JP2020099211A - Cell culture container - Google Patents

Cell culture container Download PDF

Info

Publication number
JP2020099211A
JP2020099211A JP2018238405A JP2018238405A JP2020099211A JP 2020099211 A JP2020099211 A JP 2020099211A JP 2018238405 A JP2018238405 A JP 2018238405A JP 2018238405 A JP2018238405 A JP 2018238405A JP 2020099211 A JP2020099211 A JP 2020099211A
Authority
JP
Japan
Prior art keywords
cell culture
chamber
electrode
electrode chamber
culture container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018238405A
Other languages
Japanese (ja)
Other versions
JP7107528B2 (en
Inventor
久美子 福江
Kumiko Fukue
久美子 福江
謙一郎 亀井
Kenichiro Kamei
謙一郎 亀井
平井 義和
Yoshikazu Hirai
義和 平井
田畑 修
Osamu Tabata
修 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Kyoto University
Original Assignee
Screen Holdings Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Kyoto University filed Critical Screen Holdings Co Ltd
Priority to JP2018238405A priority Critical patent/JP7107528B2/en
Publication of JP2020099211A publication Critical patent/JP2020099211A/en
Application granted granted Critical
Publication of JP7107528B2 publication Critical patent/JP7107528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a cell culture container which does not interfere with observation of cultured cells and accurately measures an electric resistance of the cells.SOLUTION: A cell culture container 1 comprises: a cell culture chamber 21; a cell culture film 20 partitioning the inside of the cell culture chamber 21; a channel connecting the outside and the cell culture chamber 21 in communication; a first electrode chamber 22 and a second electrode chamber 23 in direct communication with the cell culture chamber 21; a first action electrode 31 and a first reference electrode 32 arranged in the first electrode chamber 22; a second action electrode 41 and a second reference electrode 42 arranged in the second electrode chamber 23. The first electrode chamber 22 is arranged on an upper side of the cell culture film 20, and the second electrode chamber 23 is arranged on a lower side of the cell culture film 20. At least part of each of the first electrode chamber 22 and the second electrode chamber 23 does not overlap a cell culture region 200 which is a portion of the cell culture film 20 that lies within the cell culture chamber 21, in a vertical direction.SELECTED DRAWING: Figure 1

Description

本発明は、内部で細胞を培養するとともに、培養された細胞の電気抵抗を計測するための細胞培養容器に関する。 The present invention relates to a cell culture container for culturing cells inside and measuring the electric resistance of the cultured cells.

培養した細胞の性質や、培養状態を調べるために細胞の電気抵抗値を計測するための技術が知られている。例えば、経上皮電気抵抗(TEER)計測では、培養液中において細胞培養用の膜の一方側と他方側とに電極を配置して電気抵抗値を計測することにより、膜状に培養された細胞自体の電気抵抗値を計測する。細胞の電気抵抗値を計測する技術については、例えば、特許文献1に記載されている。 Techniques for measuring the electrical resistance of cells in order to investigate the properties of the cultured cells and the state of culture are known. For example, in transepithelial electrical resistance (TEER) measurement, cells cultured in a membrane form are measured by disposing electrodes on one side and the other side of a cell culture membrane in a culture medium and measuring the electrical resistance value. Measure the electric resistance of itself. A technique for measuring the electric resistance value of a cell is described in Patent Document 1, for example.

一方で、いわゆるマイクロ流路デバイスの開発が進められている。マイクロ流路デバイスでは、細胞培養空間を微細な流路を除いて閉空間にすることにより、外的要因をできるだけ排除して細胞培養を行うことができる。このようなマイクロ流路デバイスにおいて、細胞の電気抵抗値を計測する技術については、例えば、特許文献2に記載されている。 On the other hand, the development of so-called micro flow channel devices is in progress. In the micro-channel device, the cell culture space is closed by removing the minute flow passages, so that external factors can be eliminated as much as possible for cell culture. A technique for measuring the electric resistance value of cells in such a microchannel device is described in, for example, Patent Document 2.

国際公開第2012/147463号International Publication No. 2012/147463 特表2017−513483号公報Japanese Patent Publication No. 2017-513483

特許文献2に記載のマイクロ流路デバイスでは、細胞培養領域と電極が重なった位置に配置されるため、培養された細胞の全体を観察しにくい。一方で、細胞培養領域から離れた位置に電極を配置すると、電極間の電気抵抗が大きくなり、細胞自体の電気抵抗の測定精度が低下する虞がある。 In the microchannel device described in Patent Document 2, since the cell culture region and the electrode are arranged at a position where they overlap, it is difficult to observe the entire cultured cells. On the other hand, when the electrodes are arranged at positions apart from the cell culture region, the electric resistance between the electrodes increases, and the accuracy of measuring the electric resistance of the cells themselves may decrease.

本発明は、このような事情に鑑みなされたものであり、培養された細胞の観察の妨げとならず、かつ、精度良く細胞の電気抵抗を計測できる細胞培養容器を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a cell culture container that does not hinder the observation of cultured cells and that can accurately measure the electrical resistance of the cells. ..

上記課題を解決するため、本願の第1発明は、内部で細胞を培養するとともに、培養された細胞の電気抵抗を計測するための細胞培養容器であって、培養液を貯留可能な細胞培養室と、前記細胞培養室の底面と天面との間において、前記細胞培養室の内部を上部の空間と下部の空間とに仕切る細胞培養膜と、外部と前記細胞培養室とを直接または間接的に連通する流路と、前記細胞培養膜よりも上側において前記細胞培養室と直接連通する第1電極室と、前記細胞培養膜よりも下側において前記細胞培養室と直接連通する第2電極室と、前記第1電極室内に配置される、第1作用電極および第1参照電極と、前記第2電極室内に配置される、第2作用電極および第2参照電極と、を有し、前記第1電極室および前記第2電極室のそれぞれの少なくとも一部は、前記細胞培養膜のうち前記細胞培養室内の部分である細胞培養領域と上下方向に重ならない。 In order to solve the above problems, the first invention of the present application is a cell culture container for culturing cells inside and measuring the electrical resistance of the cultivated cells, which is a cell culture chamber capable of storing a culture solution. A cell culture membrane that divides the inside of the cell culture chamber into an upper space and a lower space between the bottom surface and the top surface of the cell culture chamber, and directly or indirectly between the outside and the cell culture chamber. A first electrode chamber that directly communicates with the cell culture chamber above the cell culture membrane, and a second electrode chamber that directly communicates with the cell culture chamber below the cell culture membrane. A first working electrode and a first reference electrode arranged in the first electrode chamber, and a second working electrode and a second reference electrode arranged in the second electrode chamber. At least a part of each of the one electrode chamber and the second electrode chamber does not vertically overlap with a cell culture region which is a part of the cell culture membrane inside the cell culture chamber.

本願の第2発明は、第1発明の細胞培養容器であって、前記第1作用電極−前記細胞培養領域間の空間の最小断面積と、前記第2作用電極−前記細胞培養領域間の空間の最小断面積とは、前記流路の最大流路面積よりも大きい。 2nd invention of this application is the cell culture container of 1st invention, Comprising: The minimum cross-sectional area of the space between said 1st working electrode and said cell culture area, and the space between said 2nd working electrode and said cell culture area. The minimum sectional area of is larger than the maximum channel area of the channel.

本願の第3発明は、第1発明または第2発明の細胞培養容器であって、前記細胞培養室を構成する筐体は、前記細胞培養領域の少なくとも一部と上下方向に重なる位置において、透明材料で形成された部分を有する。 3rd invention of this application is a cell culture container of 1st invention or 2nd invention, Comprising: The housing|casing which comprises the said cell culture chamber is transparent in the position which overlaps with at least one part of the said cell culture area|region in the up-down direction. It has a portion formed of a material.

本願の第4発明は、第1発明ないし第3発明のいずれかの細胞培養容器であって、前記第1作用電極の前記第1電極室内における表面積は、前記第1参照電極の前記第1電極室内における表面積よりも大きく、前記第2作用電極の前記第2電極室内における表面積は、前記第2参照電極の前記第2電極室内における表面積よりも大きい。 4th invention of this application is the cell culture container in any one of 1st invention thru|or 3rd invention, Comprising: The surface area in the said 1st electrode chamber of the said 1st working electrode is the said 1st electrode of the said 1st reference electrode. It is larger than the surface area in the chamber, and the surface area of the second working electrode in the second electrode chamber is larger than the surface area of the second reference electrode in the second electrode chamber.

