JP2020102504A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2020102504A
JP2020102504A JP2018239155A JP2018239155A JP2020102504A JP 2020102504 A JP2020102504 A JP 2020102504A JP 2018239155 A JP2018239155 A JP 2018239155A JP 2018239155 A JP2018239155 A JP 2018239155A JP 2020102504 A JP2020102504 A JP 2020102504A
Authority
JP
Japan
Prior art keywords
electrode
bonding material
power module
layer
proof stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018239155A
Other languages
Japanese (ja)
Other versions
JP7169187B2 (en
Inventor
宏文 伊藤
Hirofumi Ito
宏文 伊藤
臼井 正則
Masanori Usui
正則 臼井
佐藤 敏一
Toshiichi Sato
敏一 佐藤
智幸 庄司
Tomoyuki Shoji
智幸 庄司
林太郎 淺井
Rintaro Asai
林太郎 淺井
青島 正貴
Masaki Aoshima
正貴 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018239155A priority Critical patent/JP7169187B2/en
Publication of JP2020102504A publication Critical patent/JP2020102504A/en
Application granted granted Critical
Publication of JP7169187B2 publication Critical patent/JP7169187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

To provide a power module capable of improving reliability.SOLUTION: According to the present invention, a power module (M) includes a power device (1) having at least a first electrode (11) and a second electrode (12), a first spreader (31) bonded to the first electrode through a first bonding material (41), and a terminal (2) bonded to the second electrode having a bonding area smaller than the first electrode through a second bonding material (42). The first spreader and the terminal are made of copper. The second electrode includes an AlSi layer made of an Al-Si alloy. In the first bonding material, the absolute value of 0.2% proof stress difference between 30°C and 175°C is 10 MPa or less. In the second bonding material, the absolute value of the 0.2% proof stress difference is 20 MPa or less, and the 0.2% proof stress difference is smaller than in the Al-Si alloy in the whole area of 30 to 175°C. According to the power module of the present invention, a crack does not occur in the AlSi layer or the like even under a power cycle of a higher temperature range.SELECTED DRAWING: Figure 2A

Description

本発明はパワーモジュールに関する。 The present invention relates to power modules.

モータ駆動用インバータ等には、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、ダイオード等のパワーデバイス(半導体素子)を実装したパワーモジュールが用いられる。 A power module having a power device (semiconductor element) such as an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or a diode is used for a motor driving inverter or the like.

パワーモジュールの信頼性の確保には、先ず、パワーデバイス(単に「素子」ともいう。)の作動中に生じる発熱を効率的に放熱する必要がある。このような放熱構造に関連する記載が下記の特許文献にある。 In order to ensure the reliability of the power module, first, it is necessary to efficiently radiate the heat generated during the operation of the power device (also simply referred to as “element”). The following patent documents describe the heat dissipation structure.

特開2008−42039号公報JP, 2008-42039, A 特開2008−103623号公報JP, 2008-103623, A

ところで、パワーモジュールの信頼性をさらに高めるためには、放熱性の確保に加えて、高温となる素子電極の接合部における耐熱性や耐久性の確保等も重要となる。そこで従来は、高融点で高耐熱性な接合材(例えば、SnAgCu、SnSb等の鉛フリーはんだ)が用いられていた。 By the way, in order to further enhance the reliability of the power module, in addition to ensuring the heat dissipation, it is also important to ensure the heat resistance and the durability in the joint portion of the element electrodes that become high temperature. Therefore, conventionally, a joining material having a high melting point and high heat resistance (for example, lead-free solder such as SnAgCu, SnSb) has been used.

しかし、そのような接合材を用いたパワーモジュールは、冷熱サイクル(温度サイクル)下で耐久性が十分でも、パワーサイクル下では必ずしも耐久性が十分ではなかった。なお、冷熱サイクルでは、温度分布が略均一的な高温環境下と低温環境下に繰り返しパワーモジュールが曝される。パワーサイクルでは、パワーデバイスへの通電のON・OFが短時間内に繰り返しなされて、不均一な温度分布を生じる環境下に繰り返しパワーモジュールが曝される。 However, the power module using such a bonding material has sufficient durability under a cooling/heating cycle (temperature cycle), but has not necessarily sufficient durability under a power cycle. In the cooling/heating cycle, the power module is repeatedly exposed to a high temperature environment and a low temperature environment where the temperature distribution is substantially uniform. In the power cycle, turning on and off the power to the power device is repeated within a short time, and the power module is repeatedly exposed to an environment in which an uneven temperature distribution is generated.

パワーサイクル下における耐久性を確保するため、低ヤング率または低耐力(常温域)の接合材も用いられていた。しかし、そのような接合材を用いたパワーモジュールでは、接合部温度(Tj)の上限保証温度が低温域(例えば150℃以下)に制限される。 In order to secure durability under a power cycle, a low Young's modulus or low proof stress (normal temperature range) bonding material has also been used. However, in the power module using such a joining material, the upper limit guaranteed temperature of the joining portion temperature (Tj) is limited to a low temperature range (eg, 150° C. or lower).

本発明はこのような事情に鑑みて為されたものであり、パワーサイクル下における信頼性を高温域まで確保できるパワーモジュールを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power module capable of ensuring reliability under a power cycle even in a high temperature range.

本発明者はこの課題を解決すべく鋭意研究した結果、パワーデバイスの第1面側(裏面側/下面側)にある電極を接合する第1接合材の機械的特性(例えば耐力)の温度依存性と、第2面側(表面側/上面側)にある電極を接合する第2接合材の機械的特性(例えば耐力)の温度依存性とを、所定範囲内にすることにより、パワーサイクル下における信頼性(耐久性)をより高温域まで確保できることを新たに見出した。この発見を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of earnest studies to solve this problem, the present inventor has found that the mechanical characteristics (eg, proof stress) of the first bonding material for bonding the electrodes on the first surface side (back surface side/lower surface side) of the power device depend on temperature. Property and the temperature dependence of the mechanical properties (for example, proof stress) of the second bonding material for bonding the electrodes on the second surface side (front surface side/upper surface side) within a predetermined range. It was newly found that the reliability (durability) in the can be secured up to a higher temperature range. The present invention described below has been completed by developing this discovery.

