JP2020101444A - Transmission electron microscope observation sample and manufacture method of the same - Google Patents

Transmission electron microscope observation sample and manufacture method of the same Download PDF

Info

Publication number
JP2020101444A
JP2020101444A JP2018239648A JP2018239648A JP2020101444A JP 2020101444 A JP2020101444 A JP 2020101444A JP 2018239648 A JP2018239648 A JP 2018239648A JP 2018239648 A JP2018239648 A JP 2018239648A JP 2020101444 A JP2020101444 A JP 2020101444A
Authority
JP
Japan
Prior art keywords
sample
strip
composition
shaped cured
cured sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018239648A
Other languages
Japanese (ja)
Other versions
JP7115293B2 (en
Inventor
悟 高橋
Satoru Takahashi
悟 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018239648A priority Critical patent/JP7115293B2/en
Publication of JP2020101444A publication Critical patent/JP2020101444A/en
Application granted granted Critical
Publication of JP7115293B2 publication Critical patent/JP7115293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a manufacture method of TEM (transmission electron microscope) observation sample, capable of easily manufacturing a thin sample that can be easily mounted on a TEM and has thickness and visual field area suitable for measurement.SOLUTION: A sample manufacture method includes steps of: filling a hole part provided in a sheet mesh 10 loadable in a sample holder of the TEM with a composition containing powder sample and resin to obtain a curing sample; cutting the curing sample to obtain a strip-like curing sample 11; attaching the strip-like curing sample 11 to an ion milling (IM) processing device so that one of long sides of the strip-like curing sample 11 faces argon ion flow; installing a shield plate 31 provided on the IM processing device; irradiating the strip-like curing sample 11 with argon ion 41, corroding composition 21 with which front and rear faces and the hole part of the strip-like curing sample 11 is filled by the argon ion flow 41, and processing the composition 21 into thin pieces to be suitable for TEM measurement.SELECTED DRAWING: Figure 5

Description

本発明は透過電子顕微鏡(本発明において「TEM」と記載する場合がある。)にて粉末の断面を観察する際に用いられる透過電子顕微鏡観察用試料と、当該透過電子顕微鏡観察用試料の作製方法に関するものである。 The present invention is a transmission electron microscope observation sample used when observing a cross section of a powder with a transmission electron microscope (may be referred to as “TEM” in the present invention), and preparation of the transmission electron microscope observation sample. It is about the method.

エレクトロニクス産業の発達により、当該分野で使用される各種の材料粉末についてもその物性、変化の状態等について精密な情報が求められるようになった。こうした情報を得る手段としてTEMによる観察は有効な手段であると考えられている。
ここで、各種の粉末試料をTEMにより観察する際には、当該粉末試料をTEM観察用試料とすることが求められる。
具体的には、当該粉末試料と適宜な樹脂(エポキシ樹脂等が好ましい。)とを混練し、硬化させて成形体を得る。そして当該成形体を、集束イオンビーム加工装置(本発明において「FIB」と記載する場合がある。)またはイオンミリング加工装置(本発明において「IM」と記載する場合がある。)を用いて薄片化し、TEM観察用試料を作製する。
例えば、特許文献1によれば、TEMで観察できる視野が10μm幅程度になるTEM観察用試料を作製することが出来る。また、特許文献2には、粉末試料とエポキシ樹脂とを混練した混錬物をシリコン基板で挟み込み硬化させて硬化物を得る。そして当該硬化物を研磨した後、IMで加工してTEM観察用試料を作製する方法が記載されている。
With the development of the electronics industry, it has become necessary to obtain precise information about the physical properties, the state of change, etc. of various material powders used in the field. Observation by TEM is considered to be an effective means for obtaining such information.
Here, when observing various powder samples by TEM, it is required to use the powder samples as TEM observation samples.
Specifically, the powder sample and an appropriate resin (preferably an epoxy resin or the like) are kneaded and cured to obtain a molded body. Then, the molded body is sliced using a focused ion beam processing apparatus (may be referred to as “FIB” in the present invention) or an ion milling apparatus (may be referred to as “IM” in the present invention). To produce a sample for TEM observation.
For example, according to Patent Document 1, a TEM observation sample having a field of view of about 10 μm that can be observed with a TEM can be manufactured. Further, in Patent Document 2, a kneaded product obtained by kneading a powder sample and an epoxy resin is sandwiched between silicon substrates and cured to obtain a cured product. Then, after the cured product is polished, it is processed by IM to prepare a sample for TEM observation.

特開2007−47053号公報JP, 2007-47053, A 特許第4594156号公報Japanese Patent No. 4594156

TEM観察において、粉末試料を構成する多数の粉末粒子を観察対象としたい場合、広い観察視野を確保することが求められる。このような場合、上述した特許文献1に記載のTEM観察用試料の作製方法では、1回の操作で加工できる面積が小さい為(通常、IMで加工できる薄片試料の幅は0.5mmである。)、加工を繰り返すことが求められる。
また、エレクトロニクス産業の発達により、当該粉末粒子の物性、変化の状態等について、より精密な情報が求められるようになり、より膜厚の薄いTEM観察用試料が求められるようになっている。このような場合、上述した特許文献2に記載のTEM観察用試料の作製方法では、研磨による成形体を例えば0.1mmの厚さとするには熟練を必要とし、誰もが実施するということは難しい。さらに、シリコン基板は粗い研磨により割れが生じ易い為、成形体が破損し易いといった課題があった。
In TEM observation, when a large number of powder particles constituting a powder sample are desired to be observed, it is required to secure a wide observation visual field. In such a case, in the method for producing a TEM observation sample described in Patent Document 1 described above, the area that can be processed by one operation is small (usually, the width of a thin sample that can be processed by IM is 0.5 mm). ), repeated processing is required.
Further, with the development of the electronics industry, more precise information has been demanded regarding the physical properties of powder particles, the state of change, etc., and a thinner TEM observation sample has been demanded. In such a case, in the method for producing a sample for TEM observation described in Patent Document 2 described above, it takes skill to make a molded body by polishing to have a thickness of, for example, 0.1 mm. difficult. Further, since the silicon substrate is likely to be cracked by rough polishing, there is a problem that the molded body is easily damaged.

さらに、特許文献1に記載のTEM観察用試料の作製方法では、粉末試料と樹脂との混合組成物の断面を露出させる為に、粉末試料と樹脂との混合組成物が充填されたシートメッシュを切断する工程を含むものである。そして、当該切断工程はナイフ等を用いて、試料に対してダメージを与えないように切断する旨、が記載されている。
しかしながら、混合組成物とシートメッシュとでは、硬度、脆性等の機械的性状が異なる。この為、当該切断工程は、実際には難度の高い工程であって生産性が低い上に、試料である混合組成物に対して機械的ダメージを与えてしまう場合があった。
Further, in the method for producing a sample for TEM observation described in Patent Document 1, a sheet mesh filled with the mixed composition of the powder sample and the resin is used to expose the cross section of the mixed composition of the powder sample and the resin. It includes a step of cutting. Then, it is described that the cutting step uses a knife or the like to perform cutting so as not to damage the sample.
However, mechanical properties such as hardness and brittleness are different between the mixed composition and the sheet mesh. Therefore, the cutting step is actually a highly difficult step and has low productivity, and in some cases, the mixed composition as a sample is mechanically damaged.

本発明は当該状況の下で為されたものであり、その解決しようとする課題は、TEMへ容易に装着出来、TEMによる測定に適した厚みと視野面積とを有する薄片試料を、簡便に作製出来るTEM観察用試料の作製方法を提供することである。 The present invention has been made under such circumstances, and the problem to be solved by the present invention is to easily prepare a thin sample that can be easily mounted on a TEM and has a thickness and a visual field area suitable for measurement by the TEM. It is to provide a method for producing a sample for TEM observation that can be performed.

