JP2020106202A - Air heater - Google Patents

Air heater Download PDF

Info

Publication number
JP2020106202A
JP2020106202A JP2018245143A JP2018245143A JP2020106202A JP 2020106202 A JP2020106202 A JP 2020106202A JP 2018245143 A JP2018245143 A JP 2018245143A JP 2018245143 A JP2018245143 A JP 2018245143A JP 2020106202 A JP2020106202 A JP 2020106202A
Authority
JP
Japan
Prior art keywords
tube sheet
plate
upstream tube
upstream
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018245143A
Other languages
Japanese (ja)
Other versions
JP7183035B2 (en
Inventor
近藤 哲也
Tetsuya Kondo
哲也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2018245143A priority Critical patent/JP7183035B2/en
Publication of JP2020106202A publication Critical patent/JP2020106202A/en
Application granted granted Critical
Publication of JP7183035B2 publication Critical patent/JP7183035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Abstract

To provide an air heater capable of prevent an upstream pipe plate and an end of a heat transfer pipe on the upstream pipe plate side from causing low-temperature corrosion.SOLUTION: An air heater 1 that heats air with corrosive gas, comprises an upstream pipe plate 21 and a downstream pipe plate 22 facing each other across a flow passage 10 in which the corrosive gas flows, and a plurality of heat transfer pipes 3 extending across the upstream pipe plate 21 and the downstream pipe plate 22. The space facing the upstream pipe plate 21 is covered with an inlet duct 4. A heat absorbing plate 7 is attached to the upstream pipe plate 21 between the heat transfer pipes 3 and in parallel with the flow direction of the corrosive gas.SELECTED DRAWING: Figure 1

Description

本発明は、腐食性ガスによって空気を加熱する空気加熱器に関する。 The present invention relates to an air heater that heats air with a corrosive gas.

従来から、ごみ焼却炉やボイラなどの設備から排出される比較的に高温の排ガスを利用して空気を加熱する空気加熱器が知られている。例えば、特許文献1には、排ガスが流れる流路を挟んで対向する上流管板および下流管板と、それらの上流管板と下流管板とに跨って延びる複数の伝熱管を含む空気加熱器(特許文献1では空気予熱器と称呼)が開示されている。 BACKGROUND ART Conventionally, there is known an air heater that heats air by using relatively high-temperature exhaust gas discharged from equipment such as a refuse incinerator and a boiler. For example, in Patent Document 1, an air heater including an upstream tube plate and a downstream tube plate that face each other with a channel through which exhaust gas flows, and a plurality of heat transfer tubes extending across the upstream tube plate and the downstream tube plate. (Patent Document 1 discloses an air preheater).

特許文献1に開示された空気加熱器では、上流管板に面する空間が入口ダクトで覆われ、下流管板に面する空間が出口ダクトで覆われている。入口ダクト内には空気が導入され、その空気は上述した伝熱管内を通って出口ダクトまで流れる。 In the air heater disclosed in Patent Document 1, the space facing the upstream tube sheet is covered with the inlet duct, and the space facing the downstream tube sheet is covered with the outlet duct. Air is introduced into the inlet duct, and the air flows through the heat transfer tube described above to the outlet duct.

特開2007−285606号公報JP, 2007-285606, A

しかしながら、上述したような構造の空気加熱器では、入口ダクト内に導入される空気が比較的に低温であるため、上流管板と下流管板との間の流路を流れる排ガスが腐食性ガスである場合には、上流管板および伝熱管の上流管板側の端部が低温腐食を起こす。 However, in the air heater having the above-described structure, since the air introduced into the inlet duct has a relatively low temperature, the exhaust gas flowing in the flow path between the upstream tube plate and the downstream tube plate is corrosive gas. In the case of, the low temperature corrosion occurs in the upstream tube sheet and the ends of the heat transfer tube on the upstream tube sheet side.

そこで、本発明は、上流管板および伝熱管の上流管板側の端部が低温腐食を起こすことを抑制することができる空気加熱器を提供することを目的とする。 Therefore, an object of the present invention is to provide an air heater capable of suppressing low temperature corrosion of the upstream tube sheet and the end portions of the heat transfer tube on the upstream tube sheet side.