《パワーモジュール》
(1)本発明は、半導体からなり、第1面側にある第1電極と第2面側にある第2電極とを少なくとも有するパワーデバイスと、該第1電極に第1接合材を介して接合される第1スプレッダと、該第2電極に第2接合材を介して接合されるターミナルとを備え、該半導体は、ケイ素または炭化ケイ素からなり、該第1電極は、該第2電極よりも接合される電極面積が大きく、該第2電極は、ケイ素を含むアルミニウム合金(「Al−Si合金」という。)からなるAlSi層を含み、該第1スプレッダと該ターミナルは、銅または銅合金からなり、該第1接合材は、30℃のときの0.2%耐力と175℃のときの0.2%耐力との差の絶対値(|Δσ|)が10MPa以下であり、該第2接合材は、30〜175℃の全域において該Al−Si合金よりも0.2%耐力が小さく、30℃のときの0.2%耐力と175℃のときの0.2%耐力との差の絶対値(|Δσ|)が20MPa以下であるパワーモジュールである。
《Power module》
(1) The present invention provides a power device which is made of a semiconductor and has at least a first electrode on the first surface side and a second electrode on the second surface side, and a first bonding material on the first electrode. A first spreader to be joined, and a terminal joined to the second electrode via a second joining material, the semiconductor being made of silicon or silicon carbide, and the first electrode being more than the second electrode. The second electrode has an AlSi layer made of an aluminum alloy containing silicon (referred to as “Al—Si alloy”), and the first spreader and the terminal are made of copper or a copper alloy. And the absolute value (|Δσ 1 |) of the difference between the 0.2% proof stress at 30° C. and the 0.2% proof stress at 175° C. is 10 MPa or less. The second bonding material has a 0.2% proof stress lower than that of the Al-Si alloy in the entire range of 30 to 175°C, and has a 0.2% proof stress at 30°C and a 0.2% proof stress at 175°C. The absolute value (|Δσ 2 |) of the difference is 20 MPa or less.

(2)本発明のパワーモジュールは、高温域(例えば、素子中心温度または接合部温度の上限値が150℃超〜175℃以下となる温度域)のパワーサイクル下でも、高い耐久性(信頼性)を発揮し得る。例えば、そのような環境下でも、第2電極を構成するAlSi層の割れ(クラック)等が抑止される。 (2) The power module of the present invention has high durability (reliability) even under a power cycle in a high temperature range (for example, a temperature range in which the upper limit of the element center temperature or the junction temperature is more than 150°C to 175°C or less). ) Can be demonstrated. For example, even in such an environment, cracking of the AlSi layer that constitutes the second electrode is suppressed.

このような優れた効果が発揮される理由やメカニズムは必ずしも定かではない。但し、第2電極側(特にAlSi層)のクラックの有無が、接合材の機械的特性(例えば耐力)の温度依存性に影響しており、第2電極の反対側である第1電極側の第1接合材の機械的特性の温度依存性を第2電極側の第2接合材よりも小さくすることが有効であるということは、これまでにない知見である。本発明は、そのような発見に基づいてなされており、画期的である。 The reason and mechanism for such excellent effects are not always clear. However, the presence or absence of cracks on the second electrode side (particularly the AlSi layer) influences the temperature dependence of the mechanical characteristics (for example, proof stress) of the bonding material, and the first electrode side opposite to the second electrode side. It is an unprecedented finding that it is effective to make the temperature dependence of the mechanical properties of the first bonding material smaller than that of the second bonding material on the second electrode side. The present invention is based on such findings and is epoch-making.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
《Others》
Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. A range such as “a to b” may be newly established by setting any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

両面冷却構造型のパワーモジュールの要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the power module of a double-sided cooling structure type. 各試料に係るパワーサイクル試験後の第1電極面付近を観察した超音波顕微鏡像である。It is an ultrasonic microscope image which observed the 1st electrode surface vicinity after the power cycle test concerning each sample. パワーサイクル試験に係る1周期分の通電パターン図である。It is an electricity distribution pattern figure for 1 cycle concerning a power cycle test. 各試料に係るパワーサイクル試験後の第1接合材付近の断面を観察した光学顕微鏡像である。It is an optical microscope image which observed the cross section near the 1st joining material after the power cycle test concerning each sample. 接合材に用いた各金属の耐力の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the yield strength of each metal used for the joining material.

本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。本明細書で説明する内容は、本発明のパワーモジュールのみならず、その製造方法にも該当し得る。「方法」に関する構成要素は「物」に関する構成要素ともなり得る。 One or more components arbitrarily selected from the specification may be added to the components of the present invention. The contents described in this specification can be applied not only to the power module of the present invention but also to its manufacturing method. The component relating to “method” can also be the component relating to “object”.

《パワーデバイス》
パワーデバイスは、ダイオードでもよいが、主にトランジスタである。トランジスタは、第1電極、第2電極、制御電極(第3電極)を備える。本発明の場合、第1電極は第2電極よりも電極面積(または接合面積)が大きく、第1電極はトランジスタの第1面側にあり、第2電極はその第2面側(第1面側の反対面側)にある。このような条件を満たす限り、トランジスタは、IGBT、MOSFET、サイリスタ等のいずれでもよい。IGBTなら、例えば、第1電極はコレクタ電極、第2電極はエミッタ電極となる。MOSFETなら、例えば、第1電極はドレイン電極、第2電極はソース電極である。サイリスタなら、例えば、第1電極はアノード電極であり、第2電極はカソード電極である。なお、いずれの場合も、制御電極は、通常、ゲート電極である。ちなみに、本発明のパワーモジュールは、トランジスタ以外のデバイス(ダイオード等)や制御回路を含み得る。
《Power device》
The power device may be a diode, but is mainly a transistor. The transistor includes a first electrode, a second electrode, and a control electrode (third electrode). In the case of the present invention, the first electrode has a larger electrode area (or junction area) than the second electrode, the first electrode is on the first surface side of the transistor, and the second electrode is on the second surface side (first surface). On the opposite side of the side). The transistor may be any of IGBT, MOSFET, thyristor and the like as long as such a condition is satisfied. In the case of an IGBT, for example, the first electrode serves as a collector electrode and the second electrode serves as an emitter electrode. In the case of a MOSFET, for example, the first electrode is a drain electrode and the second electrode is a source electrode. In the case of a thyristor, for example, the first electrode is an anode electrode and the second electrode is a cathode electrode. In any case, the control electrode is usually a gate electrode. Incidentally, the power module of the present invention may include devices (diodes, etc.) other than transistors and control circuits.

パワーデバイスは、半導体(SiまたはSiC)からなる。半導体基板(チップ)中のp領域やn領域は、例えば、イオン注入等により形成される。また、第1電極や第2電極は、例えば、金属蒸着(メタライズ)や熱処理(アニール)等により形成される。なお、制御電極は、例えば、絶縁膜(酸化膜)、ポリシリコン膜等により形成される。 The power device is made of a semiconductor (Si or SiC). The p region and the n region in the semiconductor substrate (chip) are formed by, for example, ion implantation. The first electrode and the second electrode are formed by, for example, metal vapor deposition (metallization), heat treatment (annealing), or the like. The control electrode is formed of, for example, an insulating film (oxide film), a polysilicon film, or the like.

