JP2020098764A - Conductive particle with insulating part, method for producing conductive particle with insulating part, conductive material and connection structure - Google Patents

Conductive particle with insulating part, method for producing conductive particle with insulating part, conductive material and connection structure Download PDF

Info

Publication number
JP2020098764A
JP2020098764A JP2019157287A JP2019157287A JP2020098764A JP 2020098764 A JP2020098764 A JP 2020098764A JP 2019157287 A JP2019157287 A JP 2019157287A JP 2019157287 A JP2019157287 A JP 2019157287A JP 2020098764 A JP2020098764 A JP 2020098764A
Authority
JP
Japan
Prior art keywords
insulating
conductive
particles
conductive particles
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157287A
Other languages
Japanese (ja)
Other versions
JP7348776B2 (en
Inventor
理 杉本
Osamu Sugimoto
理 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2020098764A publication Critical patent/JP2020098764A/en
Application granted granted Critical
Publication of JP7348776B2 publication Critical patent/JP7348776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide conductive particles with insulating part which can effectively enhance conductive reliability and insulating reliability even when vibration and impact are applied thereto from the outside.SOLUTION: Conductive particles with insulating part include conductive particles having a conductive part on at least its surface, and an insulating part arranged on the surface of the conductive particles, in which the insulating part is a polymer of a polymerizable component containing a plurality of kinds of polymerizable compounds, the polymerizable component contains a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group, the polymerizable component contains no crosslinking agent, the polymerizable component contains 10 wt.% or more of a polymerizable compound having a glass transition temperature of a homopolymer of lower than 100°C in 100 wt.% of the polymerizable component, and the polymer has the first reactive functional group and the second reactive functional group.SELECTED DRAWING: Figure 1

Description

本発明は、導電性粒子の表面に絶縁部が配置された絶縁部付き導電性粒子及び絶縁部付き導電性粒子の製造方法に関する。また、本発明は、上記絶縁部付き導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to a conductive particle with an insulating portion in which an insulating portion is arranged on the surface of the conductive particle, and a method for producing the conductive particle with an insulating portion. The present invention also relates to a conductive material and a connection structure using the conductive particles with an insulating portion.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、導電性粒子として、導電層の表面に絶縁処理が施された導電性粒子が用いられることがある。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin. In addition, as the conductive particles, conductive particles whose surface is subjected to an insulation treatment may be used.

上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The anisotropic conductive material is used to obtain various connection structures. Examples of the connection using the anisotropic conductive material include connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), connection between a semiconductor chip and the flexible printed circuit board (COF (Chip on Film)), Examples include connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)) and connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)).

また、上記導電性粒子として、導電性粒子の表面上に絶縁性粒子が配置された絶縁性粒子付き導電性粒子が用いられることがある。さらに、導電層の表面上に絶縁層が配置された被覆導電性粒子が用いられることもある。 In addition, as the conductive particles, conductive particles with insulating particles in which insulating particles are arranged on the surface of the conductive particles may be used. Furthermore, coated conductive particles in which an insulating layer is arranged on the surface of the conductive layer may be used.

上記絶縁性粒子の一例として、下記の特許文献1には、導電性粒子の表面に存在して、上記導電性粒子を絶縁するための樹脂粒子が開示されている。上記樹脂粒子は、少なくともアルキル(メタ)アクリレートと多価(メタ)アクリレートとを必須とする重合性成分の共重合物を含む。上記多価(メタ)アクリレートは各(メタ)アクリル基が互いに3個以上の炭素原子を介して結合した化合物である。特許文献1では、上記多価(メタ)アクリレートの含有量が、上記重合性成分の総量に対して5質量%以上であることが記載されている。 As an example of the insulating particles, Patent Document 1 below discloses resin particles that are present on the surface of the conductive particles and insulate the conductive particles. The resin particles include a copolymer of a polymerizable component containing at least an alkyl (meth)acrylate and a polyvalent (meth)acrylate as essential components. The polyvalent (meth)acrylate is a compound in which each (meth)acrylic group is bonded to each other through three or more carbon atoms. Patent Document 1 describes that the content of the polyvalent (meth)acrylate is 5% by mass or more based on the total amount of the polymerizable components.

下記の特許文献2には、表面が導電性を有する導電性粒子と、上記導電性粒子の表面に付着している絶縁性微粒子とを有する絶縁被覆導電性粒子が開示されている。上記絶縁性微粒子では、架橋性単量体に由来するポリマー成分を含有するコア粒子の表面が、架橋性単量体に由来するポリマー成分を含有する被膜層で被覆されている。上記絶縁性微粒子では、上記コア粒子の下記式(1)により定義される架橋度が7以上である。上記絶縁性微粒子では、上記コア粒子の下記式(1)により定義される架橋度が、上記被膜層の下記式(1)により定義される架橋度より高い。 The following Patent Document 2 discloses insulating coated conductive particles having conductive particles having a conductive surface and insulating fine particles adhered to the surfaces of the conductive particles. In the insulating fine particles, the surface of the core particle containing the polymer component derived from the crosslinkable monomer is covered with the coating layer containing the polymer component derived from the crosslinkable monomer. In the insulating fine particles, the degree of crosslinking of the core particles defined by the following formula (1) is 7 or more. In the insulating fine particles, the degree of crosslinking defined by the following formula (1) of the core particles is higher than the degree of crosslinking defined by the following formula (1) of the coating layer.

架橋度=架橋性単量体の重合性官能基数×(架橋性単量体のモル数/全単量体のモル数)×100 式(1) Crosslinking degree=number of polymerizable functional groups of crosslinkable monomer×(mol number of crosslinkable monomer/mol number of all monomers)×100 Formula (1)

特開2012−72324号公報JP2012-72324A 特開2010−86665号公報JP, 2010-86665, A

従来の絶縁性粒子付き導電性粒子では、絶縁性粒子付き導電性粒子とバインダー樹脂とを混合して異方性導電材料を作製する際に、絶縁性粒子が導電性粒子の表面から脱離することがある。特に、特許文献1に記載のような従来の絶縁性粒子では、耐溶剤性を高めるために、架橋性単量体(架橋剤)が用いられることがある。架橋性単量体(架橋剤)の含有量が多くなると、得られる絶縁性粒子の耐溶剤性を高めることができる。一方で、得られる絶縁性粒子は硬く、柔軟性に欠けるため、導電性粒子の表面への密着性を十分に高めることが困難であり、絶縁性粒子の導電性粒子の表面からの脱離を防止することが困難なことがある。結果として、異方性導電材料を用いた導電接続時に、接続されてはならない横方向に隣接する電極間の絶縁信頼性を大きく高めることが困難なことがある。また、絶縁性粒子が硬い場合には、異方性導電材料を用いた導電接続時に、絶縁性粒子が容易に変形等しないことがあり、また、絶縁性粒子が電極と導電性粒子との間から容易に排除等されないことがある。結果として、接続されるべき上下の電極間の導通信頼性を大きく高めることが困難なことがある。 In the conventional conductive particles with insulating particles, when the conductive particles with insulating particles and the binder resin are mixed to produce an anisotropic conductive material, the insulating particles are detached from the surface of the conductive particles. Sometimes. In particular, in the conventional insulating particles described in Patent Document 1, a crosslinkable monomer (crosslinking agent) may be used in order to improve solvent resistance. When the content of the crosslinkable monomer (crosslinking agent) increases, the solvent resistance of the obtained insulating particles can be improved. On the other hand, since the obtained insulating particles are hard and lack flexibility, it is difficult to sufficiently enhance the adhesion to the surface of the conductive particles, and the insulating particles are prevented from being detached from the surface of the conductive particles. It can be difficult to prevent. As a result, when conducting conductive connection using an anisotropic conductive material, it may be difficult to significantly increase the insulation reliability between electrodes that are laterally adjacent and that should not be connected. Further, when the insulating particles are hard, the insulating particles may not be easily deformed during conductive connection using the anisotropic conductive material, and the insulating particles may not be easily deformed between the electrode and the conductive particles. May not be easily excluded from As a result, it may be difficult to significantly improve the conduction reliability between the upper and lower electrodes to be connected.

上記の課題を解決するために、例えば、特許文献2等に記載されているように、絶縁性粒子をコアシェル構造とし、コアの表面の架橋度とシェルの表面の架橋度とを調整する方法等が提案されている。しかしながら、従来の方法では、絶縁性粒子を十分に軟らかくすることは困難であり、異方性導電材料を用いた導電接続時に、絶縁性粒子が容易に変形等しなかったり、絶縁性粒子が電極と導電性粒子との間から容易に排除等されなかったりすることがある。結果として、接続されるべき上下の電極間の導通信頼性を大きく高めることが困難なことがある。 In order to solve the above-mentioned problems, for example, as described in Patent Document 2 or the like, a method of adjusting the degree of crosslinking of the surface of the core and the degree of crosslinking of the surface of the core, insulating particles have a core-shell structure Is proposed. However, in the conventional method, it is difficult to sufficiently soften the insulating particles, the insulating particles are not easily deformed during the conductive connection using the anisotropic conductive material, or the insulating particles are In some cases, it may not be easily removed from between the conductive particles and the conductive particles. As a result, it may be difficult to significantly improve the conduction reliability between the upper and lower electrodes to be connected.

また、異方性導電材料を用いて、複数の電極を有する接続対象部材同士を接続する接続部を形成し、導電接続して接続構造体を得たときに、該接続構造体に落下等による外部からの振動や衝撃が付与されることがある。従来の絶縁性粒子付き導電性粒子を含む異方性導電材料を用いて接続構造体を作製すると、絶縁性粒子が硬いため、落下等による外部からの振動や衝撃を緩和することができず、接続部の耐衝撃性を十分に高めることができないことがある。接続構造体における接続部の耐衝撃性が十分に高くない場合には、落下等による外部からの振動や衝撃により、接続部にクラックや剥離等が発生することがある。結果として、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性をかなり高めることが困難なことがある。 In addition, when an anisotropic conductive material is used to form a connection part that connects the connection target members having a plurality of electrodes, and conductive connection is obtained to obtain a connection structure, the connection structure may be dropped into the connection structure. External vibration or shock may be applied. When a connection structure is manufactured using an anisotropic conductive material containing conductive particles with conventional insulating particles, since the insulating particles are hard, it is not possible to mitigate external vibration or shock due to falling or the like, The impact resistance of the connection portion may not be sufficiently enhanced. If the impact resistance of the connection portion of the connection structure is not sufficiently high, the connection portion may be cracked or peeled off due to external vibration or impact caused by dropping or the like. As a result, it may be difficult to significantly increase the conduction reliability between the upper and lower electrodes to be connected and the insulation reliability between the laterally adjacent electrodes that should not be connected.

本発明の目的は、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる絶縁部付き導電性粒子及び絶縁部付き導電性粒子の製造方法を提供することである。また、本発明の目的は、上記絶縁部付き導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide a conductive particle with an insulating part and a method for producing a conductive particle with an insulating part, which can effectively enhance conduction reliability and insulation reliability even when external vibration or shock is applied. Is to provide. Another object of the present invention is to provide a conductive material and a connection structure using the above-mentioned conductive particles with an insulating portion.

本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された絶縁部とを備え、前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含み、前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有する、絶縁部付き導電性粒子が提供される。 According to a wide aspect of the present invention, a conductive particle having a conductive portion on at least the surface, and an insulating portion arranged on the surface of the conductive particles, the insulating portion, a plurality of polymerizable compounds. A polymer of a polymerizable component containing, wherein the polymerizable component has a polymerizable compound having a first reactive functional group and a second reactive functional group different from the first reactive functional group. A polymerizable compound, the polymerizable component does not contain a crosslinking agent, and the polymerizable component has a glass transition temperature of less than 100° C. of a homopolymer in 100% by weight of the polymerizable component. Provided is an electrically conductive particle with an insulating part, which contains a polymerizable compound in an amount of 10% by weight or more and in which the polymer has the first reactive functional group and the second reactive functional group.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記第1の反応性官能基と前記第2の反応性官能基とが、刺激により反応可能な性質を有する。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the first reactive functional group and the second reactive functional group have a property capable of reacting by stimulation.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記刺激が、加熱又は光の照射である。 In a specific aspect of the electrically conductive particles with an insulating portion according to the present invention, the stimulus is heating or light irradiation.

本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された絶縁部とを備え、前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含み、前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とが反応した構造を含む、絶縁部付き導電性粒子が提供される。 According to a wide aspect of the present invention, a conductive particle having a conductive portion on at least the surface, and an insulating portion arranged on the surface of the conductive particles, the insulating portion, a plurality of polymerizable compounds. A polymer of a polymerizable component containing, wherein the polymerizable component has a polymerizable compound having a first reactive functional group and a second reactive functional group different from the first reactive functional group. A polymerizable compound, the polymerizable component does not contain a crosslinking agent, and the polymerizable component has a glass transition temperature of less than 100° C. of a homopolymer in 100% by weight of the polymerizable component. Provided is an electrically conductive particle with an insulating part, which comprises 10% by weight or more of a polymerizable compound and the polymer has a structure in which the first reactive functional group and the second reactive functional group are reacted. ..

本発明に係る絶縁部付き導電性粒子のある特定の局面では、下記式(1)により求められる前記絶縁部の架橋度が、10以上である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the degree of crosslinking of the insulating portion, which is obtained by the following formula (1), is 10 or more.

架橋度=[(A/B)×100] 式(1) Crosslinking degree=[(A/B)×100] Formula (1)

前記式(1)中、Aは前記第1の反応性官能基を有する重合性化合物及び前記第2の反応性官能基を有する重合性化合物の合計のモル数であり、Bは前記重合性化合物の合計のモル数である。 In the formula (1), A is the total number of moles of the polymerizable compound having the first reactive functional group and the polymerizable compound having the second reactive functional group, and B is the polymerizable compound. Is the total number of moles of.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記第1の反応性官能基が、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the first reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group or a nitrile group.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記環状エーテル基が、エポキシ基又はオキセタニル基である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the cyclic ether group is an epoxy group or an oxetanyl group.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記第2の反応性官能基が、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the second reactive functional group is an amide group, a hydroxyl group, a carboxyl group, an imide group or an amino group.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記絶縁部が、絶縁性粒子である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the insulating portion is an insulating particle.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記導電性粒子の粒子径の、前記絶縁性粒子の粒子径に対する比が、3以上100以下である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the ratio of the particle diameter of the conductive particle to the particle diameter of the insulating particle is 3 or more and 100 or less.

本発明に係る絶縁部付き導電性粒子のある特定の局面では、前記導電性粒子の粒子径が、1μm以上5μm以下である。 In a specific aspect of the conductive particle with an insulating portion according to the present invention, the particle diameter of the conductive particle is 1 μm or more and 5 μm or less.

本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、絶縁性材料とを用いて、絶縁部付き導電性粒子を製造する方法であり、前記導電性粒子の表面上に前記絶縁性材料を配置して絶縁部を形成する絶縁部形成工程を備え、前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む、絶縁部付き導電性粒子の製造方法が提供される。 According to a wide aspect of the present invention, a conductive particle having a conductive portion on at least the surface, and an insulating material, is a method of producing a conductive particle with an insulating portion, on the surface of the conductive particle. An insulating part forming step of arranging the insulating material to form an insulating part, wherein the insulating part is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds, and the polymerizable component is a first Of a polymerizable compound having a reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group, wherein the polymerizable component does not include a crosslinking agent. And the production of electrically conductive particles with an insulating part, wherein the polymerizable component contains 10% by weight or more of a polymerizable compound having a glass transition temperature of a homopolymer of less than 100° C. in 100% by weight of the polymerizable component. A method is provided.

本発明に係る絶縁部付き導電性粒子の製造方法のある特定の局面では、前記絶縁部形成工程の温度が50℃未満であり、前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有する絶縁部付き導電性粒子を得る。 In a particular aspect of the method for producing a conductive particle with an insulating portion according to the present invention, the temperature of the insulating portion forming step is lower than 50°C, and the polymer has the first reactive functional group and the first reactive functional group. Conductive particles with an insulating part having the reactive functional group of 2 are obtained.

本発明に係る絶縁部付き導電性粒子の製造方法のある特定の局面では、前記絶縁部形成工程の後に、前記絶縁部付き導電性粒子を加熱する加熱工程を備え、前記加熱工程の加熱温度が70℃以上であり、前記加熱工程の加熱時間が1時間以上であり、前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とが反応した構造を含む絶縁部付き導電性粒子を得る。 In a particular aspect of the method for producing an electrically conductive particle with an insulating portion according to the present invention, after the insulating portion forming step, a heating step of heating the electrically conductive particle with an insulating portion is provided, and the heating temperature of the heating step is An insulating part containing a structure in which the temperature is 70° C. or higher, the heating time in the heating step is 1 hour or longer, and the polymer reacts with the first reactive functional group and the second reactive functional group. To obtain conductive particles.

本発明の広い局面によれば、上述した絶縁部付き導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a wide aspect of the present invention, there is provided a conductive material including the above-mentioned conductive particles with an insulating portion and a binder resin.

本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部の材料が、上述した絶縁部付き導電性粒子であるか、又は前記絶縁部付き導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが、前記絶縁部付き導電性粒子における前記導電部により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on a surface, a second connection target member having a second electrode on a surface, and the first connection target member, A connecting part connecting the second connection target member, wherein the material of the connecting part is the above-mentioned insulating part-containing conductive particles, or the insulating part-containing conductive particles and a binder resin. A connection structure is provided which is a conductive material containing the first electrode and the second electrode, and the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles with the insulating portion.

本発明に係る絶縁部付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された絶縁部とを備える。本発明に係る絶縁部付き導電性粒子では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。本発明に係る絶縁部付き導電性粒子では、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とを有する。本発明に係る絶縁部付き導電性粒子では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 The conductive particle with an insulating portion according to the present invention includes a conductive particle having a conductive portion on at least the surface thereof, and an insulating portion disposed on the surface of the conductive particle. In the conductive particle with an insulating part according to the present invention, the insulating part is a polymer of a polymerizable component containing a plurality of kinds of polymerizable compounds. In the conductive particle with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group, and a second reactive functional group different from the first reactive functional group. And a polymerizable compound having In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. In the conductive particle with an insulating portion according to the present invention, the polymer has the first reactive functional group and the second reactive functional group. Since the electrically conductive particles with an insulating portion according to the present invention are provided with the above configuration, it is possible to effectively improve the conduction reliability and the insulation reliability even when vibration or impact is applied from the outside.