本願の第5発明は、第1発明ないし第4発明のいずれかの細胞培養容器であって、前記第1電極室は、前記細胞培養室に対して、上下方向と直交する第1方向の一方側に配置され、前記第2電極室は、前記細胞培養室に対して、前記第1方向の他方側に配置される。 5th invention of this application is a cell culture container in any one of 1st invention-4th invention, Comprising: The said 1st electrode chamber is a 1st direction orthogonal to an up-down direction with respect to the said cell culture chamber. And the second electrode chamber is disposed on the other side in the first direction with respect to the cell culture chamber.

本願の第1発明〜第5発明によれば、電極が細胞培養領域と重なって観察の妨げとなることを抑制できる。また、電極間の電気抵抗が大きくなって、細胞の電気抵抗の計測精度が低下することを抑制できる。 According to the first to fifth inventions of the present application, it is possible to prevent the electrode from overlapping the cell culture region and obstructing the observation. In addition, it is possible to prevent the measurement accuracy of the electric resistance of the cell from decreasing due to the increase in the electric resistance between the electrodes.

特に、本願の第2発明によれば、各流路の流路面積を小さくすることにより、細胞培養室内における外部環境の影響を小さくできる。また、細胞培養室への培養液や試薬の流入出量の制御を行いやすい。一方、各電極と細胞培養領域との間の空間の最小断面積を大きくすることにより、各電極と細胞培養領域との間における培養液の電気抵抗が小さくなる。これにより、細胞の電気抵抗をより精度良く計測できる。 Particularly, according to the second invention of the present application, the influence of the external environment in the cell culture chamber can be reduced by reducing the flow passage area of each flow passage. Further, it is easy to control the inflow/outflow amount of the culture solution or the reagent into/from the cell culture chamber. On the other hand, by increasing the minimum cross-sectional area of the space between each electrode and the cell culture region, the electrical resistance of the culture medium between each electrode and the cell culture region is reduced. Thereby, the electrical resistance of the cell can be measured more accurately.

特に、本願の第3発明によれば、細胞培養領域に培養された細胞の様子を観察しやすい。 Particularly, according to the third invention of the present application, it is easy to observe the state of the cells cultured in the cell culture region.

特に、本願の第5発明によれば、電極間の培養液の電気抵抗がより小さくなる。これにより、細胞の電気抵抗をさらに精度良く計測できる。 Particularly, according to the fifth invention of the present application, the electric resistance of the culture solution between the electrodes becomes smaller. Thereby, the electrical resistance of the cell can be measured with higher accuracy.

第1実施形態に係る細胞培養容器の縦断面図である。It is a longitudinal cross-sectional view of the cell culture container according to the first embodiment. 第1実施形態に係る細胞培養容器の上面視における配置図である。It is a layout view of the cell culture container according to the first embodiment in a top view. 第1実施形態に係る細胞培養容器の分解斜視図である。It is an exploded perspective view of the cell culture container concerning a 1st embodiment. 第1実施形態に係る計測ユニットの電気的な接続を示した概略図である。It is the schematic which showed the electrical connection of the measurement unit which concerns on 1st Embodiment. 第2実施形態に係る細胞培養容器の縦断面図である。It is a longitudinal cross-sectional view of the cell culture container according to the second embodiment. 第2実施形態に係る細胞培養容器の上面視における配置図である。It is a layout view of the cell culture container according to the second embodiment in a top view. 第2実施形態に係る細胞培養容器の分解斜視図である。It is an exploded perspective view of the cell culture container concerning a 2nd embodiment. 一変形例に係る細胞培養容器の上面視における配置図である。It is an arrangement view in a top view of a cell culture container according to a modification. 他の変形例に係る細胞培養容器の上面視における配置図である。FIG. 8 is a layout view of a cell culture container according to another modification in a top view.

以下、本発明の実施形態について、図面を参照しつつ説明する。なお、以下の説明において細胞培養容器の底面に平行な方向を「水平方向」、水平方向に直交する方向を「上下方向」と称する。しかしながら、細胞培養容器の使用時の姿勢は、細胞培養容器の底面が水平方向とならなくてもよい。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the direction parallel to the bottom surface of the cell culture container is referred to as “horizontal direction”, and the direction orthogonal to the horizontal direction is referred to as “vertical direction”. However, the posture of the cell culture container during use may not be such that the bottom surface of the cell culture container is horizontal.

<1.第1実施形態>
<1−1.細胞培養容器の構成>
図1は、本発明の第1実施形態に係る細胞培養容器1の縦断面図である。図2は、細胞培養容器1の上面視における各部の配置を示した配置図である。図3は、細胞培養容器1の分解斜視図である。
<1. First Embodiment>
<1-1. Structure of cell culture vessel>
FIG. 1 is a vertical cross-sectional view of a cell culture container 1 according to the first embodiment of the present invention. FIG. 2 is a layout view showing the layout of each part in a top view of the cell culture container 1. FIG. 3 is an exploded perspective view of the cell culture container 1.

細胞培養容器1は、内部で細胞を培養するとともに、培養された細胞の電気抵抗を計測するための容器である。この細胞培養容器1は、内部の空間が微細な流路24,25,26,27を除いて閉空間となる、いわゆるマイクロ流路デバイスである。 The cell culture container 1 is a container for culturing cells inside and measuring the electric resistance of the cultured cells. The cell culture container 1 is a so-called micro flow channel device in which the internal space becomes a closed space except for the fine flow channels 24, 25, 26, 27.

図1および図2に示すように、細胞培養容器1は、本体部10の内部空間として、細胞培養室21、第1電極室22、第2電極室23、第1上側流路24、第2上側流路25、第1下側流路26、および第2下側流路27を有する。すなわち、本体部10は、細胞培養室21を構成する筐体である。また、細胞培養容器1は、第1作用電極31、第1参照電極32、第2作用電極41、および第2参照電極42を有する。 As shown in FIG. 1 and FIG. 2, the cell culture container 1 has a cell culture chamber 21, a first electrode chamber 22, a second electrode chamber 23, a first upper flow path 24, a second upper channel 24, and an inner space of the main body 10. It has an upper channel 25, a first lower channel 26, and a second lower channel 27. That is, the main body 10 is a housing that constitutes the cell culture chamber 21. Further, the cell culture container 1 has a first working electrode 31, a first reference electrode 32, a second working electrode 41, and a second reference electrode 42.

また、図1および図3に示すように、細胞培養容器1の本体部10は、上下方向に重なる樹脂製の第1部材11、第2部材12、第3部材13、第4部材14、第5部材15および第6部材16と、細胞培養膜20とにより構成される。本体部10は、下側から上方へ向かって順に第1部材11、第2部材12、第3部材13、細胞培養膜20、第4部材14、第5部材15、および第6部材16の順に重なって構成される。 In addition, as shown in FIGS. 1 and 3, the main body 10 of the cell culture container 1 includes a resin-made first member 11, a second member 12, a third member 13, a fourth member 14, and a fourth member which are vertically overlapped with each other. The fifth member 15 and the sixth member 16 and the cell culture membrane 20. The main body part 10 is a first member 11, a second member 12, a third member 13, a cell culture membrane 20, a fourth member 14, a fifth member 15, and a sixth member 16 in this order from the bottom to the top. Composed of overlapping.

細胞培養室21は、細胞培養容器1の中央に配置される。本実施形態では、第1部材1の上面と、第6部材16の下面と、第2部材12〜第5部材15の内面とで、細胞培養室21が形成されている。細胞培養室21には、培養液を貯留可能である。細胞培養膜20は、細胞培養室21の底面および天面のそれぞれから上下方向に間隔を空けて配置される。これにより、細胞培養膜20は、細胞培養室21の天面と底面との間において、細胞培養室21の内部を、上部の空間と下部の空間とに仕切る。 The cell culture chamber 21 is arranged in the center of the cell culture container 1. In the present embodiment, the cell culture chamber 21 is formed by the upper surface of the first member 1, the lower surface of the sixth member 16, and the inner surfaces of the second member 12 to the fifth member 15. A culture solution can be stored in the cell culture chamber 21. The cell culture membrane 20 is vertically spaced from each of the bottom surface and the top surface of the cell culture chamber 21. As a result, the cell culture membrane 20 partitions the inside of the cell culture chamber 21 into an upper space and a lower space between the top surface and the bottom surface of the cell culture chamber 21.

