode tip according to the present invention: A Si 3 N 4 window material layer having a thickness of 150 nm is formed on a Si substrate, and two layers of Au/TiN having a total thickness of about 40 nm are formed thereon. A current collector film having a thickness is closely formed, and an electrode film having a thickness of about 50 nm, which is composed of crystal particles of LiNi 0.5 Mn 1.5 O 4 having a Spinel structure, is uniformly formed on the current collector film. Since the microscopic image is taken obliquely from above the chip, the thickness of the electrode film is at the intervals indicated by the two white lines in the image. 放射光施設(KEK-PF BL4C)を用いて測定した、本発明による電極チップのX線回折(XRD)図:集電体薄膜上に成膜した代表的なLiイオン電池正極材料LiFePOおよびLiMn0.5Fe0.5POのX線回折図形から、当該成膜した正極材料は不純物相を含まないことが確認できる。 LiFePOおよびLiMn0.5Fe0.5PO電極膜では、●印で示したOlivine型構造に由来する回折ピークに加え、Au(▼)およびTiN(▽)に由来する回折ピークが観察され、所定の結晶薄膜がAl/TiN2層膜上に形成されていることが確認された。X-ray diffraction (XRD) diagram of the electrode tip according to the present invention measured using a synchrotron radiation facility (KEK-PF BL4C): Representative Li-ion battery cathode materials LiFePO 4 and LiMn formed on a current collector thin film From the X-ray diffraction pattern of 0.5 Fe 0.5 PO 4 , it can be confirmed that the film-formed positive electrode material does not contain an impurity phase. In the LiFePO 4 and LiMn 0.5 Fe 0.5 PO 4 electrode films, diffraction peaks derived from Au (▼) and TiN (▽) were observed in addition to the diffraction peaks derived from the Olivine type structure shown by ●. It was confirmed that a predetermined crystal thin film was formed on the Al/TiN2 layer film. 放射光施設(KEK-PF BL4C)を用いて測定した、本発明による電極チップのX線回折(XRD)図:集電体薄膜上に成膜した代表的なLiイオン電池正極材料LiMn、LiAl0.2Mn1.8、LiNi0.5Mn1.5のX線回折図形から、当該成膜した正極材料は不純物相を含まないことが確認できる。 LiMn、LiAl0.2Mn1.8、LiNi0.5Mn1.5電極膜では、●印で示したSpinel型構造に由来する回折ピークが観察され、所定の結晶薄膜がAu/TiN2層膜上に形成されていることが確認された。X-ray diffraction (XRD) diagram of the electrode tip according to the present invention measured using a synchrotron radiation facility (KEK-PF BL4C): Representative Li-ion battery positive electrode material LiMn 2 O 4 formed on a current collector thin film From the X-ray diffraction patterns of LiAl 0.2 Mn 1.8 O 4 and LiNi 0.5 Mn 1.5 O 4 , it can be confirmed that the formed positive electrode material does not contain an impurity phase. In the LiMn 2 O 4 , LiAl 0.2 Mn 1.8 O 4 , and LiNi 0.5 Mn 1.5 O 4 electrode films, diffraction peaks derived from the Spinel-type structure indicated by ● are observed, and a predetermined crystal is observed. It was confirmed that the thin film was formed on the Au/TiN2 layer film. 本発明の電極チップを用いて構成された電気化学セルのサイクリックボルタンメトリ図:本発明による集電体薄膜上に成膜した正極材料を作用極とし、金属Li箔を対向電極および電位参照極として、電位走査時の測定電流を記録。 代表的な正極材料であるLiFePO及びLiMn0.5Fe0.5POについて、Liイオンの引き抜き・挿入時に生じる遷移金属元素の酸化還元反応電流ピークが見られ、電池動作していることが確認できる。Cyclic voltammetry diagram of an electrochemical cell constituted by using the electrode tip of the present invention: a positive electrode material formed on a current collector thin film according to the present invention is used as a working electrode, and a metal Li foil is used as a counter electrode and a potential reference. As a pole, record the measured current during potential scanning. Regarding LiFePO 4 and LiMn 0.5 Fe 0.5 PO 4 , which are typical positive electrode materials, a redox reaction current peak of a transition metal element generated during extraction and insertion of Li ions was observed, and it was confirmed that the battery was operating. I can confirm. 本発明の電極チップを用いて構成された電気化学セルのサイクリックボルタンメトリ図:本発明による集電体薄膜上に成膜した正極材料を作用極とし、金属Li箔を対向電極および電位参照極として、電位走査時の測定電流を記録。代表的な正極材料であるLiMnについて、Liイオンの引き抜き・挿入時に生じる遷移金属元素の酸化還元反応電流ピークが見られ、電池動作していることが確認できる。Cyclic voltammetry diagram of an electrochemical cell constituted by using the electrode tip of the present invention: a positive electrode material formed on a current collector thin film according to the present invention is used as a working electrode, and a metal Li foil is used as a counter electrode and a potential reference. As a pole, record the measured current during potential scanning. With respect to LiMn 2 O 4 which is a typical positive electrode material, a redox reaction current peak of a transition metal element generated during extraction and insertion of Li ions can be seen, which confirms that the battery is operating. 本発明の電極チップを用いて構成された電気化学セルのサイクリックボルタンメトリ図:本発明による集電体薄膜上に成膜した正極材料を作用極とし、金属Li箔を対向電極および電位参照極として、電位走査時の測定電流を記録。代表的な正極材料であるLiAl0.2Mn1.8について、Liイオンの引き抜き・挿入時に生じる遷移金属元素の酸化還元反応電流ピークが見られ、電池動作していることが確認できる。Cyclic voltammetry diagram of an electrochemical cell constituted by using the electrode tip of the present invention: a positive electrode material formed on a current collector thin film according to the present invention is used as a working electrode, and a metal Li foil is used as a counter electrode and a potential reference. As a pole, record the measured current during potential scanning. Regarding LiAl 0.2 Mn 1.8 O 4 , which is a typical positive electrode material, a redox reaction current peak of a transition metal element generated at the time of extracting and inserting Li ions can be seen, and it can be confirmed that the battery is operating. 本発明の電極チップを用いて構成された電気化学セルのサイクリックボルタンメトリ図:本発明による集電体薄膜上に成膜した正極材料を作用極とし、金属Li箔を対向電極および電位参照極として、電位走査時の測定電流を記録。代表的な正極材料であるLiNi0.5Mn1.5について、Liイオンの引き抜き・挿入時に生じる遷移金属元素の酸化還元反応電流ピークが見られ、電池動作していることが確認できる。Cyclic voltammetry diagram of an electrochemical cell constituted by using the electrode tip of the present invention: a positive electrode material formed on a current collector thin film according to the present invention is used as a working electrode, and a metal Li foil is used as a counter electrode and a potential reference. As a pole, record the measured current during potential scanning. With respect to LiNi 0.5 Mn 1.5 O 4 which is a typical positive electrode material, a redox reaction current peak of a transition metal element generated during extraction and insertion of Li ions can be seen, which confirms that the battery is operating. 本発明の電極膜の軟X線吸収分光試験の結果を示す図。The figure which shows the result of the soft X-ray absorption spectroscopy test of the electrode film of this invention. 本発明のオペランド測定用電極を用いた電気化学オペランドセルの軟X線発光分光測定試験の結果を示す図。The figure which shows the result of the soft X-ray-emission spectroscopy measurement test of the electrochemical operand cell which used the electrode for operand measurement of this invention.