前記課題を解決するために、本発明の空気加熱器は、腐食性ガスによって空気を加熱する空気加熱器であって、腐食性ガスが流れる流路を挟んで互いに対向する上流管板および下流管板と、前記上流管板と前記下流管板とに跨って延びる複数の伝熱管と、前記上流管板に面する空間を覆う入口ダクトと、前記複数の伝熱管の間で前記上流管板に取り付けられた吸熱板と、を備える、ことを特徴とする。 In order to solve the above-mentioned problems, an air heater of the present invention is an air heater that heats air with a corrosive gas, and an upstream tube plate and a downstream tube that face each other with a flow path through which the corrosive gas flows sandwiched therebetween. A plate, a plurality of heat transfer tubes extending over the upstream tube plate and the downstream tube sheet, an inlet duct covering a space facing the upstream tube sheet, and the upstream tube sheet between the plurality of heat transfer tubes. And an attached heat absorbing plate.

上記の構成によれば、伝熱管の間で上流管板に吸熱板が取り付けられているので、腐食性ガスの熱を吸熱板を介して上流管板に伝達することができる。これにより、入口ダクト内に導入された空気を積極的に加熱することができる。従って、上流管板および伝熱管の上流管板側の端部が低温腐食を起こすことを抑制することができる。 According to the above configuration, since the heat absorbing plate is attached to the upstream tube sheet between the heat transfer tubes, the heat of the corrosive gas can be transferred to the upstream tube sheet via the heat absorbing plate. Thereby, the air introduced into the inlet duct can be actively heated. Therefore, the low temperature corrosion of the upstream tube sheet and the ends of the heat transfer tubes on the upstream tube sheet side can be suppressed.

前記入口ダクト内には、当該入口ダクト内に導入された空気を、前記上流管板における前記吸熱板が取り付けられた部分へ吹き付けるノズルを形成するノズル構造体が設けられていてもよい。この構成によれば、入口ダクト内に導入された空気をより効果的に加熱することができる。 A nozzle structure may be provided in the inlet duct, the nozzle structure forming a nozzle that blows the air introduced into the inlet duct to a portion of the upstream tube sheet to which the heat absorbing plate is attached. With this configuration, the air introduced into the inlet duct can be heated more effectively.

前記吸熱板は、前記上流管板に着脱可能に取り付けられていてもよい。この構成によれば、吸熱板が低温腐食を起こしたときには、吸熱板を交換することができる。特に、入口ダクト内に上記のノズル構造体が設けられている場合には、吸熱板の温度が低くなって吸熱板に低温腐食が起きやすい。従って、吸熱板が上流管板に対して着脱可能であることは、入口ダクト内に上記のノズル構造体が設けられている場合に特に有効である。 The heat absorption plate may be detachably attached to the upstream tube plate. According to this configuration, when the heat absorbing plate undergoes low temperature corrosion, the heat absorbing plate can be replaced. In particular, when the above-mentioned nozzle structure is provided in the inlet duct, the temperature of the heat absorbing plate becomes low, and the heat absorbing plate is likely to undergo low temperature corrosion. Therefore, the fact that the heat absorbing plate can be attached to and detached from the upstream tube plate is particularly effective when the above nozzle structure is provided in the inlet duct.

前記吸熱板の前記上流管板側の端部には、当該吸熱板の厚さ方向の両側に突出する一対の突起が設けられており、前記上流管板には、当該上流管板との間に前記一対の突起が挿入される溝を形成する一対の押え部材が設けられていてもよい。この構成によれば、吸熱板の上流管板への取り付けおよび上流管板からの取り外しを容易に行うことができる。 A pair of protrusions protruding on both sides in the thickness direction of the heat absorbing plate is provided at an end portion of the heat absorbing plate on the upstream pipe sheet side, and the upstream pipe sheet has a space between the upstream pipe sheet and the upstream pipe sheet. A pair of pressing members forming a groove into which the pair of protrusions are inserted may be provided. According to this configuration, the heat absorption plate can be easily attached to and removed from the upstream tube sheet.