このような半導体の熱膨張係数(CTE:coefficient of thermal expansion)は、2〜5さらには3〜6ppm/K程度である。ちなみに、SiはCTEが3ppm/K程度、SiCはCTEが約3.7ppm/K程度である。 The coefficient of thermal expansion (CTE) of such a semiconductor is about 2 to 5, more preferably about 3 to 6 ppm/K. By the way, Si has a CTE of about 3 ppm/K, and SiC has a CTE of about 3.7 ppm/K.

第1電極や第2電極(特に第2電極)は、ケイ素を含むアルミニウム合金(「Al−Si合金」という。)からなるAlSi層を含む。AlSi層は、一般的に、半導体とNi電極との密着性確保や良好な電気的接触特性を得るために設けられる。パワーサイクル環境下で生じる不均一な温度分布やCTE不整合等に起因して、そのAlSi層でクラックが生じ易い。 The first electrode and the second electrode (particularly the second electrode) include an AlSi layer made of an aluminum alloy containing silicon (referred to as “Al—Si alloy”). The AlSi layer is generally provided in order to secure the adhesion between the semiconductor and the Ni electrode and to obtain good electrical contact characteristics. Cracks are likely to occur in the AlSi layer due to the non-uniform temperature distribution, CTE mismatch, and the like that occur under the power cycle environment.

第1電極や第2電極は、AlSi層下(半導体上)に、極薄いAl層やTi層(50nm〜500nm程度)等が形成されていてもよい。また、AlSi層上にNi層等が形成されていてもよい。下層であるAl層やTi層等は、例えば、オーミック接触や密着性を確保するために設けられる。上層であるNi層等は、例えば、接合材との接合性を確保するために設けられる。 The first electrode and the second electrode may have an extremely thin Al layer or Ti layer (about 50 nm to 500 nm) formed under the AlSi layer (on the semiconductor). Further, a Ni layer or the like may be formed on the AlSi layer. The lower Al layer, Ti layer, and the like are provided, for example, to ensure ohmic contact and adhesion. The upper Ni layer or the like is provided, for example, in order to secure the bondability with the bonding material.

《ターミナルとスプレッダ》
第1電極に接合される第1スプレッダと、第2電極に接合されるターミナルは、導電性および熱伝導性に優れた銅(無酸素銅等の純銅)または銅合金からなる。これらのCTEは、通常、15〜19ppm/K程度である。但し、CTEが小さい銅合金(例えば、CTEが4〜10ppm/K程度のCu―W合金、Cu―Mo合金等)を用いてもよい。なお、これらは後述する第2スプレッダについても適宜該当し得る。
《Terminal and spreader》
The first spreader joined to the first electrode and the terminal joined to the second electrode are made of copper (pure copper such as oxygen-free copper) or copper alloy having excellent electrical conductivity and thermal conductivity. These CTEs are usually about 15 to 19 ppm/K. However, a copper alloy having a small CTE (for example, a Cu—W alloy or a Cu—Mo alloy having a CTE of about 4 to 10 ppm/K) may be used. It should be noted that these may be appropriately applied to the second spreader described later.

パワーデバイスが第2面側に制御電極を有するトランジスタの場合、ターミナルは、例えば、その制御電極に接合されるボンディングワイヤーのスペースを確保するスペーサとなる。その厚みは、例えば、0.1mm〜2mmさらには0.5mm〜1.5mm程度である。なお、ターミナルの第2面側には、例えば、第2スプレッダが第3接合材を介して接合される。 When the power device is a transistor having a control electrode on the second surface side, the terminal serves as a spacer that secures a space for a bonding wire bonded to the control electrode, for example. The thickness is, for example, about 0.1 mm to 2 mm, and further about 0.5 mm to 1.5 mm. The second spreader is bonded to the second surface side of the terminal via a third bonding material, for example.

スプレッダは、パワーデバイスの発熱を受熱して、外部へ放熱する熱伝導部材である。スプレッダは、例えば、導電部材を兼ねるリードフレーム、DBC(Direct Copper Bond)基板の回路層等である。 The spreader is a heat conducting member that receives heat generated by the power device and radiates the heat to the outside. The spreader is, for example, a lead frame that also serves as a conductive member, a circuit layer of a DBC (Direct Copper Bond) substrate, or the like.

《接合材》
(1)第1電極と第1スプレッダの接合部(「第1接合部」という。)に用いられる第1接合材と、第2電極とターミナルの接合部(「第2接合部」という。)に用いられる第2接合材とは、いずれも、機械的特性(強度、クリープ抵抗、延性、ヤング率等)の温度変化が小さいものであるとよい。
《Bonding material》
(1) A first bonding material used for a bonding portion between the first electrode and the first spreader (referred to as “first bonding portion”) and a bonding portion between the second electrode and the terminal (referred to as “second bonding portion”). Any of the second bonding materials used for is preferably one in which mechanical characteristics (strength, creep resistance, ductility, Young's modulus, etc.) change little with temperature.

各接合材の機械的特性の温度依存性は、例えば、30℃のときの0.2%耐力(σ)と175℃(σ)のときの0.2%耐力との差(Δσ=σ―σ)またはその絶対値(|Δσ|)により指標される。第1接合材なら、例えば、その0.2%耐力差の絶対値(|Δσ|)が10MPa以下さらには6MPa以下あるとよい。第2接合材なら、例えば、その0.2%耐力差の絶対値(|Δσ|)が20MPa以下さらには12MPa以下あるとよい。いずれの場合でも、クラックが発生し易い第2電極(特にAlSi層)側である第2接合材の0.2%耐力差(絶対値)よりも、その反対面側にある第1接合材の0.2%耐力差(絶対値)を小さくするとよい。 The temperature dependence of the mechanical properties of each bonding material is, for example, the difference between the 0.2% proof stress at 30° C. (σ L ) and the 0.2% proof stress at 175° C. (σ H ) (Δσ= σ L −σ H ) or its absolute value (|Δσ|). In the case of the first bonding material, for example, the absolute value of the 0.2% proof stress difference (|Δσ 1 |) is preferably 10 MPa or less, more preferably 6 MPa or less. In the case of the second bonding material, for example, the absolute value (|Δσ 2 |) of the 0.2% proof stress difference may be 20 MPa or less, and further 12 MPa or less. In any case, the 0.2% proof stress difference (absolute value) of the second bonding material on the second electrode (especially AlSi layer) side where cracks are likely to occur is larger than that of the first bonding material on the opposite surface side. It is advisable to reduce the 0.2% proof stress difference (absolute value).