上述の課題を解決する為、本発明者らは研究を行った。そして、観察試料をTEMへ装填させる為に用いられる、複数の穴部を有する市販のシートメッシュに注目した。
即ち、当該シートメッシュに設けられた複数の穴部へ、粉体試料と混練用樹脂とを混合し混錬して得た組成物を充填し前記混練用樹脂を硬化させて、シートメッシュと組成物とが一体化した硬化試料を得る。そして、当該シートメッシュと組成物とが一体化した硬化試料へアルゴンイオン流を照射して浸食し、当該組成物を透過電子顕微鏡による測定に適した厚みへ薄片化する構成に想到して本発明を完成した。
さらに本発明者らは、当該シートメッシュと組成物とが一体化した硬化試料を適宜な切断線に沿って切断して短冊状とし、短冊状硬化試料を得る構成にも想到した。
The present inventors have conducted research in order to solve the above problems. Then, attention was paid to a commercially available sheet mesh having a plurality of holes used for loading the observation sample into the TEM.
That is, the plurality of holes provided in the sheet mesh is filled with a composition obtained by mixing and kneading a powder sample and a kneading resin, and the kneading resin is cured to form a sheet mesh and a composition. A cured sample in which the product is integrated is obtained. Then, a cured sample in which the sheet mesh and the composition are integrated is irradiated with an argon ion flow to erode, and the composition is thinned into a thickness suitable for measurement by a transmission electron microscope. Was completed.
Furthermore, the present inventors also conceived a configuration in which a cured sample in which the sheet mesh and the composition are integrated is cut along a suitable cutting line to form a strip-shaped cured sample.

即ち、上述の課題を解決する為の第1の発明は、
透過電子顕微鏡の試料ホルダーに装填可能なシートメッシュに設けられた穴部へ、粉体試料と樹脂とを含む組成物を充填し、前記樹脂を硬化させて硬化試料を得る工程と、
前記硬化試料を適宜な切断線に沿って切断し短冊状硬化試料を得る工程と、
前記短冊状硬化試料における長辺側側面の一方がアルゴンイオン流と向き合うように、前記短冊状硬化試料をイオンミリング加工装置へ装填する工程と、
前記イオンミリング加工装置に設けられた遮蔽板を、前記イオンミリング加工装置へ装填された短冊状硬化試料におけるイオン流と向き合う長辺側側面へ、前記長辺側側面の長辺に沿って設置する工程と、
前記短冊状硬化試料へアルゴンイオンを照射し、当該アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食し、当該穴部の1箇所以上において、前記充填された組成物を薄片化する工程とを、有することを特徴とする透過電子顕微鏡観察用試料の作製方法である。
第2の発明は、
前記短冊状硬化試料へアルゴンイオンを照射し、前記充填された組成物を透過電子顕微鏡による測定に適した厚みへ薄片化する工程において、
所定の条件において、アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食した後、前記アルゴンイオン照射を止め、前記短冊状硬化試料をイオンミリング加工装置から外す工程と、
前記アルゴンイオン照射を受けた短冊状硬化試料においてアルゴンイオン流と向き合わなかった長辺側側面がアルゴンイオン流と向き合うように、前記アルゴンイオン照射を受けた短冊状硬化試料をイオンミリング加工装置へ装填する工程と、
前記遮蔽板を設けることなく、前記アルゴンイオン照射を受けた短冊状硬化試料へアルゴンイオンを照射し、当該アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食し、当該穴部の1箇所以上において、前記充填された組成物を薄片化する工程とを、有することを特徴とする第1の発明に記載の透過電子顕微鏡観察用試料の作製方法である。
第3の発明は、
前記樹脂が、粉体試料との混合時に液体もしくはゲル状であり、前記シートメッシュに設けられた穴部へ充填後は、常温硬化、加熱硬化、またはUV硬化する樹脂であることを特徴とする第1または第2の発明に記載の透過電子顕微鏡観察用試料の作製方法である。
第4の発明は、
前記樹脂が、エポキシ樹脂であることを特徴とする第1から第3の発明のいずれかに記載の透過電子顕微鏡観察用試料の作製方法である。
第5の発明は、
前記粉体試料を、樹脂に対して体積比で1:1以上混合することを特徴とする第1から第4の発明のいずれかに記載の透過電子顕微鏡観察用試料の作製方法である。
第6の発明は、
前記シートメッシュとして複数の穴部を備え、厚さが10μm以上50μm以下のものを用いることを特徴とする第1から第5の発明のいずれかに記載の透過電子顕微鏡観察用試料の作製方法である。
第7の発明は、
短冊状シートメッシュに設けられた複数の穴部に、粉体試料と樹脂とを含む組成物の硬化物が充填されている短冊状硬化試料であって、
前記短冊状硬化試料は、透過電子顕微鏡の試料ホルダーに装填可能であり、
前記充填された組成物は、アルゴンイオン流による浸食によって薄片化されており、
前記短冊状硬化試料に設けられた複数の穴部の1箇所以上において、前記充填された組成物が薄片になっていることを特徴とする透過電子顕微鏡観察用試料である。
That is, the first invention for solving the above problems is
A hole provided in a sheet mesh that can be loaded into a sample holder of a transmission electron microscope, a step of filling a composition containing a powder sample and a resin, and curing the resin to obtain a cured sample,
Cutting the cured sample along an appropriate cutting line to obtain a strip-shaped cured sample,
A step of loading the strip-shaped cured sample into an ion milling apparatus so that one of the long side surfaces of the strip-shaped cured sample faces the argon ion flow;
The shield plate provided in the ion milling apparatus is installed along the long side of the long side surface on the long side surface facing the ion flow in the strip-shaped cured sample loaded in the ion milling apparatus. Process,
Irradiating the strip-shaped cured sample with argon ions, eroding the composition filled in the front and back surfaces and holes of the strip-shaped cured sample by the argon ion flow, and filling the strip-shaped cured sample in one or more places of the hole. And a step of thinning the above composition, and a method for preparing a sample for observation with a transmission electron microscope.
The second invention is
Irradiating the strip-shaped cured sample with argon ions, in the step of thinning the filled composition into a thickness suitable for measurement by a transmission electron microscope,
In a predetermined condition, after eroding the composition filled in the front and back surfaces and holes of the strip-shaped cured sample with an argon ion flow, the argon ion irradiation is stopped, and the strip-shaped cured sample is removed from the ion milling apparatus. Process,
The strip-shaped cured sample that had been irradiated with argon ions was loaded into an ion milling device so that the long side surface that did not face the argon ion flow in the strip-shaped cured sample that had been irradiated with the argon ions faced the argon ion flow. The process of
The strip-shaped cured sample irradiated with the argon ion is irradiated with argon ions without providing the shielding plate, and the composition filled in the front and back surfaces and the hole of the strip-shaped cured sample is eroded by the argon ion flow. The method for producing a sample for observation with a transmission electron microscope according to the first invention, further comprising the step of thinning the filled composition at one or more locations of the hole.
The third invention is
The resin is a liquid or gel when mixed with a powder sample, and is a resin that cures at room temperature, heat cures, or UV after being filled in the holes provided in the sheet mesh. It is a method for producing a sample for observation with a transmission electron microscope according to the first or second invention.
The fourth invention is
The method for producing a sample for observation with a transmission electron microscope according to any one of the first to third inventions, characterized in that the resin is an epoxy resin.
The fifth invention is
The method for producing a sample for transmission electron microscope observation according to any one of the first to fourth inventions, characterized in that the powder sample is mixed with a resin in a volume ratio of 1:1 or more.
The sixth invention is
The method for producing a sample for transmission electron microscope observation according to any one of the first to fifth inventions, characterized in that a sheet mesh having a plurality of holes and a thickness of 10 μm or more and 50 μm or less is used as the sheet mesh. is there.
The seventh invention is
A strip-shaped cured sample in which a plurality of holes provided in the strip-shaped sheet mesh are filled with a cured product of a composition containing a powder sample and a resin,
The strip-shaped cured sample can be loaded into a sample holder of a transmission electron microscope,
The filled composition has been flaked by erosion by a stream of argon ions,
The sample for transmission electron microscope observation is characterized in that the filled composition is in the form of flakes at one or more locations of a plurality of holes provided in the strip-shaped cured sample.