本発明に係る絶縁部付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された絶縁部とを備える。本発明に係る絶縁部付き導電性粒子では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。本発明に係る絶縁部付き導電性粒子では、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含む。本発明に係る絶縁部付き導電性粒子では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 The conductive particle with an insulating portion according to the present invention includes a conductive particle having a conductive portion on at least the surface thereof, and an insulating portion disposed on the surface of the conductive particle. In the conductive particle with an insulating part according to the present invention, the insulating part is a polymer of a polymerizable component containing a plurality of kinds of polymerizable compounds. In the conductive particle with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group, and a second reactive functional group different from the first reactive functional group. And a polymerizable compound having In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. In the conductive particle with an insulating portion according to the present invention, the polymer includes a structure in which the first reactive functional group and the second reactive functional group react with each other. Since the electrically conductive particles with an insulating portion according to the present invention are provided with the above configuration, it is possible to effectively improve the conduction reliability and the insulation reliability even when vibration or impact is applied from the outside.

本発明に係る絶縁部付き導電性粒子の製造方法は、導電部を少なくとも表面に有する導電性粒子と、絶縁性材料とを用いて、絶縁部付き導電性粒子を製造する方法であり、上記導電性粒子の表面上に上記絶縁性材料を配置して絶縁部を形成する絶縁部形成工程を備える。本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子の製造方法では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子の製造方法では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。本発明に係る絶縁部付き導電性粒子の製造方法では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 The method for producing a conductive particle with an insulating portion according to the present invention is a method for producing a conductive particle with an insulating portion using a conductive particle having a conductive portion on at least the surface and an insulating material, An insulating part forming step of forming the insulating part by disposing the insulating material on the surface of the conductive particles. In the method for producing conductive particles with an insulating portion according to the present invention, the insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds. In the method for producing conductive particles with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group and a second reaction different from the first reactive functional group. And a polymerizable compound having a functional group. In the method for producing electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not include a crosslinking agent, and the polymerizable component is a homopolymer glass in 100% by weight of the polymerizable component. It contains 10% by weight or more of a polymerizable compound having a transition temperature of less than 100°C. In the method for producing electrically conductive particles with an insulating portion according to the present invention, since the above configuration is provided, it is possible to effectively enhance conduction reliability and insulation reliability even when external vibration or shock is applied. You can

図1は、本発明の第1の実施形態に係る絶縁部付き導電性粒子を示す断面図である。FIG. 1 is a sectional view showing a conductive particle with an insulating portion according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る絶縁部付き導電性粒子を示す断面図である。FIG. 2 is a sectional view showing a conductive particle with an insulating portion according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る絶縁部付き導電性粒子を示す断面図である。FIG. 3 is a sectional view showing a conductive particle with an insulating portion according to a third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る絶縁部付き導電性粒子を示す断面図である。FIG. 4 is a cross-sectional view showing a conductive particle with an insulating portion according to the fourth embodiment of the present invention. 図5は、本発明の第1の実施形態に係る絶縁部付き導電性粒子を用いた接続構造体を模式的に示す断面図である。FIG. 5: is sectional drawing which shows typically the connection structure using the electrically conductive particle with an insulation part which concerns on the 1st Embodiment of this invention.

以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.

(絶縁部付き導電性粒子及び絶縁部付き導電性粒子の製造方法)
本発明に係る絶縁部付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された絶縁部とを備える。本発明に係る絶縁部付き導電性粒子では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。本発明に係る絶縁部付き導電性粒子では、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とを有する。
(Conductive particle with insulating part and method for producing conductive particle with insulating part)
The conductive particle with an insulating portion according to the present invention includes a conductive particle having a conductive portion on at least the surface thereof, and an insulating portion disposed on the surface of the conductive particle. In the conductive particle with an insulating part according to the present invention, the insulating part is a polymer of a polymerizable component containing a plurality of kinds of polymerizable compounds. In the conductive particle with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group, and a second reactive functional group different from the first reactive functional group. And a polymerizable compound having In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. In the conductive particle with an insulating portion according to the present invention, the polymer has the first reactive functional group and the second reactive functional group.

本発明に係る絶縁部付き導電性粒子では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 Since the electrically conductive particles with an insulating portion according to the present invention are provided with the above configuration, it is possible to effectively improve the conduction reliability and the insulation reliability even when vibration or impact is applied from the outside.

本明細書では、上記第1の反応性官能基と上記第2の反応性官能基とが反応する前の粒子と、上記第1の反応性官能基と上記第2の反応性官能基とが反応した後の粒子との双方を開示する。 In the present specification, the particles before the first reactive functional group and the second reactive functional group react with each other, the first reactive functional group and the second reactive functional group Both the particles after reacting are disclosed.

本発明に係る絶縁部付き導電性粒子では、上記重合体が上記第1の反応性官能基と上記第2の反応性官能基とを有しており、上記第1の反応性官能基と上記第2の反応性官能基とが反応していない。この絶縁部付き導電性粒子は、上記第1の反応性官能基と上記第2の反応性官能基とが反応する前の粒子である。この絶縁部付き導電性粒子では、上記第1の反応性官能基と上記第2の反応性官能基とが反応していないので、絶縁部の架橋度が低く、柔軟性を有しており、絶縁部と導電性粒子の表面との密着性を高めることができる。 In the conductive particle with an insulating part according to the present invention, the polymer has the first reactive functional group and the second reactive functional group, and the first reactive functional group and the The second reactive functional group has not reacted. The electrically conductive particles with an insulating portion are particles before the first reactive functional group and the second reactive functional group react with each other. In this electrically conductive particle with an insulating part, since the first reactive functional group and the second reactive functional group do not react with each other, the insulating part has a low degree of crosslinking and has flexibility, The adhesion between the insulating portion and the surface of the conductive particles can be improved.

本発明に係る絶縁部付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された絶縁部とを備える。本発明に係る絶縁部付き導電性粒子では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。本発明に係る絶縁部付き導電性粒子では、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含む。 The conductive particle with an insulating portion according to the present invention includes a conductive particle having a conductive portion on at least the surface thereof, and an insulating portion disposed on the surface of the conductive particle. In the conductive particle with an insulating part according to the present invention, the insulating part is a polymer of a polymerizable component containing a plurality of kinds of polymerizable compounds. In the conductive particle with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group, and a second reactive functional group different from the first reactive functional group. And a polymerizable compound having In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. In the conductive particle with an insulating portion according to the present invention, the polymer includes a structure in which the first reactive functional group and the second reactive functional group react with each other.

本発明に係る絶縁部付き導電性粒子では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 Since the electrically conductive particles with an insulating portion according to the present invention are provided with the above configuration, it is possible to effectively improve the conduction reliability and the insulation reliability even when vibration or impact is applied from the outside.

本発明に係る絶縁部付き導電性粒子では、上記重合体が上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含む。この絶縁部付き導電性粒子は、上記第1の反応性官能基と上記第2の反応性官能基とが反応した後の粒子である。この絶縁部付き導電性粒子は、バインダー樹脂中に配合される前に、上記第1の反応性官能基と上記第2の反応性官能基とを反応させることで得られることが好ましい。バインダー樹脂中に配合される前の絶縁部付き導電性粒子において、上記第1の反応性官能基と上記第2の反応性官能基とが反応していることが好ましい。本発明に係る絶縁部付き導電性粒子では、上記第1の反応性官能基と上記第2の反応性官能基とが反応しているので、絶縁部の架橋度を高めることができ、絶縁部の耐溶剤性を高めることができる。 In the conductive particle with an insulating portion according to the present invention, the polymer includes a structure in which the first reactive functional group and the second reactive functional group react with each other. The electrically conductive particles with an insulating portion are particles after the first reactive functional group and the second reactive functional group have reacted with each other. It is preferable that the conductive particles with an insulating portion are obtained by reacting the first reactive functional group with the second reactive functional group before being mixed in the binder resin. In the electrically conductive particles with insulating portion before being mixed in the binder resin, it is preferable that the first reactive functional group and the second reactive functional group react with each other. In the electrically conductive particles with an insulating part according to the present invention, since the first reactive functional group and the second reactive functional group react with each other, the degree of crosslinking of the insulating part can be increased, and the insulating part can be increased. The solvent resistance of can be improved.

従来の絶縁性粒子付き導電性粒子では、絶縁性粒子付き導電性粒子とバインダー樹脂とを混合して異方性導電材料を作製する際に、絶縁性粒子が導電性粒子の表面から脱離することがある。特に、従来の絶縁性粒子では、耐溶剤性を高めるために、架橋性単量体(架橋剤)が用いられることがある。そのため、絶縁性粒子は硬く、柔軟性に欠けるため、導電性粒子の表面への密着性を十分に高めることが困難であり、絶縁性粒子の導電性粒子の表面からの脱離を防止することが困難なことがある。結果として、異方性導電材料を用いた導電接続時に、接続されてはならない横方向に隣接する電極間の絶縁信頼性を大きく高めることが困難なことがある。また、絶縁性粒子が硬い場合には、異方性導電材料を用いた導電接続時に、絶縁性粒子が容易に変形等しないことがあり、また、絶縁性粒子が電極と導電性粒子との間から容易に排除等されないことがある。結果として、接続されるべき上下の電極間の導通信頼性を大きく高めることが困難なことがある。 In the conventional conductive particles with insulating particles, when the conductive particles with insulating particles and the binder resin are mixed to produce an anisotropic conductive material, the insulating particles are detached from the surface of the conductive particles. Sometimes. In particular, in conventional insulating particles, a crosslinkable monomer (crosslinking agent) may be used in order to improve solvent resistance. Therefore, since the insulating particles are hard and lack flexibility, it is difficult to sufficiently enhance the adhesion to the surface of the conductive particles, and prevent the insulating particles from being detached from the surface of the conductive particles. Can be difficult. As a result, when conducting conductive connection using an anisotropic conductive material, it may be difficult to significantly increase the insulation reliability between electrodes that are laterally adjacent and that should not be connected. Further, when the insulating particles are hard, the insulating particles may not be easily deformed during conductive connection using the anisotropic conductive material, and the insulating particles may not be easily deformed between the electrode and the conductive particles. May not be easily excluded from As a result, it may be difficult to significantly improve the conduction reliability between the upper and lower electrodes to be connected.

また、異方性導電材料を用いて、複数の電極を有する接続対象部材同士を接続する接続部を形成し、導電接続して接続構造体を得たときに、該接続構造体に落下等による外部からの振動や衝撃が付与されることがある。従来の絶縁性粒子付き導電性粒子を含む異方性導電材料を用いて接続構造体を作製すると、絶縁性粒子が硬いため、落下等による外部からの振動や衝撃を緩和することができず、接続部の耐衝撃性を十分に高めることができないことがある。接続構造体における接続部の耐衝撃性が十分に高くない場合には、落下等による外部からの振動や衝撃により、接続部にクラックや剥離等が発生することがある。結果として、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性をかなり高めることが困難なことがある。 In addition, when an anisotropic conductive material is used to form a connection part that connects the connection target members having a plurality of electrodes, and conductive connection is obtained to obtain a connection structure, the connection structure may be dropped into the connection structure. External vibration or shock may be applied. When a connection structure is manufactured using an anisotropic conductive material containing conductive particles with conventional insulating particles, since the insulating particles are hard, it is not possible to mitigate external vibration or shock due to falling or the like, The impact resistance of the connection portion may not be sufficiently enhanced. If the impact resistance of the connection portion of the connection structure is not sufficiently high, the connection portion may be cracked or peeled off due to external vibration or impact caused by dropping or the like. As a result, it may be difficult to significantly increase the conduction reliability between the upper and lower electrodes to be connected and the insulation reliability between the laterally adjacent electrodes that should not be connected.

本発明者らは、特定の絶縁部付き導電性粒子を用いることで、絶縁部に関して、導電性粒子の表面への密着性と耐溶剤性との双方を両立させることができることを見出した。本発明では、上記の構成が備えられているので、絶縁部が導電性粒子の表面から脱離することを防止することができる。結果として、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。また、本発明では、上記の構成が備えられているので、絶縁部が比較的柔軟であり、異方性導電材料を用いた導電接続時に、絶縁部が容易に変形等したり、また、絶縁部が電極と導電性粒子との間から容易に排除等されたりする。結果として、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。 The present inventors have found that by using specific conductive particles with an insulating portion, it is possible to achieve both the adhesiveness to the surface of the conductive particles and the solvent resistance of the insulating portion. Since the present invention is provided with the above configuration, it is possible to prevent the insulating portion from being detached from the surface of the conductive particles. As a result, the insulation reliability between adjacent lateral electrodes that should not be connected can be effectively increased. Further, in the present invention, since the above-described configuration is provided, the insulating portion is relatively flexible, and the insulating portion is easily deformed or the like during conductive connection using the anisotropic conductive material, or The part is easily removed from between the electrode and the conductive particles. As a result, the conduction reliability between the upper and lower electrodes to be connected can be effectively enhanced.

また、本発明では、絶縁部の架橋度を高めることができるので、耐溶剤性を高めることができる。一方で、本発明では、絶縁部に関して、架橋性単量体(架橋剤)が用いられておらず、かつ、特定の重合性化合物が用いられているので、比較的柔軟な絶縁部を形成することができる。このため、本発明に係る絶縁部付き導電性粒子を含む異方性導電材料を用いて接続構造体を作製すると、絶縁部が比較的柔軟であるため、落下等による外部からの振動や衝撃を緩和することができ、接続部の耐衝撃性を効果的に高めることができる。結果として、落下等による外部からの振動や衝撃が付与された場合であっても、接続部におけるクラックや剥離等の発生を効果的に防止することができ、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。なお、本明細書において、「架橋性単量体(架橋剤)」は、1分子中に2個以上のエチレン性不飽和基を有する重合性化合物と定義する。 Further, in the present invention, since the degree of crosslinking of the insulating portion can be increased, the solvent resistance can be increased. On the other hand, in the present invention, the insulating portion does not use a crosslinkable monomer (crosslinking agent) and a specific polymerizable compound is used, so that a relatively flexible insulating portion is formed. be able to. Therefore, when a connection structure is manufactured using an anisotropic conductive material containing the conductive particles with an insulating portion according to the present invention, since the insulating portion is relatively flexible, it is not subject to external vibration or impact due to falling or the like. The impact resistance of the connecting portion can be effectively increased. As a result, it is possible to effectively prevent the occurrence of cracks or peeling at the connection portion even when external vibration or impact is applied due to a drop or the like, and between the upper and lower electrodes to be connected. Conduction reliability and insulation reliability between laterally adjacent electrodes that must not be connected can be effectively improved. In addition, in this specification, a "crosslinkable monomer (crosslinking agent)" is defined as a polymerizable compound having two or more ethylenically unsaturated groups in one molecule.

本発明では、上記のような効果を得るために、特定の絶縁部付き導電性粒子を用いることは大きく寄与する。 In the present invention, the use of the specific conductive particles with an insulating part greatly contributes to the above effects.

電極間の導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記絶縁部付き導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。 From the viewpoint of more effectively improving the conduction reliability and the insulation reliability between the electrodes, the coefficient of variation (CV value) of the particle diameter of the conductive particles with an insulating part is preferably 10% or less, more preferably 5%. % Or less.

上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.

CV値(%)=(ρ/Dn)×100
ρ:絶縁部付き導電性粒子の粒子径の標準偏差
Dn:絶縁部付き導電性粒子の粒子径の平均値
CV value (%)=(ρ/Dn)×100
ρ: Standard deviation of particle diameter of conductive particles with insulating portion Dn: Average value of particle diameter of conductive particles with insulating portion

上記絶縁部付き導電性粒子の形状は特に限定されない。上記絶縁部付き導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the conductive particles with an insulating part is not particularly limited. The shape of the conductive particles with an insulating portion may be spherical, may be a shape other than spherical, and may be flat or the like.

上記絶縁部付き導電性粒子は、バインダー樹脂中に分散され、導電材料を得るために好適に用いられる。 The above-mentioned conductive particles with an insulating portion are dispersed in a binder resin and are suitably used for obtaining a conductive material.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る絶縁部付き導電性粒子を示す断面図である。 FIG. 1 is a sectional view showing a conductive particle with an insulating portion according to the first embodiment of the present invention.

図1に示す絶縁部付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面上に配置された絶縁部3とを備える。絶縁部3は絶縁性粒子である。絶縁部付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面上に配置された複数の絶縁性粒子とを備える。絶縁部3は、絶縁性を有する材料(絶縁性材料)により形成されている。 The electrically conductive particle 1 with an insulating portion shown in FIG. 1 includes the electrically conductive particle 2 and the insulating portion 3 arranged on the surface of the electrically conductive particle 2. The insulating part 3 is an insulating particle. The electrically conductive particles 1 with an insulating part include the electrically conductive particles 2 and a plurality of the electrically conductive particles arranged on the surface of the electrically conductive particles 2. The insulating portion 3 is formed of an insulating material (insulating material).

導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。絶縁部付き導電性粒子1においては、導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁部付き導電性粒子では、上記絶縁部(上記絶縁性粒子)は、上記導電部の表面上に配置されていることが好ましい。 The conductive particle 2 has a base particle 11 and a conductive portion 12 arranged on the surface of the base particle 11. In the conductive particle 1 with an insulating part, the conductive part 12 is a conductive layer. The conductive portion 12 covers the surface of the base particle 11. The conductive particle 2 is a coated particle in which the surface of the base material particle 11 is coated with the conductive portion 12. The conductive particle 2 has a conductive portion 12 on the surface. In the conductive particles, the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle. In the conductive particle with an insulating portion, the insulating portion (the insulating particle) is preferably arranged on the surface of the conductive portion.

図2は、本発明の第2の実施形態に係る絶縁部付き導電性粒子を示す断面図である。 FIG. 2 is a sectional view showing a conductive particle with an insulating portion according to the second embodiment of the present invention.