(2)第1接合材は、例えば、アルミニウム層と金属間化合物層が積層された複合材からなるとよい。アルミニウム層には、例えば、アルミニウム箔を用いることができる。このアルミニウム箔は、例えば、Al以外の不純物元素の合計量が1質量%以下(未満)である純アルミニウムからなるとよい。具体的にいうと、その純度は2N〜4Nであるとよい。なお、2Nは純度99%、3Nは純度99.9%、4Nは純度99.99%を意味する。過剰に高純度なアルミニウム箔は高価であり、また、機械的特性の温度変化が大きくなり得る。不純物が過多になると、アルミニウム層が高強度または低延性となり、その応力緩和性が低下し得る。 (2) The first joining material may be made of, for example, a composite material in which an aluminum layer and an intermetallic compound layer are laminated. For the aluminum layer, for example, aluminum foil can be used. This aluminum foil may be made of pure aluminum in which the total amount of impurity elements other than Al is 1 mass% or less (less than), for example. Specifically, its purity is preferably 2N to 4N. 2N means a purity of 99%, 3N means a purity of 99.9%, and 4N means a purity of 99.99%. Excessively high-purity aluminum foil is expensive and can have large temperature changes in mechanical properties. If the amount of impurities is excessive, the aluminum layer may have high strength or low ductility, and its stress relaxation property may decrease.

アルミニウム層の厚みは、例えば、複合材全体の厚さに対して60〜95%さらには75〜90%とするとよい。具体的にいうと、アルミニウム層は、例えば、10〜500μmさらには20〜200μm程度である。その厚みが過小では、第2電極(特にAlSi層)に生じる熱ひずみの低減が不十分となる。また、アルミニウム層による応力緩和性や耐熱疲労性も不十分となる。アルミニウム層の厚みが過大になると、パワーモジュールの薄型化が阻害される。 The thickness of the aluminum layer may be, for example, 60 to 95%, or even 75 to 90% of the total thickness of the composite material. Specifically, the aluminum layer has a thickness of, for example, 10 to 500 μm, further 20 to 200 μm. If the thickness is too small, the thermal strain generated in the second electrode (particularly the AlSi layer) is insufficiently reduced. Further, the stress relaxation property and heat fatigue resistance due to the aluminum layer are also insufficient. When the thickness of the aluminum layer is excessively large, it is difficult to reduce the thickness of the power module.

金属間化合物層は、例えば、少なくとも一方側の被接合面上に、蒸着等により形成した低融点金属(層)と高融点金属(層)が反応し、その低融点金属よりも高融点な金属間化合物(IMC)が生成されてなる。このようなIMCによる接合を、固液相互拡散接合または単に「SLID(Solid Liquid Interdiffusion )接合」という。なお、本明細書では、アルミニウム層(Al層)と、その少なくとも一面側(通常はアルミニウム層の両面側)に形成された金属間化合物層(IMC層)とが積層された接合材(複合材)を、単に「Al−SLID」という。 The intermetallic compound layer is, for example, a metal having a melting point higher than that of the low melting point metal (layer) formed by vapor deposition or the like reacting with the high melting point metal (layer) on at least one surface to be joined. An intermetallic compound (IMC) is produced. Such joining by IMC is called solid-liquid interdiffusion joining or simply "SLID (Solid Liquid Interdiffusion) joining". In the present specification, a bonding material (composite material) in which an aluminum layer (Al layer) and an intermetallic compound layer (IMC layer) formed on at least one surface side (usually both surface sides of the aluminum layer) thereof are stacked. ) Is simply referred to as “Al-SLID”.

金属間化合物層を生成する低融点金属と高融点金属の組合わせ(ひいては金属間化合物の組成)は、パワーモジュールの耐熱温度、接合工程中の加熱温度、熱膨張係数等を考慮して選択される。低融点金属として、例えば、Sn、In、Ga、Pb、Bi、Zn等やそれらの合金がある。高融点金属として、Ni、Cu,Ti、Mo、W、Si、Cr、Mn、Co、Zr、Nb、Ta、Ag、Au、Pt、等やそれらの合金がある。 The combination of the low melting point metal and the high melting point metal that forms the intermetallic compound layer (and thus the composition of the intermetallic compound) is selected in consideration of the heat resistance temperature of the power module, the heating temperature during the bonding process, the thermal expansion coefficient, and the like. It Examples of the low melting point metal include Sn, In, Ga, Pb, Bi, Zn and the like, and alloys thereof. As refractory metals, there are Ni, Cu, Ti, Mo, W, Si, Cr, Mn, Co, Zr, Nb, Ta, Ag, Au, Pt, etc., and alloys thereof.

一例として、Sn(融点:約230℃)と、Ni(融点:約1450℃)またはCu(融点:約1085℃)とを組み合わせるとよい。例えば、Sn層とNi層を接触させて約350℃で5分間程度加熱すると、ニッケルスズ(NiSn/融点:約795℃)からなる金属間化合物層が得られる。こうして、接合温度を抑制しつつ、高融点な複合接合層が得られる。高融点金属/低融点金属の他の組合わせは、Cu/Sn、Ag/Sn、Pt/Sn/、Au/Sn等でもよい。 As an example, Sn (melting point: about 230° C.) may be combined with Ni (melting point: about 1450° C.) or Cu (melting point: about 1085° C.). For example, when the Sn layer and the Ni layer are brought into contact with each other and heated at about 350° C. for about 5 minutes, an intermetallic compound layer made of nickel tin (NiSn/melting point: about 795° C.) is obtained. In this way, a high melting point composite bonding layer can be obtained while suppressing the bonding temperature. Other combinations of high melting point metal/low melting point metal may be Cu/Sn, Ag/Sn, Pt/Sn/, Au/Sn and the like.

金属間化合物層は、通常、アルミニウム層よりも十分に薄い。アルミニウム層の片面側にある金属間化合物層(一層分)の厚さは、例えば、1〜15μmさらには3〜10μm程度である。複合材全体の厚さに対する金属間化合物層の合計厚さは、例えば、5〜40%さらには10〜25%程度である。 The intermetallic compound layer is usually much thinner than the aluminum layer. The thickness of the intermetallic compound layer (one layer) on one side of the aluminum layer is, for example, about 1 to 15 μm, and further about 3 to 10 μm. The total thickness of the intermetallic compound layer with respect to the total thickness of the composite material is, for example, about 5 to 40%, further about 10 to 25%.