細胞培養膜20は、細胞接着性を有する膜である。本実施形態の細胞培養膜20には、例えば、微細な貫通孔が多数も受けられた、メンブレンと呼ばれる薄膜が用いられる。メンブレンの材料には、例えば、PC(ポリカーボネート)、PTFE(ポリテトラフルオロエチレン)、PET(ポリエチレンテレフタラート)等が用いられる。メンブレンの表面は、コラーゲン等をコーティングすることにより、細胞接着性を高めていてもよい。細胞培養膜20のうち、細胞培養室21内に露出した部分が、細胞培養領域200となる。本実施形態では、細胞培養膜20の細胞培養領域200以外の部分は第3部材13および第4部材14に覆われるため、露出しない。なお、細胞培養膜20に代えて、細胞接着性を有し、微細な貫通孔が多数設けられた板状の部材が用いられてもよい。 The cell culture film 20 is a film having cell adhesiveness. For the cell culture membrane 20 of the present embodiment, for example, a thin film called a membrane, which has many fine through holes, is used. As the material of the membrane, for example, PC (polycarbonate), PTFE (polytetrafluoroethylene), PET (polyethylene terephthalate), etc. are used. The surface of the membrane may be coated with collagen or the like to enhance cell adhesiveness. A portion of the cell culture membrane 20 exposed in the cell culture chamber 21 becomes a cell culture region 200. In the present embodiment, the portion other than the cell culture region 200 of the cell culture membrane 20 is covered with the third member 13 and the fourth member 14, and thus is not exposed. Instead of the cell culture membrane 20, a plate-shaped member having cell adhesiveness and provided with a large number of fine through holes may be used.

第1電極室22は、細胞培養膜20よりも上側において細胞培養室21と直接連通する。第1電極室22は、細胞培養室21に対して、第1方向の一方側に配置される。本実施形態では、第4部材14の上面と、第6部材16の下面と、第5部材15の内面とで、第1電極室22が形成されている。 The first electrode chamber 22 directly communicates with the cell culture chamber 21 above the cell culture membrane 20. The first electrode chamber 22 is arranged on one side in the first direction with respect to the cell culture chamber 21. In the present embodiment, the upper surface of the fourth member 14, the lower surface of the sixth member 16, and the inner surface of the fifth member 15 form the first electrode chamber 22.

第2電極室23は、細胞培養膜20よりも下側において細胞培養室21と直接連通する。第2電極室23は、細胞培養室21に対して、第1方向の他方側に配置される。本実施形態では、第1部材11の上面と、第3部材13の下面と、第2部材12の内面とで、第2電極室23が形成されている。また、第1電極室22および第2電極室23は、細胞培養領域200と上下方向に重ならない。 The second electrode chamber 23 directly communicates with the cell culture chamber 21 below the cell culture membrane 20. The second electrode chamber 23 is arranged on the other side in the first direction with respect to the cell culture chamber 21. In the present embodiment, the second electrode chamber 23 is formed by the upper surface of the first member 11, the lower surface of the third member 13, and the inner surface of the second member 12. Further, the first electrode chamber 22 and the second electrode chamber 23 do not vertically overlap with the cell culture region 200.

なお、「第1方向」とは、細胞培養容器1の底面に平行であって、上下方向と直交する方向である。図1および図2において、第1方向は紙面の左右方向であり、第1方向一方側は紙面の右側、第1方向他方側は紙面の左側である。また、「第2方向」とは、細胞培養容器1の底面に平行であって、第1方向と直交する方向である。図2において、第2方向は紙面の上下方向であり、第2方向一方側は紙面の上側、第2方向他方側は紙面の下側である。 The “first direction” is a direction parallel to the bottom surface of the cell culture container 1 and orthogonal to the vertical direction. 1 and 2, the first direction is the left-right direction of the paper surface, one side of the first direction is the right side of the paper surface, and the other side of the first direction is the left side of the paper surface. The “second direction” is a direction parallel to the bottom surface of the cell culture container 1 and orthogonal to the first direction. In FIG. 2, the second direction is the vertical direction of the paper surface, one side of the second direction is the upper side of the paper surface, and the other side of the second direction is the lower side of the paper surface.

第1上側流路24および第2上側流路25は、それぞれ、細胞培養膜20よりも上側において、細胞培養容器1の外部と細胞培養室21とを連通する流路である。第1上側流路24の一端は細胞培養室21と直接連通し、他端は細胞培養容器1の第2方向一方側の端面に開口する。第2上側流路25の一端は細胞培養室21と直接連通し、他端は細胞培養容器1の第2方向他方側の端面に開口する。本実施形態では、第4部材14の上面と、第6部材16の下面と、第5部材15の内面とで、第1上側流路24および第2上側流路25が形成されている。 The first upper channel 24 and the second upper channel 25 are channels that communicate the outside of the cell culture container 1 and the cell culture chamber 21 above the cell culture membrane 20, respectively. One end of the first upper flow path 24 directly communicates with the cell culture chamber 21, and the other end opens to the end surface of the cell culture container 1 on the one side in the second direction. One end of the second upper flow path 25 directly communicates with the cell culture chamber 21, and the other end opens to the end surface of the cell culture container 1 on the other side in the second direction. In this embodiment, the upper surface of the fourth member 14, the lower surface of the sixth member 16, and the inner surface of the fifth member 15 form a first upper flow path 24 and a second upper flow path 25.

第1下側流路26および第2下側流路27は、それぞれ、細胞培養膜20よりも下側において、細胞培養容器1の外部と細胞培養室21とを連通する流路である。第1下側流路26の一端は細胞培養室21と直接連通し、他端は細胞培養容器1の第2方向一方側の端面に開口する。第2下側流路27の一端は細胞培養室21と直接連通し、他端は細胞培養容器1の第2方向他方側の端面に開口する。本実施形態では、第1部材11の上面と、第3部材13の下面と、第2部材の内面とで、第1下側流路26および第2下側流路27が形成されている。なお、本実施形態では、第1上側流路24と第1下側流路26とが上下方向に重なり、第2上側流路25と第2下側流路27とが上下方向に重なる位置に配置される。 The first lower flow channel 26 and the second lower flow channel 27 are flow channels that connect the outside of the cell culture container 1 and the cell culture chamber 21 below the cell culture membrane 20, respectively. One end of the first lower channel 26 directly communicates with the cell culture chamber 21, and the other end opens to the end surface of the cell culture container 1 on the one side in the second direction. One end of the second lower flow path 27 is in direct communication with the cell culture chamber 21, and the other end is open to the end surface of the cell culture container 1 on the other side in the second direction. In the present embodiment, the first lower channel 26 and the second lower channel 27 are formed by the upper surface of the first member 11, the lower surface of the third member 13, and the inner surface of the second member. In the present embodiment, the first upper flow path 24 and the first lower flow path 26 are vertically overlapped with each other, and the second upper flow path 25 and the second lower flow path 27 are vertically overlapped with each other. Will be placed.

第1作用電極31および第1参照電極32は、第1電極室22内に配置される。具体的には、第1作用電極31および第1参照電極32は、第1電極室22の天面に固定される。第1作用電極31および第1参照電極32は、例えば、第1電極室22の天面を構成する第6部材16の下面に電極の材料である電極ペーストを塗布し、乾燥させることにより形成される。なお、第1作用電極31および第1参照電極32は、第1電極室22の天面に金属を蒸着させたものであってもよいし、板状の電極を第1電極室22の天面に接着したものであってもよい。 The first working electrode 31 and the first reference electrode 32 are arranged in the first electrode chamber 22. Specifically, the first working electrode 31 and the first reference electrode 32 are fixed to the top surface of the first electrode chamber 22. The first working electrode 31 and the first reference electrode 32 are formed, for example, by applying an electrode paste, which is a material of the electrode, to the lower surface of the sixth member 16 that constitutes the top surface of the first electrode chamber 22, and then drying it. It In addition, the first working electrode 31 and the first reference electrode 32 may be those in which a metal is vapor-deposited on the top surface of the first electrode chamber 22, or a plate-shaped electrode may be a top surface of the first electrode chamber 22. It may be adhered to.