図2に示す絶縁部付き導電性粒子21は、導電性粒子22と、導電性粒子22の表面上に配置された絶縁部3とを備える。絶縁部3は絶縁性粒子である。 The conductive particle 21 with an insulating part shown in FIG. 2 includes a conductive particle 22 and an insulating part 3 arranged on the surface of the conductive particle 22. The insulating part 3 is an insulating particle.

導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部31とを有する。絶縁部付き導電性粒子21においては、導電部31は導電層である。導電性粒子22は、基材粒子11の表面上に複数の芯物質32を有する。導電部31は、基材粒子11と芯物質32とを被覆している。芯物質32を導電部31が被覆していることにより、導電性粒子22は、表面に複数の突起33を有する。導電性粒子22では、芯物質32により導電部31の表面が隆起されており、複数の突起33が形成されている。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁部付き導電性粒子では、上記絶縁部(上記絶縁性粒子)は、上記導電部の表面上に配置されていることが好ましい。 The conductive particles 22 have the base particles 11 and the conductive portions 31 arranged on the surfaces of the base particles 11. In the conductive particle 21 with an insulating part, the conductive part 31 is a conductive layer. The conductive particles 22 have a plurality of core substances 32 on the surface of the base material particles 11. The conductive portion 31 covers the base material particles 11 and the core substance 32. Since the core material 32 is covered with the conductive portion 31, the conductive particles 22 have a plurality of protrusions 33 on the surface. In the conductive particle 22, the surface of the conductive portion 31 is raised by the core substance 32, and a plurality of protrusions 33 are formed. In the conductive particles, the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle. In the conductive particle with an insulating portion, the insulating portion (the insulating particle) is preferably arranged on the surface of the conductive portion.

図3は、本発明の第3の実施形態に係る絶縁部付き導電性粒子を示す断面図である。 FIG. 3 is a sectional view showing a conductive particle with an insulating portion according to a third embodiment of the present invention.

図3に示す絶縁部付き導電性粒子41は、導電性粒子42と、導電性粒子42の表面上に配置された絶縁部3とを備える。絶縁部3は絶縁性粒子である。 The electrically conductive particles 41 with an insulating part shown in FIG. 3 are provided with the electrically conductive particles 42 and the insulating parts 3 arranged on the surfaces of the electrically conductive particles 42. The insulating part 3 is an insulating particle.

導電性粒子42は、基材粒子11と、基材粒子11の表面上に配置された導電部51とを有する。絶縁部付き導電性粒子41においては、導電部51は導電層である。導電性粒子42は、導電性粒子22とは異なり芯物質を有しない。導電部51は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子42は、表面に複数の突起52を有する。複数の突起52を除く部分が、導電部51の上記第1の部分である。複数の突起52は、導電部51の厚みが厚い上記第2の部分である。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁部付き導電性粒子では、上記絶縁部(上記絶縁性粒子)は、上記導電部の表面上に配置されていることが好ましい。 The conductive particles 42 include the base particles 11 and the conductive portions 51 arranged on the surfaces of the base particles 11. In the conductive particle 41 with an insulating part, the conductive part 51 is a conductive layer. Unlike the conductive particles 22, the conductive particles 42 do not have a core substance. The conductive portion 51 has a first portion and a second portion that is thicker than the first portion. The conductive particle 42 has a plurality of protrusions 52 on its surface. The portion excluding the plurality of protrusions 52 is the first portion of the conductive portion 51. The plurality of protrusions 52 is the second portion in which the conductive portion 51 has a large thickness. In the conductive particles, the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle. In the conductive particle with an insulating portion, the insulating portion (the insulating particle) is preferably arranged on the surface of the conductive portion.

図4は、本発明の第4の実施形態に係る絶縁部付き導電性粒子を示す断面図である。 FIG. 4 is a cross-sectional view showing a conductive particle with an insulating portion according to the fourth embodiment of the present invention.

図4に示す絶縁部付き導電性粒子61は、導電性粒子2と、導電性粒子2の表面上に配置された絶縁部62とを備える。絶縁部62は絶縁層である。絶縁部付き導電性粒子61は、導電性粒子2と、導電性粒子2の表面上に配置された絶縁層とを備える。絶縁部62は、絶縁性を有する材料(絶縁性材料)により形成されている。 The conductive particle 61 with an insulating part shown in FIG. 4 includes the conductive particle 2 and the insulating part 62 arranged on the surface of the conductive particle 2. The insulating portion 62 is an insulating layer. The electrically conductive particles 61 with an insulating part include the electrically conductive particles 2 and an insulating layer arranged on the surfaces of the electrically conductive particles 2. The insulating portion 62 is formed of an insulating material (insulating material).

導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。絶縁部付き導電性粒子61においては、導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁部付き導電性粒子では、上記絶縁部(上記絶縁層)は、上記導電部の表面上に配置されていることが好ましい。 The conductive particle 2 has a base particle 11 and a conductive portion 12 arranged on the surface of the base particle 11. In the conductive particle 61 with an insulating part, the conductive part 12 is a conductive layer. The conductive portion 12 covers the surface of the base particle 11. The conductive particle 2 is a coated particle in which the surface of the base material particle 11 is coated with the conductive portion 12. The conductive particle 2 has a conductive portion 12 on the surface. In the conductive particles, the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle. In the conductive particle with an insulating part, the insulating part (the insulating layer) is preferably arranged on the surface of the conductive part.

次に、本発明に係る絶縁部付き導電性粒子の製造方法について説明する。 Next, a method of manufacturing the conductive particles with an insulating portion according to the present invention will be described.

本発明に係る絶縁部付き導電性粒子の製造方法は、導電部を少なくとも表面に有する導電性粒子と、絶縁性材料とを用いて、絶縁部付き導電性粒子を製造する方法であり、上記導電性粒子の表面上に上記絶縁性材料を配置して絶縁部を形成する絶縁部形成工程を備える。本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体である。本発明に係る絶縁部付き導電性粒子の製造方法では、上記重合性成分が、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。本発明に係る絶縁部付き導電性粒子の製造方法では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。得られる絶縁部付き導電性粒子は、上記第1の反応性官能基と上記第2の反応性官能基とが反応する前の粒子であることが好ましい。 The method for producing a conductive particle with an insulating portion according to the present invention is a method for producing a conductive particle with an insulating portion using a conductive particle having a conductive portion on at least the surface and an insulating material, An insulating part forming step of forming the insulating part by disposing the insulating material on the surface of the conductive particles. In the method for producing conductive particles with an insulating portion according to the present invention, the insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds. In the method for producing conductive particles with an insulating portion according to the present invention, the polymerizable component has a polymerizable compound having a first reactive functional group and a second reaction different from the first reactive functional group. And a polymerizable compound having a functional group. In the method for producing electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not include a crosslinking agent, and the polymerizable component is a homopolymer glass in 100% by weight of the polymerizable component. It contains 10% by weight or more of a polymerizable compound having a transition temperature of less than 100°C. It is preferable that the obtained conductive particles with an insulating portion are particles before the first reactive functional group and the second reactive functional group react with each other.

本発明に係る絶縁部付き導電性粒子の製造方法では、上記の構成が備えられているので、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性を効果的に高めることができる。 In the method for producing electrically conductive particles with an insulating portion according to the present invention, since the above configuration is provided, it is possible to effectively enhance conduction reliability and insulation reliability even when external vibration or shock is applied. You can

本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程の温度が50℃未満であることが好ましく、上記絶縁部形成工程の温度が40℃以下であることがより好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程後の絶縁部付き導電性粒子においては、上記重合体が上記第1の反応性官能基と上記第2の反応性官能基とを有することが好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程後の絶縁部付き導電性粒子においては、上記第1の反応性官能基と上記第2の反応性官能基とが反応していないことが好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程後の絶縁部付き導電性粒子においては、上記第1の反応性官能基と上記第2の反応性官能基とが反応していないので、上記絶縁部の架橋度が低く、柔軟性を有しており、上記絶縁部と上記導電性粒子の表面との密着性を高めることができる。 In the method for producing conductive particles with an insulating portion according to the present invention, the temperature in the insulating portion forming step is preferably lower than 50°C, more preferably 40°C or lower. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the insulating portion forming step, the polymer has the first reactive functional group and the second reactivity. It preferably has a functional group. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the insulating portion forming step, the first reactive functional group and the second reactive functional group are It has preferably not reacted. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the insulating portion forming step, the first reactive functional group and the second reactive functional group are Since it has not reacted, the degree of cross-linking of the insulating portion is low and it has flexibility, and the adhesion between the insulating portion and the surface of the conductive particles can be enhanced.

本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程の後に、上記絶縁部付き導電性粒子を加熱する加熱工程を備えることが好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記加熱工程の加熱温度が70℃以上であることが好ましく、上記加熱工程の加熱温度が90℃以上であることがより好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記加熱工程の加熱時間が1時間以上であることが好ましく、上記加熱工程の加熱時間が2時間以上であることがより好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記加熱工程後の絶縁部付き導電性粒子においては、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含むことが好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記加熱工程後の絶縁部付き導電性粒子においては、上記第1の反応性官能基と上記第2の反応性官能基とが反応していることが好ましい。得られる絶縁部付き導電性粒子は、上記第1の反応性官能基と上記第2の反応性官能基とが反応した後の粒子であることが好ましい。本発明に係る絶縁部付き導電性粒子の製造方法では、上記加熱工程後の絶縁部付き導電性粒子においては、上記第1の反応性官能基と上記第2の反応性官能基とが反応しているので、上記絶縁部の架橋度を高めることができ、上記絶縁部の耐溶剤性を高めることができる。 In the method for producing conductive particles with an insulating portion according to the present invention, it is preferable to include a heating step of heating the conductive particles with an insulating portion after the insulating portion forming step. In the method for producing conductive particles with an insulating portion according to the present invention, the heating temperature in the heating step is preferably 70°C or higher, and more preferably 90°C or higher. In the method for producing conductive particles with an insulating portion according to the present invention, the heating time in the heating step is preferably 1 hour or longer, and more preferably 2 hours or more. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the heating step, the polymer has the first reactive functional group and the second reactive functional group. It is preferable to include a structure in which a group is reacted. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the heating step, the first reactive functional group and the second reactive functional group react with each other. Preferably. The obtained conductive particles with an insulating portion are preferably particles after the first reactive functional group and the second reactive functional group have reacted with each other. In the method for producing a conductive particle with an insulating portion according to the present invention, in the conductive particle with an insulating portion after the heating step, the first reactive functional group and the second reactive functional group react with each other. Therefore, the degree of crosslinking of the insulating portion can be increased, and the solvent resistance of the insulating portion can be increased.

本発明に係る絶縁部付き導電性粒子の製造方法では、上記絶縁部形成工程の後に上記加熱工程が備えられているので、上記絶縁部に関して、上記導電性粒子の表面への密着性と耐溶剤性との双方を両立させることができる。結果として、絶縁部付き導電性粒子を用いて電極間を電気的に接続した場合に、接続されてはならない隣接する横方向の電極間の絶縁信頼性をより一層効果的に高めることができる。 In the method for producing electrically conductive particles with an insulating portion according to the present invention, since the heating step is provided after the insulating portion forming step, the insulating portion, the adhesion to the surface of the conductive particles and solvent resistance. It is possible to achieve both the sex and the compatibility. As a result, when the electrodes are electrically connected using the electrically conductive particles with the insulating portion, the insulation reliability between the adjacent lateral electrodes that should not be connected can be more effectively enhanced.

また、本発明に係る絶縁部付き導電性粒子の製造方法では、絶縁部の架橋度を高めることができるので、耐溶剤性を高めることができる一方で、絶縁部に関して、架橋性単量体(架橋剤)が用いられておらず、かつ、特定の重合性化合物が用いられているので、比較的柔軟な絶縁部を形成することができる。このため、本発明に係る絶縁部付き導電性粒子を含む異方性導電材料を用いて接続構造体を作製すると、絶縁部が比較的柔軟であるため、落下等による外部からの振動や衝撃を緩和することができ、接続部の耐衝撃性を効果的に高めることができる。結果として、落下等による外部からの振動や衝撃が付与された場合であっても、接続部におけるクラックや剥離等の発生を効果的に防止することができ、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。 Further, in the method for producing an electrically conductive particle with an insulating portion according to the present invention, since the degree of crosslinking of the insulating portion can be increased, solvent resistance can be increased, while the insulating portion can have a crosslinkable monomer ( Since a cross-linking agent) is not used and a specific polymerizable compound is used, a relatively flexible insulating part can be formed. Therefore, when a connection structure is manufactured using an anisotropic conductive material containing the conductive particles with an insulating portion according to the present invention, since the insulating portion is relatively flexible, it is not subject to external vibration or impact due to falling or the like. The impact resistance of the connecting portion can be effectively increased. As a result, it is possible to effectively prevent the occurrence of cracks or peeling at the connection portion even when external vibration or impact is applied due to a drop or the like, and between the upper and lower electrodes to be connected. Conduction reliability and insulation reliability between laterally adjacent electrodes that must not be connected can be effectively improved.

以下、絶縁部付き導電性粒子の他の詳細を説明する。 Hereinafter, other details of the conductive particles with an insulating portion will be described.

導電性粒子:
上記導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを有していることが好ましい。上記導電部は、単層構造であってもよく、2層以上の複層構造であってもよい。
Conductive particles:
The conductive particles preferably have base particles and conductive portions arranged on the surfaces of the base particles. The conductive part may have a single-layer structure or a multi-layer structure having two or more layers.

上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは30μm以下、さらに好ましくは10μm以下、特に好ましくは5μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。 The particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 60 μm or less, even more preferably 30 μm or less, further preferably 10 μm or less, particularly preferably Is 5 μm or less. When the particle diameter of the conductive particles is not less than the lower limit and not more than the upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrode becomes sufficiently large, In addition, it is difficult for the conductive particles that are aggregated to form when forming the conductive portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion is less likely to peel off from the surface of the base material particles.

上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the conductive particles is, for example, observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle diameters of the respective conductive particles, and measuring the laser diffraction particle size distribution. Is obtained by performing. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in terms of a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in a circle-equivalent diameter is substantially equal to the average particle diameter in a sphere-equivalent diameter. In the laser diffraction type particle size distribution measurement, the particle size of each conductive particle is obtained as the particle size in terms of a sphere equivalent diameter. The average particle diameter of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.

上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 The variation coefficient (CV value) of the particle diameter of the conductive particles is preferably 10% or less, more preferably 5% or less. When the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, it is possible to more effectively enhance the conduction reliability and the insulation reliability between the electrodes.

上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.

CV値(%)=(ρ/Dn)×100
ρ:導電性粒子の粒子径の標準偏差
Dn:導電性粒子の粒子径の平均値
CV value (%)=(ρ/Dn)×100
ρ: Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles

上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the conductive particles is not particularly limited. The conductive particles may have a spherical shape, a shape other than a spherical shape, or a flat shape.

基材粒子:
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
Base particle:
Examples of the base particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The base particles are preferably base particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particle may be a core-shell particle including a core and a shell arranged on the surface of the core. The core may be an organic core and the shell may be an inorganic shell.

上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン−スチレン共重合体及びジビニルベンゼン−(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are preferably used as the material of the resin particles. Examples of the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, phenol formaldehyde. Resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples thereof include polyamide imide, polyether ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene copolymer. Examples of the divinylbenzene-based copolymer and the like include divinylbenzene-styrene copolymer and divinylbenzene-(meth)acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled in a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.

上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having the ethylenically unsaturated group is a non-crosslinkable monomer. And a crosslinkable monomer.

上記非架橋性の単量体としては、スチレン、及びα−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; methyl ( (Meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl ( Alkyl (meth)acrylate compounds such as (meth)acrylate and isobornyl (meth)acrylate; such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate Oxygen atom-containing (meth)acrylate compounds; nitrile-containing monomers such as (meth)acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. Acid ester compounds of unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; trifluoromethyl (meth)acrylate, pentafluoroethyl (meth)acrylate, vinyl chloride, vinyl fluoride, and halogens such as chlorostyrene Examples include contained monomers.

上記架橋性の単量体としては、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa. (Meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, Polyfunctional (meth)acrylate compounds such as (poly)tetramethylene glycol di(meth)acrylate and 1,4-butanediol di(meth)acrylate; triallyl(iso)cyanurate, triallyl trimellitate, divinylbenzene, diallyl Examples thereof include phthalate, diallyl acrylamide, diallyl ether, and silane-containing monomers such as γ-(meth)acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane.

「(メタ)アクリレート」の用語は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」の用語は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」の用語は、アクリロイルとメタクリロイルとを示す。 The term "(meth)acrylate" refers to acrylate and methacrylate. The term "(meth)acrylic" refers to acrylic and methacrylic. The term "(meth)acryloyl" refers to acryloyl and methacryloyl.

上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles to perform polymerization.

上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base particles are inorganic particles excluding metal or organic-inorganic hybrid particles, examples of the inorganic material for forming the base particles include silica, alumina, barium titanate, zirconia and carbon black. The inorganic substance is preferably not a metal. The particles formed of the above silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is optionally performed. Particles obtained by carrying out are included. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.

上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the base particle is preferably an organic-inorganic hybrid particle having an organic core and an inorganic shell arranged on the surface of the organic core. ..

上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 Examples of the material of the organic core include the materials of the resin particles described above.

上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material of the inorganic shell include the inorganic materials mentioned as the material of the base particle. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably silane alkoxide. The inorganic shell is preferably made of silane alkoxide.

上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。 When the base particles are metal particles, examples of the metal that is the material of the metal particles include silver, copper, nickel, silicon, gold and titanium.

上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。 The particle diameter of the base particles is preferably 0.5 μm or more, more preferably 1 μm or more, still more preferably 2 μm or more, preferably 100 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less. When the particle size of the base material particles is equal to or more than the above lower limit and equal to or less than the above upper limit, small conductive particles can be obtained even when the distance between the electrodes is small and the thickness of the conductive layer is increased. Further, it becomes difficult for the conductive particles to aggregate when forming the conductive portion on the surface of the base material particles, and it becomes difficult for the aggregated conductive particles to be formed.