このようなAl−SLIDは、上述した温度域内(30〜175℃)で機械的特性(0.2%耐力等)が安定しており、その温度依存性が十分に小さい。このためAl−SLID(複合材)は、第1接合材として用いても、第2接合材として用いてもよい。なお、Al−SLIDの機械的特性は、ほぼ、その大部分を占めるアルミニウム層の機械的特性に依存していると考えてよい。 Such Al-SLID has stable mechanical properties (0.2% proof stress, etc.) within the above-mentioned temperature range (30 to 175° C.), and its temperature dependence is sufficiently small. Therefore, Al-SLID (composite material) may be used as the first bonding material or the second bonding material. It can be considered that the mechanical properties of Al-SLID substantially depend on the mechanical properties of the aluminum layer that occupies most of them.

(3)第2接合材には、機械的特性の温度依存性が比較的小さい種々の材料を用いることができる。例えば、上述したAl−SLIDを用いる他、従来から用いられているスズと銅のはんだ(単に「SnCuはんだ」という。)を用いることもできる。SnCuはんだは、例えば、その全体を100質量%として、Cu:0.4〜1.5質量%さらには0.5〜1質量%を含み、残部がSnと不純物からなるスズ合金からなる。この他、上述した0.2%耐力差の絶対値(|Δσ|)が所定範囲内となる限り、Ag、Ni等の合金からなるはんだを用いてもよい。 (3) As the second bonding material, various materials having relatively low temperature dependence of mechanical properties can be used. For example, in addition to using the Al-SLID described above, a tin-copper solder that has been conventionally used (simply referred to as "SnCu solder") can be used. The SnCu solder is made of, for example, a tin alloy containing Cu: 0.4 to 1.5 mass% and further 0.5 to 1 mass% with the whole being 100 mass%, and the balance being a tin alloy containing Sn and impurities. In addition, as long as the absolute value of the 0.2% proof stress difference (|Δσ 2 |) described above is within a predetermined range, solder made of an alloy such as Ag or Ni may be used.

(4)ターミナルの第2面側と第2スプレッダを接合する第3接合材には、各種はんだ、Al−SLID等を用いることができる。ターミナルと第2スプレッダの間は、パワーデバイスとターミナル若しくは第1スプレッダとの間よりも、低温で温度分布も略均一的である。このため第3接合材については、必ずしも、その機械的特性の温度依存性を問わない。 (4) Various solders, Al-SLID, or the like can be used for the third joining material that joins the second surface side of the terminal and the second spreader. The temperature distribution between the terminal and the second spreader is lower and the temperature distribution is substantially uniform than that between the power device and the terminal or the first spreader. Therefore, the temperature dependency of the mechanical properties of the third bonding material does not necessarily matter.

第1接合材と第2接合材の組み合わせを変更した種々のパワーモジュールを製作した。それらをパワーサイクル試験に供して、第2接合部(特に第2電極のAlSi層)にクラックが生じるか否かを観察し、パワーモジュールの耐久性(信頼性)を評価した。このような具体例を挙げつつ、本発明をさらに詳しく説明する。 Various power modules were manufactured by changing the combination of the first bonding material and the second bonding material. They were subjected to a power cycle test, and it was observed whether or not cracks were generated in the second joint portion (in particular, the AlSi layer of the second electrode), and the durability (reliability) of the power module was evaluated. The present invention will be described in more detail with reference to such specific examples.

《パワーモジュールの概要》
本発明の一実施例である両面冷却構造型のパワーモジュールMを模式的に示した断面図を図1に示した。パワーモジュールMは、IGBTであるトランジスタ1と、スペーサであるターミナル2と、リードフレームである第1スプレッダ31および第2スプレッダ32とを備える。
<<Outline of power module>>
FIG. 1 is a sectional view schematically showing a double-sided cooling structure type power module M which is an embodiment of the present invention. The power module M includes a transistor 1 which is an IGBT, a terminal 2 which is a spacer, and a first spreader 31 and a second spreader 32 which are lead frames.

トランジスタ1は、IGBTの基板10と、そのコレクタ電極である第1電極11と、そのエミッタ電極である第2電極12と、そのゲート電極である制御電極13(第3電極)とを備える。 The transistor 1 includes an IGBT substrate 10, a first electrode 11 that is a collector electrode thereof, a second electrode 12 that is an emitter electrode thereof, and a control electrode 13 (third electrode) that is a gate electrode thereof.

第1電極11は、第1接合材41を介して、第1スプレッダ31に接合されている。第2電極12は、第2接合材42を介して、ターミナル2の第1面側に接合されている。制御電極13は、ボンディングワイヤー51により信号端子52と接合されている。ターミナル2の第2面側は、第3接合材43を介して第2スプレッダ32と接合されている。 The first electrode 11 is bonded to the first spreader 31 via the first bonding material 41. The second electrode 12 is bonded to the first surface side of the terminal 2 via the second bonding material 42. The control electrode 13 is joined to the signal terminal 52 by a bonding wire 51. The second surface side of the terminal 2 is joined to the second spreader 32 via the third joining material 43.

なお、図1には、一例として、第1接合材41が、アルミニウム層413とその両面側に生成された金属間化合物層411、412とからなるAl−SLID(複合材)である場合を示した。 Note that FIG. 1 shows, as an example, a case where the first bonding material 41 is an Al-SLID (composite material) including an aluminum layer 413 and intermetallic compound layers 411 and 412 formed on both surface sides thereof. It was

《パワーサイクル試験》
(1)試料
パワーサイクル試験に供するパワーモジュールM(試料)を種々製作した。先ず、トランジスタ1の基板10は、シリコン(Si単結晶)のチップ(12.4mm×12.4mm×厚さ135μm)からなる。第1電極11の電極面(接合面)は12.4mm×12.4mm(面積:154mm)、第2電極12の電極面(接合面)は11mm×10mm(面積:110mm)である。
<Power cycle test>
(1) Samples Various power modules M (samples) to be used in the power cycle test were manufactured. First, the substrate 10 of the transistor 1 is composed of a silicon (Si single crystal) chip (12.4 mm×12.4 mm×thickness 135 μm). The electrode surface (bonding surface) of the first electrode 11 is 12.4 mm×12.4 mm (area: 154 mm 2 ), and the electrode surface (bonding surface) of the second electrode 12 is 11 mm×10 mm (area: 110 mm 2 ).