本発明によれば、上流管板および伝熱管の上流管板側の端部が低温腐食を起こすことを抑制することができる。 According to the present invention, it is possible to suppress low temperature corrosion of the upstream tube sheet and the ends of the heat transfer tubes on the upstream tube sheet side.

本発明の一実施形態に係る空気加熱器の横断面図である。It is a cross-sectional view of an air heater according to an embodiment of the present invention. 図1のII−II線に沿った縦断面図である。FIG. 2 is a vertical sectional view taken along the line II-II of FIG. 1. 上流管板に対する吸熱板の取り付け部分の拡大図である。It is an enlarged view of the attachment part of the heat absorption plate with respect to an upstream tube sheet.

図1および図2に、本発明の一実施形態に係る空気加熱器1を示す。この空気加熱器1は、腐食性ガスと空気との間で熱交換を行い、腐食性ガスによって空気を加熱するものである。 1 and 2 show an air heater 1 according to an embodiment of the present invention. The air heater 1 exchanges heat between corrosive gas and air, and heats air by the corrosive gas.

具体的に、空気加熱器1は、腐食性ガスが流れる流路10を形成する筒状の本体2と、本体2に接続された空気用の入口ダクト4および出口ダクト6を含む。 Specifically, the air heater 1 includes a cylindrical main body 2 forming a flow path 10 through which a corrosive gas flows, and an inlet duct 4 and an outlet duct 6 for air connected to the main body 2.

本体2は、流路10を挟んで互いに対向する上流管板21および下流管板22と、上流管板21と下流管板22の端部同士を連結する一対の側板23を含む。本実施形態では、腐食性ガスの流れ方向(すなわち筒状の本体2の軸方向)が鉛直方向である。ただし、腐食性ガスの流れ方向は水平方向や斜め方向であってもよい。 The main body 2 includes an upstream tube sheet 21 and a downstream tube sheet 22 that are opposed to each other with the channel 10 in between, and a pair of side plates 23 that connect the ends of the upstream tube sheet 21 and the downstream tube sheet 22. In this embodiment, the flow direction of the corrosive gas (that is, the axial direction of the tubular main body 2) is the vertical direction. However, the flow direction of the corrosive gas may be horizontal or oblique.

以下では、説明の便宜上、上流管板21と下流管板22とが対向する方向を前後方向、側板23同士が対向する方向を左右方向という。 Hereinafter, for convenience of description, a direction in which the upstream tube plate 21 and the downstream tube plate 22 face each other is referred to as a front-back direction, and a direction in which the side plates 23 face each other is referred to as a left-right direction.

本体2は、前後方向に延びる複数の伝熱管3によって貫通されている。つまり、伝熱管3は、上流管板21と下流管板22とに跨って延びていてそれらに溶接されている。伝熱管3の熱伸びに対応するために、各側板23の両端部には段差部が形成されている。 The main body 2 is penetrated by a plurality of heat transfer tubes 3 extending in the front-rear direction. That is, the heat transfer tube 3 extends across and is welded to the upstream tube sheet 21 and the downstream tube sheet 22. In order to cope with the thermal expansion of the heat transfer tube 3, step portions are formed at both ends of each side plate 23.

本実施形態では、伝熱管3が前後方向から見てマトリクス状に配置されている。図例では、伝熱管3が左右方向に8列、上下方向に8列で配置されているが、伝熱管3の左右方向および上下方向の列数は適宜変更可能である。ただし、伝熱管3は千鳥状に配置されてもよい。 In this embodiment, the heat transfer tubes 3 are arranged in a matrix when viewed from the front-rear direction. In the illustrated example, the heat transfer tubes 3 are arranged in eight rows in the left-right direction and eight rows in the up-down direction, but the number of rows in the left-right direction and the up-down direction of the heat transfer tubes 3 can be appropriately changed. However, the heat transfer tubes 3 may be arranged in a staggered manner.

上述した入口ダクト4は、上流管板21に面する空間を覆っており、出口ダクト6は、下流管板22に面する空間を覆っている。入口ダクト4内には空気が導入され、その空気は伝熱管3内を通って出口ダクト6まで流れる。 The inlet duct 4 described above covers the space facing the upstream tube sheet 21, and the outlet duct 6 covers the space facing the downstream tube sheet 22. Air is introduced into the inlet duct 4, and the air flows through the heat transfer tube 3 to the outlet duct 6.