第2作用電極41および第2参照電極42は、第2電極室23内に配置される。具体的には、第2作用電極41および第2参照電極42は、第2電極室23の底面に固定される。第2作用電極41および第2参照電極42は、例えば、第2電極室23の底面を構成する第1部材11の上面に電極の材料である電極ペーストを塗布し、乾燥させることにより形成される。なお、第2作用電極41および第2参照電極42は、第2電極室23の底面に金属を蒸着させたものであってもよいし、板状の電極を第2電極室23の底面に接着したものであってもよい。 The second working electrode 41 and the second reference electrode 42 are arranged in the second electrode chamber 23. Specifically, the second working electrode 41 and the second reference electrode 42 are fixed to the bottom surface of the second electrode chamber 23. The second working electrode 41 and the second reference electrode 42 are formed, for example, by applying an electrode paste, which is a material of the electrode, on the upper surface of the first member 11 that forms the bottom surface of the second electrode chamber 23, and then drying it. .. The second working electrode 41 and the second reference electrode 42 may be those in which a metal is vapor-deposited on the bottom surface of the second electrode chamber 23, or a plate-shaped electrode is bonded to the bottom surface of the second electrode chamber 23. It may be the one.

このように、電極を配置するための第1電極室22および第2電極室23の少なくとも一部を、細胞培養領域200と上下方向に重ならない位置に配置することにより、電極31,32,41,42が細胞培養領域200と重なって観察の妨げとなることを抑制できる。 Thus, by arranging at least a part of the first electrode chamber 22 and the second electrode chamber 23 for arranging the electrodes in a position not vertically overlapping the cell culture region 200, the electrodes 31, 32, 41 are formed. , 42 can be prevented from overlapping the cell culture region 200 and obstructing the observation.

また、細胞培養室21に隣接する位置に第1電極室22および第2電極室23を設けることにより、細胞培養領域200と各電極31,32,41,42との距離が大きくなることを抑制できる。したがって、作用電極31,41間および参照電極32,42間の電気抵抗が大きくなって、細胞の電気抵抗の計測精度が低下することを抑制できる。 Further, by providing the first electrode chamber 22 and the second electrode chamber 23 at positions adjacent to the cell culture chamber 21, it is possible to prevent the distance between the cell culture region 200 and each electrode 31, 32, 41, 42 from increasing. it can. Therefore, it is possible to prevent the electric resistance between the working electrodes 31 and 41 and the reference electrodes 32 and 42 from increasing and the measurement accuracy of the electric resistance of the cell from decreasing.

本実施形態では、第1作用電極31−細胞培養領域200間の空間の最小断面積は、各流路24〜27の最大流路面積よりも大きい。また、第2作用電極41−細胞培養領域200間の最小断面積は、各流路24〜27の最大流路面積よりも大きい。このように、各流路24〜27の流路面積を小さくすることにより、細胞培養室21内における外部環境の影響を小さくできる。また、細胞培養室21への培養液や試薬の流入出量の制御を行いやすい。一方、各電極31,32,41,42と細胞培養領域200との間の空間の最小断面積が大きい方が、各電極31,32,41,42と細胞培養領域200との間における培養液の電気抵抗が小さくなる。これにより、細胞培養領域200上に培養された細胞の電気抵抗をより精度良く計測できる。 In this embodiment, the minimum cross-sectional area of the space between the first working electrode 31 and the cell culture region 200 is larger than the maximum channel area of each channel 24-27. Further, the minimum cross-sectional area between the second working electrode 41 and the cell culture region 200 is larger than the maximum flow channel area of each of the flow channels 24 to 27. As described above, by reducing the flow passage area of each of the flow passages 24 to 27, the influence of the external environment in the cell culture chamber 21 can be reduced. Further, it is easy to control the inflow/outflow amount of the culture solution or the reagent into/from the cell culture chamber 21. On the other hand, the larger the minimum cross-sectional area of the space between each electrode 31, 32, 41, 42 and the cell culture region 200, the larger the culture medium between each electrode 31, 32, 41, 42 and the cell culture region 200. Has a smaller electric resistance. As a result, the electric resistance of the cells cultured on the cell culture region 200 can be measured more accurately.

また、本実施形態では、第1電極室22が細胞培養室21に対して第1方向一方側に配置され、第2電極室23が細胞培養室21に対して第1方向他方側に配置される。すなわち、第1電極室22と第2電極室23とが、細胞培養室21を挟んで対向する位置に配置される。これにより、第1作用電極31、細胞培養領域200、および第2作用電極41が略一直線上に配置される。また、第1参照電極32、細胞培養領域200、および第2参照電極42が略一直線上に配置される。したがって、第1作用電極31−第2作用電極41間の培養液の電気抵抗と、第1参照電極32−第2参照電極42間の培養液の電気抵抗がより小さくなる。これにより、細胞培養領域200上に培養された細胞の電気抵抗をさらに精度良く計測できる。 In addition, in the present embodiment, the first electrode chamber 22 is arranged on one side in the first direction with respect to the cell culture chamber 21, and the second electrode chamber 23 is arranged on the other side in the first direction with respect to the cell culture chamber 21. It That is, the first electrode chamber 22 and the second electrode chamber 23 are arranged at positions facing each other across the cell culture chamber 21. As a result, the first working electrode 31, the cell culture region 200, and the second working electrode 41 are arranged on a substantially straight line. Further, the first reference electrode 32, the cell culture region 200, and the second reference electrode 42 are arranged in a substantially straight line. Therefore, the electrical resistance of the culture solution between the first working electrode 31 and the second working electrode 41 and the electrical resistance of the culture solution between the first reference electrode 32 and the second reference electrode 42 become smaller. Thereby, the electric resistance of the cells cultured on the cell culture region 200 can be measured with higher accuracy.

図2に示すように、本実施形態では、第1作用電極31の第1電極室22内における表面積は、第1参照電極32の第1電極室22内における表面積よりも大きい。また、第2作用電極41の第2電極室23内における表面積は、第2参照電極42の第2電極室23内における表面積よりも大きい。 As shown in FIG. 2, in the present embodiment, the surface area of the first working electrode 31 inside the first electrode chamber 22 is larger than the surface area of the first reference electrode 32 inside the first electrode chamber 22. The surface area of the second working electrode 41 in the second electrode chamber 23 is larger than the surface area of the second reference electrode 42 in the second electrode chamber 23.

作用電極31,41の表面における電気容量を大きくするために、作用電極31,41の表面積をなるべく大きく設計することが好ましい。各電極31,32,41,42を電極室22,23内に配置することにより、電極31,32,41,42の設計自由度が高まる。このため、本実施形態のように、作用電極31,41の表面積を比較的大きく設計できる。また、各電極31,32,41,42を電極室22,23内に配置することにより、作用電極31,41の表面積を大きくした場合であっても、各電極31,32,41,42が細胞培養領域200と上下方向に重なりにくい。 In order to increase the electric capacitance on the surfaces of the working electrodes 31, 41, it is preferable to design the surface areas of the working electrodes 31, 41 as large as possible. By arranging the electrodes 31, 32, 41, 42 in the electrode chambers 22, 23, the degree of freedom in designing the electrodes 31, 32, 41, 42 is increased. Therefore, as in the present embodiment, the surface areas of the working electrodes 31, 41 can be designed to be relatively large. Moreover, even when the surface area of the working electrodes 31, 41 is increased by disposing the electrodes 31, 32, 41, 42 in the electrode chambers 22, 23, the electrodes 31, 32, 41, 42 are It does not easily overlap the cell culture region 200 in the vertical direction.

本実施形態では、本体部10を構成する各部材11〜16は、PDMS(ポリジメチルシロキサン)により形成される。PDMSは透明度が高く、自家蛍光性が低い。このため、本体部10の外側から細胞培養領域200上の細胞を観察しやすい。なお、本実施形態では、本体部10のうち、細胞培養領域200と上下方向に重なる位置は、全て透明材料であるPDMSで形成されている。しかしながら、本体部10が、細胞培養領域200と少なくとも一部と上下方向に重なる位置において、透明材料で形成された部分を有していればよい。例えば、細胞培養領域200の上側の一部の部分が透明材料で形成されていれば、細胞培養領域200を観察可能である。 In the present embodiment, each of the members 11 to 16 that form the main body 10 is made of PDMS (polydimethylsiloxane). PDMS has high transparency and low autofluorescence. Therefore, it is easy to observe the cells on the cell culture region 200 from the outside of the main body 10. In the present embodiment, all positions of the main body portion 10 that vertically overlap with the cell culture region 200 are formed of PDMS, which is a transparent material. However, it suffices that the main body portion 10 has a portion formed of a transparent material at a position that vertically overlaps at least a part of the cell culture region 200. For example, if the upper part of the cell culture region 200 is made of a transparent material, the cell culture region 200 can be observed.