本発明によれば、TEMへ容易に装着出来、TEMによる観察に適した試料の厚みと視野面積とを有するTEM観察用試料を簡便に作製出来る。 According to the present invention, a sample for TEM observation that can be easily attached to a TEM and has a thickness of the sample and a visual field area suitable for observation by TEM can be easily manufactured.

シートメッシュの斜視図である。It is a perspective view of a sheet mesh. シートメッシュへ組成物を載せた際の斜視図である。It is a perspective view at the time of putting a composition on a sheet mesh. 硬化試料の斜視図である。It is a perspective view of a hardening sample. 硬化試料を切断し短冊状硬化試料を得る際の斜視図である。It is a perspective view at the time of cutting a hardening sample and obtaining a strip-shaped hardening sample. 短冊状硬化試料へアルゴンイオンを照射している際の斜視図である。It is a perspective view at the time of irradiating a strip-shaped cured sample with argon ions. アルゴンイオン流を照射されている短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である。It is sectional drawing which shows the state of the cross section which appears when it is assumed that the strip-shaped cured sample irradiated with the argon ion stream was cut. アルゴンイオン流の照射後における短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である。It is a sectional view showing a state of a section which appears when it is assumed that a strip-shaped cured sample is cut after irradiation with an argon ion flow. 2回目のアルゴンイオン流を照射されている短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である。It is sectional drawing which shows the state of the cross section which appears when it is assumed that the strip-shaped cured sample irradiated with the argon ion stream of the 2nd time was cut. 2回目のアルゴンイオン流の照射後における短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である。It is a sectional view showing a state of a section which appears when it is assumed that a strip-shaped cured sample is cut after the second irradiation with an argon ion flow.

本発明を実施する為の形態について、1.被測定対象である粉体試料、2.混練用樹脂、3.シートメッシュ、4.硬化試料の作製および加工、5.IMによる加工、6.TEMへの装填および分析の順に、図面を参照しながら説明する。 Modes for carrying out the present invention: 1. A powder sample to be measured, 2. Kneading resin, 3. Sheet mesh, 4. 4. Preparation and processing of cured sample, Processing by IM, 6. The order of loading into a TEM and analysis will be described with reference to the drawings.

1.被測定対象である粉体試料
本発明は、金属酸化物、金属水酸化物、金属炭酸塩、金属窒化物、複合酸化物、複合水酸化物、複合炭酸塩、複合窒化物、各種セラミック粉、等、多様な粉体試料へ適用可能である。
1. Powder sample to be measured The present invention is a metal oxide, metal hydroxide, metal carbonate, metal nitride, complex oxide, complex hydroxide, complex carbonate, complex nitride, various ceramic powder, It can be applied to various powder samples.

2.混練用樹脂
被測定対象である粉体試料と混練する樹脂としては、混合時に液体もしくはゲル状であり、粉体試料と混合できる状態の物であれば良い。従って、粉体試料を混合する雰囲気下において液体もしくはゲル状である常温硬化、加熱硬化型の樹脂や接着剤、UV照射により硬化するUV樹脂等が好ましく使用出来る。これらの樹脂や接着剤の種類は特に限定されず、TEM観察において支障がない強度を有し、粉体試料へ化学的な作用を及ぼさないものであれば良い。中でも、作業の容易性から加熱硬化型樹脂であるエポキシ樹脂が好ましい。
2. Kneading Resin The resin to be kneaded with the powder sample to be measured may be any liquid or gel in the state of being mixed and in a state capable of being mixed with the powder sample. Therefore, a room temperature curing or heat curing type resin or adhesive which is liquid or gel in an atmosphere in which the powder sample is mixed, a UV resin which is cured by UV irradiation, and the like can be preferably used. The types of these resins and adhesives are not particularly limited as long as they have a strength that does not hinder TEM observation and do not exert a chemical action on the powder sample. Of these, an epoxy resin, which is a heat-curable resin, is preferable from the viewpoint of workability.

3.シートメッシュ
シートメッシュは、本来、TEMで観察する試料を載せる為の小さな円盤状の金網である。材質や網目の形について様々なものが市販されている。本発明ではシートメッシュにおける金網にて形成される穴部の数が2個以上の任意のものでよい。図1に複数個の穴部を有するシートメッシュ10を示す。
3. Sheet mesh A sheet mesh is essentially a small disc-shaped wire net for mounting a sample to be observed with a TEM. Various materials and mesh shapes are commercially available. In the present invention, the number of holes formed by the wire mesh in the sheet mesh may be two or more. FIG. 1 shows a sheet mesh 10 having a plurality of holes.

但し、後述する「4.硬化試料の作製」において短冊状硬化試料を作成する場合は、1箇所以上の穴部とそこに充填された組成物21が、切断されることなく短冊状硬化試料11中に残ることが肝要である。そこで、硬化試料を切断する2本の平行な切断線によって切断されない穴部を、1箇所以上残すことの出来る、個数、サイズおよび位置を有する穴部が存在するシートメッシュを用いることが肝要である。 However, when a strip-shaped cured sample is prepared in “4. Preparation of cured sample” described later, the strip-shaped cured sample 11 is formed without cutting the one or more holes and the composition 21 filled therein. It is essential to remain inside. Therefore, it is important to use a sheet mesh having holes having a number, size, and position that can leave at least one hole that is not cut by two parallel cutting lines that cut the cured sample. ..

シートメッシュ10の材質に関しては銅がもっとも普通であるが、ニッケル、金、モリブデン、銅、等の金属の他、炭素、高分子材料、等、でもつくられている。材質は、後述するTEMによる分析の際、被測定対象である粉末試料が有するX線のスペクトルと重複しないスペクトルを有するものを選択すること以外は、特に制限はない。
シートメッシュ10のサイズとしては、外径3mmφのものが、後述するTEMの試料ホルダーに装填する観点から便宜である。また、シートメッシュ10の厚みは10μm以上30μm未満であると、機械的強度が担保出来ると共に、後述するIMによる加工へそのまま適用出来る観点から好ましい。
Copper is the most common material for the sheet mesh 10. However, in addition to metals such as nickel, gold, molybdenum, and copper, carbon, polymer materials, and the like are also used. The material is not particularly limited, except that a material having a spectrum that does not overlap with the X-ray spectrum of the powder sample to be measured is selected during analysis by TEM described later.
The size of the sheet mesh 10 having an outer diameter of 3 mmφ is convenient from the viewpoint of loading in a TEM sample holder described later. Further, it is preferable that the thickness of the sheet mesh 10 is 10 μm or more and less than 30 μm, from the viewpoint that mechanical strength can be secured and the sheet mesh 10 can be directly applied to processing by IM described later.

4.硬化試料の作製
被測定対象である粉体試料と樹脂とを混合し混錬して、粉体試料と樹脂とを含む組成物20を得る。当該組成物20の組成は、粉末試料を樹脂に対して体積比で1:1以上、5:1以下、好ましくは2:1以上、4:1以下で混合したものである。TEM観察の際、より多くの粒子を観察出来る為、および、硬化試料としての強度を担保する為である。
4. Preparation of Hardened Sample A powder sample to be measured and a resin are mixed and kneaded to obtain a composition 20 containing the powder sample and the resin. The composition of the composition 20 is a mixture of a powder sample and a resin in a volume ratio of 1:1 or more and 5:1 or less, preferably 2:1 or more and 4:1 or less. This is because more particles can be observed during TEM observation and the strength as a cured sample is ensured.