トランジスタ1の第1電極は、基板10のシリコン下面上に、AlSi層(厚さ5μm)、Ti層(厚さ250nm)、およびNi層(厚さ3μm)が順に積層されてなる。トランジスタ1の第2電極は、基板10のシリコン上面上に、AlSi層(厚さ5μm)およびNi層(厚さ3〜5μm)が順に積層されてなる。各層は、原料金属(ターゲット)をスパッタリングして形成される。AlSi層は、Si:1質量%、Al:残部であるアルミニウム合金(「Al−1%Si」という。)を原料金属とした。 The first electrode of the transistor 1 is formed by sequentially stacking an AlSi layer (thickness 5 μm), a Ti layer (thickness 250 nm), and a Ni layer (thickness 3 μm) on the silicon lower surface of the substrate 10. The second electrode of the transistor 1 is formed by sequentially stacking an AlSi layer (thickness 5 μm) and a Ni layer (thickness 3 to 5 μm) on the silicon upper surface of the substrate 10. Each layer is formed by sputtering a source metal (target). In the AlSi layer, Si: 1 mass% and Al: the balance of an aluminum alloy (referred to as "Al-1% Si") were used as the raw metal.

ターミナル2(厚さ1.15mm)およびスプレッダ31、32(厚さ2mm)には、無酸素銅(純銅)箔を用いた。 An oxygen-free copper (pure copper) foil was used for the terminal 2 (thickness: 1.15 mm) and the spreaders 31, 32 (thickness: 2 mm).

第1接合材41と第2接合材42には、図2Aに示す各種の接合材を用いた。SnCuは、Cu:0.7質量%、Sn:残部であるスズ合金のはんだ(厚さ100μm)からなる。SnSbは、Sb:5質量%、Sn:残部であるスズ合金のはんだ(厚さ100μm)からなる。なお、本明細書でいう合金組成は、特に断らない限り、合金全体に対する質量割合(質量%)である。 Various bonding materials shown in FIG. 2A were used for the first bonding material 41 and the second bonding material 42. SnCu is composed of Cu: 0.7% by mass, Sn: the balance of tin alloy solder (thickness: 100 μm). SnSb is composed of Sb: 5 mass% and Sn: tin alloy solder (thickness 100 μm) which is the balance. Note that the alloy composition referred to in the present specification is a mass ratio (mass %) to the entire alloy unless otherwise specified.

Al−SLIDは、純アルミニウム(2N)の箔(厚さ100μm)からなるアルミニウム層413と、SnとNiからなる金属間化合物層411、412(各厚さ5μm)とが積層されてなる。なお、アルミニウム層の厚さは、Al−SLID全体に対して91%となる。 The Al-SLID is formed by laminating an aluminum layer 413 made of pure aluminum (2N) foil (thickness 100 μm) and intermetallic compound layers 411, 412 (each thickness 5 μm) made of Sn and Ni. The thickness of the aluminum layer is 91% with respect to the entire Al-SLID.

なお、Al−SLIDは、純アルミニウム箔の両面にそれぞれNiとSnが順にメタライズされた接合シートを、Niがメタライズされた被接合面間に介装した状態で加熱(270℃)し、SLID反応を生じさせて形成される。なお、第3接合材には、上述したSnCu(Sn−0.7質量%Cu)のはんだ(厚さ150μm)を用いた。 The Al-SLID is a SLID reaction by heating (270° C.) a joining sheet in which Ni and Sn are metallized on both sides of a pure aluminum foil in order and interposed between the surfaces to be joined in which Ni is metallized. Is formed. The above-mentioned SnCu (Sn-0.7 mass% Cu) solder (thickness 150 μm) was used as the third bonding material.

(2)試験
パワーサイクル試験は、各試料(パワーモジュールM)に、図2Bに示す通電パターンを5万サイクル印加して行った。通電のオン・オフは、素子中心温度が30℃(Tjmin)と、150℃または175℃(Tjmax)の範囲で変化するようにした。なお、素子中心温度はダイオードを用いた温度センサにより測定した。
(2) Test The power cycle test was performed by applying the energization pattern shown in FIG. 2B to each sample (power module M) for 50,000 cycles. The energization was turned on and off so that the element center temperature changed within the range of 30° C. (Tj min ) and 150° C. or 175° C. (Tj max ). The element center temperature was measured by a temperature sensor using a diode.

《観察》
(1)各試料について、第2電極12とターミナル2(第1面側)が接合されている第2接合部(第2接合材42付近)を、超音波顕微鏡で観察した。その観察像と、第2接合部(特に第2電極12のAlSi層)におけるクラックの有無とを、図2Aに併せて示した。
<<Observation>>
(1) For each sample, the second bonding portion (near the second bonding material 42) where the second electrode 12 and the terminal 2 (first surface side) are bonded was observed with an ultrasonic microscope. The observed image and the presence/absence of cracks in the second bonding portion (in particular, the AlSi layer of the second electrode 12) are also shown in FIG. 2A.

(2)各試料の第2接合部の断面を光学顕微鏡で観察した。その観察像を図3にまとめて示した。 (2) The cross section of the second joint portion of each sample was observed with an optical microscope. The observed images are shown together in FIG.

《評価》
図2Aから次のことがわかる。試料11のように、第1接合材41と第2接合材42にSnCuはんだを用いた場合、素子中心温度の上限値(Tjmax)が150℃までなら、第2接合部にクラックはみられなかった。しかし、試料12のように、第1接合材41と第2接合材42にSnCuはんだを用いた場合でも、素子中心温度の上限値(Tjmax)が175℃になると、第2接合部にクラックが発生した。
<<Evaluation>>
The following can be seen from FIG. 2A. When SnCu solder is used for the first bonding material 41 and the second bonding material 42 as in Sample 11, cracks are observed in the second bonding portion if the upper limit value (Tj max ) of the element center temperature is up to 150°C. There wasn't. However, even when SnCu solder is used for the first bonding material 41 and the second bonding material 42 as in the sample 12, when the upper limit value (Tj max ) of the element center temperature reaches 175° C., the second bonding portion is cracked. There has occurred.

また、試料2のように、第1接合材41と第2接合材42に、SnCuはんだよりも高強度(高融点)なSnSbはんだを用いた場合でも、第2接合部にクラックが発生した。さらに、試料4のように、第1接合材41をAl−SLID、第2接合材42をSnSbとした場合も、第2接合部にクラックが発生した。 Further, as in Sample 2, even when SnSb solder having higher strength (higher melting point) than SnCu solder was used for the first bonding material 41 and the second bonding material 42, cracks occurred in the second bonding portion. Furthermore, as in Sample 4, when the first bonding material 41 was Al-SLID and the second bonding material 42 was SnSb, cracks occurred in the second bonding portion.