<1−2.培養細胞の電気抵抗計測>
続いて、細胞培養容器1を用いた培養細胞の電気抵抗計測の方法について、図4を参照しつつ説明する。図4は、計測ユニット9の電気的な接続を示した概略図である。なお、図4では、1つの細胞培養容器1に対して電気抵抗計測を行う場合の計測ユニット9の電気的な接続を示している。なお、実際の電気抵抗計測においては、複数の細胞培養容器1に対して同時に計測を行う場合がある。その場合には、例えば、後述する計測装置90の電源装置91や電圧計92の接続先を、細胞培養容器1ごとに切替可能とする。
<1-2. Measurement of electrical resistance of cultured cells>
Next, a method for measuring the electric resistance of cultured cells using the cell culture container 1 will be described with reference to FIG. FIG. 4 is a schematic diagram showing the electrical connection of the measurement unit 9. Note that FIG. 4 shows the electrical connection of the measurement unit 9 when the electrical resistance measurement is performed on one cell culture container 1. In the actual electrical resistance measurement, the measurement may be performed on a plurality of cell culture vessels 1 at the same time. In that case, for example, the connection destinations of the power supply device 91 and the voltmeter 92 of the measuring device 90 described later can be switched for each cell culture container 1.

図4に示すように、計測ユニット9は、上記の細胞培養容器1および細胞培養容器1内の培養液と、細胞培養容器1と接続する計測装置90とにより構成される。 As shown in FIG. 4, the measurement unit 9 includes the cell culture container 1 and the culture solution in the cell culture container 1 described above, and a measurement device 90 connected to the cell culture container 1.

計測装置90は、電源装置91と、電圧計92とを有する。電源装置91の2つの出力端子は、第1作用電極31および第2作用電極41に接続される。また、電圧計92の2つの入力端子は、第1参照電極32および第2参照電極42に接続される。培養細胞の電気抵抗計測を行う場合、細胞培養容器1内には、培養液が充填される。 The measuring device 90 includes a power supply device 91 and a voltmeter 92. The two output terminals of the power supply device 91 are connected to the first working electrode 31 and the second working electrode 41. The two input terminals of the voltmeter 92 are connected to the first reference electrode 32 and the second reference electrode 42. When measuring the electric resistance of cultured cells, the cell culture container 1 is filled with a culture solution.

図4において、抵抗Rmは、細胞培養領域200と、細胞培養領域200上に培養された細胞(以下、「細胞部」と称する)とによる電気抵抗である。抵抗Rw1は、第1作用電極31と細胞部との間における培養液の電気抵抗である。抵抗Rw2は、第2作用電極41と細胞部との間における培養液の電気抵抗である。抵抗Rr1は、第1参照電極32と細胞部との間における培養液の電気抵抗である。抵抗Rr2は、第2参照電極42と細胞部との間における培養液の電気抵抗である。 In FIG. 4, the resistance Rm is an electrical resistance of the cell culture region 200 and cells cultured on the cell culture region 200 (hereinafter, referred to as “cell portion”). The resistance Rw1 is the electric resistance of the culture solution between the first working electrode 31 and the cell part. The resistance Rw2 is the electric resistance of the culture solution between the second working electrode 41 and the cell part. The resistance Rr1 is the electric resistance of the culture solution between the first reference electrode 32 and the cell part. The resistance Rr2 is the electric resistance of the culture solution between the second reference electrode 42 and the cell part.

各電極31,32,41,42と細胞部との間における各抵抗Rw1,Rr1,Rw2,Rr2と、細胞が培養されていない状態の細胞培養領域200の抵抗Rmとの抵抗値はそれぞれ、予めコントロールとして測定しておく。 The resistance values of the resistances Rw1, Rr1, Rw2, Rr2 between the electrodes 31, 32, 41, 42 and the cell portion and the resistance Rm of the cell culture region 200 in the state where the cells are not cultured are respectively set in advance. Measure as a control.

そして、電源装置91を駆動させて第1作用電極31と第2作用電極41との間に定電流を流す。同時に、電圧計92によって第1参照電極32と第2参照電極42との間の電圧値を計測する。作用電極31,41と、参照電極32,42とは、それぞれ十分近傍に配置されているため、参照電極32,42間を流れる電流と、作用電極31,41間を流れる電流とは同一電流値であると近似できる。このため、参照電極32,42間の電圧値から、参照電極32,42間の電気抵抗値を算出する。さらに、予め測定した各値に基づいて、細胞部の抵抗Rmを算出する。これにより、細胞培養領域200上に培養された細胞の電気的特性を得ることができる。 Then, the power supply device 91 is driven to flow a constant current between the first working electrode 31 and the second working electrode 41. At the same time, the voltmeter 92 measures the voltage value between the first reference electrode 32 and the second reference electrode 42. Since the working electrodes 31 and 41 and the reference electrodes 32 and 42 are arranged sufficiently close to each other, the current flowing between the reference electrodes 32 and 42 and the current flowing between the working electrodes 31 and 41 have the same current value. Can be approximated as Therefore, the electric resistance value between the reference electrodes 32 and 42 is calculated from the voltage value between the reference electrodes 32 and 42. Further, the resistance Rm of the cell part is calculated based on each value measured in advance. Thereby, the electrical characteristics of the cells cultured on the cell culture region 200 can be obtained.

なお、電源装置91を用いて第1作用電極31と第2作用電極41との間に電位をかけると、第1作用電極31および第2作用電極41の電極表面において、電気二重層が形成される。このとき、電源装置91による出力電位は回路全体にかかる電位である。このため、電源装置91による出力電位は、作用電極31,41間の正確な電圧値とはならない。そこで、第1作用電極31および第2作用電極41のそれぞれの近傍に第1参照電極32および第2参照電極42を配置し、参照電極32,42間の電位を計測する。その計測電位を利用して計算することにより、より正確に細胞部の抵抗Rmを計測することができる。 When a potential is applied between the first working electrode 31 and the second working electrode 41 using the power supply device 91, an electric double layer is formed on the electrode surfaces of the first working electrode 31 and the second working electrode 41. It At this time, the output potential of the power supply device 91 is the potential applied to the entire circuit. Therefore, the output potential of the power supply device 91 does not have an accurate voltage value between the working electrodes 31 and 41. Therefore, the first reference electrode 32 and the second reference electrode 42 are arranged near the first working electrode 31 and the second working electrode 41, respectively, and the potential between the reference electrodes 32 and 42 is measured. The resistance Rm of the cell part can be more accurately measured by performing calculation using the measured potential.

<2.第2実施形態>
続いて、本発明の第2実施形態に係る細胞培養容器1Aについて、図5および図6を参照しつつ説明する。図5は、細胞培養容器1Aの縦断面図である。図6は、細胞培養容器1Aの上面視における各部の配置を示した配置図である。図7は、細胞培養容器1Aの本体部10Aの分解斜視図である。
<2. Second Embodiment>
Next, a cell culture container 1A according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 is a vertical sectional view of the cell culture container 1A. FIG. 6 is a layout diagram showing the layout of each part in a top view of the cell culture container 1A. FIG. 7 is an exploded perspective view of the main body 10A of the cell culture container 1A.

図5および図6に示すように、細胞培養容器1Aは、第1実施形態に係る細胞培養容器1と同様に、本体部10Aの内部空間として、細胞培養室21A、第1電極室22A、第2電極室23A、第1上側流路24A、第2上側流路25A、第1下側流路26A、および第2下側流路27Aを有する。また、細胞培養容器1Aは、第1作用電極31A、第1参照電極32A、第2作用電極41A、および第2参照電極42Aを有する。 As shown in FIG. 5 and FIG. 6, the cell culture container 1A has a cell culture chamber 21A, a first electrode chamber 22A, a first electrode chamber 22A, and It has a two-electrode chamber 23A, a first upper channel 24A, a second upper channel 25A, a first lower channel 26A, and a second lower channel 27A. In addition, the cell culture container 1A has a first working electrode 31A, a first reference electrode 32A, a second working electrode 41A, and a second reference electrode 42A.