図2に、シートメッシュ10上へ組成物20を載せた際の斜視図を示す。
組成物20を、シートメッシュ10の表裏両面を貫通して設けられた穴部へ充填する。その際、組成物20がシートメッシュ10の表裏両面より、多く盛り上がらないよう、シートメッシュ10の下に薬包紙等を敷き、組成物20の余剰分を薬包紙等へ吸い取りながら充填を行うことが好ましい。組成物20がシートメッシュ10の表裏両面より多く盛り上がらないようにすることで、後述するIMによる薄片化の際、余分な加工時間が不要になるからである。
FIG. 2 shows a perspective view of the composition 20 placed on the sheet mesh 10.
The composition 20 is filled into the holes provided through both the front and back surfaces of the sheet mesh 10. At that time, it is preferable that a medicine packing paper or the like is laid under the sheet mesh 10 so that the composition 20 does not rise more than the front and back surfaces of the sheet mesh 10, and the excess amount of the composition 20 is sucked into the medicine packing paper or the like for filling. This is because by preventing the composition 20 from rising above both the front and back surfaces of the sheet mesh 10, extra processing time is not required when thinning by IM as described later.

組成物20の剰余分が除去されたシートメッシュ10において、穴部へ充填された前記混練用樹脂を所定の方法で硬化させて硬化試料を得る。当該硬化試料の斜視図を図3に示す。
図3において、組成物20はシートメッシュ10に設けられた穴部に充填されて硬化し、充填された組成物21が硬化した状態となっている。
In the sheet mesh 10 from which the surplus of the composition 20 is removed, the kneading resin filled in the holes is cured by a predetermined method to obtain a cured sample. A perspective view of the cured sample is shown in FIG.
In FIG. 3, the composition 20 is filled in the holes provided in the sheet mesh 10 and cured, and the filled composition 21 is in a cured state.

そして、当該硬化試料を適宜な切断線に沿って切断し、円弧状の硬化試料と短冊状の硬化試料とを得、得られた短冊状硬化試料へ後述するIMによる加工を施すことが好ましい。尤も、当該硬化試料を、この円盤状(円柱状)のまま、後述するIMによる加工を施すことが出来るが、作業性の観点からは切断することが好ましい。
そこで、以下、当該硬化試料を適宜な切断線に沿って切断して、円弧状硬化試料と短冊状硬化試料とを得る工程を、主な例としながら説明する。
Then, it is preferable that the cured sample is cut along an appropriate cutting line to obtain an arc-shaped cured sample and a strip-shaped cured sample, and the obtained strip-shaped cured sample is processed by IM described later. Of course, the cured sample can be processed by IM described later while keeping the disk shape (cylindrical shape), but it is preferable to cut it from the viewpoint of workability.
Therefore, hereinafter, a process of cutting the cured sample along an appropriate cutting line to obtain an arc-shaped cured sample and a strip-shaped cured sample will be described with a main example.

図4に、硬化試料を、2本の平行な切断線に沿って切断し、円弧状硬化試料12、13と、短冊状硬化試料11とした場合の斜視図を示す。
尚、当該硬化試料の切断は、鋭利なカッターナイフ等を用いて行うことが便宜である。
得られた短冊状硬化試料11は、略長方形である表、裏両面、長辺側の2側面および短辺側の2側面を有している。ここで、表、裏両面、長辺側の2側面および短辺側の2側面の各々2つの面は、それぞれ互いに略同等である。そして、長辺側の2側面は、硬化試料の切断の際に創出された切断面に由来する側面であり、短辺側の2側面は元のシートメッシュ10の外形を円柱形と見なしたとき、当該円柱形の側面部にあたる部分に由来する側面である。
このとき、穴部へ充填された組成物21の内、何箇所かはカッターナイフ等により切断される場合があるが、1箇所以上の穴部とそこに充填された組成物21が、切断されることなく短冊状硬化試料11中に残ることが肝要である。そこで、1箇所以上の穴部とそこに充填された組成物21が、切断されることなく短冊状硬化試料11中に残ることが出来る穴部の個数、サイズおよび位置を有するシートメッシュを選択し、且つ、1箇所以上の穴部とそこに充填された組成物21が、切断されることなく短冊状硬化試料11中に残ることが出来るように切断線を設ける。
FIG. 4 shows a perspective view when the cured sample is cut along two parallel cutting lines to form arc-shaped cured samples 12 and 13 and strip-shaped cured sample 11.
Incidentally, it is convenient to cut the cured sample by using a sharp cutter knife or the like.
The obtained strip-shaped cured sample 11 has a substantially rectangular front and back surfaces, two side surfaces on the long side and two side surfaces on the short side. Here, the front surface, the back surface, the two side surfaces on the long side and the two side surfaces on the short side are substantially equal to each other. Then, the two side surfaces on the long side are the side surfaces derived from the cut surface created at the time of cutting the cured sample, and the two side surfaces on the short side consider the outer shape of the original sheet mesh 10 to be a cylindrical shape. At this time, the side surface is derived from the portion corresponding to the side surface portion of the cylindrical shape.
At this time, some of the composition 21 filled in the holes may be cut by a cutter knife or the like, but one or more holes and the composition 21 filled therein may be cut. It is important that they remain in the strip-shaped cured sample 11 without being left. Therefore, a sheet mesh having one or more holes and the number of the holes, the size and the positions of which the composition 21 filled therein can remain in the strip-shaped cured sample 11 without being cut is selected. Moreover, a cutting line is provided so that one or more holes and the composition 21 filled therein can remain in the strip-shaped cured sample 11 without being cut.

5.IMによる加工
得られた短冊状硬化試料11を、IMに装填し、当該短冊状硬化試料11へ1回目のアルゴンイオン流41を照射している際の斜視図を図5に示す。
そして、図5において短冊状硬化試料11と遮蔽板31とを、A−A線の位置で切断したと仮定した場合に現れる断面の状態を図6に示す。
5. Processing by IM FIG. 5 shows a perspective view when the obtained strip-shaped cured sample 11 is loaded in the IM and the strip-shaped cured sample 11 is irradiated with the argon ion flow 41 for the first time.
Then, FIG. 6 shows a state of a cross section that appears when it is assumed that the strip-shaped cured sample 11 and the shielding plate 31 in FIG. 5 are cut at the position of the line AA.

まず、図5に示すように、まず、短冊状硬化試料11の長辺側側面の一方が、アルゴンイオン流に対向するように、短冊状硬化試料11をIMへ装填する。次に、IMに装備されている遮蔽板31を、当該イオン流に対向するように設置された短冊状硬化試料11の長辺側側面における長辺に沿って、当該短冊状硬化試料11の長辺側側面に設置する。 First, as shown in FIG. 5, first, the strip-shaped cured sample 11 is loaded into the IM so that one of the long side surfaces of the strip-shaped cured sample 11 faces the argon ion flow. Next, the shield plate 31 mounted on the IM is installed along the long side of the long side surface of the strip-shaped cured sample 11 installed so as to face the ion flow. Install on the side of the side.