上記基材粒子の粒子径は、2μm以上50μm以下であることが特に好ましい。上記基材粒子の粒子径が、2μm以上50μm以下の範囲内であると、基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。 It is particularly preferable that the base particles have a particle size of 2 μm or more and 50 μm or less. When the particle size of the base material particles is in the range of 2 μm or more and 50 μm or less, it becomes difficult to aggregate when forming the conductive portion on the surface of the base material particles, and it is difficult to form the aggregated conductive particles.

上記基材粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。 The particle size of the base particles is preferably an average particle size, and more preferably a number average particle size.

上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの基材粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の基材粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの基材粒子の粒子径は、球相当径での粒子径として求められる。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle diameter of the above-mentioned base particles is determined by using a particle size distribution measuring device or the like. The particle diameter of the base material particles is preferably obtained by observing 50 arbitrary base material particles with an electron microscope or an optical microscope and calculating an average value. In observation with an electron microscope or an optical microscope, the particle size of each base particle is determined as the particle size in terms of a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 base particles in terms of equivalent circle diameter is almost equal to the average particle diameter in equivalent sphere diameter. In the laser diffraction type particle size distribution measurement, the particle size of each base particle is obtained as the particle size in terms of sphere equivalent diameter. In the case of measuring the particle size of the above-mentioned base particles in the conductive particles, for example, it can be measured as follows.

導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 The conductive particles are added to "Technobit 4000" manufactured by Kulzer so that the content of the conductive particles is 30% by weight, and dispersed to prepare a conductive particle inspection embedded resin. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the inspection embedded resin. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 25,000 times, 50 conductive particles were randomly selected, and the base particles of each conductive particle were observed. To do. The particle diameter of the base material particle in each conductive particle is measured, and they are arithmetically averaged to obtain the particle diameter of the base material particle.

導電部:
本発明では、上記導電性粒子は、導電部を少なくとも表面に有する。上記導電部は、金属を含むことが好ましい。上記導電部を構成する金属は、特に限定されない。上記金属としては、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。電極間の接続抵抗をより一層低くする観点からは、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。
Conductive part:
In the present invention, the conductive particles have a conductive portion on at least the surface. The conductive part preferably contains a metal. The metal forming the conductive part is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. In addition, tin-doped indium oxide (ITO) may be used as the metal. Only 1 type may be used for the said metal and 2 or more types may be used together. From the viewpoint of further lowering the connection resistance between the electrodes, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable.

また、導通信頼性をより一層効果的に高める観点からは、上記導電部及び上記導電部の外表面部分はニッケルを含むことが好ましい。ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。 Further, from the viewpoint of further effectively increasing the conduction reliability, it is preferable that the conductive portion and the outer surface portion of the conductive portion contain nickel. The content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, even more preferably 60% by weight or more, further preferably 70% by weight or more, particularly preferably Is 90% by weight or more. The content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.

なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁部を配置できる。 Incidentally, hydroxyl groups often exist on the surface of the conductive portion due to oxidation. Generally, hydroxyl groups are present on the surface of the conductive portion formed of nickel due to oxidation. The insulating portion can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.

上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。 The conductive part may be formed of one layer. The conductive part may be formed of a plurality of layers. That is, the conductive part may have a laminated structure of two or more layers. When the conductive portion is formed by a plurality of layers, the metal forming the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferable. When the metal forming the outermost layer is one of these preferable metals, the connection resistance between the electrodes becomes even lower. Further, when the metal forming the outermost layer is gold, the corrosion resistance is further enhanced.

上記基材粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method for forming the conductive portion on the surface of the base material particles is not particularly limited. As the method for forming the conductive portion, a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or a metal powder. Examples include a method of coating the surface of the substrate particles with a paste containing a binder and a binder. The method of forming the conductive portion is preferably electroless plating, electroplating, or a physical collision method. Examples of the physical vapor deposition method include vacuum vapor deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a sheet composer (manufactured by Tokuju Kosakusho Co., Ltd.) is used.

上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 The thickness of the conductive portion is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, still more preferably 0.3 μm or less. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficient when connecting between the electrodes. It can be transformed.

上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。 When the conductive portion is formed of a plurality of layers, the thickness of the conductive portion of the outermost layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably Is 0.1 μm or less. When the thickness of the conductive portion of the outermost layer is not less than the lower limit and not more than the upper limit, the conductive portion of the outermost layer is uniform, corrosion resistance is sufficiently high, and the connection resistance between the electrodes is sufficiently low. can do.

上記導電部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive portion can be measured, for example, by observing the cross section of the conductive particle using a transmission electron microscope (TEM).

芯物質:
上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。絶縁部付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する絶縁部付き導電性粒子を用いた場合には、電極間に絶縁部付き導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。
Core substance:
The conductive particles preferably have a plurality of protrusions on the outer surface of the conductive portion. An oxide film is often formed on the surface of the electrode connected by the conductive particles with an insulating portion. When the insulating part-containing conductive particles having protrusions on the surface of the conductive part are used, the oxide film can be effectively eliminated by the protrusions by disposing the insulating part-containing conductive particles between the electrodes and pressing them. .. For this reason, the electrodes and the conductive portions contact each other more reliably, and the connection resistance between the electrodes becomes even lower. Further, when connecting the electrodes, the protrusions of the conductive particles can effectively eliminate the insulating particles between the conductive particles and the electrodes. Therefore, the conduction reliability between the electrodes is further enhanced.

上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に導電部を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。 As the method of forming the protrusions, after attaching the core substance to the surface of the base material particles, a method of forming a conductive portion by electroless plating, and forming a conductive portion by electroless plating on the surface of the base material particles Then, a method of attaching a core substance and then forming a conductive portion by electroless plating, etc. may be mentioned. As another method of forming the protrusions, a method of adding a core substance in the middle of forming the conductive portion on the surface of the base material particles may be mentioned. Further, in order to form the protrusions, the conductive material is formed by electroless plating on the base material particles without using the core substance, and then the plating is deposited in the shape of protrusions on the surface of the conductive portion, and the electroless plating is further performed. You may use the method of forming a conductive part by.

基材粒子の表面に芯物質を付着させる方法としては、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、基材粒子の表面に芯物質を付着させる方法は、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。 As a method for attaching the core substance to the surface of the base material particle, the core substance is added to the dispersion liquid of the base material particle, and the core substance is accumulated and attached to the surface of the base material particle by Van der Waals force. Examples thereof include a method, a method of adding a core substance to a container containing base particles, and a method of attaching the core substance to the surface of the base particles by a mechanical action such as rotation of the container. From the viewpoint of controlling the amount of the core substance to be attached, the method of attaching the core substance to the surface of the base material particles is a method of accumulating and attaching the core substance to the surface of the base material particles in the dispersion liquid. preferable.

上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記芯物質が金属であることが好ましい。 Examples of the substance forming the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of further enhancing the conduction reliability between the electrodes, the core substance is preferably a metal.

上記金属は特に限定されない。上記金属としては、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記金属は、ニッケル、銅、銀又は金が好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。 The metal is not particularly limited. Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. Examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy, and tungsten carbide. From the viewpoint of further enhancing the conduction reliability between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal forming the conductive part (conductive layer).

上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably massive. Examples of the core substance include a particulate mass, an agglomerate of a plurality of fine particles, and an amorphous mass.

上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が、上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the lower limit and not more than the upper limit, the connection resistance between the electrodes can be effectively reduced.

上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、例えば、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the core substance is preferably an average particle size, and more preferably a number average particle size. The particle size of the core substance is, for example, observing 50 arbitrary core substances with an electron microscope or an optical microscope, calculating the average value of the particle size of each core substance, and performing a laser diffraction type particle size distribution measurement. Required by. In observation with an electron microscope or an optical microscope, the particle size of each core substance is determined as the particle size in terms of a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core substances in the circle-equivalent diameter is substantially equal to the average particle diameter in the sphere-equivalent diameter. In the laser diffraction particle size distribution measurement, the particle size of each core substance is determined as the particle size in terms of sphere equivalent diameter. The average particle size of the core substance is preferably calculated by laser diffraction type particle size distribution measurement.

絶縁部:
本発明に係る絶縁部付き導電性粒子は、上記導電性粒子の表面上に配置された絶縁部を備える。上記絶縁部の形態は特に限定されない。上記絶縁部の形態は、絶縁性粒子であってもよく、絶縁性を有する海島構造であってもよく、絶縁層であってもよい。上記絶縁部が絶縁性粒子である場合には、上記絶縁部(絶縁性粒子)付き導電性粒子は、上記導電性粒子の表面上に複数の絶縁性粒子が配置されていることが好ましい。上記絶縁部が絶縁層である場合には、上記絶縁部(絶縁層)付き導電性粒子は、上記導電性粒子の表面上に絶縁層が配置されていることが好ましく、上記導電性粒子の外表面が絶縁層により被覆されていることが好ましい。導電性粒子の導電部と電極との間の絶縁部をより一層容易に排除する観点からは、上記絶縁部は、絶縁性粒子であることが好ましい。
Insulation part:
The conductive particle with an insulating part according to the present invention includes an insulating part arranged on the surface of the conductive particle. The form of the insulating part is not particularly limited. The form of the insulating portion may be insulating particles, a sea-island structure having an insulating property, or an insulating layer. When the insulating part is an insulating particle, the conductive particle with the insulating part (insulating particles) preferably has a plurality of insulating particles arranged on the surface of the conductive particle. When the insulating part is an insulating layer, the conductive particles with the insulating part (insulating layer) is preferably such that an insulating layer is arranged on the surface of the conductive particles, and The surface is preferably covered with an insulating layer. From the viewpoint of more easily eliminating the insulating portion between the conductive portion of the conductive particle and the electrode, the insulating portion is preferably an insulating particle.

上記絶縁部付き導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁部付き導電性粒子が接触したときに、複数の電極間に絶縁部が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁部付き導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁部を容易に排除できる。さらに、導電部の外表面に複数の突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁部をより一層容易に排除できる。 When the above-mentioned conductive particles with an insulating portion are used for connecting electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles with an insulating part are in contact with each other, the insulating part is present between the plurality of electrodes, so that it is possible to prevent a short circuit between laterally adjacent electrodes instead of between the upper and lower electrodes. When connecting the electrodes, the insulating particles between the conductive parts of the conductive particles and the electrodes can be easily eliminated by pressing the conductive particles with the insulating parts by the two electrodes. Further, in the case of conductive particles having a plurality of protrusions on the outer surface of the conductive portion, the insulating portion between the conductive portion of the conductive particles and the electrode can be eliminated more easily.

本発明に係る絶縁部付き導電性粒子では、上記絶縁部は、複数種の重合性化合物を含む重合性成分の重合体である。上記重合性成分は特に限定されない。上記重合性成分としては、上述した樹脂粒子の材料等が挙げられる。上記絶縁部が絶縁性粒子である場合には、上述した樹脂粒子であってもよい。 In the conductive particle with an insulating portion according to the present invention, the insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds. The polymerizable component is not particularly limited. Examples of the polymerizable component include the above-mentioned resin particle materials. When the insulating portion is insulating particles, it may be the resin particles described above.

本発明に係る絶縁部付き導電性粒子では、上記重合性成分は、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含む。 In the conductive particle with an insulating portion according to the present invention, the polymerizable component is a polymerizable compound having a first reactive functional group, and a second reactive functional group different from the first reactive functional group. And a polymerizable compound having

上記第1の反応性官能基は、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基であることが好ましく、環状エーテル基、イソシアネート基又はニトリル基であることがより好ましく、環状エーテル基又はニトリル基であることがさらに好ましい。上記環状エーテル基は、エポキシ基又はオキセタニル基であることが好ましく、エポキシ基であることがより好ましい。上記第1の反応性官能基が、上述した好ましい官能基である場合には、絶縁部付き導電性粒子を用いて電極間を電気的に接続した場合に、絶縁信頼性をより一層効果的に高めることができる。 The first reactive functional group is preferably a cyclic ether group, an isocyanate group, an aldehyde group or a nitrile group, more preferably a cyclic ether group, an isocyanate group or a nitrile group, a cyclic ether group or a nitrile group Is more preferable. The cyclic ether group is preferably an epoxy group or an oxetanyl group, and more preferably an epoxy group. In the case where the first reactive functional group is the above-mentioned preferable functional group, the insulation reliability is further effectively improved when the electrodes are electrically connected using the electrically conductive particles with an insulating portion. Can be increased.

上記エポキシ基を有する重合性化合物としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及び3,4−エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられる。上記エポキシ基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having an epoxy group include glycidyl (meth)acrylate, allyl glycidyl ether, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth)acrylate. As the polymerizable compound having an epoxy group, only one type may be used, or two or more types may be used in combination.

上記エポキシ基を有する重合性化合物は、(メタ)アクリル酸グリシジル、又は4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテルであることが好ましい。 The polymerizable compound having an epoxy group is preferably glycidyl (meth)acrylate or 4-hydroxybutyl (meth)acrylate glycidyl ether.

上記環状エーテル基(上記エポキシ基を除く)を有する重合性化合物としては、(3−エチルオキセタン−3−イル)メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、及び環状トリメチロールプロパンホルマール(メタ)アクリレート等が挙げられる。上記環状エーテル基(上記エポキシ基を除く)を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having the cyclic ether group (excluding the epoxy group) include (3-ethyloxetan-3-yl)methyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and cyclic trimethylolpropane formal ( Examples thereof include (meth)acrylate. As the polymerizable compound having a cyclic ether group (excluding the epoxy group), only one type may be used, or two or more types may be used in combination.

上記環状エーテル基(上記エポキシ基を除く)を有する重合性化合物は、(3−エチルオキセタン−3−イル)メチル(メタ)アクリレートであることが好ましい。 The polymerizable compound having a cyclic ether group (excluding the epoxy group) is preferably (3-ethyloxetan-3-yl)methyl(meth)acrylate.

上記イソシアネート基を有する重合性化合物としては、2−(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリル酸2−(0−[1’−メチルプロピリデンアミノ]カルボキシアミノ)エチル、2−[(3,5−ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート、2−(2−(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2−プロピレンイソシアネート、1−フェニル−2−プロピレンイソシアネート、4,4−ジメチルペンテン−5−イソシアネート、2,4,4−トリメチルペンテン−5−イソシアネート、3,3−ジメチルペンテン−5−イソシアネート、2−アリル−2−イソシアネートメチル−マロン酸ジエチルエステル、1−フェニル−3−メチル−3−ブテンイソシアネート、4−ビニルベンゼンイソシアネート、1−イソシアネートメチル−4−ビニル−ベンゼン、及び1,1−(ビスアクリロイルオキシメチル)エチルイソシアネート等が挙げられる。上記イソシアネート基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having an isocyanate group include 2-(meth)acryloyloxyethyl isocyanate, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl (meth)acrylate, and 2-[(3 ,5-Dimethylpyrazolyl)carbonylamino]ethyl(meth)acrylate, 2-(2-(meth)acryloyloxyethyloxy)ethyl isocyanate, 2-propylene isocyanate, 1-phenyl-2-propylene isocyanate, 4,4-dimethyl Pentene-5-isocyanate, 2,4,4-trimethylpentene-5-isocyanate, 3,3-dimethylpentene-5-isocyanate, 2-allyl-2-isocyanate methyl-malonic acid diethyl ester, 1-phenyl-3- Methyl-3-butene isocyanate, 4-vinylbenzene isocyanate, 1-isocyanate methyl-4-vinyl-benzene, 1,1-(bisacryloyloxymethyl)ethyl isocyanate and the like can be mentioned. As the polymerizable compound having an isocyanate group, only one type may be used, or two or more types may be used in combination.

上記イソシアネート基を有する重合性化合物は、2−(メタ)アクリロイルオキシエチルイソシアネート、又は2−(2−(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネートであることが好ましい。 The polymerizable compound having an isocyanate group is preferably 2-(meth)acryloyloxyethyl isocyanate or 2-(2-(meth)acryloyloxyethyloxy)ethyl isocyanate.

上記アルデヒド基を有する重合性化合物としては、アクロレイン等が挙げられる。 Examples of the polymerizable compound having an aldehyde group include acrolein.

上記ニトリル基を有する重合性化合物としては、(メタ)アクリロニトリル等が挙げられる。 Examples of the polymerizable compound having a nitrile group include (meth)acrylonitrile.

上記第2の反応性官能基は、上記第1の反応性官能基とは異なる。上記第2の反応性官能基は、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基であることが好ましく、アミド基、カルボキシル基又はアミノ基であることがより好ましく、アミド基又はカルボキシル基であることがさらに好ましい。上記第2の反応性官能基が、上述した好ましい官能基である場合には、絶縁部付き導電性粒子を用いて電極間を電気的に接続した場合に、絶縁信頼性をより一層効果的に高めることができる。 The second reactive functional group is different from the first reactive functional group. The second reactive functional group is preferably an amide group, a hydroxyl group, a carboxyl group, an imide group or an amino group, more preferably an amide group, a carboxyl group or an amino group, and an amide group or a carboxyl group. It is more preferable that there is. In the case where the second reactive functional group is the above-mentioned preferable functional group, insulation reliability is further effectively improved when electrically connecting the electrodes using the conductive particles with an insulating portion. Can be increased.

上記アミド基を有する重合性化合物としては、(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、及びN,N−置換(メタ)アクリルアミド等が挙げられる。上記N−置換(メタ)アクリルアミドは特に限定されない。上記N−置換(メタ)アクリルアミドとしては、N−イソプロピル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−エトキシメチル(メタ)アクリルアミド、N−プロポキシメチル(メタ)アクリルアミド、N−イソプロポキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N−イソブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、及びN,N−ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。上記N,N−置換(メタ)アクリルアミドは特に限定されない。上記N,N−置換(メタ)アクリルアミドとしては、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、及び(メタ)アクリロイルモルホリン等が挙げられる。上記アミド基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having an amide group include (meth)acrylamide, N-substituted (meth)acrylamide, and N,N-substituted (meth)acrylamide. The N-substituted (meth)acrylamide is not particularly limited. As the N-substituted (meth)acrylamide, N-isopropyl(meth)acrylamide, N-methylol(meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, N-methoxymethyl(meth)acrylamide, N -Ethoxymethyl (meth)acrylamide, N-propoxymethyl (meth)acrylamide, N-isopropoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N-isobutoxymethyl (meth)acrylamide, diacetone (meth ) Acrylamide, N,N-dimethylaminopropyl (meth)acrylamide and the like. The N,N-substituted (meth)acrylamide is not particularly limited. Examples of the N,N-substituted (meth)acrylamide include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and (meth)acryloylmorpholine. As the polymerizable compound having an amide group, only one kind may be used, or two or more kinds may be used in combination.