本実施形態では、入口ダクト4の流入口および出口ダクト6の流出口が左右方向に沿って開口している。ただし、入口ダクト4の流入口および出口ダクト6の流出口は、前後方向に沿って開口してもよい。 In this embodiment, the inlet of the inlet duct 4 and the outlet of the outlet duct 6 are open along the left-right direction. However, the inlet of the inlet duct 4 and the outlet of the outlet duct 6 may be opened along the front-rear direction.

本体2内には、複数の吸熱板7が設けられている。本実施形態では、吸熱板7が腐食性ガスの流れ方向(本実施形態では鉛直方向)と平行となるように配置されている。ただし、吸熱板7は、腐食性ガスの流れ方向と直交するように配置されてもよい。そして、吸熱板7は、伝熱管3の間で上流管板21に取り付けられている。 A plurality of heat absorbing plates 7 are provided in the main body 2. In the present embodiment, the heat absorbing plate 7 is arranged so as to be parallel to the flow direction of the corrosive gas (the vertical direction in the present embodiment). However, the heat absorbing plate 7 may be arranged so as to be orthogonal to the flow direction of the corrosive gas. The heat absorbing plate 7 is attached to the upstream tube plate 21 between the heat transfer tubes 3.

本実施形態では、隣り合う伝熱管3の間に1つおきに吸熱板7が存在するように、合計4つの吸熱板7が設けられている。ただし、吸熱板7の数は適宜変更可能である。例えば、左右方向における伝熱管3のピッチの3倍のピッチで吸熱板7が設けられてもよい。あるいは、吸熱板7の数は1つであってもよい。 In this embodiment, a total of four heat absorbing plates 7 are provided so that every other heat absorbing plate 7 exists between the adjacent heat transfer tubes 3. However, the number of heat absorbing plates 7 can be changed as appropriate. For example, the heat absorbing plates 7 may be provided at a pitch three times the pitch of the heat transfer tubes 3 in the left-right direction. Alternatively, the number of the heat absorbing plates 7 may be one.

前後方向における吸熱板7の長さは適宜決定可能であるが、例えば、上流管板21と下流管板22との間の距離の半分程度であってもよい。また、上下方向における吸熱板7の長さも適宜決定可能であるが、例えば、全ての伝熱管3の配置範囲よりも長く設定されてもよい。 The length of the heat absorbing plate 7 in the front-rear direction can be appropriately determined, but may be, for example, about half the distance between the upstream tube plate 21 and the downstream tube plate 22. Further, the length of the heat absorbing plate 7 in the vertical direction can be appropriately determined, but may be set longer than the arrangement range of all the heat transfer tubes 3, for example.

本実施形態では、各吸熱板7が、上流管板21に着脱可能に取り付けられる。ただし、各吸熱板7は、必ずしも上流管板21に対して着脱可能である必要はなく、上流管板21に溶接で固定されてもよい。 In the present embodiment, each heat absorption plate 7 is detachably attached to the upstream tube plate 21. However, each heat absorbing plate 7 does not necessarily need to be attachable to and detachable from the upstream tube sheet 21, and may be fixed to the upstream tube sheet 21 by welding.

具体的には、図3に示すように、各吸熱板7の上流管板21側の端部には、当該吸熱板7の厚さ方向の両側に突出する一対の突起71が設けられている。一方、上流管板21には、各吸熱板7に対して、当該上流管板21との間に突起71が挿入される溝を形成する一対の押え部材8が設けられている。 Specifically, as shown in FIG. 3, a pair of protrusions 71 projecting on both sides in the thickness direction of the heat absorbing plate 7 are provided at the end portion of each heat absorbing plate 7 on the upstream tube plate 21 side. .. On the other hand, the upstream tube sheet 21 is provided with a pair of pressing members 8 that form a groove into which the projection 71 is inserted between the upstream tube sheet 21 and each heat absorbing plate 7.