このとき、短冊状硬化試料11と遮蔽板31とを、A−A線の位置で切断したと仮定した場合、図6の断面図に示す状態の断面が現れると考えられる。即ち、図6において符号11は短冊状硬化試料11の断面であって、符号10はシートメッシュ10の断面であり、符号21は組成物21の断面であり、符号31は遮蔽板31の断面である。そして、符号41は短冊状硬化試料11へ照射されるアルゴンイオン流41であり、短冊状硬化試料11へアルゴンイオン流41を照射している際における状態の断面となる。 At this time, if it is assumed that the strip-shaped cured sample 11 and the shielding plate 31 are cut at the position of the line AA, it is considered that the cross section in the state shown in the cross sectional view of FIG. 6 appears. That is, in FIG. 6, reference numeral 11 is the cross section of the strip-shaped cured sample 11, reference numeral 10 is the cross section of the sheet mesh 10, reference numeral 21 is the cross section of the composition 21, and reference numeral 31 is the cross section of the shielding plate 31. is there. Further, reference numeral 41 is an argon ion flow 41 that is irradiated onto the strip-shaped cured sample 11, and is a cross section of a state when the strip-shaped cured sample 11 is irradiated with the argon ion flow 41.

そして図5、6に示すように、IMのイオンガンを短冊状硬化試料11の長辺側側面に対して前後に傾斜させながら、短冊状硬化試料11の表裏両面と、当該表裏両面を貫通して設けられた(カッターナイフ等により切断されていないものを含む)穴部に充填された組成物21へ、所定条件により1回目のアルゴンイオン流41の照射を行う。 Then, as shown in FIGS. 5 and 6, while the ion gun of the IM is tilted back and forth with respect to the long side surface of the strip-shaped cured sample 11, both sides of the strip-shaped cured sample 11 and both sides thereof are penetrated. The composition 21 filled in the provided holes (including those not cut by a cutter knife or the like) is irradiated with the argon ion flow 41 for the first time under predetermined conditions.

すると、1回目のアルゴンイオン流41の照射と遮蔽板31の効果により、短冊状硬化試料11の中央から下方側の穴部に充填された組成物21が主に浸食され、アルゴンイオン流の照射後における短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である図7に示す、アルゴンイオン照射後の短冊状硬化試料における断面の状態となる。 Then, the first irradiation of the argon ion flow 41 and the effect of the shield plate 31 mainly erode the composition 21 filled in the hole on the lower side from the center of the strip-shaped cured sample 11, and the irradiation of the argon ion flow is performed. FIG. 7 is a cross-sectional view showing a state of a cross section that appears when the strip-shaped cured sample is cut later, which is the state of the cross-section of the strip-shaped cured sample after irradiation with argon ions.

ここで、一旦、IMのアルゴンイオン流の照射を止める。そして、短冊状硬化試料11をIMから取り出して天地を逆転し、再度IMに装填し、1回目のアルゴンイオン流41と向き合わなかった側の長辺側側面を、2回目のアルゴンイオン流と向き合わせることは、後述する組成物の薄片化の観点から好ましい構成である。 Here, the irradiation of the argon ion flow of IM is once stopped. Then, the strip-shaped cured sample 11 is taken out from the IM, turned upside down, loaded again into the IM, and the side surface on the long side that does not face the first time argon ion flow 41 faces the second time argon ion flow. The combination is a preferable constitution from the viewpoint of thinning the composition described later.

そこで、当該観点から、所定の条件による1回目のアルゴンイオン流41の照射の後、一旦、アルゴンイオン流の照射を止め、アルゴンイオン流の照射後における短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である図7に示す状態となった短冊状硬化試料11をIMから取り出す。 Therefore, from this point of view, assuming that after the first irradiation of the argon ion flow 41 under a predetermined condition, the irradiation of the argon ion flow is stopped once, and the strip-shaped cured sample after the irradiation of the argon ion flow is cut. The strip-shaped cured sample 11 in the state shown in FIG. 7, which is a cross-sectional view showing the state of the cross section appearing in FIG.

そして、短冊状硬化試料11の天地を逆転し、今度は、1回目のアルゴンイオン流41と向き合わなかった側の長辺側側面を、アルゴンイオン流と向き合わせて、短冊状硬化試料11を再びIMに装填する。
但し、後述する組成物の薄片化の観点から2回目においては、1回目とは異なり、IMに装備されている遮蔽板31を当該長辺側側面に設置することはしなかった。
Then, the strip-shaped cured sample 11 is turned upside down, this time, the long-side side surface on the side that did not face the first time argon ion flow 41 is made to face the argon ion flow, and the strip-shaped cured sample 11 is returned again. Load IM.
However, in view of thinning of the composition described later, unlike the first time, the shielding plate 31 mounted on the IM was not installed on the long side surface in the second time, unlike the first time.

そして、イオンガンを短冊状硬化試料11の長辺側側面に対して前後に傾斜させながら、天地を逆転した短冊状硬化試料へ2回目のアルゴンイオン流42を照射する。このときの短冊状硬化試料11における断面の状態を、2回目のアルゴンイオン流を照射されている短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である図8に示す。
すると、遮蔽板31を設けていなかった為、短冊状硬化試料11の中央から上方側の穴部に充填された組成物21が主に浸食された。
即ち、1回目のアルゴンイオン流41の照射を主に受けた穴部に充填された組成物21は、1回目とは反対方向からの2回目のアルゴンイオン流42の照射も主に受け、さらに浸食されて薄片化した。
Then, while the ion gun is tilted back and forth with respect to the long-side side surface of the strip-shaped cured sample 11, the strip-shaped cured sample, which is turned upside down, is irradiated with the second argon ion flow 42. FIG. 8 is a cross-sectional view showing the state of the cross section of the strip-shaped cured sample 11 at this time when it is assumed that the strip-shaped cured sample irradiated with the second argon ion flow is cut. Show.
Then, since the shielding plate 31 was not provided, the composition 21 filled in the hole on the upper side from the center of the strip-shaped cured sample 11 was mainly eroded.
That is, the composition 21 filled in the hole that was mainly irradiated with the first argon ion flow 41 was also mainly irradiated with the second irradiation of the argon ion flow 42 from the direction opposite to the first direction, and It was eroded and exfoliated.

尚、円盤状(円柱状)の硬化試料を用いている場合も、短冊状硬化試料11の場合と同様に、1回目のアルゴンイオンを照射し、穴部に充填された組成物21を浸食して薄片化する。その後、当該円盤状の硬化試料をIMから取り出し、当該円盤状の硬化試料の上下を逆転して再びIMに装填し、2回目のアルゴンイオンを照射して、穴部に充填され浸食されて薄片化された組成物を、さらに浸食して薄片化する。 Even when a disc-shaped (cylindrical) cured sample is used, as in the case of the strip-shaped cured sample 11, the first irradiation of argon ions is performed to erode the composition 21 filled in the hole. Thin into pieces. After that, the disk-shaped cured sample is taken out from the IM, the disk-shaped cured sample is turned upside down and loaded into the IM again, and the second time is irradiated with argon ions, the hole is filled and corroded to form a thin piece. The emulsified composition is further eroded to form flakes.

2回目のアルゴンイオン照射後の短冊状硬化試料11における断面の状態を、2回目のアルゴンイオン流の照射後における短冊状硬化試料を切断したと仮定したときに現れる断面の状態を示す断面図である図9にて示す。
1回目および2回目の異なった方向からのアルゴンイオン流により、図9に示すように、充填された組成物21の一部が薄片化され、薄片化された組成物22となる。アルゴンイオン流の照射条件によっては、薄片化された組成物22が穿孔される場合もある。
Sectional drawing which shows the state of the cross section in the strip-shaped hardened sample 11 after the 2nd argon ion irradiation, when assuming that the strip-shaped hardened sample after the 2nd irradiation of an argon ion stream was cut|disconnected. As shown in FIG.
As shown in FIG. 9, a part of the filled composition 21 is exfoliated into the exfoliated composition 22 by the first and second argon ion flows from different directions. The exfoliated composition 22 may be perforated depending on the irradiation conditions of the argon ion flow.