本発明の集電体薄膜は、Si基板上にSiまたはSiCの薄膜を有し、当該薄膜上に、TiNまたはZrNの薄膜及び当該TiNまたはZrNの薄膜上のAuの薄膜からなる二層構造の薄膜を有することを特徴とする。
Si基板上に設けられたSiまたはSiCの薄膜は、Si基板に軟X線及び/又は真空紫外線吸収/発光分光測定用の窓部を設けた際に、当該窓部において、軟X線及び/又は真空紫外線測定を行う外部の真空相と測定対象を収納する内部の大気圧相の間の隔壁として十分な強度を有することが必要であり、一方で、その上に設けるTiNまたはZrNの薄膜及びAuの薄膜から構成される多層膜が、外部から内部の試料を励起するために入射する軟X線及び/又は真空紫外線の十分な量が透過し、また、内部から励起された試料が発光する軟X線及び/又は真空紫外線の十分な量が外部へと透過する程度の、例えば10%以上の、軟X線及び真空紫外線の透過性を有する必要がある。
このような観点から、SiまたはSiCの薄膜は、100〜200nm程度の厚さであることが適当であり、特に150nm程度の厚さであることが好ましい。
The current collector thin film of the present invention comprises a thin film of Si 3 N 4 or SiC on a Si substrate, and a thin film of TiN or ZrN and a thin film of Au on the thin film of TiN or ZrN on the thin film. It is characterized by having a thin film having a layered structure.
The thin film of Si 3 N 4 or SiC provided on the Si substrate is a soft X-ray at the window portion when the window portion for soft X-ray and/or vacuum ultraviolet absorption/emission spectroscopy measurement is provided on the Si substrate. It is necessary to have sufficient strength as a partition wall between the external vacuum phase for performing the line and/or vacuum ultraviolet ray measurement and the internal atmospheric pressure phase for accommodating the measurement target, while TiN or ZrN provided on the partition wall. Of a thin film of Au and a thin film of Au transmits a sufficient amount of soft X-rays and/or vacuum ultraviolet rays that are incident to excite the sample inside from the outside, and the sample excited from inside It is necessary that the soft X-rays and/or the vacuum ultraviolet rays have a sufficient transparency of the soft X-rays and/or the vacuum ultraviolet rays to be transmitted to the outside, for example, 10% or more.
From this point of view, the thin film of Si 3 N 4 or SiC is suitable to have a thickness of about 100 to 200 nm, and particularly preferably about 150 nm.

上記SiまたはSiCの薄膜上に設けられるTiNまたはZrNの薄膜及びAuの薄膜からなる二層構造の薄膜において、TiNまたはZrNの薄膜は、その上に設けられるAuの薄膜をSiまたはSiCの薄膜に密着させる機能を有し、導電性はもっぱらAuの薄膜によってもたらされる。したがって、より高い導電性を得るためには、Auの薄膜をできるだけ厚くし、TiNまたはZrNの薄膜は当該Auの薄膜の密着に必要最小限の厚さとすることが適切であるが、一方で、上述のとおり、これらとSiまたはSiCの薄膜から構成される多層膜が所定の軟X線及び真空紫外線の透過性を有する必要がある。
このような観点から、TiNまたはZrNの薄膜は、15〜35nm程度の厚さであることが適当であり、特に25nm程度の厚さであることが好ましく、また、Auの薄膜は、5〜25nm程度の厚さであることが適当であり、特に15nm程度の厚さであることが好ましい。
The thin film of two-layer structure consisting of a thin film of the Si 3 N 4 or a thin film of TiN or ZrN provided on a thin film of SiC and Au, TiN or thin film of ZrN are thin film Si 3 N of Au provided thereon 4 or has a function of adhering to a thin film of SiC, and conductivity is provided exclusively by the thin film of Au. Therefore, in order to obtain higher conductivity, it is appropriate to make the Au thin film as thick as possible, and the TiN or ZrN thin film to be the minimum thickness necessary for adhesion of the Au thin film. As described above, it is necessary that the multilayer film composed of these and a thin film of Si 3 N 4 or SiC has a predetermined transparency to soft X-rays and vacuum ultraviolet rays.
From such a viewpoint, it is appropriate that the TiN or ZrN thin film has a thickness of about 15 to 35 nm, particularly preferably about 25 nm, and the Au thin film has a thickness of 5 to 25 nm. A thickness of about 15 nm is suitable, and a thickness of about 15 nm is particularly preferable.

上述のTiNまたはZrNの薄膜、及びAuの薄膜からなる二層構造の薄膜は、成膜装置内部の残存大気を排除したのち、Si基板表面に設けられたSiまたはSiCの薄膜上に、清浄で均質な界面を有するTiNやZrNの密着層薄膜を作製し、続いて、当該密着層上に、Au薄膜を作製することにより、製造することができる。
残存大気の排除は、例えば、成膜装置内部を1x10−4Pa以下の高真空とすることで、あるいは、1×10−3Pa程度の高真空に減圧し乾燥不活性ガスを導入する過程を複数回繰り返すことで、行うことができる。
密着層薄膜の成膜は、例えば室温でも行うことができるが、SiまたはSiCの薄膜が表面に設けられたSi基板を200℃以上に加熱して行うことにより、TiNやZrNの結晶薄膜を得ることができ、これにより膜厚を低減することができる。
Au薄膜の成膜は、上記密着層がSiまたはSiCの薄膜上に設けられたSi基板を、電極活物質成膜の際の熱処理温度に対し−50℃以上の、密着層を劣化させない温度に加熱して行うことができる。このように、室温より十分高温に基板を加熱して成膜することによりAuを固定化することで、電極活物質膜を形成したのちも、Au集電体層の抵抗を、オペランド測定に供することが可能な、例えば1000Ω以下の、十分低い値に保つことができる。
上記TiNまたはZrNの密着層薄膜、及びAu薄膜の作製は、不活性雰囲気において、スパッタリング、蒸着等、公知の適宜の方法を用いて行うことができ、例えば、Arガスを用いたスパッタリングにより作製することができる。
なお、スパッタリング法を用いる場合は、TiN等の薄膜化される素材のターゲットを用いる前に、予めArガスのみを用いた逆スパッタリングを行うことにより、薄膜を作製する基材表面の、不純物を含み得る表層を除去することによって、基材表面を清浄化させることができる。
The above-mentioned two-layer thin film composed of the TiN or ZrN thin film and the Au thin film is formed on the Si 3 N 4 or SiC thin film provided on the surface of the Si substrate after removing the residual air inside the film forming apparatus. It can be manufactured by producing a TiN or ZrN adhesion layer thin film having a clean and uniform interface, and then producing an Au thin film on the adhesion layer.
The residual air is removed by, for example, setting the inside of the film forming apparatus to a high vacuum of 1×10 −4 Pa or less, or reducing the pressure to a high vacuum of about 1×10 −3 Pa and introducing a dry inert gas. This can be done by repeating multiple times.
The adhesion layer thin film can be formed, for example, even at room temperature, but by heating a Si substrate provided with a Si 3 N 4 or SiC thin film on its surface to 200° C. or higher, TiN or ZrN crystals can be formed. A thin film can be obtained, which can reduce the film thickness.
The Au thin film is formed by degrading the adhesion layer of the Si substrate having the adhesion layer provided on the Si 3 N 4 or SiC thin film at −50° C. or higher with respect to the heat treatment temperature at the time of forming the electrode active material. It can be performed by heating to a temperature that does not allow it. In this way, by fixing the Au by heating the substrate to a temperature sufficiently higher than room temperature to form the film, the resistance of the Au current collector layer is used for operand measurement even after the electrode active material film is formed. It is possible to maintain a sufficiently low value, for example, 1000Ω or less.
The adhesion layer thin film of TiN or ZrN and the Au thin film can be produced by a known appropriate method such as sputtering or vapor deposition in an inert atmosphere, and, for example, is produced by sputtering using Ar gas. be able to.
In the case of using the sputtering method, reverse sputtering using only Ar gas is performed in advance before using a target of a material to be thinned such as TiN, so that impurities on the surface of the base material on which the thin film is formed are not included. By removing the obtained surface layer, the substrate surface can be cleaned.