上記アミド基を有する重合性化合物は、(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、又はN,N−ジメチル(メタ)アクリルアミドであることが好ましく、(メタ)アクリルアミドであることがより好ましい。 The polymerizable compound having an amide group is preferably (meth)acrylamide, N-methoxymethyl(meth)acrylamide, or N,N-dimethyl(meth)acrylamide, more preferably (meth)acrylamide. ..

上記水酸基を有する重合性化合物としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレート、10−ヒドロキシデシル(メタ)アクリレート、12−ヒドロキシラウリル(メタ)アクリレート、(4−ヒドロキシメチルシクロへキシル)メチルアクリレート、ビニルアルコール、アリルアルコール、2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリセリン(メタ)アクリレート、及び2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート等が挙げられる。上記水酸基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl. (Meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethylcyclohexyl) Methyl acrylate, vinyl alcohol, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, pentaerythritol tri(meth)acrylate, pentaerythritol di(meth)acrylate monostearate, isocyanuric acid ethylene oxide modified diester Examples thereof include (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, glycerin (meth)acrylate, and 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate. As the polymerizable compound having a hydroxyl group, only one type may be used, or two or more types may be used in combination.

上記水酸基を有する重合性化合物は、2−ヒドロキシエチル(メタ)アクリレート、又は2−ヒドロキシブチル(メタ)アクリレートであることが好ましい。 The polymerizable compound having a hydroxyl group is preferably 2-hydroxyethyl (meth)acrylate or 2-hydroxybutyl (meth)acrylate.

上記カルボキシル基を有する重合性化合物としては、(メタ)アクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、コハク酸、フマル酸、シトラコン酸等の不飽和ジカルボン酸、及びこれらの塩や無水物等が挙げられる。上記カルボキシル基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having a carboxyl group include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid and cinnamic acid, unsaturated dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, fumaric acid and citraconic acid. Examples thereof include acids, their salts and anhydrides. As the polymerizable compound having a carboxyl group, only one type may be used, or two or more types may be used in combination.

上記カルボキシル基を有する重合性化合物は、(メタ)アクリル酸であることが好ましい。 The polymerizable compound having a carboxyl group is preferably (meth)acrylic acid.

上記イミド基を有する重合性化合物としては、イミド(メタ)アクリレート、及びマレイミド等が挙げられる。上記イミド基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having an imide group include imide (meth)acrylate and maleimide. As the polymerizable compound having an imide group, only one type may be used, or two or more types may be used in combination.

上記イミド基を有する重合性化合物は、イミド(メタ)アクリレートであることが好ましい。 The polymerizable compound having an imide group is preferably imide (meth)acrylate.

上記アミノ基を有する重合性化合物としては、N,N−ジメチルアミノエチル(メタ)アクリレート、及びN,N−ジメチルアミノプロピルメタクリレート等が挙げられる。上記アミノ基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the polymerizable compound having an amino group include N,N-dimethylaminoethyl (meth)acrylate and N,N-dimethylaminopropyl methacrylate. As the polymerizable compound having an amino group, only one type may be used, or two or more types may be used in combination.

上記アミノ基を有する重合性化合物は、N,N−ジメチルアミノエチル(メタ)アクリレートであることが好ましい。 The polymerizable compound having an amino group is preferably N,N-dimethylaminoethyl(meth)acrylate.

本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。ここで、単独重合体のガラス転移温度が100℃未満である重合性化合物における単独重合体とは、重合性化合物を単独重合させた単独重合体を意味する。 In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. Here, the homopolymer in the polymerizable compound whose glass transition temperature of the homopolymer is lower than 100° C. means a homopolymer obtained by homopolymerizing the polymerizable compound.

外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記単独重合体のガラス転移温度(Tg(H))は、100℃未満であることが好ましく、90℃以下であることがより好ましく、70℃以下であることがさらに好ましい。また、隣り合う絶縁部同士が融着し、絶縁部付き導電性粒子同士の凝集をより一層効果的に抑制する観点からは、上記単独重合体のガラス転移温度は、0℃以上であることが好ましく、20℃以上であることがより好ましい。 The glass transition temperature (Tg(H)) of the above homopolymer is less than 100° C. from the viewpoint of more effectively enhancing the conduction reliability and the insulation reliability even when external vibration or shock is applied. Is preferably 90° C. or lower, more preferably 70° C. or lower. Further, from the viewpoint that the adjacent insulating portions are fused and the aggregation of the conductive particles with the insulating portion is suppressed more effectively, the glass transition temperature of the homopolymer is 0° C. or higher. It is preferably 20° C. or higher.

上記単独重合体を得る重合において、重合方法は特に限定されない。上記重合性化合物を、公知の方法により単独重合させることで、上記単独重合体を得ることができる。この方法としては、例えば、すべての上記重合性化合物を一度に重合させてもよく、上記重合性化合物を逐次的に加えて重合させてもよい。 In the polymerization for obtaining the homopolymer, the polymerization method is not particularly limited. The homopolymer can be obtained by homopolymerizing the polymerizable compound by a known method. As this method, for example, all the above-mentioned polymerizable compounds may be polymerized at once, or the above-mentioned polymerizable compounds may be sequentially added and polymerized.

上記ガラス転移温度(Tg(H))は、JIS−K7121に準拠して、示差走査熱量計を用いて、昇温速度10℃/分の条件で測定することができる。上記示差走査熱量計としては、日立ハイテクサイエンス社製「DSC7020」等が挙げられる。 The glass transition temperature (Tg(H)) can be measured according to JIS-K7121 using a differential scanning calorimeter at a heating rate of 10° C./min. Examples of the differential scanning calorimeter include "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd.

上記重合性化合物としては、イソボルニルアクリレート(Tg(H):92℃)、t−ブチルアクリレート(Tg(H):14℃)、ステアリルアクリレート(Tg(H):30℃)、シクロヘキシルアクリレート(Tg(H):15℃)、2−ヒドロキシ−3−フェノキシプロピルアクリレート(Tg(H):17℃)、ジシクロペンテニルオキシエチルアクリレート(Tg(H):15℃)、及び環状トリメチロールプロパンホルマールアクリレート(Tg(H):27℃)等のアクリレート化合物;エチルメタクリレート(Tg(H):65℃)、n−ブチルメタクリレート(Tg(H):20℃)、イソブチルメタクリレート(Tg(H):48℃)、n−ステアリルメタクリレート(Tg(H):38℃)、シクロヘキシルメタクリレート(Tg(H):66℃)、テトラヒドロフルフリルメタクリレート(Tg(H):60℃)、ベンジルメタクリレート(Tg(H):54℃)、2−ヒドロキシエチルメタクリレート(Tg(H):55℃)、2−ヒドロキシプロピルメタクリレート(Tg(H):26℃)、ジメチルアミノエチルメタクリレート(Tg(H):18℃)、ジエチルアミノエチルメタクリレート(Tg(H):20℃)、グリシジルメタクリレート(Tg(H):46℃)、ジシクロペンテニルオキシエチルメタクリレート(Tg(H):50℃)、フェノキシエチルメタクリレート(Tg(H):36℃)、フタル酸2−メタクリロイルオキシエチル(Tg(H):75℃)、及びヘキサヒドロフタル酸2−メタクリロイルオキシエチル(Tg(H):70℃)等のメタクリレート化合物;酢酸ビニル(Tg(H):28℃)、ピバリン酸ビニル(Tg(H):86℃)、及びモノクロロ酢酸ビニル(Tg(H):35℃)等の酸ビニルエステル化合物;塩化ビニル(Tg(H):87℃)、及びフッ化ビニル(Tg(H):35℃)等のハロゲン含有単量体等が挙げられる。 Examples of the polymerizable compound include isobornyl acrylate (Tg(H): 92°C), t-butyl acrylate (Tg(H): 14°C), stearyl acrylate (Tg(H): 30°C), cyclohexyl acrylate ( Tg(H):15° C.), 2-hydroxy-3-phenoxypropyl acrylate (Tg(H):17° C.), dicyclopentenyloxyethyl acrylate (Tg(H):15° C.), and cyclic trimethylolpropane formal. Acrylate compounds such as acrylate (Tg(H): 27° C.); ethyl methacrylate (Tg(H): 65° C.), n-butyl methacrylate (Tg(H): 20° C.), isobutyl methacrylate (Tg(H): 48) C.), n-stearyl methacrylate (Tg(H): 38.degree. C.), cyclohexyl methacrylate (Tg(H): 66.degree. C.), tetrahydrofurfuryl methacrylate (Tg(H): 60.degree. C.), benzyl methacrylate (Tg(H). : 54° C.), 2-hydroxyethyl methacrylate (Tg(H): 55° C.), 2-hydroxypropyl methacrylate (Tg(H): 26° C.), dimethylaminoethyl methacrylate (Tg(H): 18° C.), diethylamino Ethyl methacrylate (Tg(H): 20° C.), glycidyl methacrylate (Tg(H): 46° C.), dicyclopentenyloxyethyl methacrylate (Tg(H): 50° C.), phenoxyethyl methacrylate (Tg(H): 36) C), 2-methacryloyloxyethyl phthalate (Tg(H): 75° C.), and 2-methacryloyloxyethyl hexahydrophthalate (Tg(H): 70° C.) and other methacrylate compounds; vinyl acetate (Tg(H) ): 28° C.), vinyl pivalate (Tg(H): 86° C.), and vinyl chloride monoesters (Tg(H): 35° C.); vinyl chloride (Tg(H): 87° C.) , And halogen-containing monomers such as vinyl fluoride (Tg(H): 35° C.).

上記重合性化合物は、以下の化合物Aであることが好ましく、以下の化合物Bであることがより好ましい。上記化合物Aとしては、ステアリルアクリレート(Tg(H):30℃)、環状トリメチロールプロパンホルマールアクリレート(Tg(H):27℃)、エチルメタクリレート(Tg(H):65℃)、n−ブチルメタクリレート(Tg(H):20℃)、イソブチルメタクリレート(Tg(H):48℃)、n−ステアリルメタクリレート(Tg(H):38℃)、シクロヘキシルメタクリレート(Tg(H):66℃)、テトラヒドロフルフリルメタクリレート(Tg(H):60℃)、ベンジルメタクリレート(Tg(H):54℃)、2−ヒドロキシエチルメタクリレート(Tg(H):55℃)、2−ヒドロキシプロピルメタクリレート(Tg(H):26℃)、ジエチルアミノエチルメタクリレート(Tg(H):20℃)、グリシジルメタクリレート(Tg(H):46℃)、ジシクロペンテニルオキシエチルメタクリレート(Tg(H):50℃)、フェノキシエチルメタクリレート(Tg(H):36℃)、ヘキサヒドロフタル酸2−メタクリロイルオキシエチル(Tg(H):70℃)、酢酸ビニル(Tg(H):28℃)、モノクロロ酢酸ビニル(Tg(H):35℃)、及びフッ化ビニル(Tg(H):35℃)が挙げられる。上記化合物Bとしては、エチルメタクリレート(Tg(H):65℃)、イソブチルメタクリレート(Tg(H):48℃)、シクロヘキシルメタクリレート(Tg(H):66℃)、テトラヒドロフルフリルメタクリレート(Tg(H):60℃)、ベンジルメタクリレート(Tg(H):54℃)、2−ヒドロキシエチルメタクリレート(Tg(H):55℃)、グリシジルメタクリレート(Tg(H):46℃)、及びジシクロペンテニルオキシエチルメタクリレート(Tg(H):50℃)が挙げられる。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。上記化合物Bは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The polymerizable compound is preferably the following compound A, more preferably the following compound B. Examples of the compound A include stearyl acrylate (Tg(H): 30° C.), cyclic trimethylolpropane formal acrylate (Tg(H): 27° C.), ethyl methacrylate (Tg(H): 65° C.), n-butyl methacrylate. (Tg(H): 20° C.), isobutyl methacrylate (Tg(H): 48° C.), n-stearyl methacrylate (Tg(H): 38° C.), cyclohexyl methacrylate (Tg(H): 66° C.), tetrahydroflu Furyl methacrylate (Tg(H): 60° C.), benzyl methacrylate (Tg(H): 54° C.), 2-hydroxyethyl methacrylate (Tg(H): 55° C.), 2-hydroxypropyl methacrylate (Tg(H): 26° C.), diethylaminoethyl methacrylate (Tg(H): 20° C.), glycidyl methacrylate (Tg(H): 46° C.), dicyclopentenyloxyethyl methacrylate (Tg(H): 50° C.), phenoxyethyl methacrylate (Tg (H): 36° C., 2-methacryloyloxyethyl hexahydrophthalate (Tg(H): 70° C.), vinyl acetate (Tg(H): 28° C.), monochlorovinyl acetate (Tg(H): 35° C.) ), and vinyl fluoride (Tg(H): 35° C.). Examples of the compound B include ethyl methacrylate (Tg(H):65° C.), isobutyl methacrylate (Tg(H):48° C.), cyclohexyl methacrylate (Tg(H):66° C.), tetrahydrofurfuryl methacrylate (Tg(H) ): 60° C.), benzyl methacrylate (Tg(H): 54° C.), 2-hydroxyethyl methacrylate (Tg(H): 55° C.), glycidyl methacrylate (Tg(H): 46° C.), and dicyclopentenyloxy. Ethyl methacrylate (Tg(H): 50° C.) may be mentioned. As for the said compound A, only 1 type may be used and 2 or more types may be used together. As for the said compound B, only 1 type may be used and 2 or more types may be used together.

本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、架橋剤を含まず、かつ、上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む。上記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を20重量%以上含むことが好ましく、30重量%以上含むことがより好ましい。上記単独重合体のガラス転移温度が100℃未満である重合性化合物の含有量が、上記下限以上であると、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。上記単独重合体のガラス転移温度が100℃未満である重合性化合物の含有量の上限は特に限定されない。上記単独重合体のガラス転移温度が100℃未満である重合性化合物の含有量は、90重量%以下であってもよい。上記単独重合体のガラス転移温度が100℃未満である重合性化合物の含有量が、上記上限以下であると、絶縁部の架橋度を高めることができ、耐溶剤性をより一層高めることができる。本発明では、絶縁部に関して、架橋性単量体(架橋剤)が用いられておらず、かつ、特定の重合性化合物が用いられているので、比較的柔軟な絶縁部を形成することができる。このため、本発明に係る絶縁部付き導電性粒子を含む異方性導電材料を用いて接続構造体を作製すると、絶縁部が比較的柔軟であるため、落下等による外部からの振動や衝撃を緩和することができ、接続部の耐衝撃性を効果的に高めることができる。結果として、落下等による外部からの振動や衝撃が付与された場合であっても、接続部におけるクラックや剥離等の発生を効果的に防止することができ、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。 In the electrically conductive particles with an insulating portion according to the present invention, the polymerizable component does not contain a crosslinking agent, and the polymerizable component is 100% by weight of the polymerizable component, the glass transition temperature of the homopolymer is It contains 10% by weight or more of a polymerizable compound having a temperature of less than 100°C. The polymerizable component preferably contains 20% by weight or more, more preferably 30% by weight or more, of a polymerizable compound having a homopolymer glass transition temperature of less than 100° C. in 100% by weight of the polymerizable component. preferable. When the content of the polymerizable compound in which the glass transition temperature of the homopolymer is less than 100° C. is equal to or more than the above lower limit, conduction reliability and insulation reliability are further improved even when external vibration or shock is applied. It can be increased more effectively. The upper limit of the content of the polymerizable compound whose glass transition temperature of the homopolymer is lower than 100° C. is not particularly limited. The content of the polymerizable compound having a glass transition temperature of less than 100° C. in the homopolymer may be 90% by weight or less. When the content of the polymerizable compound having a glass transition temperature of the homopolymer of less than 100° C. is not more than the above upper limit, the degree of crosslinking of the insulating portion can be increased and the solvent resistance can be further enhanced. .. In the present invention, a crosslinkable monomer (crosslinking agent) is not used for the insulating part, and a specific polymerizable compound is used, so that a relatively flexible insulating part can be formed. .. Therefore, when a connection structure is manufactured using an anisotropic conductive material containing the conductive particles with an insulating portion according to the present invention, since the insulating portion is relatively flexible, it is not subject to external vibration or impact due to falling or the like. The impact resistance of the connecting portion can be effectively increased. As a result, it is possible to effectively prevent the occurrence of cracks or peeling at the connection portion even when external vibration or impact is applied due to a drop or the like, and between the upper and lower electrodes to be connected. Conduction reliability and insulation reliability between laterally adjacent electrodes that must not be connected can be effectively improved.

なお、絶縁部付き導電性粒子において、上記絶縁部の材料である上記重合性成分に含まれる重合性化合物等の種類は以下の手順に従って特定することができる。絶縁部付き導電性粒子をメタノールに分散させた後、超音波ホモジナイザー(三井電気精機社製「UX−050」)にて30分間振動を加える。その後、遠心分離を行い、絶縁部と導電性粒子とを分離する。分離した絶縁部を含む溶液を濃縮し、試料サンプルを得る。得られた試料サンプルについて、GC−MS及びNMRを用いて絶縁部の構成成分分析を行うことで、上記重合性成分に含まれる重合性化合物等の種類を特定することができる。また、特定した重合性化合物の単量体の単独重合体を作製することで、単独重合体のガラス転移温度を測定することができる。 In addition, in the conductive particles with an insulating portion, the type of the polymerizable compound or the like contained in the polymerizable component that is the material of the insulating portion can be specified according to the following procedure. After dispersing the electrically conductive particles with an insulating portion in methanol, vibration is applied for 30 minutes with an ultrasonic homogenizer (“UX-050” manufactured by Mitsui Electric Seiki Co., Ltd.). Then, centrifugation is performed to separate the insulating part and the conductive particles. The solution containing the separated insulating part is concentrated to obtain a sample sample. The kind of the polymerizable compound or the like contained in the polymerizable component can be specified by analyzing the constituent components of the insulating portion of the obtained sample sample using GC-MS and NMR. Further, the glass transition temperature of the homopolymer can be measured by preparing a homopolymer of the specified polymerizable compound monomer.