具体的には、2回の浸食を受けて薄片化された組成物22は、膜厚が0.01〜0.1μmにまで、薄片化され、TEM観察用試料として適した厚みとなる。さらに当該薄片化された組成物22は0.5×1mm程度の領域を有し、TEM観察用試料として十分な視野面積を提供できる。 Specifically, the composition 22 that has been exfoliated by being corroded twice is exfoliated to a film thickness of 0.01 to 0.1 μm, and has a thickness suitable as a sample for TEM observation. Furthermore, the thinned composition 22 has a region of about 0.5×1 mm, and can provide a sufficient visual field area as a sample for TEM observation.

一方、2回の浸食を受けて薄片化された組成物22は、アルゴンイオンの照射を受けて非常に脆化する。しかし、当該脆化した薄片化された組成物22は短冊状硬化試料11の穴部内に形成されているので、当該脆化した部分に殆ど機械的衝撃を与えることなく、短冊状硬化試料11を容易に取り扱うことが出来る。 On the other hand, the composition 22 that has been exfoliated by being eroded twice is extremely embrittled by being irradiated with argon ions. However, since the embrittled and exfoliated composition 22 is formed in the hole portion of the strip-shaped cured sample 11, the strip-shaped cured sample 11 is treated with almost no mechanical impact on the embrittled portion. It can be handled easily.

円盤状の硬化試料を用いている場合も、2回の浸食を受けて薄片化された組成物は、膜厚が0.01〜0.1μmにまで薄片化され、TEM観察用試料として適した厚みとなる。さらに当該薄片化された組成物22も0.5×1mm程度の領域を有し、TEM観察用試料として十分な視野面積を提供できる。
一方、2回の浸食を受けて薄片化された組成物は、アルゴンイオンの照射を受けて非常に脆化する。しかし、当該部分は円盤状の硬化試料の穴部内に形成されるので、当該部分に殆ど機械的衝撃を与えることなく容易に取り扱うことが出来る。
Even when a disk-shaped cured sample is used, the composition that has been exfoliated by being corroded twice is exfoliated to a film thickness of 0.01 to 0.1 μm and is suitable as a sample for TEM observation. It becomes the thickness. Furthermore, the thinned composition 22 also has a region of about 0.5×1 mm, and can provide a sufficient visual field area as a sample for TEM observation.
On the other hand, a composition that has been exfoliated by being eroded twice is extremely embrittled by being irradiated with argon ions. However, since the portion is formed in the hole of the disk-shaped cured sample, the portion can be easily handled with almost no mechanical impact.

6.TEMへの装填および分析
薄片化部分を有する短冊状硬化試料11をIMから取り出し、TEMの試料ホルダーに装填する。
薄片化された組成物22は、短冊状硬化試料11の穴部内に形成されているので、当該薄片化部分に殆ど機械的衝撃を与えることなく、このままの状態でTEMの試料ホルダーに装填される。
尚、アルゴンイオンに薄片化された短冊状硬化試料11におけるイオンガン側のシートメッシュ10部分から蒸発した金属元素が、薄片化された組成物22のイオンガン側の部分に付着していることも考えられる。そこで、シートメッシュ10の材質として、被測定対象である粉末試料が有するX線のスペクトルと重複しないスペクトルを有するものを選択しておくことで、この問題を回避することが出来る。
6. Loading into TEM and Analysis Strip-shaped cured sample 11 having a thinned portion is taken out from IM and loaded into a sample holder of TEM.
Since the thinned composition 22 is formed in the hole of the strip-shaped cured sample 11, the thinned composition 22 is loaded into the sample holder of the TEM as it is without giving a mechanical impact to the thinned portion. ..
It is also considered that the metal element evaporated from the sheet mesh 10 portion on the ion gun side in the strip-shaped cured sample 11 thinned to argon ions is attached to the portion on the ion gun side of the thinned composition 22. .. Therefore, this problem can be avoided by selecting, as the material of the sheet mesh 10, a material having a spectrum that does not overlap with the X-ray spectrum of the powder sample to be measured.

上述したように、2回の浸食を受けて薄片化された組成物22の膜厚はTEM観察用試料として適したものであり、且つ、十分な視野を提供できる領域を有している。従って、所望により十分な観察を精密に行うことが出来る。 As described above, the film thickness of the composition 22 thinned by being eroded twice is suitable as a sample for TEM observation, and has a region capable of providing a sufficient visual field. Therefore, if desired, sufficient observation can be performed precisely.

実施例を参照しながら本発明を具体的に説明する。但し、本発明は当該具体例に限定される訳ではない。
(実施例1)
1.被測定対象である粉体試料
被測定対象である粉体試料として遷移金属の酸化物粉末であって、粒径が0.5〜10μmのものを準備した。
2.混練用樹脂
混練用樹脂として、GATAN社製エポキシ樹脂(G2)を準備した。
3.シートメッシュ
シートメッシュとして応研商事(株)製(#09−1043、φ0.8、モリブデン製)を準備した。これは、被測定対象である粉体試料とEDSスペクトルが重複しないモリブデン(Mo)製であって、複数の穴部を有するシートメッシュである。
The present invention will be specifically described with reference to examples. However, the present invention is not limited to the specific example.
(Example 1)
1. Powder sample to be measured As a powder sample to be measured, an oxide powder of a transition metal having a particle size of 0.5 to 10 μm was prepared.
2. Kneading Resin An epoxy resin (G2) manufactured by GATAN was prepared as a kneading resin.
3. Sheet mesh Oken Shoji Co., Ltd. product (#09-1043, φ0.8, molybdenum) was prepared as a sheet mesh. This is a sheet mesh made of molybdenum (Mo) whose EDS spectra do not overlap with those of the powder sample to be measured, and which has a plurality of holes.

4.硬化試料の作製
粉体試料と混練用樹脂とを体積比3:1の割合で混合し混錬して、粉体試料と樹脂とを含む組成物を得た。当該組成物をシートメッシュに設けられた複数の穴部に塗布して充填した。このとき、薬包紙の上にシートメッシュを載置し、組成物がシートメッシュの裏側から突出するのを抑制した。一方、組成物がシートメッシュの表側から突出することも抑制しながら、シートメッシュに設けられた穴部に塗布して充填した。
シートメッシュへの組成物の充填が完了したら120℃で10分間、ホットプレートで加熱して組成物中の樹脂を硬化させて硬化試料を得た。
4. Preparation of Hardened Sample A powder sample and a kneading resin were mixed and mixed at a volume ratio of 3:1 to obtain a composition containing the powder sample and the resin. The composition was applied and filled in a plurality of holes provided in the sheet mesh. At this time, the sheet mesh was placed on the medicine packing paper to suppress the composition from protruding from the back side of the sheet mesh. On the other hand, the composition was coated and filled in the holes provided in the sheet mesh while suppressing the composition from protruding from the front side of the sheet mesh.
When the filling of the composition into the sheet mesh was completed, the resin in the composition was cured by heating with a hot plate at 120° C. for 10 minutes to obtain a cured sample.

組成物の剰余分が除去された複数の穴部を備えたシートメッシュの前記混練用樹脂を硬化させた後、当該硬化試料を、幅0.5〜0.8mmの2本の平行な切断線により切断して複数の穴部を備えた短冊状硬化試料を得た。当該切断は、鋭利なカッターナイフ等を用いて行った。このとき、穴部へ充填された組成物の内、何箇所かはカッターナイフにより切断された。しかし、複数箇所の穴部とそこへ充填された組成物は切断線上にせず、切断されることなく短冊状硬化試料に残っていた。 After curing the kneading resin of the sheet mesh having a plurality of holes in which the excess of the composition has been removed, the cured sample is subjected to two parallel cutting lines with a width of 0.5 to 0.8 mm. The sample was cut by a method to obtain a strip-shaped cured sample having a plurality of holes. The cutting was performed using a sharp cutter knife or the like. At this time, some parts of the composition filled in the holes were cut with a cutter knife. However, a plurality of holes and the composition filled therein were not on the cutting line and remained in the strip-shaped cured sample without being cut.