本発明の電池用薄膜電極は、上述の、Si基板表面のSiまたはSiCの薄膜上に設けた本発明の薄膜集電体上に、さらに電極活物質を高温で成膜して電極活物質層を設けることにより、作製することができる。
上記薄膜とする電極活物質としては、例えば、Liイオン電池については、LiMn、LiNi0.5Mn1.5等の金属酸化物正極材料、LiFeMn1−xPO等のポリアニオン系正極材料、Fe等の金属酸化物負極材料を用いることができる。
上記電極活物質層は、オペランド測定の対象となる電極反応は電極活物質と電解液ないし電解液中のLiイオンとの接触により生じることから、集電体薄膜と電極活物質層の界面にまで電解液ないし電解液中のLiイオンが浸透することが適切であるとの観点から、25〜100nm程度の厚さ、好ましくは50〜75nm程度の厚さであること、そして、当該厚さと同程度の粒径の結晶粒子が集合した形態からなることが好ましく、また、当該電極活物質層は、電池の充放電反応に際し、集電体薄膜から脱落することがないように、集電体薄膜に密着していることが必要である。
The battery thin film electrode of the present invention is an electrode obtained by further forming an electrode active material at a high temperature on the thin film current collector of the present invention provided on the above-mentioned Si 3 N 4 or SiC thin film on the Si substrate surface. It can be manufactured by providing an active material layer.
Examples of the electrode active material for the thin film include, for Li ion batteries, metal oxide positive electrode materials such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFe x Mn 1-x PO 4, and the like. The polyanion-based positive electrode material and the metal oxide negative electrode material such as Fe 2 O 3 can be used.
In the above electrode active material layer, the electrode reaction that is the target of operand measurement occurs due to the contact between the electrode active material and the electrolyte solution or Li ions in the electrolyte solution. Therefore, even at the interface between the current collector thin film and the electrode active material layer. From the viewpoint that it is appropriate for the Li ion in the electrolytic solution or the electrolytic solution to permeate, the thickness is about 25 to 100 nm, preferably about 50 to 75 nm, and about the same as the thickness. Preferably, the electrode active material layer is formed on the current collector thin film so as not to fall off from the current collector thin film during charge/discharge reaction of the battery. It is necessary to be in close contact.

このような電極活物質薄膜は、500℃〜700℃程度の高温条件下、スパッタリング、蒸着等の、公知の方法を用いて、電極活物質を本発明の集電体薄膜表面に成膜することにより作成することができる。
成膜は、Arガスなどの不活性雰囲気において行うが、電極活物質が金属酸化物からなる場合は、一部の金属成分が還元されるのを防ぐため、10%程度以下のOガスを加えることができる。
本発明の集電体薄膜は、上記高温下での電極活物質薄膜の成膜によっても、オペランド測定に必要な低抵抗、例えば1000Ω程度以下の低抵抗を保つことができる。
Such an electrode active material thin film is formed by forming the electrode active material on the surface of the current collector thin film of the present invention by using a known method such as sputtering or vapor deposition under a high temperature condition of about 500° C. to 700° C. Can be created by.
The film formation is performed in an inert atmosphere such as Ar gas. However, when the electrode active material is made of a metal oxide, about 10% or less of O 2 gas is used to prevent reduction of some metal components. Can be added.
The current collector thin film of the present invention can maintain a low resistance required for operand measurement, for example, a low resistance of about 1000Ω or less, even when the electrode active material thin film is formed at the above high temperature.

上述のとおり、オペランド測定の対象となる電極反応は電極活物質と電解液ないし電解液中のLiイオンとの接触により生じることから、オペランド測定により電極活物質中の酸素の電子状態を知るためには、電解液は酸素を含まないものであることが好ましい。しかしながら、例えば、電解液の有機溶媒として用いるプロピレンカーボネートなどの有機物における酸素や試験用電池に用いる水性電解液中のHOにおける酸素は、遷移金属酸化物などの電極活物質における酸素とは、酸素の周辺環境が異なるため、励起される軟X線等の波長域が異なるので、電極活物質の軟X線及び/又は真空紫外線電気化学オペランド分光測定にあたり、このような電解液を用いても、電極活物質における酸素の電子状態を測定することができる。 As described above, the electrode reaction to be measured in the operand is caused by the contact between the electrode active material and the electrolytic solution or Li ion in the electrolytic solution. Therefore, in order to know the electronic state of oxygen in the electrode active material by the operand measurement. It is preferable that the electrolytic solution does not contain oxygen. However, for example, oxygen in an organic substance such as propylene carbonate used as an organic solvent of an electrolytic solution or oxygen in H 2 O in an aqueous electrolytic solution used for a test battery is the same as oxygen in an electrode active material such as a transition metal oxide, Since the surrounding environment of oxygen is different and thus the wavelength range of excited soft X-rays is different, even when such an electrolyte solution is used for the soft X-ray and/or vacuum ultraviolet electrochemical operand spectroscopic measurement of the electrode active material. The electronic state of oxygen in the electrode active material can be measured.

次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples.

[実施例1]酸素フリー集電体膜1の形成
以下の手順で、酸素を含有しない集電体膜を形成した。
1)洗浄・乾燥を行った厚さ150nmのSi層を表面に有するSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を400℃に加熱・保持する。
3)基板温度400℃にてArガスを導入し、TiNターゲットを用いてTiN薄膜を25nm堆積させる。
4)基板を650℃に加熱・1×10−4Pa程度まで減圧し、保持する。
5)基板温度650℃にてArガスを導入し、Auターゲットを用いてAu薄膜を15nm堆積させる。
このようにしてSi層上に形成した、TiN薄膜及びAu薄膜からなる2層構造の薄膜を、以下、酸素フリー集電体膜1と呼ぶ。
[Example 1] Formation of oxygen-free current collector film 1 An oxygen-free current collector film was formed by the following procedure.
1) A Si substrate having a Si 3 N 4 layer having a thickness of 150 nm that had been washed and dried on the surface was attached to an RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc. /Min, the pressure is about 0.7 Pa, and the substrate surface is reverse-sputtered with Ar to perform cleaning.
2) After cleaning, the inside of the apparatus is depressurized to about 5×10 −5 Pa, and then the substrate is heated and held at 400° C.
3) Ar gas was introduced at a substrate temperature of 400° C., and a TiN thin film was deposited to 25 nm using a TiN target.
4) The substrate is heated to 650° C., depressurized to about 1×10 −4 Pa, and held.
5) Ar gas was introduced at a substrate temperature of 650° C., and an Au target was used to deposit an Au thin film of 15 nm.
The two-layer thin film composed of the TiN thin film and the Au thin film thus formed on the Si 3 N 4 layer is hereinafter referred to as an oxygen-free current collector film 1.

[実施例2]酸素フリー集電体膜2の形成
以下の手順で、酸素を含有しない集電体膜を形成した。
1)洗浄・乾燥を行った厚さ150nmのSi層を表面に有するSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を400℃に加熱・保持する。
3)基板温度400℃にてArガスを導入し、ZrNターゲットを用いてZrN薄膜を25nm堆積させる。
4)基板を650℃に加熱・1×10−4Pa程度まで減圧し、保持する。
5)基板温度650℃にてArガスを導入し、Auターゲットを用いてAu薄膜を15nm堆積させる。
このようにしてSi層上に形成した、ZrN薄膜及びAu薄膜からなる2層構造の薄膜を、以下、酸素フリー集電体膜2と呼ぶ。
[Example 2] Formation of oxygen-free current collector film 2 An oxygen-free current collector film was formed by the following procedure.
1) A Si substrate having a Si 3 N 4 layer having a thickness of 150 nm that had been washed and dried on the surface was attached to an RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc. /Min, the pressure is about 0.7 Pa, and the substrate surface is reverse-sputtered with Ar to perform cleaning.
2) After cleaning, the inside of the apparatus is depressurized to about 5×10 −5 Pa, and then the substrate is heated and held at 400° C.
3) Ar gas was introduced at a substrate temperature of 400° C., and a ZrN thin film was deposited to 25 nm using a ZrN target.
4) The substrate is heated to 650° C., depressurized to about 1×10 −4 Pa, and held.
5) Ar gas was introduced at a substrate temperature of 650° C., and an Au target was used to deposit an Au thin film of 15 nm.
The thin film having a two-layer structure composed of the ZrN thin film and the Au thin film thus formed on the Si 3 N 4 layer is hereinafter referred to as an oxygen-free current collector film 2.

[実施例3]Olivine型構造を有する電極膜1の形成
以下の手順で、酸素フリー集電体膜1上に、電極活物質がOlivine型構造を有する電極膜を形成した。
1)Si層上に酸素フリー集電体膜1を形成したSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を650℃に加熱・保持する。
3)基板温度650℃にてArガスを導入し、LiFePOターゲットを用いてLiFePO薄膜を50nm程度堆積させる。
このようにして酸素フリー集電体膜1上に形成した、Olivine型電極活物質LiFePOからなる電極膜を、以下、Olivine型構造を有する電極膜1と呼ぶ。
[Example 3] Formation of electrode film 1 having an Olivine type structure An electrode film having an Olivine type structure as an electrode active material was formed on the oxygen-free current collector film 1 by the following procedure.
1) The Si substrate in which the oxygen-free current collector film 1 was formed on the Si 3 N 4 layer was attached to the RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc/min. The surface of the substrate is reverse-sputtered with Ar at a pressure of about 0.7 Pa for cleaning.
2) After cleaning, after depressurizing the inside of the apparatus to about 5×10 −5 Pa, the substrate is heated and held at 650° C.
3) Ar gas was introduced at a substrate temperature of 650 ° C., it is 50nm approximately deposited LiFePO 4 film using LiFePO 4 target.
The electrode film made of the Olivine-type electrode active material LiFePO 4 formed on the oxygen-free current collector film 1 in this manner is hereinafter referred to as an electrode film 1 having an Olivine-type structure.