このような構成であれば、各吸熱板7を上流管板21へ取り付ける際および上流管板21から取り外す際には、吸熱板7を上方向または下方向へスライドさせるだけでよい。従って、各吸熱板7の上流管板21への取り付けおよび上流管板21からの取り外しを容易に行うことができる。 With such a configuration, when attaching each heat absorption plate 7 to the upstream tube plate 21 and when removing it from the upstream tube plate 21, it suffices to slide the heat absorption plate 7 upward or downward. Therefore, each heat absorption plate 7 can be easily attached to and detached from the upstream tube sheet 21.

なお、各吸熱板7から上流管板21へ熱を良好に伝達するという観点からは、突起71は上流管板21に押し付けられることが望ましい。例えば、押え部材8の先端と上流管板21との間の距離を突起71の厚さよりも少しだけ小さく設定し、押え部材8の弾性変形によって突起71を上流管板21に押し付けてもよい。あるいは、押え部材8に、突起71を押圧する切り起こし片を形成してもよい。 From the viewpoint of favorably transferring heat from each heat absorbing plate 7 to the upstream tube sheet 21, the protrusion 71 is preferably pressed against the upstream tube sheet 21. For example, the distance between the tip of the pressing member 8 and the upstream tube sheet 21 may be set to be slightly smaller than the thickness of the projection 71, and the projection 71 may be pressed against the upstream tube sheet 21 by elastic deformation of the pressing member 8. Alternatively, a cut-and-raised piece that presses the protrusion 71 may be formed on the pressing member 8.

図1および図2に戻って、入口ダクト4内にはノズル構造体5が設けられている。ノズル構造体5は、入口ダクト4内に導入された空気を、上流管板21における吸熱板7が取り付けられた部分へ吹き付ける複数のノズル50を形成する。換言すれば、各ノズル50の中心線の延長線上に吸熱板7が存在する。 Returning to FIGS. 1 and 2, a nozzle structure 5 is provided in the inlet duct 4. The nozzle structure 5 forms a plurality of nozzles 50 for blowing the air introduced into the inlet duct 4 to the portion of the upstream tube sheet 21 where the heat absorbing plate 7 is attached. In other words, the heat absorbing plate 7 exists on the extension line of the center line of each nozzle 50.

本実施形態では、ノズル50の数が吸熱板7の数と同数であり、左右方向に並んでいる。各ノズル50は、前後方向から見たときに上下方向に長い長方形状の開口である。ただし、ノズル50は、吸熱板7と同一のピッチで左右方向に並ぶ複数の線上に配置された複数の穴であってもよい。 In this embodiment, the number of the nozzles 50 is the same as the number of the heat absorbing plates 7, and they are arranged in the left-right direction. Each nozzle 50 is a rectangular opening that is long in the up-down direction when viewed from the front-rear direction. However, the nozzle 50 may be a plurality of holes arranged on a plurality of lines arranged in the left-right direction at the same pitch as the heat absorbing plate 7.

より詳しくは、ノズル構造体5は、各ノズル50を挟んで離間する第1ガイド51および第2ガイド52を含む。本実施形態では、上述したように入口ダクト4の流入口が左右方向に沿って開口しているために、第1ガイド51と第2ガイド52のうちの流入口と反対側に位置する第2ガイド52は、対応するノズル50に空気を誘い込む役割を果たす。 More specifically, the nozzle structure 5 includes a first guide 51 and a second guide 52 that are spaced apart by sandwiching each nozzle 50. In the present embodiment, as described above, since the inlet of the inlet duct 4 is opened in the left-right direction, the second guide located on the opposite side of the inlet of the first guide 51 and the second guide 52. The guide 52 serves to guide air into the corresponding nozzle 50.

以上説明したように、本実施形態の空気加熱器1では、伝熱管3の間で上流管板21に吸熱板7が取り付けられているので、腐食性ガスの熱を吸熱板7を介して上流管板21に伝達することができる。これにより、入口ダクト4内に導入された空気を積極的に加熱することができる。従って、上流管板21および伝熱管3の上流管板21側の端部が低温腐食を起こすことを抑制することができる。 As described above, in the air heater 1 of the present embodiment, the heat absorbing plate 7 is attached to the upstream tube plate 21 between the heat transfer tubes 3, so that the heat of the corrosive gas is transferred upstream through the heat absorbing plate 7. It can be transferred to the tube sheet 21. Thereby, the air introduced into the inlet duct 4 can be actively heated. Therefore, the low temperature corrosion of the upstream tube sheet 21 and the ends of the heat transfer tubes 3 on the upstream tube sheet 21 side can be suppressed.