5.IMによる加工
得られた短冊状硬化試料における長辺側側面の一方がイオン流と向き合うように、当該短冊状硬化試料をイオンミリング加工装置(日本電子製、イオンスライサIB09060CIS)に設置した。装置に付属の遮蔽板を前記イオン流と向き合う長辺側側面の長辺に沿って、当該イオン流と向き合う長辺側側面に設置した。
そして、イオンガンを当該イオン流と向き合う長辺側側面に対して前後に傾斜させながら、短冊状硬化試料へ1回目のアルゴンイオンを照射した。
そして短冊状の硬化試料の表裏両面へ、片面毎に7kVの条件で2.5時間アルゴンイオン流を照射し、表裏両面を貫通して設けられた穴部に充填された組成物を侵食した。
5. Processing by IM The strip-shaped cured sample was placed in an ion milling device (made by JEOL Ltd., ion slicer IB09060CIS) so that one of the long side surfaces of the obtained strip-shaped cured sample faced the ion flow. A shield plate attached to the apparatus was installed on the long side surface facing the ion flow along the long side of the long side surface facing the ion flow.
Then, the strip-shaped cured sample was irradiated with argon ions for the first time while inclining the ion gun back and forth with respect to the long side surface facing the ion flow.
Then, both front and back surfaces of the strip-shaped cured sample were irradiated with an argon ion flow for 2.5 hours under the condition of 7 kV on each surface to erode the composition filled in the holes penetrating the front and back surfaces.

一旦、アルゴンイオン流の照射を終了し、短冊状硬化試料をIMから取り外した。そして、短冊状硬化試料の上下を逆転し、今度は、1回目のアルゴンイオンを照射において、アルゴンイオン流と向き合わなかった側の長辺側側面を、アルゴンイオン流と向き合わせて、短冊状硬化試料を再びIMに装填した。尚、このときは、装置に付属の遮蔽板を使用しなかった。 The irradiation of the argon ion flow was once terminated, and the strip-shaped cured sample was removed from the IM. Then, the strip-shaped cured sample was turned upside down, and this time, in the first irradiation of argon ions, the long-side side surface that did not face the argon ion flow was made to face the argon ion flow to cure the strip-shaped cured sample. The sample was loaded back into the IM. At this time, the shield plate attached to the device was not used.

そして、短冊状硬化試料の表裏両面へ、それぞれ6kV、5kV、4kV、3kV、2kVの各条件で、段階的に0.5時間ずつ2回目のアルゴンイオン流を照射し、当該硬化試料の表裏両面を貫通して設けられた穴部に充填された組成物を侵食した。その結果、当該穴部の1箇所以上において、2回のアルゴンイオンの照射を受けた組成物の膜厚は、TEMによる測定に適した厚さである0.01〜0.1μmに薄片化したが、脆化していた。 Then, both front and back surfaces of the strip-shaped cured sample were irradiated with a second argon ion flow for 0.5 hours stepwise under the conditions of 6 kV, 5 kV, 4 kV, 3 kV, and 2 kV, respectively. The composition filled in the hole provided through the hole was eroded. As a result, the film thickness of the composition that had been exposed to the argon ion irradiation twice at one or more locations in the hole was thinned to 0.01 to 0.1 μm, which is a thickness suitable for measurement by TEM. However, it was brittle.

6.TEMへの装填および分析
アルゴンイオン流による薄片化が完了した硬化試料をIMから外し、TEMの試料ホルダーに装填して、TEM(日本電子製、JEM−ARM200F)に設置した。
尤も、薄片化し、脆化していた組成物は、当該硬化試料の穴部内に存在していた為、当該硬化試料のTEM試料ホルダーへの装填は容易であった。
アルゴンイオンによる薄片化された組成物の薄片の膜厚は、TEM観察用試料として適したものであり、且つ、十分な視野を提供できる領域を有していたので、多くの粉末試料を対象として精密な観察を行うことが出来た。
6. Loading into TEM and Analysis The cured sample that had been thinned by the flow of argon ions was removed from the IM, loaded into the sample holder of the TEM, and placed in the TEM (JEM-ARM200F, manufactured by JEOL Ltd.).
However, since the composition that had been thinned and embrittled was present in the hole of the cured sample, it was easy to load the cured sample into the TEM sample holder.
The film thickness of the flakes of the composition thinned by argon ions was suitable as a sample for TEM observation, and had a region capable of providing a sufficient visual field. I was able to make precise observations.

10:シートメッシュ
11:短冊状硬化試料
12:円弧状硬化試料
13:円弧状硬化試料
20:組成物
21:充填された組成物
22:薄片化された組成物
31:遮蔽板
41:1回目のアルゴンイオン流
42:2回目のアルゴンイオン流
10: Sheet mesh 11: Strip-shaped cured sample 12: Arc-shaped cured sample 13: Arc-shaped cured sample 20: Composition 21: Filled composition 22: Exfoliated composition 31: Shielding plate 41: 1st time Argon ion flow 42: Second argon ion flow

Claims (7)