[実施例4]Olivine型構造を有する電極膜2の形成
以下の手順で、酸素フリー集電体膜1上に、電極活物質がOlivine型構造を有する電極膜を形成した。
1)Si層上に酸素フリー集電体膜1を形成したSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を650℃に加熱・保持する。
3)基板温度650℃にてArガスを導入し、LiFePOターゲットとLiMnPOターゲット双方に所定の比率のRF入力を加えて、LiMn0.5Fe0.5PO薄膜を50nm程度堆積させる。
このようにして酸素フリー集電体膜1上に形成した、Olivine型電極活物質LiMn0.5Fe0.5POからなる電極膜を、以下、Olivine型構造を有する電極膜2と呼ぶ。
なお、LiMn0.5Fe0.5PO薄膜の堆積は、LiFePOターゲットとLiMnPOターゲットを交互に用いて行うことも可能であり、また、所定の組成のLiMnFe1−xPOターゲットを用いて行うことも可能である。
Example 4 Formation of Electrode Film 2 Having Olivine Type Structure An electrode film having an Olivine type structure as an electrode active material was formed on the oxygen-free current collector film 1 by the following procedure.
1) The Si substrate in which the oxygen-free current collector film 1 was formed on the Si 3 N 4 layer was attached to the RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc/min. The surface of the substrate is reverse-sputtered with Ar at a pressure of about 0.7 Pa for cleaning.
2) After cleaning, after depressurizing the inside of the apparatus to about 5×10 −5 Pa, the substrate is heated and held at 650° C.
3) Ar gas was introduced at a substrate temperature of 650° C., an RF input of a predetermined ratio was applied to both the LiFePO 4 target and the LiMnPO 4 target, and a LiMn 0.5 Fe 0.5 PO 4 thin film was deposited to a thickness of about 50 nm.
The electrode film made of the Olivine-type electrode active material LiMn 0.5 Fe 0.5 PO 4 formed on the oxygen-free current collector film 1 in this manner is hereinafter referred to as an electrode film 2 having an Olivine-type structure.
The deposition of the LiMn 0.5 Fe 0.5 PO 4 thin film can be performed by alternately using the LiFePO 4 target and the LiMnPO 4 target, and LiMn x Fe 1-x PO 4 having a predetermined composition. It is also possible to use a target.

[実施例5]Spinel型構造を有する電極膜1の形成
以下の手順で、酸素フリー集電体膜1上に、電極活物質がSpinel型構造を有する電極膜を形成した。
1)Si層上に酸素フリー集電体膜1を形成したSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を600℃に加熱・保持する。
3)基板温度600℃にて、ArガスとOガスを19:1の割合で同時に導入し、LiMnターゲットを用いてLiMn薄膜を50nm程度堆積させる。
(Au上に基板温度600℃程度にて、LiMnなどのSpinel型構造を有する酸化物電極膜を堆積させる場合は、金属が部分的に還元されることを防ぐため、スパッタリングを10%程度以下の酸素を含む雰囲気で行う必要がある。)
このようにして酸素フリー集電体膜1上に形成した、Spinel型電極活物質LiMnからなる電極膜を、以下、Spinel型構造を有する電極膜1と呼ぶ。
Example 5 Formation of Electrode Film 1 Having Spinel Type Structure An electrode film having an electrode active material having a Spinel type structure was formed on the oxygen-free current collector film 1 by the following procedure.
1) The Si substrate in which the oxygen-free current collector film 1 was formed on the Si 3 N 4 layer was attached to the RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc/min. The surface of the substrate is reverse-sputtered with Ar at a pressure of about 0.7 Pa for cleaning.
2) After cleaning, the inside of the apparatus is depressurized to about 5×10 −5 Pa, and then the substrate is heated and held at 600° C.
3) at a substrate temperature of 600 ° C., Ar gas and O 2 gas 19: simultaneously introduced at a rate of 1, a LiMn 2 O 4 thin film is 50nm approximately deposited using LiMn 2 O 4 target.
(When depositing an oxide electrode film having a Spinel type structure such as LiMn 2 O 4 on Au at a substrate temperature of about 600° C., sputtering is performed at 10% in order to prevent partial reduction of metal. It is necessary to perform it in an atmosphere containing oxygen at a certain level or lower.
The electrode film made of the Spinel-type electrode active material LiMn 2 O 4 formed on the oxygen-free current collector film 1 in this manner is hereinafter referred to as the electrode film 1 having a Spinel-type structure.

[実施例6]Spinel型構造を有する電極膜2の形成
以下の手順で、酸素フリー集電体膜1上に、電極活物質がSpinel型構造を有する電極膜を形成した。
1)Si層上に酸素フリー集電体膜1を形成したSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArスパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を600℃に加熱・保持する。
3)基板温度600℃にて、ArガスとOガスを19:1の割合で同時に導入し、LiMnターゲットとAlターゲット双方に所定の比率のRF入力を加えて、LiAl0.2Mn1.8薄膜を50nm程度堆積させる。
このようにして酸素フリー集電体膜1上に形成した、Spinel型電極活物質LiAl0.2Mn1.8からなる電極膜を、以下、Spinel型構造を有する電極膜2と呼ぶ。
なお、LiAl0.2Mn1.8薄膜の堆積は、LiMnターゲットとAlターゲットを交互に用いて行うことも可能であり、Alターゲットの代わりにAlターゲットを用いて堆積させることも可能である。また、所定の組成のLiAlMn2−xターゲットを用いてLiAlMn2−x薄膜を堆積させることも可能である。
Example 6 Formation of Electrode Film 2 Having Spinel Type Structure An electrode film having an electrode active material having a Spinel type structure was formed on the oxygen-free current collector film 1 by the following procedure.
1) The Si substrate in which the oxygen-free current collector film 1 was formed on the Si 3 N 4 layer was attached to the RF magnetron sputtering apparatus, the inside of the apparatus was depressurized to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc/min. The surface of the substrate is sputtered with Ar at a pressure of about 0.7 Pa for cleaning.
2) After cleaning, the inside of the apparatus is depressurized to about 5×10 −5 Pa, and then the substrate is heated and held at 600° C.
3) At a substrate temperature of 600° C., Ar gas and O 2 gas were introduced at a ratio of 19:1 at the same time, and RF input of a predetermined ratio was applied to both the LiMn 2 O 4 target and the Al target to obtain LiAl 0.2. A Mn 1.8 O 4 thin film is deposited to a thickness of about 50 nm.
The electrode film composed of the Spinel-type electrode active material LiAl 0.2 Mn 1.8 O 4 formed on the oxygen-free current collector film 1 in this manner is hereinafter referred to as an electrode film 2 having a Spinel-type structure.
The deposition of the LiAl 0.2 Mn 1.8 O 4 thin film can be performed by alternately using the LiMn 2 O 4 target and the Al target, and using the Al 2 O 3 target instead of the Al target. It is also possible to deposit. It is also possible to deposit a LiAl x Mn 2-x O 4 thin film using LiAl x Mn 2-x O 4 target having a predetermined composition.