本発明に係る絶縁部付き導電性粒子では、上記重合性成分が、第3の重合性化合物を含んでいてもよい。上記第3の重合性化合物は、上記第1の反応性官能基を有する重合性化合物(第1の重合性化合物)に相当せず、かつ上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物(第2の重合性化合物)に相当しない重合性化合物である。上記重合性成分が上記第3の重合性化合物を含む場合に、例えば、上記第1の重合性化合物の単独重合体のガラス転移温度が100℃未満であるか、上記第2の重合性化合物の単独重合体のガラス転移温度が100℃未満であるか、又は、上記第3の重合性化合物の単独重合体のガラス転移温度が100℃未満である。上記第3の重合性化合物の単独重合体のガラス転移温度は、100℃未満であることが好ましい。 In the conductive particle with an insulating portion according to the present invention, the polymerizable component may include a third polymerizable compound. The third polymerizable compound does not correspond to the polymerizable compound having the first reactive functional group (first polymerizable compound) and is different from the first reactive functional group in the second reactive compound. The polymerizable compound does not correspond to the polymerizable compound having a reactive functional group (second polymerizable compound). When the polymerizable component contains the third polymerizable compound, for example, the homopolymer of the first polymerizable compound has a glass transition temperature of less than 100° C. or the second polymerizable compound of the second polymerizable compound. The homopolymer has a glass transition temperature of less than 100°C, or the homopolymer of the third polymerizable compound has a glass transition temperature of less than 100°C. The glass transition temperature of the homopolymer of the third polymerizable compound is preferably less than 100°C.

本発明に係る絶縁部付き導電性粒子では、下記式(1)により求められる上記絶縁部の架橋度は、10以上であることが好ましく、20以上であることがより好ましい。上記絶縁部の架橋度が、上記下限以上であると、絶縁部付き導電性粒子を用いて電極間を電気的に接続した場合に、絶縁信頼性をより一層効果的に高めることができる。 In the electrically conductive particles with an insulating part according to the present invention, the degree of crosslinking of the insulating part, which is determined by the following formula (1), is preferably 10 or more, and more preferably 20 or more. When the degree of cross-linking of the insulating portion is equal to or more than the lower limit, the insulation reliability can be more effectively enhanced when the electrodes are electrically connected using the electrically conductive particles with the insulating portion.

架橋度=[(A/B)×100] 式(1) Crosslinking degree=[(A/B)×100] Formula (1)

上記式(1)中、Aは上記第1の反応性官能基を有する重合性化合物及び上記第2の反応性官能基を有する重合性化合物の合計のモル数であり、Bは上記重合性化合物の合計のモル数である。 In the formula (1), A is the total number of moles of the polymerizable compound having the first reactive functional group and the polymerizable compound having the second reactive functional group, and B is the polymerizable compound. Is the total number of moles of.

本発明に係る絶縁部付き導電性粒子では、上記重合体が上記第1の反応性官能基と上記第2の反応性官能基とを有するという構成(第1の構成)を備えるか、又は、上記重合体が上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含むという構成(第2の構成)を備える。 In the conductive particle with an insulating portion according to the present invention, the polymer has a configuration (first configuration) in which the polymer has the first reactive functional group and the second reactive functional group, or A configuration (second configuration) in which the polymer includes a structure in which the first reactive functional group and the second reactive functional group react with each other is provided.

本発明に係る絶縁部付き導電性粒子が上記第1の構成を備える場合には、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とを有しており、上記第1の反応性官能基と上記第2の反応性官能基とが反応していない。本発明に係る絶縁部付き導電性粒子が上記第1の構成を備える場合には、上記第1の反応性官能基と上記第2の反応性官能基とが反応していないので、絶縁部の架橋度が低く、柔軟性を有しており、絶縁部と導電性粒子の表面との密着性を高めることができる。 When the electrically conductive particles with an insulating portion according to the present invention have the first configuration, the polymer has the first reactive functional group and the second reactive functional group. The first reactive functional group and the second reactive functional group do not react with each other. When the electrically conductive particles with an insulating portion according to the present invention have the first configuration, the first reactive functional group and the second reactive functional group do not react with each other. It has a low degree of cross-linking and flexibility, and can enhance the adhesiveness between the insulating portion and the surface of the conductive particles.

本発明に係る絶縁部付き導電性粒子が上記第1の構成を備える場合には、上記第1の反応性官能基と上記第2の反応性官能基とは、刺激により反応可能な性質を有することが好ましい。上記刺激は、加熱又は光の照射であることが好ましく、加熱であることがより好ましい。 When the electrically conductive particles with an insulating portion according to the present invention have the first configuration, the first reactive functional group and the second reactive functional group have a property capable of reacting by stimulation. It is preferable. The stimulus is preferably heating or light irradiation, and more preferably heating.

本発明に係る絶縁部付き導電性粒子が上記第2の構成を備える場合には、上記重合体が、上記第1の反応性官能基と上記第2の反応性官能基とが反応した構造を含んでおり、上記第1の反応性官能基と上記第2の反応性官能基とが反応している。本発明に係る絶縁部付き導電性粒子が上記第2の構成を備える場合には、上記第1の反応性官能基と上記第2の反応性官能基とが反応しているので、絶縁部の架橋度を高めることができ、絶縁部の耐溶剤性を高めることができる。 When the electrically conductive particles with an insulating portion according to the present invention have the second configuration, the polymer has a structure in which the first reactive functional group and the second reactive functional group react with each other. The first reactive functional group and the second reactive functional group have been reacted with each other. When the electrically conductive particles with an insulating portion according to the present invention have the second configuration, the first reactive functional group and the second reactive functional group react with each other, so that The degree of crosslinking can be increased, and the solvent resistance of the insulating portion can be increased.

本発明に係る絶縁部付き導電性粒子では、上記第1の構成を備える絶縁部付き導電性粒子を加熱又は光照射することにより、上記第2の構成を備える絶縁部付き導電性粒子を得ることが好ましい。上記第2の構成を備える絶縁部付き導電性粒子は、上記第1の構成を備える絶縁部付き導電性粒子を、加熱することにより得ることがより好ましい。上記絶縁部付き導電性粒子が、上記の好ましい態様を満足することで、絶縁部に関して、導電性粒子の表面への密着性と耐溶剤性との双方を両立させることができる。結果として、絶縁部付き導電性粒子を用いて電極間を電気的に接続した場合に、絶縁信頼性をより一層効果的に高めることができる。 In the conductive particles with an insulating part according to the present invention, the conductive particles with an insulating part having the first structure are heated or irradiated with light to obtain conductive particles with an insulating part having the second structure. Is preferred. It is more preferable that the insulating-part-containing conductive particles having the second structure be obtained by heating the insulating-part-containing conductive particles having the first structure. When the electrically conductive particles with an insulating part satisfy the above-described preferred embodiments, both the adhesion of the insulating part to the surface of the electrically conductive particles and the solvent resistance can be made compatible with each other. As a result, when the electrodes are electrically connected using the conductive particles with an insulating portion, the insulation reliability can be more effectively enhanced.

上記導電部の表面上に上記絶縁部を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。絶縁部が脱離し難いことから、上記導電部の表面に、化学結合を介して上記絶縁部を配置する方法が好ましい。本発明に係る絶縁部付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第1の反応性官能基を有する重合性化合物とが化学結合していることが好ましく、上記導電部の表面に存在する水酸基等と、上記第2の反応性官能基を有する重合性化合物とが化学結合していることが好ましい。本発明に係る絶縁部付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第1の反応性官能基とが化学結合していてもよく、上記導電部の表面に存在する水酸基等と、上記第1の反応性官能基とが化学結合していなくてもよい。本発明に係る絶縁部付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第2の反応性官能基とが化学結合していてもよく、上記導電部の表面に存在する水酸基等と、上記第2の反応性官能基とが化学結合していなくてもよい。 Examples of the method of disposing the insulating portion on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping method and vacuum deposition method. Since it is difficult to detach the insulating portion, it is preferable to dispose the insulating portion on the surface of the conductive portion through a chemical bond. In the conductive particles with an insulating part according to the present invention, it is preferable that the hydroxyl group and the like present on the surface of the conductive part and the polymerizable compound having the first reactive functional group are chemically bonded, It is preferable that the hydroxyl group and the like present on the surface of the part are chemically bonded to the polymerizable compound having the second reactive functional group. In the electrically conductive particles with an insulating portion according to the present invention, a hydroxyl group or the like present on the surface of the electrically conductive portion may be chemically bonded to the first reactive functional group, and is present on the surface of the electrically conductive portion. The hydroxyl group and the like may not be chemically bonded to the first reactive functional group. In the conductive particles with an insulating portion according to the present invention, the hydroxyl group or the like existing on the surface of the conductive portion and the second reactive functional group may be chemically bonded to each other, and are present on the surface of the conductive portion. The hydroxyl group and the like may not be chemically bonded to the second reactive functional group.

上記導電部の外表面、及び上記絶縁部の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁部の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の外表面の官能基と化学結合していても構わない。 The outer surface of the conductive portion and the outer surface of the insulating portion may be coated with a compound having a reactive functional group. The outer surface of the conductive part and the outer surface of the insulating part may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group to the outer surface of the conductive portion, the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating particle via a polymer electrolyte such as polyethyleneimine.

上記絶縁部が絶縁性粒子である場合に、上記絶縁性粒子の粒子径は、上記絶縁部付き導電性粒子の粒子径及び上記絶縁部付き導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは200nm以上、特に好ましくは300nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。上記絶縁性粒子の粒子径が、上記下限以上であると、上記絶縁部付き導電性粒子がバインダー樹脂中に分散されたときに、複数の上記絶縁部付き導電性粒子における導電部同士が接触し難くなる。上記絶縁性粒子の粒子径が、上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating part is an insulating particle, the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle with the insulating part, the use of the conductive particle with the insulating part, and the like. The particle diameter of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 200 nm or more, particularly preferably 300 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, further preferably 1500 nm or less. It is particularly preferably 1000 nm or less. The particle diameter of the insulating particles is equal to or more than the lower limit, when the conductive particles with an insulating portion are dispersed in the binder resin, the conductive portions of the plurality of conductive particles with an insulating portion contact each other. It will be difficult. When the particle diameter of the insulating particles is not more than the upper limit, in connecting the electrodes, in order to eliminate the insulating particles between the electrodes and the conductive particles, it is not necessary to increase the pressure too high. No need to heat to high temperature.

上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。上記絶縁部付き導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the insulating particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the insulating particles is preferably obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope and calculating an average value. In the case of measuring the particle diameter of the insulating particles in the above-mentioned conductive particles with an insulating portion, for example, it can be measured as follows.

絶縁部付き導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した絶縁部付き導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、絶縁部付き導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、画像倍率5万倍に設定し、50個の絶縁部付き導電性粒子を無作為に選択し、各絶縁部付き導電性粒子の絶縁性粒子を観察する。各絶縁部付き導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。 The conductive particles with an insulating portion are added to "Technobit 4000" manufactured by Kulzer Co., Ltd. so that the content of the conductive particles is 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection. An ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) is used to cut a cross section of the conductive particles with an insulating portion so that the conductive particles dispersed with an insulating portion in the embedded resin for inspection pass through the vicinity of the center. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, and 50 conductive particles with insulating parts were randomly selected, and conductive particles with each insulating part were selected. Observe the insulating particles of. The particle size of the insulating particles in each conductive particle with an insulating part is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.

上記絶縁部が絶縁性粒子である場合に、上記導電性粒子の粒子径の、上記絶縁性粒子の粒子径に対する比(導電性粒子の粒子径/絶縁性粒子の粒子径)は、好ましくは3以上、より好ましくは5以上であり、好ましくは100以下、より好ましくは50以下である。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が、上記下限以上及び上記上限以下であると、外部から振動や衝撃が付与された場合でも、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が、上記下限以上及び上記上限以下であると、上記絶縁部付き導電性粒子がバインダー樹脂中に分散されたときに、複数の上記絶縁部付き導電性粒子における導電部同士が接触し難くなる。また、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating part is insulating particles, the ratio of the particle diameter of the conductive particles to the particle diameter of the insulating particles (particle diameter of conductive particles/particle diameter of insulating particles) is preferably 3 Or more, more preferably 5 or more, preferably 100 or less, more preferably 50 or less. When the ratio (particle diameter of conductive particles/particle diameter of insulating particles) is not less than the lower limit and not more than the upper limit, conduction reliability and insulation reliability are ensured even when external vibration or shock is applied. It can be enhanced more effectively. When the ratio (particle diameter of conductive particles/particle diameter of insulating particles) is equal to or more than the lower limit and equal to or less than the upper limit, when the electrically conductive particles with an insulating portion are dispersed in a binder resin, a plurality of It becomes difficult for the conductive parts of the conductive particles with insulating parts to come into contact with each other. Further, when connecting the electrodes, it is not necessary to raise the pressure too much and to heat to a high temperature in order to eliminate the insulating particles between the electrodes and the conductive particles.

上記絶縁部が絶縁性粒子である場合に、上記絶縁部付き導電性粒子は、粒子径の異なる2種以上の絶縁性粒子を併用してもよい。粒子径の異なる2種以上の絶縁性粒子を併用することにより、粒子径の大きい絶縁性粒子により被覆された隙間に、粒子径の小さい絶縁性粒子が入り込み、上記被覆率をより一層効果的に高めることができる。上記絶縁部として上記絶縁性粒子を用いる場合には、上記絶縁性粒子は、粒子径が0.1μm以上0.25μm未満の第1の絶縁性粒子と、粒子径が0.25μm以上0.8μm以下の第2の絶縁性粒子とを含むことが好ましい。上記第1の絶縁性粒子の粒度分布は、上記第2の絶縁性粒子の粒度分布と重複する部分がないことが好ましい。上記第1の絶縁性粒子の平均粒子径と上記第2の絶縁性粒子の平均粒子径とは、異なることが好ましい。 When the insulating part is an insulating particle, the conductive particle with an insulating part may be a combination of two or more kinds of insulating particles having different particle sizes. By using two or more kinds of insulating particles having different particle sizes in combination, the insulating particles having a small particle size enter the gap covered with the insulating particles having a large particle size, and the above-mentioned coverage rate is further improved. Can be increased. When the insulating particles are used as the insulating portion, the insulating particles include first insulating particles having a particle diameter of 0.1 μm or more and less than 0.25 μm and particle diameters of 0.25 μm or more and 0.8 μm. It is preferable to include the following second insulating particles. It is preferable that the particle size distribution of the first insulating particles does not overlap with the particle size distribution of the second insulating particles. The average particle size of the first insulating particles and the average particle size of the second insulating particles are preferably different.

上記絶縁部が絶縁性粒子である場合に、上記絶縁性粒子の粒子径の変動係数(CV値)は、20%以下であることが好ましい。上記絶縁性粒子の粒子径の変動係数が、上記上限以下であると、得られる絶縁部付き導電性粒子の絶縁性粒子の厚みがより一層均一となり、導電接続の際に均一に圧力をより一層容易に付与することができ、電極間の接続抵抗をより一層低くすることができる。 When the insulating portion is insulating particles, the coefficient of variation (CV value) of the particle diameter of the insulating particles is preferably 20% or less. If the coefficient of variation of the particle diameter of the insulating particles is equal to or less than the upper limit, the thickness of the insulating particles of the conductive particles with an insulating portion obtained is more uniform, and the pressure is evenly increased during conductive connection. It can be easily applied and the connection resistance between the electrodes can be further reduced.

上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.

CV値(%)=(ρ/Dn)×100
ρ:絶縁性粒子の粒子径の標準偏差
Dn:絶縁性粒子の粒子径の平均値
CV value (%)=(ρ/Dn)×100
ρ: Standard deviation of particle size of insulating particles Dn: Average value of particle size of insulating particles

上記絶縁部が絶縁性粒子である場合に、上記絶縁性粒子の形状は特に限定されない。上記絶縁性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 When the insulating part is an insulating particle, the shape of the insulating particle is not particularly limited. The insulating particles may have a spherical shape, a shape other than a spherical shape, or a flat shape.

上記絶縁部が絶縁層である場合に、上記絶縁層の厚みは、上記絶縁部付き導電性粒子の粒子径及び上記絶縁部付き導電性粒子の用途等によって適宜選択できる。上記絶縁層の厚みは、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは200nm以上、特に好ましくは300nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。上記絶縁層の厚みが、上記下限以上であると、上記絶縁部付き導電性粒子がバインダー樹脂中に分散されたときに、複数の上記絶縁部付き導電性粒子における導電部同士が接触し難くなる。上記絶縁層の厚みが、上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁層を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating part is an insulating layer, the thickness of the insulating layer can be appropriately selected depending on the particle size of the conductive particles with an insulating part, the use of the conductive particles with an insulating part, and the like. The thickness of the insulating layer is preferably 10 nm or more, more preferably 100 nm or more, further preferably 200 nm or more, particularly preferably 300 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, further preferably 1500 nm or less, particularly It is preferably 1000 nm or less. When the thickness of the insulating layer is equal to or more than the lower limit, when the insulating part-containing conductive particles are dispersed in the binder resin, it becomes difficult for the conductive parts of the plurality of insulating part-containing conductive particles to come into contact with each other. .. When the thickness of the insulating layer is less than or equal to the upper limit, when connecting the electrodes, in order to eliminate the insulating layer between the electrode and the conductive particles, it is not necessary to increase the pressure too high, high temperature No need to heat.

上記絶縁層の厚みは、絶縁部付き導電性粒子の断面を電子顕微鏡又は光学顕微鏡にて観察し、任意の50ヶ所の絶縁層の厚みを平均して算出することにより求めることが好ましい。上記絶縁部付き導電性粒子において、上記絶縁層の厚みを測定する場合には、例えば、以下のようにして測定できる。 The thickness of the insulating layer is preferably obtained by observing the cross section of the conductive particles with an insulating portion with an electron microscope or an optical microscope, and averaging the thicknesses of the insulating layers at arbitrary 50 places to calculate the thickness. In the case of measuring the thickness of the insulating layer in the conductive particle with an insulating portion, it can be measured as follows, for example.