さらに、本実施形態では、各吸熱板7が上流管板21に対して着脱可能であるので、
吸熱板7が低温腐食を起こしたときには、吸熱板7を交換することができる。特に、本実施形態のように入口ダクト4内にノズル構造体5が設けられている場合には、各ノズル50から上流管板21へ吹き付けられる空気によって対応する吸熱板7が上流管板21を介して冷却されるため、各吸熱板7の温度が低くなって吸熱板7に低温腐食が起きやすい。従って、各吸熱板7が上流管板21に対して着脱可能であることは、入口ダクト4内にノズル構造体5が設けられている場合に特に有効である。
Furthermore, in this embodiment, since each heat absorption plate 7 is attachable to and detachable from the upstream tube plate 21,
When the heat absorbing plate 7 undergoes low temperature corrosion, the heat absorbing plate 7 can be replaced. In particular, when the nozzle structure 5 is provided in the inlet duct 4 as in the present embodiment, the heat absorbing plate 7 corresponding to the upstream tube sheet 21 is blown by the air blown from each nozzle 50 to the upstream tube sheet 21. Since the heat is absorbed through the cooling, the temperature of each heat absorbing plate 7 becomes low and the heat absorbing plate 7 is likely to undergo low temperature corrosion. Therefore, the fact that each heat absorbing plate 7 can be attached to and detached from the upstream tube plate 21 is particularly effective when the nozzle structure 5 is provided in the inlet duct 4.

(変形例)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Modification)
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、入口ダクト4内にはノズル構造体5が設けられなくてもよい。ただし、前記実施形態のようにノズル構造体5が設けられていれば、入口ダクト4内に導入された空気が上流管板21における吸熱板7が取り付けられた部分に衝突した後に伝熱管3内に流入する。従って、ノズル構造体5が設けられない場合に比べて、入口ダクト4内に導入された空気をより効果的に加熱することができる。 For example, the nozzle structure 5 may not be provided in the inlet duct 4. However, if the nozzle structure 5 is provided as in the above-described embodiment, the air introduced into the inlet duct 4 collides with the portion of the upstream tube plate 21 where the heat absorbing plate 7 is attached and then the heat transfer tube 3 Flow into. Therefore, as compared with the case where the nozzle structure 5 is not provided, the air introduced into the inlet duct 4 can be heated more effectively.

1 空気加熱器
10 流路
21 上流管板
22 下流管板
3 伝熱管
4 入口ダクト
5 ノズル構造体
7 吸熱板
71 突起
8 押え部材
1 Air Heater 10 Flow Path 21 Upstream Tube Plate 22 Downstream Tube Plate 3 Heat Transfer Tube 4 Inlet Duct 5 Nozzle Structure 7 Endothermic Plate 71 Protrusion 8 Pressing Member

Claims (4)