[実施例7]Spinel型構造を有する電極膜3の形成
以下の手順で、酸素フリー集電体膜1上に、電極活物質がSpinel型構造を有する電極膜を形成した。
1)Si層上に酸素フリー集電体膜1を形成したSi基板を、RFマグネトロンスパッタ装置に取り付け、装置内部を5×10−5Pa以下まで減圧した後、Ar流量10cc/min、圧力0.7Pa程度で基板表面をArにて逆スパッタし、清浄化を行う。
2)清浄化後、装置内部を5×10−5Pa程度まで減圧した後、基板を600℃に加熱・保持する。
3)基板温度600℃にて、ArガスとOガスを19:1の割合で同時に導入し、LiNi0.5Mn1.5ターゲットを用いてLiNi0.5Mn1.5薄膜を50nm程度堆積させる。
このようにして酸素フリー集電体膜1上に形成した、Spinel型電極活物質LiNi0.5Mn1.5からなる電極膜を、以下、Spinel型構造を有する電極膜3と呼ぶ。
Example 7 Formation of Electrode Film 3 Having Spinel Type Structure An electrode film having an electrode active material having a Spinel type structure was formed on the oxygen-free current collector film 1 by the following procedure.
1) A Si substrate having an oxygen-free current collector film 1 formed on a Si 3 N 4 layer was attached to an RF magnetron sputtering apparatus, the pressure inside the apparatus was reduced to 5×10 −5 Pa or less, and then the Ar flow rate was 10 cc/min. The surface of the substrate is reverse-sputtered with Ar at a pressure of about 0.7 Pa for cleaning.
2) After cleaning, the inside of the apparatus is depressurized to about 5×10 −5 Pa, and then the substrate is heated and held at 600° C.
3) At a substrate temperature of 600° C., Ar gas and O 2 gas were simultaneously introduced at a ratio of 19:1, and a LiNi 0.5 Mn 1.5 O 4 target was used to obtain LiNi 0.5 Mn 1.5 O 4 A thin film is deposited on the order of 50 nm.
The electrode film made of the Spinel-type electrode active material LiNi 0.5 Mn 1.5 O 4 formed on the oxygen-free current collector film 1 in this manner is hereinafter referred to as an electrode film 3 having a Spinel-type structure.

図5a−bに、上記実施例3〜5及び7において、Si基板表面のSi層上に実施例1に従い成膜した酸素フリー集電体膜1の上に、更にOlivine型若しくはSpinel型構造を有する電極膜を成膜して得られた、各電極チップの断面の走査型電子顕微鏡(SEM)像を示す。
各画像から、Si基板上に150nm厚のSi層があり、その上に膜厚30nm程度のAu/TiNの二層からなる集電体膜が密着形成され、さらにその上に、図5aでは、Olivine型構造のLiFePOの、図5bでは、同じくLiMn0.5Fe0.5POの、図5cでは、Spinel型構造のLiMnの、そして、図5dでは、同じくLiNi0.5Mn1.5の、それぞれ結晶からなる膜厚50nm〜75nm程度の電極膜が均質に密着して形成されていることが見て取れる。
また、最上面の電極活物質の結晶は50nm程度の径を有する粒子状であるため、Liイオンが電極活物質の結晶中に拡散し、また、Liイオンを含む電解液が粒子間に存在する空隙を通じて浸透することで、電極膜の電解液層と接する表面だけでなく電極膜と集電体膜との界面近傍でもリチウムの脱挿入反応が生じうる断面構造となっている。このため、Si層下部から照射される軟X線ビームは、脱挿入反応が生じている部位に到達し、当該部位の情報を反映しうることが確認できる。
5a-b, in the above Examples 3 to 5 and 7, on the oxygen-free current collector film 1 formed according to Example 1 on the Si 3 N 4 layer on the surface of the Si substrate, an Olivine type or Spinel type was further formed. 3 shows a scanning electron microscope (SEM) image of a cross section of each electrode chip obtained by forming an electrode film having a mold structure.
From each image, a Si 3 N 4 layer with a thickness of 150 nm was formed on a Si substrate, and a current collector film consisting of two layers of Au/TiN with a film thickness of about 30 nm was closely formed on the Si 3 N 4 layer. 5a of LiFePO 4 of the Olivine type structure, of FIG. 5b of LiMn 0.5 Fe 0.5 PO 4 of the same, of FIG. 5c of LiMn 2 O 4 of the Spinel type structure, and of FIG. It can be seen that the electrode films of 0.5 Mn 1.5 O 4 each of which has a film thickness of about 50 nm to 75 nm and which are made of crystals are formed in close contact with each other.
Moreover, since the crystal of the electrode active material on the uppermost surface is in the form of particles having a diameter of about 50 nm, Li ions diffuse into the crystal of the electrode active material, and an electrolytic solution containing Li ions exists between the particles. By penetrating through the voids, the cross-sectional structure allows lithium de-insertion reaction to occur not only on the surface of the electrode film in contact with the electrolyte layer but also near the interface between the electrode film and the current collector film. Therefore, it can be confirmed that the soft X-ray beam emitted from the lower portion of the Si 3 N 4 layer reaches the site where the de-insertion reaction occurs and can reflect the information of the site.

図6a−bに、上記実施例3〜7において作成した各電極チップのX線回折(XRD)図を示す。X線回折は、放射光施設(KEK-PF BL4C)を用いて測定した。
図6aのLiFePOおよびLiMn0.5Fe0.5PO電極膜を用いたチップでは、●印で示したOlivine型構造に由来する回折ピークに加え、集電体膜に由来するAu(▼)およびTiN(▽)に由来する回折ピークのみが観察され、所定の結晶薄膜がAl/TiN二層膜上に形成されていることが確認された。
また、図6bのLiMn、LiAl0.2Mn1.8、およびLiNi0.5Mn1.5電極膜では、上記集電体膜に由来する回折ピークのほかには、●印で示したSpinel型構造に由来する回折ピークのみが観察され、所定の結晶薄膜がAu/TiN二層膜上に形成されていることが確認された。
これらの結果から、当該成膜した電極材料は不純物相を含まないことが確認できる。
FIGS. 6 a-b show X-ray diffraction (XRD) diagrams of the electrode tips prepared in Examples 3 to 7 above. X-ray diffraction was measured using a synchrotron radiation facility (KEK-PF BL4C).
In the chip using the LiFePO 4 and LiMn 0.5 Fe 0.5 PO 4 electrode films of FIG. 6a, in addition to the diffraction peaks derived from the Olivine type structure indicated by ●, the Au (▼ ) And TiN (∇) only diffraction peaks were observed, and it was confirmed that a predetermined crystal thin film was formed on the Al/TiN bilayer film.
Further, in the LiMn 2 O 4 , LiAl 0.2 Mn 1.8 O 4 , and LiNi 0.5 Mn 1.5 O 4 electrode films of FIG. 6b, in addition to the diffraction peaks derived from the current collector film, Only the diffraction peaks derived from the Spinel type structure indicated by ● are observed, and it was confirmed that a predetermined crystal thin film was formed on the Au/TiN bilayer film.
From these results, it can be confirmed that the deposited electrode material does not contain an impurity phase.