絶縁部付き導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した絶縁部付き導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、絶縁部付き導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、画像倍率5万倍に設定し、絶縁部付き導電性粒子を無作為に選択し、絶縁部付き導電性粒子の絶縁層を観察する。任意の50ヶ所の絶縁層の厚みを計測し、それらを算術平均して絶縁層の厚みとする。 The conductive particles with an insulating portion are added to "Technobit 4000" manufactured by Kulzer Co., Ltd. so that the content of the conductive particles is 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection. An ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) is used to cut a cross section of the conductive particles with an insulating portion so that the conductive particles dispersed with an insulating portion in the embedded resin for inspection pass through the vicinity of the center. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, the conductive particles with insulating parts were randomly selected, and the insulating layer of the conductive particles with insulating parts was formed. Observe. The thickness of the insulating layer is measured at arbitrary 50 places, and the arithmetic mean of these is used as the thickness of the insulating layer.

(導電材料)
本発明に係る導電材料は、上述した絶縁部付き導電性粒子と、バインダー樹脂とを含む。上記絶縁部付き導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。上記導電材料では、上述した絶縁部付き導電性粒子が用いられているので、上記絶縁部付き導電性粒子をバインダー樹脂中に分散させる等の導電接続前に絶縁部付き導電性粒子の表面から絶縁部が意図せずに脱離することを防止でき、電極間の絶縁信頼性をより一層高めることができる。
(Conductive material)
The conductive material according to the present invention includes the above-mentioned conductive particles with an insulating portion and a binder resin. The conductive particles with an insulating portion are preferably used by being dispersed in a binder resin, and are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a conductive material for circuit connection. In the conductive material, since the conductive particles with the insulating portion described above is used, it is insulated from the surface of the conductive particles with the insulating portion before the conductive connection such as dispersing the conductive particles with the insulating portion in the binder resin. The parts can be prevented from being unintentionally detached, and the insulation reliability between the electrodes can be further enhanced.

上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。 The binder resin is not particularly limited. A known insulating resin is used as the binder resin. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.

上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. As the binder resin, only one kind may be used, or two or more kinds may be used in combination.

上記ビニル樹脂としては、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, and styrene-isoprene-styrene. Examples thereof include hydrogenated products of block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.

上記導電材料は、上記絶縁部付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 The conductive material may be, for example, a filler, an extender, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, or a heat stabilizer, in addition to the conductive particles with the insulating portion and the binder resin. , Light stabilizers, ultraviolet absorbers, lubricants, antistatic agents, flame retardants and other various additives.

上記バインダー樹脂中に上記絶縁部付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダー樹脂中に上記絶縁部付き導電性粒子を分散させる方法としては、以下の方法等が挙げられる。上記バインダー樹脂中に上記絶縁部付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記絶縁部付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記絶縁部付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 As a method for dispersing the electrically conductive particles with an insulating portion in the binder resin, a conventionally known dispersing method can be used and is not particularly limited. Examples of the method of dispersing the electrically conductive particles with an insulating portion in the binder resin include the following methods. A method in which the conductive particles with insulating parts are added to the binder resin and then kneaded and dispersed by a planetary mixer or the like. A method in which the conductive particles with an insulating portion are uniformly dispersed in water or an organic solvent using a homogenizer or the like, and then added to the binder resin and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water, an organic solvent or the like, and then the conductive particles with an insulating portion are added, and the mixture is kneaded and dispersed by a planetary mixer or the like.

上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (η25) at 25° C. of the conductive material is preferably 30 Pa·s or more, more preferably 50 Pa·s or more, preferably 400 Pa·s or less, more preferably 300 Pa·s or less. When the viscosity of the conductive material at 25° C. is equal to or higher than the lower limit and equal to or lower than the upper limit, insulation reliability between electrodes can be more effectively enhanced, and conduction reliability between electrodes is more effective. Can be increased to The above-mentioned viscosity (η25) can be appropriately adjusted depending on the type and amount of compounding ingredients.

上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured, for example, using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25° C. and 5 rpm.

本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste, a conductive film or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on a conductive film containing conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.

上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性をより一層高めることができる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is not less than the lower limit and not more than the upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further enhanced. You can

上記導電材料100重量%中、上記絶縁部付き導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記絶縁部付き導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。 In 100% by weight of the conductive material, the content of the conductive particles with an insulating part is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably Is 60% by weight or less, more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles with an insulating part is equal to or more than the lower limit and equal to or less than the upper limit, conduction reliability between electrodes and insulation reliability can be further improved.

(接続構造体)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材を接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した絶縁部付き導電性粒子であるか、又は上記絶縁部付き導電性粒子とバインダー樹脂とを含む導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記絶縁部付き導電性粒子における上記導電部により電気的に接続されている。
(Connection structure)
A connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, and the first connection target member, And a connecting portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection part is the above-mentioned conductive particles with an insulating part or a conductive material containing the conductive particles with an insulating part and a binder resin. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by the conductive part in the conductive particle with an insulating part.

上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記絶縁部付き導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより、導電接続する工程とを経て、得ることができる。上記熱圧着時に、上記絶縁部が上記絶縁部付き導電性粒子から脱離することが好ましい。 The connection structure has a step of arranging the conductive particles with an insulating portion or the conductive material between the first connection target member and the second connection target member, and thermocompression bonding so that the conductive structure is formed. It can be obtained through the step of connecting. At the time of the thermocompression bonding, it is preferable that the insulating portion is detached from the conductive particles with the insulating portion.

図5は、本発明の第1の実施形態に係る絶縁部付き導電性粒子を用いた接続構造体を模式的に示す断面図である。 FIG. 5: is sectional drawing which shows typically the connection structure using the electrically conductive particle with an insulation part which concerns on the 1st Embodiment of this invention.

図5に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82及び第2の接続対象部材83を接続している接続部84とを備える。接続部84は、絶縁部付き導電性粒子1を含む導電材料により形成されている。接続部84は、絶縁部付き導電性粒子1を複数含む導電材料を硬化させることにより形成されていることが好ましい。なお、図5では、絶縁部付き導電性粒子1は、図示の便宜上、略図的に示されている。絶縁部付き導電性粒子1にかえて、絶縁部付き導電性粒子21、41又は61を用いてもよい。 The connection structure 81 shown in FIG. 5 has a first connection target member 82, a second connection target member 83, and a connection portion connecting the first connection target member 82 and the second connection target member 83. And 84. The connecting portion 84 is formed of a conductive material containing the conductive particles 1 with an insulating portion. The connecting portion 84 is preferably formed by curing a conductive material containing a plurality of conductive particles 1 with an insulating portion. In addition, in FIG. 5, the conductive particles 1 with an insulating portion are schematically illustrated for convenience of illustration. Instead of the conductive particles 1 having an insulating portion, the conductive particles 21, 41 or 61 having an insulating portion may be used.

第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の絶縁部付き導電性粒子1における導電性粒子2により電気的に接続されている。従って、第1の接続対象部材82及び第2の接続対象部材83が絶縁部付き導電性粒子1における導電部により電気的に接続されている。 The first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface). The second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface). The 1st electrode 82a and the 2nd electrode 83a are electrically connected by the electroconductive particle 2 in the electroconductive particle 1 with one or several insulating part. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected to each other by the conductive portion of the conductive particle 1 with the insulating portion.

上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記熱圧着の圧力は好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記熱圧着の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記熱圧着の圧力及び温度が、上記下限以上及び上記上限以下であると、導電接続時に絶縁部付き導電性粒子の表面から絶縁部が容易に脱離でき、電極間の導通信頼性をより一層高めることができる。 The method for manufacturing the connection structure is not particularly limited. As an example of the method for manufacturing the connection structure, the conductive material is arranged between the first connection target member and the second connection target member to obtain a laminated body, and then the laminated body is heated and pressed. Methods and the like. The pressure for the thermocompression bonding is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, more preferably 70 MPa or less. The heating temperature of the thermocompression bonding is preferably 80° C. or higher, more preferably 100° C. or higher, preferably 140° C. or lower, more preferably 120° C. or lower. The pressure and temperature of the thermocompression bonding is not less than the above lower limit and not more than the above upper limit, the insulating portion can be easily detached from the surface of the conductive particles with the insulating portion during conductive connection, and the conduction reliability between the electrodes is further improved. Can be increased.

上記積層体を加熱及び加圧する際に、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁部を排除することができる。例えば、上記加熱及び加圧の際には、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁部が、上記絶縁部付き導電性粒子の表面から容易に脱離する。なお、上記加熱及び加圧の際には、上記絶縁部付き導電性粒子の表面から一部の上記絶縁部が脱離して、上記導電部の表面が部分的に露出することがある。上記導電部の表面が露出した部分が、上記第1の電極及び上記第2の電極に接触することにより、上記導電性粒子を介して第1の電極と第2の電極とを電気的に接続することができる。 When the laminated body is heated and pressed, the insulating portion existing between the conductive particles and the first electrode and the second electrode can be eliminated. For example, at the time of heating and pressurizing, the conductive particles and the insulating portion existing between the first electrode and the second electrode are the conductive particles with the insulating portion. Easily detached from the surface. During the heating and pressurization, a part of the insulating part may be detached from the surface of the conductive particle with the insulating part, and the surface of the conductive part may be partially exposed. The exposed portion of the surface of the conductive portion contacts the first electrode and the second electrode, thereby electrically connecting the first electrode and the second electrode through the conductive particles. can do.

上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specific examples of the first connection target member and the second connection target member include semiconductor chips, semiconductor packages, LED chips, LED packages, electronic components such as capacitors and diodes, and resin films, printed circuit boards, and flexible parts. Examples include electronic components such as printed circuit boards, flexible flat cables, rigid flexible substrates, circuit boards such as glass epoxy substrates and glass substrates. It is preferable that the first connection target member and the second connection target member are electronic components.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the member to be connected is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode formed of only aluminum or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

(実施例1)
(1)導電性粒子の作製
テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径3μm)を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(Example 1)
(1) Preparation of Conductive Particles Resin particles (particle diameter 3 μm) formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene were prepared. After 10 parts by weight of the base particles were dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of the palladium catalyst solution using an ultrasonic disperser, the solution was filtered to take out the base particles. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. After thoroughly washing the surface-activated substrate particles with water, the dispersion liquid was obtained by adding 500 parts by weight of distilled water and dispersing. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the above dispersion over 3 minutes to obtain a suspension containing base material particles to which the core substance was attached.

また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing 0.35 mol/L of nickel sulfate, 1.38 mol/L of dimethylamine borane and 0.5 mol/L of sodium citrate was prepared.

得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル−ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60° C., the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, the suspension is filtered to take out the particles, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 μm) on the surface of the base material particle, and to have a conductive portion on the surface. Conductive particles were obtained.

(2)絶縁部(絶縁性粒子)の作製
4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、200rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、蒸留水500mL、アシッドホスホオキシポリオキシエチレングリコールメタクリレート0.2重量部(0.5mmol)、2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.2重量部(0.5mmol)と、複数種の重合性化合物を含む重合性成分とを含む。上記重合性成分は、メタクリル酸メチル85重量部(0.85mol)、第1の反応性官能基を有する重合性化合物、及び第2の反応性官能基を有する重合性化合物を含む。上記重合性化合物として、メタクリル酸グリシジル7重量部(0.05mol)、メタクリルアミド4重量部(0.05mol)、及びメタクリル酸ベンジル9重量部(0.05mol)を含む。反応終了後、凍結乾燥して、メタクリルアミドに由来するアミド基、及びメタクリル酸グリシジルに由来するエポキシ基を表面に有する絶縁性粒子(粒子径300nm)を得た。
(2) Preparation of Insulating Part (Insulating Particles) A 1000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, a three-way cock, a condenser and a temperature probe was charged with the composition containing the following polymerizable compound. After that, the mixture was stirred at 200 rpm and polymerized at 50° C. for 5 hours in a nitrogen atmosphere. The composition is 500 mL of distilled water, 0.2 parts by weight of acid phosphooxypolyoxyethylene glycol methacrylate (0.5 mmol), 2,2'-azobis{2-[N-(2-carboxyethyl)amidino]propane}. It contains 0.2 parts by weight (0.5 mmol) and a polymerizable component containing a plurality of kinds of polymerizable compounds. The polymerizable component contains 85 parts by weight (0.85 mol) of methyl methacrylate, a polymerizable compound having a first reactive functional group, and a polymerizable compound having a second reactive functional group. As the polymerizable compound, 7 parts by weight (0.05 mol) of glycidyl methacrylate, 4 parts by weight (0.05 mol) of methacrylamide, and 9 parts by weight (0.05 mol) of benzyl methacrylate were included. After completion of the reaction, it was freeze-dried to obtain insulating particles (particle diameter 300 nm) having an amide group derived from methacrylamide and an epoxy group derived from glycidyl methacrylate on the surface.

(3)絶縁部(絶縁性粒子)付き導電性粒子の作製
上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。この絶縁部付き導電性粒子(A)では、絶縁部がアミド基とエポキシ基とを有する。
(3) Preparation of Conductive Particles with Insulating Part (Insulating Particles) The insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles. 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10% by weight aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtering with a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles (A) with insulating parts (insulating particles). In this electrically conductive particle (A) with an insulating part, the insulating part has an amide group and an epoxy group.

(4)導電材料(異方性導電ペースト)の作製
得られた絶縁部付き導電性粒子(A)7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI−60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(4) Production of conductive material (anisotropic conductive paste) 7 parts by weight of the conductive particles (A) thus obtained, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, A conductive material (anisotropic conductive paste) was obtained by mixing 30 parts by weight of a phenol novolac type epoxy resin and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.

(5)接続構造体の作製
L/Sが7μm/13μmであるCu電極パターン(第1の電極)が上面に形成されたガラス−エポキシ基板を用意した。また、L/Sが7μm/13μmであるAu電極パターン(第2の電極)が下面に形成されたポリイミド基板を用意した。
(5) Fabrication of Connection Structure A glass-epoxy substrate having a Cu electrode pattern (first electrode) having an L/S of 7 μm/13 μm formed on its upper surface was prepared. Further, a polyimide substrate having an Au electrode pattern (second electrode) having an L/S of 7 μm/13 μm formed on the lower surface was prepared.

上記ガラス−エポキシ基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記ポリイミド基板を、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が120℃となるようにヘッドの温度を調整しながら、ポリイミド基板の上面に加圧加熱ヘッドを載せ、50MPaの圧力をかけて異方性導電ペースト層を120℃で硬化させ、接続構造体を得た。 The obtained anisotropic conductive paste was applied on the glass-epoxy substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the polyimide substrate was laminated on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 120° C., a pressure heating head is placed on the upper surface of the polyimide substrate and a pressure of 50 MPa is applied to form the anisotropic conductive paste layer. It was cured at 120° C. to obtain a connection structure.

(実施例2)
絶縁部(絶縁性粒子)付き導電性粒子(A)を得た後、さらに、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)の表面のアミド基とエポキシ基とを反応させた絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。この絶縁部付き導電性粒子(B)は、絶縁部がアミド基とエポキシ基とが反応した構造を含む。得られた絶縁部付き導電性粒子(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 2)
After obtaining the conductive particles (A) with an insulating part (insulating particles), the conductive particles (A) are further heated at 90° C. for 2 hours to react the amide group and the epoxy group on the surface of the insulating part (insulating particles). Conductive particles (B) with insulating parts (insulating particles) were obtained. The electrically conductive particles (B) with an insulating portion include a structure in which the insulating portion reacts with an amide group and an epoxy group. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles (B) with an insulating portion were used.

(実施例3)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を75重量部(0.75mol)に変更した。また、メタクリル酸グリシジルの配合量を14重量部(0.1mol)に変更し、メタクリルアミドの配合量を9重量部(0.1mol)に変更した。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。この絶縁部付き導電性粒子(A)は、絶縁部がアミド基とエポキシ基とを有する。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)の表面のアミド基とエポキシ基とを反応させた絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。この絶縁部付き導電性粒子(B)は、絶縁部がアミド基とエポキシ基とが反応した構造を含む。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ得た。
(Example 3)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 75 parts by weight (0.75 mol) with respect to the polymerizable compound. The amount of glycidyl methacrylate was changed to 14 parts by weight (0.1 mol), and the amount of methacrylamide was changed to 9 parts by weight (0.1 mol). In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. In this conductive particle with an insulating part (A), the insulating part has an amide group and an epoxy group. In addition, the insulating part (insulating particles) obtained by heating the conductive particles (A) with an insulating part under the conditions of 90° C. and 2 hours to react the amide group and the epoxy group on the surface of the insulating part (insulating particles) ) Attached conductive particles (B) were obtained. The electrically conductive particles (B) with an insulating portion include a structure in which the insulating portion reacts with an amide group and an epoxy group. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(実施例4)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を60重量部(0.6mol)に変更した。さらに、メタクリル酸グリシジルの配合量を14重量部(0.1mol)に変更し、メタクリルアミドの配合量を9重量部(0.1mol)に変更し、メタクリル酸ベンジルの配合量を36重量部(0.2mol)に変更した。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Example 4)
During the production of the insulating part (insulating particles), the compounding amount of methyl methacrylate was changed to 60 parts by weight (0.6 mol) with respect to the polymerizable compound. Furthermore, the compounding amount of glycidyl methacrylate was changed to 14 parts by weight (0.1 mol), the compounding amount of methacrylamide was changed to 9 parts by weight (0.1 mol), and the compounding amount of benzyl methacrylate was 36 parts by weight ( 0.2 mol). In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. Further, the conductive particles (A) with an insulating part were heated at 90° C. for 2 hours to obtain conductive particles (B) with an insulating part (insulating particles). A conductive material and a connection structure were prepared in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(実施例5)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸ベンジル36重量部(0.2mol)を、メタクリル酸エチル23重量部(0.2mol)に変更した。上記の変更以外は、実施例4と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A),(B)、導電材料及び接続構造体をそれぞれ得た。
(Example 5)
At the time of producing the insulating part (insulating particles), 36 parts by weight (0.2 mol) of benzyl methacrylate was changed to 23 parts by weight (0.2 mol) of ethyl methacrylate in the polymerizable compound. In the same manner as in Example 4 except for the above changes, conductive particles (A) and (B) with an insulating portion (insulating particles), a conductive material and a connection structure were obtained.