また、図5および図7に示すように、細胞培養容器1Aの本体部10Aは、上下方向に重なる樹脂製の第1部材11A、第2部材12A、第3部材13A、第4部材14A、第5部材15Aおよび第6部材16Aと、細胞培養膜20Aとにより構成される。本体部10Aは、下側から上方へ向かって順に第1部材11A、第2部材12A、第3部材13A、細胞培養膜20A、第4部材14A、第5部材15A、および第6部材16Aの順に重なって構成される。 Further, as shown in FIGS. 5 and 7, the main body 10A of the cell culture container 1A includes a resin-made first member 11A, a second member 12A, a third member 13A, a fourth member 14A, and a fourth member 14A which are vertically overlapped with each other. The fifth member 15A and the sixth member 16A, and the cell culture membrane 20A. The main body 10A includes a first member 11A, a second member 12A, a third member 13A, a cell culture membrane 20A, a fourth member 14A, a fifth member 15A, and a sixth member 16A in this order from the bottom to the top. Composed of overlapping.

細胞培養室21A、第1電極室22A、第2電極室23A、各流路24A,25A,26A,27Aおよび細胞培養領域200Aの配置は、第1実施形態に係る細胞培養容器1の細胞培養室21、第1電極室22、第2電極室23、各流路24,25,26,27および細胞培養領域200の配置と同様である。 The cell culture chamber 21A, the first electrode chamber 22A, the second electrode chamber 23A, the flow paths 24A, 25A, 26A, 27A and the cell culture region 200A are arranged in the cell culture chamber of the cell culture container 1 according to the first embodiment. The arrangement of 21, the first electrode chamber 22, the second electrode chamber 23, the channels 24, 25, 26, 27 and the cell culture region 200 is the same.

第1作用電極31A、第1参照電極32A、第2作用電極41Aおよび第2参照電極42Aは、それぞれ、上下に延びる円柱型の電極である。本体部10Aは、本体部10Aの上面から第1電極室22Aの天面まで延びる2つの第1貫通孔51Aと、本体部10Aの上面から第2電極室23Aの天面まで延びる2つの第2貫通孔52Aとを有する。 Each of the first working electrode 31A, the first reference electrode 32A, the second working electrode 41A, and the second reference electrode 42A is a columnar electrode extending vertically. The main body portion 10A includes two first through holes 51A extending from the upper surface of the main body portion 10A to the top surface of the first electrode chamber 22A, and two second through holes extending from the top surface of the main body portion 10A to the top surface of the second electrode chamber 23A. It has a through hole 52A.

第1作用電極31Aおよび第1参照電極32Aは、それぞれ、第1貫通孔51Aに挿入されている。第1作用電極31Aおよび第1参照電極32Aの上端部はそれぞれ、本体部10Aの上面よりも上側に配置される。また、第1作用電極31Aおよび第1参照電極32Aの下端部は、第1電極室22A内に配置される。 The first working electrode 31A and the first reference electrode 32A are respectively inserted in the first through hole 51A. The upper ends of the first working electrode 31A and the first reference electrode 32A are arranged above the upper surface of the main body 10A. Further, the lower ends of the first working electrode 31A and the first reference electrode 32A are arranged inside the first electrode chamber 22A.

第2作用電極41Aおよび第2参照電極42Aは、それぞれ、第2貫通孔52Aに挿入されている。第2作用電極41Aおよび第2参照電極42Aの上端部はそれぞれ、本体部10Aの上面よりも上側に配置される。また、第2作用電極41Aおよび第2参照電極42Aの下端部はそれぞれ、第2電極室23A内に配置される。 The second working electrode 41A and the second reference electrode 42A are respectively inserted in the second through holes 52A. The upper ends of the second working electrode 41A and the second reference electrode 42A are arranged above the upper surface of the main body 10A. Further, the lower ends of the second working electrode 41A and the second reference electrode 42A are respectively arranged in the second electrode chamber 23A.

このように、各電極31A,32A,41A,42Aはそれぞれ、本体部10Aを貫通するように配置されていてもよい。 In this way, each of the electrodes 31A, 32A, 41A, 42A may be arranged so as to penetrate the main body 10A.

<3.変形例>
以上、本発明の主たる実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
<3. Modification>
Although the main embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.

図8は、一変形例に係る細胞培養容器1Bの上面視における各部の配置を示した配置図である。図8に示すように、細胞培養容器1Bは、第1実施形態に係る細胞培養容器1と同様に、本体部10Bの内部空間として、細胞培養室21B、第1電極室22B、第2電極室23B、第1上側流路24B、第2上側流路25B、第1下側流路26B、および第2下側流路27Bを有する。また、細胞培養容器1Bは、第1作用電極31B、第1参照電極32B、第2作用電極41B、および第2参照電極42Bを有する。 FIG. 8 is a layout diagram showing the layout of each part in a top view of the cell culture container 1B according to a modification. As shown in FIG. 8, the cell culture container 1B has a cell culture chamber 21B, a first electrode chamber 22B, and a second electrode chamber as internal spaces of the main body 10B, as in the cell culture container 1 according to the first embodiment. 23B, the first upper channel 24B, the second upper channel 25B, the first lower channel 26B, and the second lower channel 27B. Further, the cell culture container 1B has a first working electrode 31B, a first reference electrode 32B, a second working electrode 41B, and a second reference electrode 42B.

細胞培養室21B、第1電極室22B、第2電極室23B、細胞培養領域200B、各電極31B,32B,41B,42Bの配置は、第1実施形態に係る細胞培養容器1の細胞培養室21、第1電極室22、第2電極室23、細胞培養領域200、各電極31,32,41,42の配置と同様である。 The cell culture chamber 21B, the first electrode chamber 22B, the second electrode chamber 23B, the cell culture region 200B, and the electrodes 31B, 32B, 41B, 42B are arranged in the cell culture chamber 21 of the cell culture container 1 according to the first embodiment. The arrangement of the first electrode chamber 22, the second electrode chamber 23, the cell culture region 200, and the electrodes 31, 32, 41, 42 is the same.

上記の第1実施形態および第2実施形態では、各流路が、細胞培養室の第1方向の略中央に配置された。すなわち、各流路が、細胞培養室の第1方向の略中央に直接連通していた。しかしながら、本発明はこれに限られない。 In the above-described first embodiment and second embodiment, each flow path is arranged substantially at the center of the cell culture chamber in the first direction. That is, each flow path was in direct communication with the approximate center of the cell culture chamber in the first direction. However, the present invention is not limited to this.

図8の例では、第1上側流路24Bは、第1方向の中央よりも一方側において細胞培養室21Bに連通接続される。第2上側流路25Bは、第1方向の中央よりも他方側において細胞培養室21Bに連通接続される。第1下側流路26Bは、第1方向の中央よりも他方側において細胞培養室21Bに連通接続される。また、第2下側流路27Bは、第1方向の中央よりも一方側において細胞培養室21Bに連通接続される。 In the example of FIG. 8, the first upper flow path 24B is connected to the cell culture chamber 21B at one side of the center in the first direction. The second upper flow path 25B is connected to the cell culture chamber 21B on the other side of the center in the first direction. The first lower channel 26B is connected to the cell culture chamber 21B on the other side of the center in the first direction. The second lower flow path 27B is connected to the cell culture chamber 21B at one side of the center in the first direction.

これにより、細胞培養領域200Bの上側と下側では、上面視において培養液の流入位置および流出位置が異なる。図8の例のように、各流路24B,25B,26B,27Bの位置は、適宜変更し得る。 As a result, the inflow position and the outflow position of the culture solution are different in the top view between the upper side and the lower side of the cell culture region 200B. As in the example of FIG. 8, the positions of the flow paths 24B, 25B, 26B, 27B can be changed appropriately.

図9は、一変形例に係る細胞培養容器1Cの上面視における各部の配置を示した配置図である。図9に示すように、細胞培養容器1Cは、第1実施形態に係る細胞培養容器1と同様に、本体部10Cの内部空間として、細胞培養室21C、第1電極室22C、第2電極室23C、第1上側流路24C、第2上側流路25C、第1下側流路26C、および第2下側流路27Cを有する。また、細胞培養容器1Cは、第1作用電極31C、第1参照電極32C、第2作用電極41C、および第2参照電極42Cを有する。 FIG. 9 is a layout diagram showing a layout of each part in a top view of a cell culture container 1C according to a modification. As shown in FIG. 9, the cell culture container 1C has a cell culture chamber 21C, a first electrode chamber 22C, and a second electrode chamber as the internal space of the main body 10C, as in the cell culture container 1 according to the first embodiment. 23C, the first upper channel 24C, the second upper channel 25C, the first lower channel 26C, and the second lower channel 27C. Further, the cell culture container 1C has a first working electrode 31C, a first reference electrode 32C, a second working electrode 41C, and a second reference electrode 42C.