腐食性ガスによって空気を加熱する空気加熱器であって、
腐食性ガスが流れる流路を挟んで互いに対向する上流管板および下流管板と、
前記上流管板と前記下流管板とに跨って延びる複数の伝熱管と、
前記上流管板に面する空間を覆う入口ダクトと、
前記複数の伝熱管の間で前記上流管板に取り付けられた吸熱板と、
を備える、空気加熱器。
An air heater for heating air with a corrosive gas,
An upstream tube sheet and a downstream tube sheet that face each other with a channel through which the corrosive gas flows interposed therebetween,
A plurality of heat transfer tubes extending across the upstream tube sheet and the downstream tube sheet,
An inlet duct covering the space facing the upstream tube sheet;
A heat absorbing plate attached to the upstream tube sheet between the plurality of heat transfer tubes;
An air heater.
前記入口ダクト内には、当該入口ダクト内に導入された空気を、前記上流管板における前記吸熱板が取り付けられた部分へ吹き付けるノズルを形成するノズル構造体が設けられている、請求項1に記載の空気加熱器。 The nozzle structure which forms the nozzle which blows the air introduce|transduced into the said inlet duct to the part to which the said heat absorption plate was attached in the said upstream tube sheet is provided in the said inlet duct, In Claim 1, Air heater described. 前記吸熱板は、前記上流管板に着脱可能に取り付けられている、請求項1または2に記載の空気加熱器。 The air heater according to claim 1 or 2, wherein the heat absorbing plate is detachably attached to the upstream tube plate. 前記吸熱板の前記上流管板側の端部には、当該吸熱板の厚さ方向の両側に突出する一対の突起が設けられており、
前記上流管板には、当該上流管板との間に前記一対の突起が挿入される溝を形成する一対の押え部材が設けられている、請求項3に記載の空気加熱器。
An end portion of the heat absorbing plate on the upstream tube plate side is provided with a pair of protrusions protruding on both sides in the thickness direction of the heat absorbing plate,
The air heater according to claim 3, wherein the upstream tube sheet is provided with a pair of pressing members that form a groove into which the pair of protrusions are inserted, the upstream tube sheet and the upstream tube sheet.
JP2018245143A 2018-12-27 2018-12-27 air heater Active JP7183035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245143A JP7183035B2 (en) 2018-12-27 2018-12-27 air heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245143A JP7183035B2 (en) 2018-12-27 2018-12-27 air heater

Publications (2)

Publication Number Publication Date
JP2020106202A true JP2020106202A (en) 2020-07-09
JP7183035B2 JP7183035B2 (en) 2022-12-05

Family

ID=71448698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245143A Active JP7183035B2 (en) 2018-12-27 2018-12-27 air heater

Country Status (1)

Country Link
JP (1) JP7183035B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167585A (en) * 1993-12-14 1995-07-04 Nkk Corp Low temperature corrosion prevention structure of heat exchanger
JPH11183063A (en) * 1997-12-19 1999-07-06 Abb Kk Plate heat exchanger
US20140352931A1 (en) * 2013-05-31 2014-12-04 Steve Turner Corrosion Resistant Air Preheater with Lined Tubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167585A (en) * 1993-12-14 1995-07-04 Nkk Corp Low temperature corrosion prevention structure of heat exchanger
JPH11183063A (en) * 1997-12-19 1999-07-06 Abb Kk Plate heat exchanger
US20140352931A1 (en) * 2013-05-31 2014-12-04 Steve Turner Corrosion Resistant Air Preheater with Lined Tubes

Also Published As

Publication number Publication date
JP7183035B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
JP4246749B2 (en) 1 can type combined heat source machine
JP7215156B2 (en) heat exchanger and water heater
KR100738807B1 (en) Heat exchanger for latent heat recovery
JP2020016418A (en) Heat exchanger, and water heating system including the same
JP6734708B2 (en) Heat source machine
JP7006310B2 (en) Heat exchanger and heat source machine
JP2021085581A (en) Heat exchanger and water heating device including the same
WO2016017864A1 (en) High-efficiency eco-friendly sensible-heat heat exchanger
JP2020106202A (en) Air heater
KR20110107014A (en) Heat exchanger for gas boiler
KR20180007984A (en) Structure for preventing combustion heat loss of heat exchanger
JPH08219679A (en) Heat-exchanger
WO2010147288A1 (en) Heat exchanger
JP6407518B2 (en) Heat transfer tube support structure and exhaust heat recovery boiler
CZ189897A3 (en) Gas burner for heating equipment, particularly water heaters
JP2000227255A (en) Heat exchanger
JP2017089912A (en) Water heater
JP5829597B2 (en) Finned tube heat exchanger
KR102180255B1 (en) Cooling water course type egr cooler
JP2011002159A (en) Heat exchanger
JP2015212584A (en) Exhaust heat recovery boiler
KR101611364B1 (en) Channel type recuperator
CN215062369U (en) Heat exchanger and gas warmer
JP5872146B2 (en) Tube group boiler
WO2020066386A1 (en) Water heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7183035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150