[実施例8]オペランド測定用電極の作成
(電極膜/酸素フリー集電体膜/Si膜多層膜直下のSi/Si層の除去)
実施例4で作成した、Si基板表面のSi層上に実施例1に従い成膜した酸素フリー集電体膜1の上にOlivine型電極活物質LiMn0.5Fe0.5POからなるOlivine型電極膜2を成膜して得られた電極チップから、以下の手順で、オペランド測定に用いる電極を作成した。
1)実施例4で得られた電極チップにおけるSi基板の、酸素フリー集電体膜1およびOlivine型電極膜2を形成したSi層と反対側のSi層(注.このような基板では、通常、両面がSiにより被膜されている)を、幅1mm×長さ5mm程度の範囲にわたって除去し、Siを部分的に露出させる。
2)Si露出部以外をポリエチレンシートなどで保護したのち、水酸化テトラメチルアンモニウム水溶液を用いてウェットエッチング処理を施し、酸素フリー集電体膜1を形成した側のSi層をエッチストップ層として、Siをスリット状に溶解し取り除くことで、Si基板にダイアフラム型窓構造を形成する。
3)Siのスリットにフッ化水素アンモニウム水溶液を滴下し、エッチストップ層としたシリコンナイトライド層表面や、Si壁表面のシリカ被膜を除去する。
同様の手順により、実施例3及び5〜7で作成した各電極チップからも、オペランド測定用電極を作成することができる。
なお、上述のSiのウェットエッチングは、水酸化ナトリウム水溶液を用いても行うことができ、シリカ被膜の除去は、HF水溶液や、緩衝HF溶液を滴下することでも、行うことが可能である。
Example 8 Preparation of Operand Measuring Electrode (Removal of Si/Si 3 N 4 Layer Directly Under Electrode Film/Oxygen-Free Current Collector Film/Si 3 N 4 Film Multilayer Film)
Prepared in Example 4, Olivine-type electrode active material LiMn 0.5 on the oxygen free current collector film 1 was deposited in accordance with Example 1 in Si 3 N 4 layer on the Si substrate surface Fe 0.5 PO 4 From the electrode tip obtained by forming the Olivine-type electrode film 2 made of, an electrode used for operand measurement was prepared by the following procedure.
1) Implementation of the Si substrate in the electrode chips obtained in Example 4, oxygen-free current collector film 1 and Si to form a Olivine-type electrode film 2 3 N 4 layer opposite the Si 3 N 4 layer (Note. The In such a substrate, both surfaces are usually coated with Si 3 N 4 ) to remove Si over a range of about 1 mm width×5 mm length to partially expose Si.
2) Protect the area other than the exposed Si area with a polyethylene sheet, etc., and then perform a wet etching process using an aqueous solution of tetramethylammonium hydroxide to stop etching the Si 3 N 4 layer on the side where the oxygen-free current collector film 1 is formed. As a layer, Si is dissolved in a slit shape and removed to form a diaphragm type window structure on the Si substrate.
3) An aqueous solution of ammonium hydrogen fluoride is dropped into the slit of Si to remove the surface of the silicon nitride layer used as the etch stop layer and the silica coating on the surface of the Si wall.
By the same procedure, the operand measuring electrodes can be prepared from the electrode chips prepared in Examples 3 and 5 to 7.
The above-mentioned wet etching of Si can also be performed using an aqueous sodium hydroxide solution, and the removal of the silica coating can also be performed by dropping an HF aqueous solution or a buffered HF solution.

[実施例9]電極基板のサイクリックボルタンメトリ(CV)試験
実施例3において作成されたLiFePO電極活物質膜が成膜された電極チップを作用電極とし、参照極および対極にLi金属、電解液に1MのLiClOを溶解したエチレンカーボネート/ジエチレンカーボネート溶液を使用した3極式の電気化学セルについて、0.5mV/sの電圧掃引速度、3.0V−4.3Vのカットオフ電圧でサイクリックボルタンメトリ(CV)試験を行った。
また、実施例4〜7において作成された各電極活物質膜が成膜された各電極チップを作用電極として、同様のCV試験を行った。
その結果を、図7に示す。
図7aに、LiFePO膜のCV試験の結果を示す。3.4−3.5V付近に上下に生じているピークがFe2+/Fe3+酸化還元反応に対応する。あわせて示したLiMn0.5Fe0.5PO膜のCV試験結果では、3.45V−3.55V付近に上下に生じているピークがFe2+/Fe3+酸化還元反応に、4.0V−4.15V付近に上下に生じているピークがMn3+/Mn4+酸化還元反応に対応する。
図7bは、LiMn膜のCV試験の結果である。4.0V−4.15V付近に上下に生じている2組のピークがMn3+/Mn4+酸化還元反応に対応する。
図7cは、LiAl0.2Mn1.8膜のCV試験の結果である。4.0V−4.15V付近に上下に生じている2組のピークがMn3+/Mn4+酸化還元反応に対応する。
図7dは、LiNi0.5Mn1.5膜のCV試験の結果である。4.1V付近に上下になだらかに生じているピークがMn3+/Mn4+酸化還元反応に、4.7−4.75V付近に上下に生じているピークがNi2+/Ni4+酸化還元反応に対応する。
CV試験曲線の形状や反応電位から、本発明による電極チップを電極として構成されるリチウム二次電池において、Liイオンの引き抜き・挿入時に生じる遷移金属元素の酸化還元反応の電流ピークが見られ、電極活物質が正常に充放電動作していることが確認されるとともに、本発明による集電体薄膜の電気抵抗は、電池動作に支障のない程度に低いことが確認された。
Example 9 cyclic voltammetry of the electrode substrate (CV) LiFePO 4 electrode active material layer created in Test Example 3 is the working electrode of the electrode tip which is formed, Li metal reference electrode and a counter electrode, For a three-electrode electrochemical cell using an ethylene carbonate/diethylene carbonate solution in which 1 M LiClO 4 was dissolved in an electrolyte, a voltage sweep rate of 0.5 mV/s and a cutoff voltage of 3.0 V to 4.3 V were used. A cyclic voltammetry (CV) test was performed.
In addition, the same CV test was performed using each electrode tip on which each electrode active material film formed in Examples 4 to 7 was formed as a working electrode.
The result is shown in FIG. 7.
FIG. 7a shows the result of the CV test of the LiFePO 4 film. The peaks appearing above and below around 3.4-3.5 V correspond to the Fe 2+ /Fe 3+ redox reaction. According to the CV test result of the LiMn 0.5 Fe 0.5 PO 4 film shown together, the peaks occurring at the top and bottom around 3.45V-3.55V are 4.0V in the Fe 2+ /Fe 3+ redox reaction. The peaks appearing up and down near −4.15 V correspond to Mn 3+ /Mn 4+ redox reaction.
FIG. 7b is the result of the CV test of the LiMn 2 O 4 film. The two sets of peaks that appear above and below around 4.0V-4.15V correspond to the Mn 3+ /Mn 4+ redox reaction.
FIG. 7c is the result of the CV test of the LiAl 0.2 Mn 1.8 O 4 film. The two sets of peaks that appear above and below around 4.0V-4.15V correspond to the Mn 3+ /Mn 4+ redox reaction.
FIG. 7d is the result of the CV test of the LiNi 0.5 Mn 1.5 O 4 film. The peaks gently rising and falling around 4.1V correspond to the Mn 3+ /Mn 4+ redox reaction and the peaks vertically rising and falling near 4.7-4.75V correspond to the Ni 2+ /Ni 4+ redox reaction. To do.
From the shape of the CV test curve and the reaction potential, the current peak of the oxidation-reduction reaction of the transition metal element that occurs during extraction and insertion of Li ions is observed in the lithium secondary battery configured with the electrode tip according to the present invention as an electrode, It was confirmed that the active material was normally charged and discharged, and that the electrical resistance of the current collector thin film according to the present invention was low enough not to hinder the battery operation.