細胞培養室21C、第1電極室22C、第2電極室23C、細胞培養領域200C、各電極31C,32C,41C,42Cの配置は、第1実施形態に係る細胞培養容器1の細胞培養室21、第1電極室22、第2電極室23、細胞培養領域200、各電極31,32,41,42の配置と同様である。 The cell culture chamber 21C, the first electrode chamber 22C, the second electrode chamber 23C, the cell culture region 200C, and the electrodes 31C, 32C, 41C, 42C are arranged in the cell culture chamber 21 of the cell culture container 1 according to the first embodiment. The arrangement of the first electrode chamber 22, the second electrode chamber 23, the cell culture region 200, and the electrodes 31, 32, 41, 42 is the same.

上記の実施形態および変形例では、各流路が、細胞培養室に直接連通していた。しかしながら、本発明はこれに限られない。 In the above-described embodiments and modified examples, each flow path directly communicates with the cell culture chamber. However, the present invention is not limited to this.

図9の例では、第1上側流路24Cは、細胞培養室21Cの第1方向一方側において、第1電極室22Cに連通接続される。これにより、第1上側流路24Cは、細胞培養室21Cに第1電極室22Cを介して間接的に連通する。第2上側流路25Cは、第1方向の中央よりも他方側において細胞培養室21Cに直接連通する。第1下側流路26Cは、細胞培養室21Cの第1方向他方側において、第2電極室23Cに連通接続される。これにより、第1下側流路26Cは、細胞培養室21Cに第2電極室23Cを介して間接的に連通する。また、第2下側流路27Cは、第1方向の中央よりも一方側において細胞培養室21Cに直接連通する。 In the example of FIG. 9, the first upper channel 24C is connected to the first electrode chamber 22C at one side of the cell culture chamber 21C in the first direction. As a result, the first upper flow path 24C indirectly communicates with the cell culture chamber 21C via the first electrode chamber 22C. The second upper flow path 25C directly communicates with the cell culture chamber 21C on the other side of the center in the first direction. The first lower flow path 26C is connected to the second electrode chamber 23C on the other side of the cell culture chamber 21C in the first direction. As a result, the first lower flow path 26C indirectly communicates with the cell culture chamber 21C via the second electrode chamber 23C. In addition, the second lower flow path 27C directly communicates with the cell culture chamber 21C on one side of the center in the first direction.

これにより、細胞培養領域200Cの上側と下側では、上面視において培養液の流入位置および流出位置が異なる。図9の例のように、各流路24C,25C,26C,27Cは、必ずしも細胞培養室と直接連通せず、間接的に連通してもよい。 As a result, the inflow position and the outflow position of the culture solution are different in the top view between the upper side and the lower side of the cell culture region 200C. As in the example of FIG. 9, the respective channels 24C, 25C, 26C, 27C do not necessarily directly communicate with the cell culture chamber, but may communicate indirectly.

また、上記の実施形態では、細胞培養容器の形状が直方体であったが、本発明はこれに限られない。細胞培養容器の形状は、円柱形状、多角柱形状、半球形状、その他の形状に適宜設計しうる。 Further, in the above embodiment, the shape of the cell culture container is a rectangular parallelepiped, but the present invention is not limited to this. The shape of the cell culture container can be appropriately designed into a cylindrical shape, a polygonal prism shape, a hemispherical shape, and other shapes.

また、上記の実施形態では、細胞培養領域の形状が上面視で略四角形であったが、本発明はこれに限られない。細胞培養領域の形状は、上面視で円形、楕円形、多角形、その他生体構造を模した複雑な形状をしていてもよい。また、上記の実施形態では、細胞培養領域が水平に配置されていたが、本発明はこれに限られない。細胞培養領域は、水平方向に対して全体として勾配を有していてもよいし、部分的に勾配が変化する複雑な形状をしていてもよい。 Further, in the above-described embodiment, the shape of the cell culture region is a substantially quadrangle in a top view, but the present invention is not limited to this. The shape of the cell culture region may be a circular shape, an elliptical shape, a polygonal shape in a top view, or any other complicated shape imitating a biological structure. Further, in the above-mentioned embodiment, the cell culture region is arranged horizontally, but the present invention is not limited to this. The cell culture region may have a gradient as a whole with respect to the horizontal direction, or may have a complicated shape in which the gradient changes partially.

また、細胞培養容器の細部の構成については、本願の各図と相違していてもよい。また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。 Moreover, the detailed configuration of the cell culture container may be different from the drawings of the present application. Further, the respective elements appearing in the above-described embodiments and modified examples may be appropriately combined as long as no contradiction occurs.

1,1A,1B,1C 細胞培養容器
10,10A,10B,10C 体部
20,20A 細胞培養膜
21,21A,21B,21C 細胞培養室
22,22A,22B,22C 第1電極室
23,23A,23B,23C 第2電極室
24,24A,24B,24C 第1上側流路
25,25A,25B,25C 第2上側流路
26,26A,26B,26C 第1下側流路
27,27A,27B,27C 第2下側流路
31,31A,31B,31C 第1作用電極
32,32A,32B,32C 第1参照電極
41,41A,41B,41C 第2作用電極
42,42A,42B,42C 第2参照電極
200,200A,200B,200C 細胞培養領域
1, 1A, 1B, 1C Cell culture container 10, 10A, 10B, 10C Body part 20, 20A Cell culture membrane 21, 21A, 21B, 21C Cell culture chamber 22, 22A, 22B, 22C First electrode chamber 23, 23A, 23B, 23C 2nd electrode chamber 24, 24A, 24B, 24C 1st upper side flow path 25, 25A, 25B, 25C 2nd upper side flow path 26, 26A, 26B, 26C 1st lower side flow path 27, 27A, 27B, 27C 2nd lower side flow path 31, 31A, 31B, 31C 1st working electrode 32, 32A, 32B, 32C 1st reference electrode 41, 41A, 41B, 41C 2nd working electrode 42, 42A, 42B, 42C 2nd reference Electrode 200, 200A, 200B, 200C Cell culture area

Claims (5)

内部で細胞を培養するとともに、培養された細胞の電気抵抗を計測するための細胞培養容器であって、
培養液を貯留可能な細胞培養室と、
前記細胞培養室の底面と天面との間において、前記細胞培養室の内部を上部の空間と下部の空間とに仕切る細胞培養膜と、
外部と前記細胞培養室とを直接または間接的に連通する流路と、
前記細胞培養膜よりも上側において前記細胞培養室と直接連通する第1電極室と、
前記細胞培養膜よりも下側において前記細胞培養室と直接連通する第2電極室と、
前記第1電極室内に配置される、第1作用電極および第1参照電極と、
前記第2電極室内に配置される、第2作用電極および第2参照電極と、
を有し、
前記第1電極室および前記第2電極室のそれぞれの少なくとも一部は、前記細胞培養膜のうち前記細胞培養室内の部分である細胞培養領域と上下方向に重ならない、細胞培養容器。
A cell culture vessel for culturing cells inside and measuring the electrical resistance of the cultivated cells,
A cell culture room that can store culture fluid,
Between the bottom surface and the top surface of the cell culture chamber, a cell culture membrane that partitions the interior of the cell culture chamber into an upper space and a lower space,
A flow path that directly or indirectly connects the outside with the cell culture chamber,
A first electrode chamber that directly communicates with the cell culture chamber above the cell culture membrane,
A second electrode chamber that is in direct communication with the cell culture chamber below the cell culture membrane;
A first working electrode and a first reference electrode arranged in the first electrode chamber;
A second working electrode and a second reference electrode disposed in the second electrode chamber;
Have
A cell culture container in which at least a portion of each of the first electrode chamber and the second electrode chamber does not vertically overlap with a cell culture region that is a portion of the cell culture membrane inside the cell culture chamber.
請求項1に記載の細胞培養容器であって、
前記第1作用電極−前記細胞培養領域間の空間の最小断面積と、前記第2作用電極−前記細胞培養領域間の空間の最小断面積とは、前記流路の最大流路面積よりも大きい、細胞培養容器。
The cell culture container according to claim 1, wherein
The minimum cross-sectional area of the space between the first working electrode and the cell culture region and the minimum cross-sectional area of the space between the second working electrode and the cell culture region are larger than the maximum flow passage area of the flow passage. , Cell culture vessels.
請求項1または請求項2に記載の細胞培養容器であって、
前記細胞培養室を構成する筐体は、前記細胞培養領域の少なくとも一部と上下方向に重なる位置において、透明材料で形成された部分を有する、細胞培養容器。
The cell culture container according to claim 1 or 2, wherein
The cell culture container, wherein a casing forming the cell culture chamber has a portion formed of a transparent material at a position that vertically overlaps at least a part of the cell culture region.
請求項1ないし請求項3のいずれかに記載の細胞培養容器であって、
前記第1作用電極の前記第1電極室内における表面積は、前記第1参照電極の前記第1電極室内における表面積よりも大きく、
前記第2作用電極の前記第2電極室内における表面積は、前記第2参照電極の前記第2電極室内における表面積よりも大きい、細胞培養容器。
The cell culture container according to any one of claims 1 to 3,
A surface area of the first working electrode in the first electrode chamber is larger than a surface area of the first reference electrode in the first electrode chamber,
The cell culture vessel, wherein the surface area of the second working electrode in the second electrode chamber is larger than the surface area of the second reference electrode in the second electrode chamber.
請求項1ないし請求項4のいずれかに記載の細胞培養容器であって、
前記第1電極室は、前記細胞培養室に対して、上下方向と直交する第1方向の一方側に配置され、
前記第2電極室は、前記細胞培養室に対して、前記第1方向の他方側に配置される、細胞培養容器。
The cell culture container according to any one of claims 1 to 4,
The first electrode chamber, with respect to the cell culture chamber, is disposed on one side of the first direction orthogonal to the vertical direction,
The second electrode chamber is a cell culture container arranged on the other side in the first direction with respect to the cell culture chamber.
JP2018238405A 2018-12-20 2018-12-20 cell culture vessel Active JP7107528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238405A JP7107528B2 (en) 2018-12-20 2018-12-20 cell culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238405A JP7107528B2 (en) 2018-12-20 2018-12-20 cell culture vessel