一方、試料3または試料5のように、第1接合材41をAl−SLIDとして、第2接合材42をSnCuはんだ若しくはAl−SLIDとした場合には、第2接合部にクラックが発生しなかった。 On the other hand, when the first bonding material 41 is Al-SLID and the second bonding material 42 is SnCu solder or Al-SLID like Sample 3 or Sample 5, cracks do not occur in the second bonding portion. It was

さらに図3からわかるように、クラックを生じた試料の場合、第2電極12のAlSi層にクラックが生じることもわかった。なお、試料3のように、第2接合部にクラックが無い場合、第2電極12(特にAlSi層)にクラックやうねりはみられなかった。 Further, as can be seen from FIG. 3, in the case of the sample having a crack, it was also found that the AlSi layer of the second electrode 12 had a crack. In addition, when there is no crack in the second bonding portion as in Sample 3, no crack or waviness was observed in the second electrode 12 (particularly the AlSi layer).

《考察》
上述した結果を踏まえて、第1接合材と第2接合材の材質の相違(組み合わせ)により、第2電極のAlSi層等に発生するクラックの有無(ひいてはパワーモジュールの耐久性・信頼性)が異なる理由は、現状、次のように推察される。
<Consideration>
Based on the above results, the presence or absence of cracks (and thus the durability/reliability of the power module) generated in the AlSi layer or the like of the second electrode depends on the difference (combination) between the materials of the first bonding material and the second bonding material. The different reasons are currently inferred as follows.

(1)第1接合材41と第2接合材42に用いた各金属材料の0.2%耐力の温度依存性を図4に示した。この温度依存性は、恒温槽を有する引張り試験機を用いて、ひずみ速度:0.01〜0.06%/secの条件下で、各金属材料を引張り試験して得られたデータである。なお、Al−SLIDについては、その大部分を占めるAl(2N)に係る0.2耐力の温度依存性を示した。ちなみに、0.2%耐力は、各温度で行う引張試験により得られた応力―ひずみ線図上で、除荷後の塑性ひずみが0.2%となるときの応力値である。 (1) FIG. 4 shows the temperature dependence of the 0.2% proof stress of each metal material used for the first bonding material 41 and the second bonding material 42. This temperature dependence is data obtained by tensile testing each metal material under the condition of strain rate: 0.01 to 0.06%/sec using a tensile tester having a constant temperature bath. In addition, about Al-SLID, the temperature dependence of 0.2 yield strength concerning Al (2N) which occupies most of it was shown. Incidentally, the 0.2% proof stress is the stress value when the plastic strain after unloading becomes 0.2% on the stress-strain diagram obtained by the tensile test conducted at each temperature.

図4から明らかなように、SnSbはんだの0.2%耐力は、低温(25℃)でかなり大きいが、高温(200℃)になると急激に小さくなっている。つまり、SnSbはんだの機械的特性は、温度に対して大きく変化し易い(温度依存性が大きい)。 As is clear from FIG. 4, the 0.2% proof stress of SnSb solder is considerably large at low temperature (25° C.), but sharply decreases at high temperature (200° C.). That is, the mechanical characteristics of SnSb solder are likely to change greatly with temperature (the temperature dependence is large).

一方、SnCuはんだの0.2%耐力は、低温(25℃)であまり大きくないものの、温度に対する変化は小さい(温度依存性は小さい)。さらにAl−SLID(Al(2N))は、25〜200℃の範囲で、0.2%耐力が殆ど変化しておらず、温度依存性が非常に小さい。 On the other hand, the 0.2% proof stress of SnCu solder is not so large at low temperature (25° C.), but its change with temperature is small (temperature dependency is small). Further, Al-SLID (Al(2N)) has a 0.2% proof stress almost unchanged in the range of 25 to 200° C. and has very small temperature dependence.

また、図4から明らかなように、30℃のときと175℃のときとの0.2%耐力差の絶対値(|Δσ|)をみると、SnSbはんだでは|Δσ|=24MPa(>20MPa)であった。一方、SnCuはんだは|Δσ|=13MPa(10MPa<|Δσ|<20MPa)であり、Al−SLIDは|Δσ|=3MPa(|Δσ|<10MPa)であった。さらに、SnCuはんだとAl−SLIDは、Al−1%Siよりも、30〜175℃の全域において0.2%耐力が小さかった。 Further, as is apparent from FIG. 4, when the absolute value (|Δσ|) of the 0.2% proof stress difference between at 30° C. and at 175° C. is seen, |Δσ|=24 MPa (>20 MPa) for SnSb solder. )Met. On the other hand, SnCu solder was |Δσ|=13 MPa (10 MPa<|Δσ|<20 MPa), and Al-SLID was |Δσ|=3 MPa (|Δσ|<10 MPa). Furthermore, SnCu solder and Al-SLID had a 0.2% proof stress smaller than that of Al-1%Si in the entire range of 30 to 175°C.

(2)パワーサイクル下では、トランジスタ1(特に基板10)の温度が不均一となり、これに起因して、各電極や各接合部に生じる熱応力や変形・ひずみも不均一となり易い。このような不均一性が、各電極(特に第2電極のAlSi層)にクラックが生じさせる大きいな要因と考えられる。このような傾向は、素子温度(上限値)が高まるほど、顕著になり易い。 (2) Under a power cycle, the temperature of the transistor 1 (particularly the substrate 10) becomes nonuniform, and due to this, the thermal stress, deformation, and strain generated in each electrode and each joint are also likely to become nonuniform. Such non-uniformity is considered to be a major factor causing cracks in each electrode (in particular, the AlSi layer of the second electrode). Such a tendency tends to become more prominent as the element temperature (upper limit value) increases.

ところが、本発明のように、機械的特性の温度依存性が小さい接合材をパワーデバイスの接合部に用いると共に、クラックを生じ易い第2電極側の第2接合材よりも、その反対面側にある第1電極側の第1接合材の温度依存性をさらに小さくすると、理由は定かではないが、上述した各接合部や各電極に生じる不均一なひずみ等が顕著に抑制されるようになったと考えられる。 However, as in the present invention, a bonding material having small temperature dependence of mechanical properties is used for the bonding portion of the power device, and the bonding material on the opposite surface side to the second bonding material on the second electrode side, which is likely to cause cracks. If the temperature dependency of the first bonding material on the side of the first electrode is further reduced, the reason is not clear, but the above-mentioned uneven strain occurring in each bonding portion or each electrode is significantly suppressed. It is thought that

詳細なメカニズムは兎も角、本発明のパワーモジュールを採用することにより、その耐久性や信頼性の確保または向上が図られることは確かである。 The detailed mechanism is a rabbit, and by adopting the power module of the present invention, it is certain that the durability and reliability thereof can be secured or improved.