[実施例10]本発明の電極膜の軟X線吸収分光試験および本発明の電極膜を用いた電気化学オペランドセルの軟X線発光分光測定試験
以下の要領で、LiMn0.5Fe0.5PO電極活物質膜、及び、1MのLiPFを溶解したプロピレンカーボネート溶液(以下、1M LiPF/PC電解液という)、及び、実施例4で作成したOlivine型構造を有する電極膜2について実施例7の方法で作成したオペランド電極を使用し、対極にLi金属、電解液に1M LiPF/PC電解液を使用した2極式電気化学セルに対し、軟X線発光分光試験を行った。実験は、(財)高輝度光科学センターの大型放射光施設Spring-8の軟X線ビームラインにて行った。軟X線発光分光試験に先立ち、LiMn0.5Fe0.5PO電極活物質膜、及び、1M LiPF/PC電解液について、それぞれ軟X線吸収分光試験を行い、軟X線発光分光試験に用いるのに適切な励起軟X線のエネルギーを選定した。
図8aに、軟X線吸収分光試験により得られた、LiMn0.5Fe0.5PO電極活物質膜および1M LiPF/PC電解液の酸素原子1s内殻励起エネルギー近傍の軟X線吸収スペクトルを示す。LiMn0.5Fe0.5PO膜に対しては531.4eVに、1M LiPF/PC電解液に対しては533.0eVに酸素原子1s内殻励起に対応する吸収ピークが確認された。後者の533.0eVのエネルギーに対しては電極膜と電解液両者ともに吸収を示すのに対し、前者の531.4eVのエネルギーでは電極膜での吸収と比較して、電解液での吸収が大幅に少ないことが判明した。
図8bに、LiMn0.5Fe0.5PO電極活物質膜、1M LiPF/PC電解液、および、両者を用いて構成した電気化学オペランドセルを開回路状態とした際の、軟X線発光スペクトルを示す。
図中下段に示したスペクトルは、励起エネルギーを531.4eVとした場合であり、開回路状態のオペランドセルと電極膜単体の発光スペクトル形状は類似し、かつ、電解液単体の発光スペクトル形状とは異なる。このことから、この励起エネルギーを選択することで、電極活物質膜中の酸素の電子状態解析が、充放電動作下で評価可能であることが確認された。
一方、図中上段に示したスペクトルは、励起エネルギーを533.0eVとした場合であり、開回路状態のオペランドセルの発光スペクトル形状は、電極膜単体と電解液単体の発光スペクトルの形状を足し合わせたものとなっている。このことから、この励起エネルギーを選択した場合は、充放電動作下での発光スペクトルから電解液の発光スペクトルを減じることで、電極活物質膜中の酸素の電子状態解析が可能であることが確認された。
これにより、これらの励起エネルギーを用い、オペランドセルを本発明の集電体を介し閉回路として充放電させることで、充放電動作下での発光スペクトルの異同から、電極活物質膜中の酸素の電子状態の異同を解析することができる。
[Example 10] Soft X-ray absorption spectroscopic test of the electrode film of the present invention and soft X-ray emission spectroscopic measurement test of an electrochemical operand cell using the electrode film of the present invention In the following procedure, LiMn 0.5 Fe 0. 5 PO 4 electrode active material film, propylene carbonate solution in which 1 M LiPF 6 is dissolved (hereinafter referred to as 1 M LiPF 6 /PC electrolytic solution), and electrode film 2 having an Olivine-type structure prepared in Example 4 A soft X-ray emission spectroscopy test was performed on a bipolar electrochemical cell using the operand electrode prepared by the method of Example 7 and using Li metal as the counter electrode and 1M LiPF 6 /PC electrolyte as the electrolyte. .. The experiment was conducted at the soft X-ray beam line of Spring-8, a large-scale synchrotron radiation facility at the High Brightness Science Center. Prior to the soft X-ray emission spectroscopic test, a soft X-ray absorption spectroscopic test was performed on each of the LiMn 0.5 Fe 0.5 PO 4 electrode active material film and the 1M LiPF 6 /PC electrolytic solution to perform the soft X-ray emission spectroscopic test. The energy of the excited soft X-ray suitable for use in the test was selected.
FIG. 8a shows a soft X-ray obtained by a soft X-ray absorption spectroscopy test in the vicinity of an oxygen atom 1s core excitation energy of a LiMn 0.5 Fe 0.5 PO 4 electrode active material film and 1M LiPF 6 /PC electrolyte solution. An absorption spectrum is shown. Absorption peaks corresponding to inner-shell excitation of oxygen atoms for 1 s were confirmed at 531.4 eV for the LiMn 0.5 Fe 0.5 PO 4 film and at 533.0 eV for the 1M LiPF 6 /PC electrolyte. .. In the latter case, the electrode film and the electrolytic solution both absorb the energy of 533.0 eV, whereas in the former case, the energy of 531.4 eV absorbs much more in the electrolytic solution than in the electrode film. Turned out to be less.
Figure 8b, LiM n0.5 Fe 0.5 PO 4 electrode active material film, 1M LiPF 6 / PC electrolyte, and, at the time of the electrochemical operand cell constructed by using both the open circuit state, the soft X A line emission spectrum is shown.
The spectrum shown in the lower part of the figure is when the excitation energy is 531.4 eV, the emission spectrum shape of the operand cell in the open circuit state and the electrode film simple substance are similar, and the emission spectrum shape of the electrolytic solution simple substance is different. From this, it was confirmed that by selecting this excitation energy, the electronic state analysis of oxygen in the electrode active material film can be evaluated under charge/discharge operation.
On the other hand, the spectrum shown in the upper part of the figure is for the case where the excitation energy is 533.0 eV, and the emission spectrum shape of the operand cell in the open circuit state is the sum of the emission spectrum shapes of the electrode film alone and the electrolyte alone. It has become a thing. From this, when this excitation energy is selected, it is confirmed that it is possible to analyze the electronic state of oxygen in the electrode active material film by subtracting the emission spectrum of the electrolyte from the emission spectrum under charge/discharge operation. Was done.
As a result, by using these excitation energies to charge and discharge the operand cell as a closed circuit via the current collector of the present invention, due to the difference in the emission spectrum under the charge/discharge operation, the oxygen in the electrode active material film Differences in electronic states can be analyzed.

本発明のオペランド電極は、Liイオン電池に限らず、Naイオン電池などの二次電池を含め、電解液を利用した電気化学反応を主とするデバイスの様々なオペランド測定に利用可能である。 INDUSTRIAL APPLICABILITY The operand electrode of the present invention is applicable not only to Li-ion batteries but also to various operand measurements of devices mainly including electrochemical reactions using electrolytes, including secondary batteries such as Na-ion batteries.

Claims (10)

Si基板上にSiまたはSiCの薄膜を有し、当該薄膜上に、TiNまたはZrNの薄膜及び当該TiNまたはZrNの薄膜上のAuの薄膜からなる二層構造の薄膜を有する、高温で電極活物質を成膜した後にも低抵抗を示す薄膜集電体。 A thin film of Si 3 N 4 or SiC is formed on a Si substrate, and a thin film having a two-layer structure is formed on the thin film. The thin film is a thin film of TiN or ZrN and a thin film of Au on the thin film of TiN or ZrN. A thin film current collector that exhibits low resistance even after forming an electrode active material. 表面にSiまたはSiCの薄膜を設けたSi基板を成膜装置内に配置し、残存大気を排除したのち、基板表面のSi薄膜上に、TiNまたはZrNの密着層薄膜を成膜し、続いて、当該密着層薄膜上にAu薄膜を成膜することを特徴とする、請求項1に記載の薄膜集電体の作製方法。 A Si substrate having a thin film of Si 3 N 4 or SiC on the surface is placed in a film forming apparatus to eliminate residual air, and then a thin film of an adhesion layer of TiN or ZrN is formed on the Si 3 N 4 thin film on the surface of the substrate. The method for producing a thin film current collector according to claim 1, wherein a film is formed, and then an Au thin film is formed on the adhesion layer thin film. Si基板表面のSiまたはSiCの薄膜上に、請求項1に記載の薄膜集電体を有し、その上に電極活物質層を有する、電池用薄膜電極。 A thin film electrode for a battery, which has the thin film current collector according to claim 1 on a thin film of Si 3 N 4 or SiC on the surface of a Si substrate and has an electrode active material layer thereon. Si基板表面のSiまたはSiCの薄膜上に設けた請求項1に記載の薄膜集電体上に、さらに電極活物質を高温で成膜して電極活物質層を設けることを特徴とする、請求項3に記載の電池用薄膜電極の作製方法。 The electrode active material layer is formed by further depositing an electrode active material at a high temperature on the thin film current collector according to claim 1 provided on the Si 3 N 4 or SiC thin film on the surface of the Si substrate. The method for producing a thin film electrode for a battery according to claim 3. 電極活物質がLiイオン電池の正極用活物質である、請求項4に記載の電池用薄膜電極の作製方法。 The method for producing a thin film electrode for a battery according to claim 4, wherein the electrode active material is a positive electrode active material for a Li-ion battery. 電極活物質がLiイオン電池の負極用活物質である、請求項4に記載の電池用薄膜電極の作製方法。 The method for producing a thin film electrode for a battery according to claim 4, wherein the electrode active material is an active material for a negative electrode of a Li-ion battery. 請求項3に記載の電池用薄膜電極の、SiまたはSiCの薄膜、薄膜集電体、及び電極活物質層を有する側と反対側のSi基板表面に、当該表面から当該SiまたはSiCの薄膜に至る部分のSiが取り除かれ、その底面に当該SiまたはSiCの薄膜が露出した、軟X線及び真空紫外線透過性の窓部を有することを特徴とする、電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極。 The Si 3 N 4 or SiC thin film, the thin film current collector, and the side of the Si substrate opposite to the side having the electrode active material layer of the battery thin film electrode according to claim 3, from the surface to the Si 3 N. 4 or a portion of the SiC up to the thin film of SiC is removed, and the bottom surface of the thin film of Si 3 N 4 or SiC has a soft X-ray and vacuum ultraviolet ray transparent window portion, characterized by Electrode for chemical operand soft X-ray and/or vacuum ultraviolet absorption/emission spectroscopy measurement. 請求項7に記載の、軟X線及び真空紫外線透過性の窓部を有することを特徴とする、電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極の作製方法であって、
請求項3に記載の電池用薄膜電極の、SiまたはSiCの薄膜、薄膜集電体、及び電極活物質層を有する側と反対側のSi基板表面の窓部形成部位を除く部分を保護しながら、当該窓部形成部位のSi基板を当該SiまたはSiCの薄膜層が露出するまでエッチングすることによって、軟X線及び真空紫外線透過性の窓部を形成することを特徴とする、方法。
8. A method for producing an electrode for electrochemical operand soft X-ray and/or vacuum ultraviolet absorption/emission spectroscopy measurement, comprising a window part that is transparent to soft X-rays and vacuum ultraviolet light according to claim 7. ,
A portion of the thin film electrode for a battery according to claim 3, which is opposite to the side having the thin film of Si 3 N 4 or SiC, the thin film current collector, and the electrode active material layer, except the window forming portion on the surface of the Si substrate. While protecting, the Si substrate at the window portion forming portion is etched until the thin film layer of Si 3 N 4 or SiC is exposed, thereby forming a window portion that is transparent to soft X-rays and vacuum ultraviolet rays. how to.
請求項7に記載の電気化学オペランド軟X線及び/又は真空紫外線吸収/発光分光測定用電極を作用極とし、これと電解質及び対向電極とを組み合わせて電気化学オペランド測定用セルを構成し、当該セルを充放電させ、当該セルの作用極の軟X線及び真空紫外線透過性の窓部を通して、電極活物質中の遷移金属及び酸素を励起させる波長スペクトルの軟X線及び/又は真空紫外線を作用極に照射し、充放電時に電極活物質中の遷移金属及び酸素が発光する軟X線及び/又は真空紫外線の波長スペクトルを、当該窓部を通して測定し、電極活物質中の遷移金属及び酸素の電子状態を解析することを特徴とする、軟X線及び/又は真空紫外線電気化学オペランド分光測定方法。 The electrochemical operand soft X-ray and/or vacuum ultraviolet absorption/emission spectroscopy measurement electrode according to claim 7 is used as a working electrode, and this is combined with an electrolyte and a counter electrode to form an electrochemical operand measurement cell. A cell is charged and discharged, and a soft X-ray and/or a vacuum ultraviolet ray having a wavelength spectrum that excites a transition metal and oxygen in the electrode active material is acted through a window that is transparent to the working electrode of the cell and transparent to a vacuum ultraviolet ray. The wavelength spectrum of soft X-rays and/or vacuum ultraviolet rays, where the transition metal and oxygen in the electrode active material emit light during charging and discharging, is measured through the window, and the transition metal and oxygen in the electrode active material A method for measuring soft X-ray and/or VUV electrochemical operand spectroscopy, which comprises analyzing an electronic state. 酸素の周辺環境が電極活物質中とは異なる、酸素含有電解質を用いることを特徴とする、請求項9に記載の軟X線及び/又は真空紫外線電気化学オペランド分光測定方法。 The method for measuring soft X-ray and/or vacuum ultraviolet electrochemical operands according to claim 9, characterized in that an oxygen-containing electrolyte having an environment surrounding oxygen different from that in the electrode active material is used.
JP2018243111A 2018-12-26 2018-12-26 Secondary battery electrode for operand measurement Active JP7264342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243111A JP7264342B2 (en) 2018-12-26 2018-12-26 Secondary battery electrode for operand measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243111A JP7264342B2 (en) 2018-12-26 2018-12-26 Secondary battery electrode for operand measurement