Publications (2)

Publication Number Publication Date
JP2020099211A true JP2020099211A (en) 2020-07-02
JP7107528B2 JP7107528B2 (en) 2022-07-27

Family

ID=71138891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238405A Active JP7107528B2 (en) 2018-12-20 2018-12-20 cell culture vessel

Country Status (1)

Country Link
JP (1) JP7107528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137492A (en) * 2019-03-01 2020-09-03 株式会社Screenホールディングス Inspection device
CN113652355A (en) * 2021-07-26 2021-11-16 法国介观生物技术有限公司 Microfluidic device for electrical impedance monitoring and method for detecting cell electrical impedance
WO2023162366A1 (en) * 2022-02-25 2023-08-31 株式会社Screenホールディングス Flow channel device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB243614A (en) * 1925-05-16 1925-12-03 Caleb Marshall Taylor Improvements in floor coverings and processes of making the same
JP2003156476A (en) * 2001-11-26 2003-05-30 Matsushita Electric Ind Co Ltd Gene diagnostic device and gene diagnostic method
WO2007010456A2 (en) * 2005-07-15 2007-01-25 Nxp B.V. Signal processor having a sampling arrangement and a folding compensator
JP2007215473A (en) * 2006-02-16 2007-08-30 Foundation For The Promotion Of Industrial Science Cultured cell electric signal measurement device and method for measuring electric signal with the device
JP2007298351A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Cell electrophysiological measurement device and manufacturing method therefor
WO2007138902A1 (en) * 2006-05-25 2007-12-06 Panasonic Corporation Electrophysiology sensor chip and electrophysiology sensor employing the same and method for fabricating electrophysiology sensor chip
JP2009291135A (en) * 2008-06-06 2009-12-17 Panasonic Corp Cellular electrophysiological sensor
WO2011121968A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Sensor device
US20120138458A1 (en) * 2009-07-22 2012-06-07 Research & Business Foundation Sungkyunkwan University Cell-based transparent sensor capable of real-time optical observation of cell behavior, method for manufacturing the same and multi-detection sensor chip using the same
JP2013146261A (en) * 2011-12-20 2013-08-01 Japan Science & Technology Agency Planar patch clamp device, electrode part for the device and cell ion channel current measurement method
JP2015181348A (en) * 2014-03-20 2015-10-22 株式会社Screenホールディングス Pharmacometrics method and image processing device
JP2016208883A (en) * 2015-04-30 2016-12-15 株式会社東芝 Cell for measurement, detector, and analyzer
JP2017079633A (en) * 2015-10-27 2017-05-18 高砂電気工業株式会社 Automatic perfusion culture apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB243614A (en) * 1925-05-16 1925-12-03 Caleb Marshall Taylor Improvements in floor coverings and processes of making the same
JP2003156476A (en) * 2001-11-26 2003-05-30 Matsushita Electric Ind Co Ltd Gene diagnostic device and gene diagnostic method
WO2007010456A2 (en) * 2005-07-15 2007-01-25 Nxp B.V. Signal processor having a sampling arrangement and a folding compensator
JP2007215473A (en) * 2006-02-16 2007-08-30 Foundation For The Promotion Of Industrial Science Cultured cell electric signal measurement device and method for measuring electric signal with the device
JP2007298351A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Cell electrophysiological measurement device and manufacturing method therefor
WO2007138902A1 (en) * 2006-05-25 2007-12-06 Panasonic Corporation Electrophysiology sensor chip and electrophysiology sensor employing the same and method for fabricating electrophysiology sensor chip
JP2009291135A (en) * 2008-06-06 2009-12-17 Panasonic Corp Cellular electrophysiological sensor
US20120138458A1 (en) * 2009-07-22 2012-06-07 Research & Business Foundation Sungkyunkwan University Cell-based transparent sensor capable of real-time optical observation of cell behavior, method for manufacturing the same and multi-detection sensor chip using the same
WO2011121968A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Sensor device
JP2013146261A (en) * 2011-12-20 2013-08-01 Japan Science & Technology Agency Planar patch clamp device, electrode part for the device and cell ion channel current measurement method
JP2015181348A (en) * 2014-03-20 2015-10-22 株式会社Screenホールディングス Pharmacometrics method and image processing device
JP2016208883A (en) * 2015-04-30 2016-12-15 株式会社東芝 Cell for measurement, detector, and analyzer
JP2017079633A (en) * 2015-10-27 2017-05-18 高砂電気工業株式会社 Automatic perfusion culture apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137492A (en) * 2019-03-01 2020-09-03 株式会社Screenホールディングス Inspection device
JP7316063B2 (en) 2019-03-01 2023-07-27 株式会社Screenホールディングス inspection device
CN113652355A (en) * 2021-07-26 2021-11-16 法国介观生物技术有限公司 Microfluidic device for electrical impedance monitoring and method for detecting cell electrical impedance
WO2023162366A1 (en) * 2022-02-25 2023-08-31 株式会社Screenホールディングス Flow channel device

Also Published As

Publication number Publication date
JP7107528B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP7107528B2 (en) cell culture vessel
JP6905908B2 (en) Sensors that detect the state of fluid inside the microfluidic plate, systems that control the preparation of samples containing fluid, and methods of detecting the state of fluid inside the microfluidic plate.
JP6111161B2 (en) Fluid handling apparatus and fluid handling method
US9927421B2 (en) Sample chamber
Soenksen et al. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing
JP6506907B2 (en) Liquid handling device
WO2020179425A1 (en) Test device
Juste-Lanas et al. Confined cell migration and asymmetric hydraulic environments to evaluate the metastatic potential of cancer cells
Watanabe et al. Review of microfluidic devices for on‐chip chemical sensing
KR20160032438A (en) Bio Chip and Device for Measuring Bio Chip
WO2021065287A1 (en) Cell culture chip, cell culture device and cell culture method
JP5723198B2 (en) Fluid handling device and fluid handling system
Peng et al. A novel multi-channel silicon-based piezoelectric micropump with active piezoelectric valve array
JP2021153445A (en) Liquid handling device and liquid handling method
Zhang et al. A shape memory alloy microvalve switching off by surface acoustic wave
JP2008000079A (en) Physiological sensor for cellular electricity
JP4670713B2 (en) Cell electrophysiological sensor and cell electrophysiological measurement method using the same
WO2023119963A1 (en) Flow channel device
JP7097800B2 (en) Electrode holding member
JP2014173969A (en) Multi-well plate
JP7302148B2 (en) Fluidic device kit and fluidic device
JP2023012914A (en) Culture device
JP2022188396A (en) Culture device and manufacturing method thereof
JP6310327B2 (en) Fluid handling equipment
JP4682884B2 (en) Cell electrophysiological sensor and cell electrophysiological measurement method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7107528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150