透過電子顕微鏡の試料ホルダーに装填可能なシートメッシュに設けられた穴部へ、粉体試料と樹脂とを含む組成物を充填し、前記樹脂を硬化させて硬化試料を得る工程と、
前記硬化試料を適宜な切断線に沿って切断し短冊状硬化試料を得る工程と、
前記短冊状硬化試料における長辺側側面の一方がアルゴンイオン流と向き合うように、前記短冊状硬化試料をイオンミリング加工装置へ装填する工程と、
前記イオンミリング加工装置に設けられた遮蔽板を、前記イオンミリング加工装置へ装填された短冊状硬化試料におけるイオン流と向き合う長辺側側面へ、前記長辺側側面の長辺に沿って設置する工程と、
前記短冊状硬化試料へアルゴンイオンを照射し、当該アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食し、当該穴部の1箇所以上において、前記充填された組成物を薄片化する工程とを、有することを特徴とする透過電子顕微鏡観察用試料の作製方法。
A hole provided in a sheet mesh that can be loaded into a sample holder of a transmission electron microscope, a step of filling a composition containing a powder sample and a resin, and curing the resin to obtain a cured sample,
Cutting the cured sample along an appropriate cutting line to obtain a strip-shaped cured sample,
A step of loading the strip-shaped cured sample into an ion milling apparatus so that one of the long side surfaces of the strip-shaped cured sample faces the argon ion flow;
The shield plate provided in the ion milling apparatus is installed along the long side of the long side surface on the long side surface facing the ion flow in the strip-shaped cured sample loaded in the ion milling apparatus. Process,
Irradiating the strip-shaped cured sample with argon ions, eroding the composition filled in the front and back surfaces and holes of the strip-shaped cured sample by the argon ion flow, and filling the strip-shaped cured sample in one or more places of the hole. And a step of thinning the obtained composition, and a method for producing a sample for transmission electron microscope observation, which comprises:
前記短冊状硬化試料へアルゴンイオンを照射し、前記充填された組成物を透過電子顕微鏡による測定に適した厚みへ薄片化する工程において、
所定の条件において、アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食した後、前記アルゴンイオン照射を止め、前記短冊状硬化試料をイオンミリング加工装置から外す工程と、
前記アルゴンイオン照射を受けた短冊状硬化試料においてアルゴンイオン流と向き合わなかった長辺側側面がアルゴンイオン流と向き合うように、前記アルゴンイオン照射を受けた短冊状硬化試料をイオンミリング加工装置へ装填する工程と、
前記遮蔽板を設けることなく、前記アルゴンイオン照射を受けた短冊状硬化試料へアルゴンイオンを照射し、当該アルゴンイオン流により前記短冊状硬化試料の表裏面および穴部に充填された組成物を侵食し、当該穴部の1箇所以上において、前記充填された組成物を薄片化する工程とを、有することを特徴とする請求項1に記載の透過電子顕微鏡観察用試料の作製方法。
Irradiating the strip-shaped cured sample with argon ions, in the step of thinning the filled composition into a thickness suitable for measurement by a transmission electron microscope,
In a predetermined condition, after eroding the composition filled in the front and back surfaces and holes of the strip-shaped cured sample with an argon ion flow, the argon ion irradiation is stopped, and the strip-shaped cured sample is removed from the ion milling apparatus. Process,
The strip-shaped cured sample that had been irradiated with argon ions was loaded into an ion milling device so that the long side surface that did not face the argon ion flow in the strip-shaped cured sample that had been irradiated with the argon ions faced the argon ion flow. The process of
The strip-shaped cured sample irradiated with the argon ion is irradiated with argon ions without providing the shielding plate, and the composition filled in the front and back surfaces and the hole of the strip-shaped cured sample is eroded by the argon ion flow. The method for producing a sample for observation with a transmission electron microscope according to claim 1, further comprising the step of thinning the filled composition at one or more locations of the hole.
前記樹脂が、粉体試料との混合時に液体もしくはゲル状であり、前記シートメッシュに設けられた穴部へ充填後は、常温硬化、加熱硬化、またはUV硬化する樹脂であることを特徴とする請求項1または2に記載の透過電子顕微鏡観察用試料の作製方法。 The resin is a liquid or gel when mixed with a powder sample, and is a resin that cures at room temperature, heat cures, or UV after being filled in the holes provided in the sheet mesh. The method for producing the sample for transmission electron microscope observation according to claim 1. 前記樹脂が、エポキシ樹脂であることを特徴とする請求項1から3のいずれかに記載の透過電子顕微鏡観察用試料の作製方法。 The method for producing a sample for observation with a transmission electron microscope according to claim 1, wherein the resin is an epoxy resin. 前記粉体試料を、樹脂に対して体積比で1:1以上混合することを特徴とする請求項1から4のいずれかに記載の透過電子顕微鏡観察用試料の作製方法。 The method for producing a sample for observation by a transmission electron microscope according to claim 1, wherein the powder sample is mixed with a resin in a volume ratio of 1:1 or more. 前記シートメッシュとして複数の穴部を備え、厚さが10μm以上50μm以下のものを用いることを特徴とする請求項1から5のいずれかに記載の透過電子顕微鏡観察用試料の作製方法。 The method for producing a sample for observation by a transmission electron microscope according to claim 1, wherein the sheet mesh has a plurality of holes and has a thickness of 10 μm or more and 50 μm or less. 短冊状シートメッシュに設けられた複数の穴部に、粉体試料と樹脂とを含む組成物の硬化物が充填されている短冊状硬化試料であって、
前記短冊状硬化試料は、透過電子顕微鏡の試料ホルダーに装填可能であり、
前記充填された組成物は、アルゴンイオン流による浸食によって薄片化されており、
前記短冊状硬化試料に設けられた複数の穴部の1箇所以上において、前記充填された組成物が薄片になっていることを特徴とする透過電子顕微鏡観察用試料。
A strip-shaped cured sample in which a plurality of holes provided in the strip-shaped sheet mesh are filled with a cured product of a composition containing a powder sample and a resin,
The strip-shaped cured sample can be loaded into a sample holder of a transmission electron microscope,
The filled composition has been flaked by erosion by a stream of argon ions,
A sample for observation with a transmission electron microscope, wherein the filled composition is in the form of flakes at one or more locations of a plurality of holes provided in the strip-shaped cured sample.
JP2018239648A 2018-12-21 2018-12-21 TRANSMISSION ELECTRON MICROSCOPY SAMPLE AND PREPARATION METHOD THEREOF Active JP7115293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239648A JP7115293B2 (en) 2018-12-21 2018-12-21 TRANSMISSION ELECTRON MICROSCOPY SAMPLE AND PREPARATION METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239648A JP7115293B2 (en) 2018-12-21 2018-12-21 TRANSMISSION ELECTRON MICROSCOPY SAMPLE AND PREPARATION METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2020101444A true JP2020101444A (en) 2020-07-02
JP7115293B2 JP7115293B2 (en) 2022-08-09

Family

ID=71140179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239648A Active JP7115293B2 (en) 2018-12-21 2018-12-21 TRANSMISSION ELECTRON MICROSCOPY SAMPLE AND PREPARATION METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP7115293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295458A (en) * 2021-12-31 2022-04-08 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material at atomic scale

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210883A (en) * 1996-02-01 1997-08-15 Jeol Ltd Sample forming apparatus and method for electron microscope
JP2007047053A (en) * 2005-08-11 2007-02-22 Sumitomo Metal Mining Co Ltd Method for preparing sample for transmission electron microscope observation
JP2008083033A (en) * 2006-08-31 2008-04-10 Jeol Ltd Sample preparation method
JP2009025133A (en) * 2007-07-19 2009-02-05 Nippon Steel Corp Sample preparing method and sample preparing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210883A (en) * 1996-02-01 1997-08-15 Jeol Ltd Sample forming apparatus and method for electron microscope
JP2007047053A (en) * 2005-08-11 2007-02-22 Sumitomo Metal Mining Co Ltd Method for preparing sample for transmission electron microscope observation
JP2008083033A (en) * 2006-08-31 2008-04-10 Jeol Ltd Sample preparation method
JP2009025133A (en) * 2007-07-19 2009-02-05 Nippon Steel Corp Sample preparing method and sample preparing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295458A (en) * 2021-12-31 2022-04-08 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material at atomic scale
CN114295458B (en) * 2021-12-31 2024-03-19 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material by atomic scale

Also Published As

Publication number Publication date
JP7115293B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP2007047053A (en) Method for preparing sample for transmission electron microscope observation
Rao et al. TEM specimen preparation techniques
TWI482867B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
TWI494453B (en) Ferromagnetic material sputtering target
CN101376962B (en) Ag base alloy sputtering target and method for manufacturing the same
JP5942873B2 (en) Method for producing thin sample and method for observing sample
JP7115293B2 (en) TRANSMISSION ELECTRON MICROSCOPY SAMPLE AND PREPARATION METHOD THEREOF
JP7215147B2 (en) Sample for transmission electron microscope observation
CN104903488A (en) Sputtering target containing Co or Fe
JP7424204B2 (en) Method for preparing specimens for transmission electron microscopy
CN106460160B (en) W-Ti sputtering targets
JP2017047499A (en) Wire tool
JP2019056682A (en) Analysis sample preparation method, auger electron spectroscopy measurement method, and analysis sample
JP3776053B2 (en) Thin sample preparation method, thin sample preparation device, sample preparation jig for electron microscope
CN113406120A (en) Preparation method of metal friction layer transmission electron microscope sample
JP6863139B2 (en) Method of preparing a cross-section sample and method of measuring a cross-section sample
JP2021156878A (en) Transmission electron microscopic observation sample, method for preparing the same, and transmission electron microscopic observation method
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
JP2008083033A (en) Sample preparation method
Ito et al. Hitachi's State-of-the-Art Ion Milling Systems
Miller et al. The art of specimen preparation
CN110595848B (en) Preparation method of micron-sized particle transmission electron microscope sample
JP6024485B2 (en) Sample stage for electron microscope observation and cross-sectional observation method of sample
JP2009025127A (en) Sample preparing method
JP6891751B2 (en) Flake sample preparation method and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7115293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150