Publications (2)

Publication Number Publication Date
JP2020107427A true JP2020107427A (en) 2020-07-09
JP7264342B2 JP7264342B2 (en) 2023-04-25

Family

ID=71449304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243111A Active JP7264342B2 (en) 2018-12-26 2018-12-26 Secondary battery electrode for operand measurement

Country Status (1)

Country Link
JP (1) JP7264342B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088323A (en) * 2007-10-01 2009-04-23 Ulvac Japan Ltd Barrier film forming apparatus and barrier film forming method
JP2012524385A (en) * 2009-04-20 2012-10-11 リ−テック・バッテリー・ゲーエムベーハー Method for operating the battery
JP2013164971A (en) * 2012-02-10 2013-08-22 Sony Corp Secondary battery, negative electrode collector, electronic apparatus and electric vehicle
JP2013218992A (en) * 2012-04-12 2013-10-24 Toyota Motor Corp Catalyst fine particle for fuel cell electrode and membrane-electrode assembly including the catalyst fine particle
JP2015500560A (en) * 2011-12-16 2015-01-05 ジーエス エナジー コーポレーション Thin film battery with improved battery performance through substrate surface treatment and method for manufacturing the same
JP2016040763A (en) * 2014-08-13 2016-03-24 国立研究開発法人産業技術総合研究所 Electrode for secondary battery operand measurement with soft x-ray

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088323A (en) * 2007-10-01 2009-04-23 Ulvac Japan Ltd Barrier film forming apparatus and barrier film forming method
JP2012524385A (en) * 2009-04-20 2012-10-11 リ−テック・バッテリー・ゲーエムベーハー Method for operating the battery
JP2015500560A (en) * 2011-12-16 2015-01-05 ジーエス エナジー コーポレーション Thin film battery with improved battery performance through substrate surface treatment and method for manufacturing the same
JP2013164971A (en) * 2012-02-10 2013-08-22 Sony Corp Secondary battery, negative electrode collector, electronic apparatus and electric vehicle
JP2013218992A (en) * 2012-04-12 2013-10-24 Toyota Motor Corp Catalyst fine particle for fuel cell electrode and membrane-electrode assembly including the catalyst fine particle
JP2016040763A (en) * 2014-08-13 2016-03-24 国立研究開発法人産業技術総合研究所 Electrode for secondary battery operand measurement with soft x-ray

Also Published As

Publication number Publication date
JP7264342B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
Chen et al. Interface aspects in all‐solid‐state Li‐based batteries reviewed
Li et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety
Dose et al. Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries
Robert et al. Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors
Sudayama et al. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes
Sen et al. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide
Peebles et al. Tris (trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: mechanistic insights into differences during LiNi0. 5Mn0. 3Co0. 2O2-graphite full cell cycling
Rodrigues et al. Anode-dependent impedance rise in layered-oxide cathodes of lithium-ion cells
Strauss et al. Operando characterization techniques for all‐solid‐state lithium‐ion batteries
Xiao et al. Ensemble design of electrode–electrolyte interfaces: toward high-performance thin-film all-solid-state li–metal batteries
Chen et al. Origin of degradation in Si‐based all‐solid‐state Li‐ion microbatteries
Bommier et al. Operando acoustic monitoring of SEI formation and long-term cycling in NMC/SiGr composite pouch cells
Mansour et al. Probing the electrode-electrolyte interface in cycled LiNi0. 5Mn1. 5O4 by XPS using Mg and synchrotron X-rays
JP2017506420A (en) Electrode protection using electrolyte-suppressed ionic conductors
JP6833577B2 (en) Non-aqueous electrolyte batteries, battery packs and vehicles
JP2022105539A (en) Graphene-coated metal oxide spinel cathodes
Bareño et al. Effect of overcharge on Li (Ni0. 5Mn0. 3Co0. 2) O2/graphite lithium ion cells with poly (vinylidene fluoride) binder. III—Chemical changes in the cathode
Schweikert et al. Electrochemical impedance spectroscopy of Li4Ti5O12 and LiCoO2 based half-cells and Li4Ti5O12/LiCoO2 cells: Internal interfaces and influence of state-of-charge and cycle number
JP6965434B2 (en) Electrode complexes, batteries, and battery packs
Yang et al. Thermally activated P2‐O3 mixed layered cathodes toward synergistic electrochemical enhancement for Na ion batteries
Coron et al. Impact of lithium-ion cell condition on its second life viability
Mikheenkova et al. Resolving high potential structural deterioration in Ni-rich layered cathode materials for lithium-ion batteries operando
US20150364739A1 (en) Flexible porous aluminum oxide films
JP6323873B2 (en) Electrode for measuring secondary battery operand using soft X-ray
Mirolo et al. Multi-length-scale x-ray spectroscopies for determination of surface reactivity at high voltages of LiNi0. 8Co0. 15Al0. 05O2 vs Li4Ti5O12

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7264342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150