M パワーモジュール
1 トランジスタ
10 基板
11 第1電極
12 第2電極
13 制御電極
2 ターミナル
31 第1スプレッダ
32 第2スプレッダ
41 第1接合材
42 第2接合材
43 第3接合材
M power module 1 transistor 10 substrate 11 first electrode 12 second electrode 13 control electrode 2 terminal 31 first spreader 32 second spreader 41 first bonding material 42 second bonding material 43 third bonding material

Claims (7)

半導体からなり、第1面側にある第1電極と第2面側にある第2電極とを少なくとも有するパワーデバイスと、
該第1電極に第1接合材を介して接合される第1スプレッダと、
該第2電極に第2接合材を介して接合されるターミナルとを備え、
該半導体は、ケイ素または炭化ケイ素からなり、
該第1電極は、該第2電極よりも接合される電極面積が大きく、
該第2電極は、ケイ素を含むアルミニウム合金(「Al−Si合金」という。)からなるAlSi層を含み、
該第1スプレッダと該ターミナルは、銅または銅合金からなり、
該第1接合材は、30℃のときの0.2%耐力と175℃のときの0.2%耐力との差の絶対値(|Δσ|)が10MPa以下であり、
該第2接合材は、30〜175℃の全域において該Al−Si合金よりも0.2%耐力が小さく、30℃のときの0.2%耐力と175℃のときの0.2%耐力との差の絶対値(|Δσ|)が20MPa以下であるパワーモジュール。
A power device made of a semiconductor, having at least a first electrode on the first surface side and a second electrode on the second surface side;
A first spreader joined to the first electrode via a first joining material;
A terminal joined to the second electrode via a second joining material,
The semiconductor comprises silicon or silicon carbide,
The first electrode has a larger electrode area to be joined than the second electrode,
The second electrode includes an AlSi layer made of an aluminum alloy containing silicon (referred to as “Al—Si alloy”),
The first spreader and the terminal are made of copper or a copper alloy,
The absolute value (|Δσ 1 |) of the difference between the 0.2% proof stress at 30° C. and the 0.2% proof stress at 175° C. of the first bonding material is 10 MPa or less,
The second bonding material has a 0.2% proof stress lower than that of the Al-Si alloy in the entire range of 30 to 175°C, and has a 0.2% proof stress at 30°C and a 0.2% proof stress at 175°C. A power module whose absolute value (|Δσ 2 |) is 20 MPa or less.
前記第1接合材は、アルミニウム層と金属間化合物層が積層された複合材からなり、
前記第2接合材は、銅を含むスズ合金のはんだからなる請求項1に記載のパワーモジュール。
The first bonding material is made of a composite material in which an aluminum layer and an intermetallic compound layer are laminated,
The power module according to claim 1, wherein the second bonding material is made of a tin alloy solder containing copper.
前記第1接合材および前記第2接合材は、アルミニウム層と金属間化合物層が積層された複合材からなる請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein the first bonding material and the second bonding material are made of a composite material in which an aluminum layer and an intermetallic compound layer are laminated. 前記アルミニウム層は、純度が2N〜4Nのアルミニウム箔からなる請求項2または3に記載のパワーモジュール。 The power module according to claim 2 or 3, wherein the aluminum layer is made of an aluminum foil having a purity of 2N to 4N. 前記アルミニウム層の厚さは、前記複合材全体の厚さに対して60〜95%である請求項2〜4のいずれかに記載のパワーモジュール。 The thickness of the said aluminum layer is 60 to 95% with respect to the thickness of the said composite material whole, The power module in any one of Claims 2-4. 前記金属間化合物層は、スズとニッケルからなる請求項2〜5のいずれかに記載のパワーモジュール。 The power module according to claim 2, wherein the intermetallic compound layer is made of tin and nickel. 前記パワーデバイスは、前記第2面側に制御電極をさらに有するトランジスタであり、
前記ターミナルは、該制御電極に接合されるボンディングワイヤーのスペースを確保するスペーサであり、
さらに、該スペーサの該第2面側に接合される第2スプレッダを備える請求項1〜6のいずれかに記載のパワーモジュール。
The power device is a transistor further having a control electrode on the second surface side,
The terminal is a spacer that secures a space for a bonding wire bonded to the control electrode,
The power module according to claim 1, further comprising a second spreader joined to the second surface side of the spacer.
JP2018239155A 2018-12-21 2018-12-21 power module Active JP7169187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239155A JP7169187B2 (en) 2018-12-21 2018-12-21 power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239155A JP7169187B2 (en) 2018-12-21 2018-12-21 power module

Publications (2)

Publication Number Publication Date
JP2020102504A true JP2020102504A (en) 2020-07-02
JP7169187B2 JP7169187B2 (en) 2022-11-10

Family

ID=71139891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239155A Active JP7169187B2 (en) 2018-12-21 2018-12-21 power module

Country Status (1)

Country Link
JP (1) JP7169187B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019447A (en) * 2003-06-23 2005-01-20 Denso Corp Molded semiconductor device
JP2005244165A (en) * 2004-01-30 2005-09-08 Denso Corp Process for producing semiconductor chip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019447A (en) * 2003-06-23 2005-01-20 Denso Corp Molded semiconductor device
JP2005244165A (en) * 2004-01-30 2005-09-08 Denso Corp Process for producing semiconductor chip

Also Published As

Publication number Publication date
JP7169187B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7115591B2 (en) Solder material for semiconductor devices
JP6272512B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5549118B2 (en) Manufacturing method of semiconductor device
TWI641300B (en) Jointed body and power module substrate
US9642275B2 (en) Power module
EP2587532A2 (en) Joined structural body of members, joining method of members, and package for containing an electronic component
WO2017217145A1 (en) Solder bonded part
JP5186719B2 (en) Ceramic wiring board, manufacturing method thereof, and semiconductor module
US11094661B2 (en) Bonded structure and method of manufacturing the same
EP2940720B1 (en) Power module
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
JP5490258B2 (en) Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
JP4699822B2 (en) Manufacturing method of semiconductor module
JP6810915B2 (en) Solder material
JP2011023631A (en) Junction structure
JP2019079957A (en) Power module
JP7169187B2 (en) power module
JP6632589B2 (en) Joint structure and manufacturing method thereof
JP5808295B2 (en) module
US20220375819A1 (en) Copper/ceramic assembly and insulated circuit board
JP2019079958A (en) Power module
JP2020043096A (en) Semiconductor device, bonding sheet, and manufacturing method thereof
JP7170911B2 (en) Power semiconductor device and its manufacturing method
JP6299442B2 (en) Power module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7169187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150