(実施例6)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を50重量部(0.5mol)に変更した。さらに、メタクリル酸グリシジルの配合量を14重量部(0.1mol)に変更し、メタクリルアミドの配合量を9重量部(0.1mol)に変更し、メタクリル酸ベンジルの配合量を54重量部(0.3mol)に変更した。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Example 6)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 50 parts by weight (0.5 mol) with respect to the polymerizable compound. Furthermore, the compounding amount of glycidyl methacrylate was changed to 14 parts by weight (0.1 mol), the compounding amount of methacrylamide was changed to 9 parts by weight (0.1 mol), and the compounding amount of benzyl methacrylate was 54 parts by weight ( 0.3 mol). In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. Further, the conductive particles (A) with an insulating part were heated at 90° C. for 2 hours to obtain conductive particles (B) with an insulating part (insulating particles). A conductive material and a connection structure were prepared in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(実施例7)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を10重量部(0.1mol)に変更した。さらに、メタクリル酸グリシジルの配合量を14重量部(0.1mol)に変更し、メタクリルアミドの配合量を9重量部(0.1mol)に変更し、メタクリル酸ベンジルの配合量を126重量部(0.7mol)に変更した。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Example 7)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 10 parts by weight (0.1 mol) with respect to the polymerizable compound. Furthermore, the amount of glycidyl methacrylate was changed to 14 parts by weight (0.1 mol), the amount of methacrylamide was changed to 9 parts by weight (0.1 mol), and the amount of benzyl methacrylate was changed to 126 parts by weight ( 0.7 mol). In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. Further, the conductive particles (A) with an insulating part were heated at 90° C. for 2 hours to obtain conductive particles (B) with an insulating part (insulating particles). A conductive material and a connection structure were prepared in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(実施例8)
絶縁部(絶縁層)付き導電性粒子の作製:
4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、超音波照射機を用いて十分に乳化させた。その後、200rpmで攪拌し、窒素雰囲気下48℃で5時間重合を行った。上記組成物は、蒸留水200mL、導電性粒子20量部、2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.02部(0.05mmol)、乳化剤であるポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)0.1重量部、及び複数種の重合性化合物を含む重合性成分を含む。上記重合性成分は、メタクリル酸メチル0.6重量部(6mmol)、第1の反応性官能基を有する重合性化合物、及び第2の反応性官能基を有する重合性化合物を含む。上記重合性化合物として、メタクリル酸グリシジル0.14重量部(1mmol)、メタクリルアミド0.09重量部(1mmol)、及びメタクリル酸ベンジル0.36重量部(2mmol)を含む。反応終了後、冷却し、遠心分離機で固液分離を2回行い、余分な重合性化合物を洗浄により除去し、重合性化合物の重合体により形成された絶縁層によって、導電性粒子の表面が覆われた絶縁部(絶縁層)付き導電性粒子(A)(絶縁層の厚み200nm)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁層)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Example 8)
Fabrication of conductive particles with insulating part (insulating layer):
A 1000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe was charged with the composition containing the following polymerizable compound, and then thoroughly sonicated. Emulsified. Then, the mixture was stirred at 200 rpm, and polymerization was carried out at 48° C. for 5 hours in a nitrogen atmosphere. The above composition was prepared by using 200 mL of distilled water, 20 parts by weight of conductive particles, 0.02 part (2,2′-azobis{2-[N-(2-carboxyethyl)amidino]propane} (0.05 mmol), and an emulsifier. It contains a polyoxyethylene lauryl ether ("Emulgen 106" manufactured by Kao Corporation) 0.1 part by weight and a polymerizable component containing a plurality of kinds of polymerizable compounds. The polymerizable component contains 0.6 part by weight (6 mmol) of methyl methacrylate, a polymerizable compound having a first reactive functional group, and a polymerizable compound having a second reactive functional group. As the polymerizable compound, 0.14 parts by weight (1 mmol) of glycidyl methacrylate, 0.09 parts by weight (1 mmol) of methacrylamide, and 0.36 parts by weight (2 mmol) of benzyl methacrylate were included. After the completion of the reaction, the mixture is cooled, solid-liquid separation is performed twice with a centrifuge, excess polymerizable compound is removed by washing, and the surface of the conductive particles is covered by the insulating layer formed by the polymer of the polymerizable compound. The covered conductive particles (A) with an insulating part (insulating layer) (insulating layer thickness 200 nm) were obtained. Further, the conductive particles (A) with an insulating part were heated under the conditions of 90° C. and 2 hours to obtain conductive particles (B) with an insulating part (insulating layer). A conductive material and a connection structure were produced in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(実施例9)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸ベンジル36重量部(0.2mol)を、イソブチルメタクリレート28重量部(0.2mol)に変更した。上記の変更以外は、実施例4と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A),(B)、導電材料及び接続構造体をそれぞれ得た。
(Example 9)
In the production of the insulating part (insulating particles), 36 parts by weight (0.2 mol) of benzyl methacrylate was changed to 28 parts by weight (0.2 mol) of isobutyl methacrylate with respect to the polymerizable compound. In the same manner as in Example 4 except for the above changes, conductive particles (A) and (B) with an insulating portion (insulating particles), a conductive material and a connection structure were obtained.

(実施例10)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸グリシジル14重量部(0.1mol)の代わりに、メタクリロニトリル7重量部(0.1mol)を用いた。さらに、メタクリルアミド9重量部(0.1mol)の代わりに、メタクリル酸9重量部(0.1mol)を用いた。上記の変更以外は、実施例4と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A),(B)、導電材料及び接続構造体をそれぞれ得た。
(Example 10)
In the production of the insulating part (insulating particles), 7 parts by weight (0.1 mol) of methacrylonitrile was used in place of 14 parts by weight (0.1 mol) of glycidyl methacrylate for the polymerizable compound. Furthermore, instead of 9 parts by weight (0.1 mol) of methacrylamide, 9 parts by weight (0.1 mol) of methacrylic acid was used. In the same manner as in Example 4 except for the above changes, conductive particles (A) and (B) with an insulating portion (insulating particles), a conductive material and a connection structure were obtained.

(比較例1)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を95重量部(0.95mol)に変更した。また、メタクリル酸グリシジル、メタクリルアミド、及びメタクリル酸ベンジルを加えなかった。さらに、架橋剤であるエチレングリコールジメタクリレート10重量部(0.05mol)を加えた。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)、導電材料及び接続構造体を得た。
(Comparative Example 1)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 95 parts by weight (0.95 mol) with respect to the polymerizable compound. Also, glycidyl methacrylate, methacrylamide, and benzyl methacrylate were not added. Further, 10 parts by weight (0.05 mol) of ethylene glycol dimethacrylate, which is a crosslinking agent, was added. In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles), a conductive material, and a connection structure were obtained.

(比較例2)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を90重量部(0.9mol)に変更した。また、メタクリル酸ベンジルを加えなかった。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Comparative example 2)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 90 parts by weight (0.9 mol) with respect to the polymerizable compound. Also, no benzyl methacrylate was added. In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. Further, the conductive particles (A) with an insulating part were heated at 90° C. for 2 hours to obtain conductive particles (B) with an insulating part (insulating particles). A conductive material and a connection structure were prepared in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(比較例3)
絶縁部(絶縁性粒子)の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を57重量部(0.57mol)に変更した。さらに、メタクリル酸グリシジルの配合量を14重量部(0.1mol)に変更し、メタクリルアミドの配合量を9重量部(0.1mol)に変更し、メタクリル酸ベンジルの配合量を36重量部(0.2mol)に変更した。さらに、架橋剤であるエチレングリコールジメタクリレート6重量部(0.03mol)を加えた。上記の変更以外は、実施例1と同様にして、絶縁部(絶縁性粒子)付き導電性粒子(A)を得た。また、絶縁部付き導電性粒子(A)を、90℃及び2時間の条件で加熱し、絶縁部(絶縁性粒子)付き導電性粒子(B)を得た。得られた絶縁部付き導電性粒子(A),(B)を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体をそれぞれ作製した。
(Comparative example 3)
When the insulating part (insulating particles) was produced, the compounding amount of methyl methacrylate was changed to 57 parts by weight (0.57 mol) with respect to the polymerizable compound. Furthermore, the compounding amount of glycidyl methacrylate was changed to 14 parts by weight (0.1 mol), the compounding amount of methacrylamide was changed to 9 parts by weight (0.1 mol), and the compounding amount of benzyl methacrylate was 36 parts by weight ( 0.2 mol). Further, 6 parts by weight (0.03 mol) of ethylene glycol dimethacrylate, which is a crosslinking agent, was added. In the same manner as in Example 1 except for the above changes, conductive particles (A) with an insulating portion (insulating particles) were obtained. Further, the conductive particles (A) with an insulating part were heated at 90° C. for 2 hours to obtain conductive particles (B) with an insulating part (insulating particles). A conductive material and a connection structure were prepared in the same manner as in Example 1 except that the obtained conductive particles (A) and (B) with an insulating portion were used.

(架橋度の算出)
得られた絶縁部(絶縁性粒子又は絶縁層)に関して、架橋度を下記式(1)により算出した。
(Calculation of degree of crosslinking)
The degree of crosslinking of the obtained insulating portion (insulating particles or insulating layer) was calculated by the following formula (1).

架橋度=[(A/B)×100] 式(1) Crosslinking degree=[(A/B)×100] Formula (1)

上記式(1)中、Aは第1の反応性官能基を有する重合性化合物及び第2の反応性官能基を有する重合性化合物の合計のモル数であり、Bは重合性化合物の合計のモル数である。 In the above formula (1), A is the total number of moles of the polymerizable compound having the first reactive functional group and the polymerizable compound having the second reactive functional group, and B is the total number of polymerizable compounds. The number of moles.

また、絶縁部(絶縁性粒子又は絶縁層)に架橋剤が含まれる場合には、得られた絶縁部(絶縁性粒子又は絶縁層)に関して、架橋度を下記式(2)により算出した。 When the insulating portion (insulating particles or insulating layer) contains a crosslinking agent, the degree of crosslinking of the obtained insulating portion (insulating particles or insulating layer) was calculated by the following formula (2).

架橋度=C×[(D/B)×100]+[(A/B)×100] 式(2) Crosslinking degree=C×[(D/B)×100]+[(A/B)×100] Formula (2)

上記式(2)中、Cは架橋剤の重合性官能基数であり、Dは架橋剤のモル数であり、Aは第1の反応性官能基を有する重合性化合物及び第2の反応性官能基を有する重合性化合物の合計のモル数であり、Bは重合性化合物の合計のモル数である。 In the above formula (2), C is the number of polymerizable functional groups of the cross-linking agent, D is the number of moles of the cross-linking agent, A is the polymerizable compound having the first reactive functional group and the second reactive functional group. It is the total number of moles of the polymerizable compound having a group, and B is the total number of moles of the polymerizable compound.

(評価)
(1)絶縁部の密着性
絶縁部の密着性を以下のようにして評価した。絶縁部の密着性を下記の基準で判定した。
(Evaluation)
(1) Adhesiveness of Insulating Part The adhesiveness of the insulating part was evaluated as follows. The adhesion of the insulating part was judged according to the following criteria.

絶縁部の密着性の評価方法:
任意の50個の絶縁部付き導電性粒子を、作製の直後に走査型電子顕微鏡(SEM)を用いて観察した。また、得られた導電材料を用いて、絶縁部付き導電性粒子分散液を調製した後にも任意の50個の絶縁部付き導電性粒子を、SEMを用いて観察した。これらのSEMによる観察の結果から、作製直後の絶縁部付き導電性粒子における絶縁部と、分散液調整後の絶縁部付き導電性粒子における絶縁部とを比較した。
Insulation adhesion evaluation method:
Immediately after the production, 50 arbitrary conductive particles with an insulating portion were observed using a scanning electron microscope (SEM). In addition, even after preparing a conductive particle dispersion liquid with an insulating part using the obtained conductive material, 50 arbitrary conductive particles with an insulating part were observed using an SEM. From the results of these observations by SEM, the insulating part in the conductive particles with an insulating part immediately after production was compared with the insulating part in the conductive particles with an insulating part after the dispersion liquid was adjusted.

また、絶縁部が絶縁性粒子である場合には、作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数と、分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数とを比較した。なお、SEM観察において、観察された絶縁性粒子の総数を被覆数とした。 Further, when the insulating portion is an insulating particle, the number of coating of the insulating particles in the conductive particles with the insulating particles immediately after production, and the insulating particles in the conductive particles with the insulating particles after the dispersion liquid adjustment The number of coatings was compared. The total number of insulating particles observed in the SEM observation was defined as the number of coatings.

また、絶縁部が絶縁層である場合には、作製直後の絶縁層付き導電性粒子における絶縁層の被覆面積と、分散液調整後の絶縁層付き導電性粒子における絶縁層の被覆面積とを比較した。なお、SEM観察において、観察された絶縁層により被覆されている総面積を被覆面積とした。 Further, when the insulating portion is an insulating layer, the covering area of the insulating layer in the conductive particles with an insulating layer immediately after production is compared with the covering area of the insulating layer in the conductive particles with an insulating layer after dispersion adjustment. did. In the SEM observation, the total area covered by the observed insulating layer was defined as the covered area.

[絶縁部(絶縁性粒子)の密着性の判定基準]
○○○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が90%以上
○○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が70%以上90%未満
○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が50%以上70%未満
×:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が50%未満
[Criteria for Adhesion of Insulating Part (Insulating Particle)]
○ ○ ○: The ratio of the number of coatings of the insulating particles in the conductive particles with the insulating particles after the dispersion is adjusted to the number of coatings of the insulating particles in the conductive particles with the insulating particles immediately after preparation is 90% or more. The ratio of the number of coatings of the insulating particles in the conductive particles with the insulating particles after the dispersion is adjusted to the number of coatings of the insulating particles in the conductive particles with the insulating particles immediately after the production is 70% or more and less than 90%. The ratio of the number of coatings of the insulating particles in the conductive particles with the insulating particles after the dispersion is adjusted to the number of coatings of the insulating particles in the conductive particles with the insulating particles is 50% or more and less than 70%. The ratio of the number of coating of the insulating particles in the conductive particles with the insulating particles after the dispersion is adjusted to the number of coating of the insulating particles in the conductive particles with the conductive particles is less than 50%

[絶縁部(絶縁層)の密着性の判定基準]
○○○:作製直後の絶縁層付き導電性粒子における絶縁層の被覆面積に対する分散液調整後の絶縁層付き導電性粒子における絶縁層の被覆面積の割合が90%以上
○○:作製直後の絶縁層付き導電性粒子における絶縁層の被覆面積に対する分散液調整後の絶縁層付き導電性粒子における絶縁層の被覆面積の割合が70%以上90%未満
○:作製直後の絶縁層付き導電性粒子における絶縁層の被覆面積に対する分散液調整後の絶縁層付き導電性粒子における絶縁層の被覆面積の割合が50%以上70%未満
×:作製直後の絶縁層付き導電性粒子における絶縁層の被覆面積に対する分散液調整後の絶縁層付き導電性粒子における絶縁層の被覆面積の割合が50%未満
[Criteria for Adhesion of Insulating Part (Insulating Layer)]
○ ○ ○: The ratio of the covering area of the insulating layer in the conductive particles with an insulating layer after the dispersion liquid preparation is 90% or more to the covering area of the insulating layer in the conductive particles with an insulating layer immediately after preparation ○ ○: Insulation immediately after preparation The ratio of the coating area of the insulating layer in the conductive particles with an insulating layer after adjusting the dispersion to the coating area of the insulating layer in the conductive particles with a layer is 70% or more and less than 90%. The ratio of the coating area of the insulating layer in the conductive particles with an insulating layer after adjusting the dispersion liquid to the coating area of the insulating layer is 50% or more and less than 70% x: to the coating area of the insulating layer in the conductive particles with an insulating layer immediately after production The ratio of the covering area of the insulating layer in the conductive particles with the insulating layer after the dispersion is adjusted is less than 50%.

(2)衝撃付与後の導通信頼性(上下の電極間)
得られた20個の接続構造体を高さ70cmの位置から落下させて、接続構造体に衝撃(及び振動)を付与した。衝撃付与後の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。衝撃付与後の導通信頼性を下記の基準で判定した。
(2) Conduction reliability after impact (between upper and lower electrodes)
The 20 connection structures thus obtained were dropped from a position having a height of 70 cm, and a shock (and vibration) was applied to the connection structures. The connection resistance between the upper and lower electrodes of the connection structure after impact was measured by the four-terminal method. From the relationship of voltage=current×resistance, the connection resistance can be obtained by measuring the voltage when a constant current is applied. The continuity reliability after impact was judged according to the following criteria.

[衝撃付与後の導通信頼性の判定基準]
○○○:接続抵抗が1.5Ω以下
○○:接続抵抗が1.5Ωを超え2.0Ω以下
○:接続抵抗が2.0Ωを超え5.0Ω以下
△:接続抵抗が5.0Ωを超え10Ω以下
×:接続抵抗が10Ωを超える
[Criteria for continuity reliability after impact]
○ ○ ○: Connection resistance is 1.5Ω or less ○ ○: Connection resistance is more than 1.5Ω and 2.0Ω or less ○: Connection resistance is more than 2.0Ω and 5.0Ω or less △: Connection resistance is more than 5.0Ω 10Ω or less ×: Connection resistance exceeds 10Ω

(3)衝撃付与後の絶縁信頼性(横方向に隣り合う電極間)
得られた20個の接続構造体を高さ70cmの位置から落下させて、接続構造体に衝撃(及び振動)を付与した。衝撃付与後の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。衝撃付与後の絶縁信頼性を下記の基準で評価した。
(3) Insulation reliability after impact (between adjacent electrodes in the lateral direction)
The 20 connection structures thus obtained were dropped from a position having a height of 70 cm, and a shock (and vibration) was applied to the connection structures. In the connection structure after the impact was given, the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. The insulation reliability after impact was evaluated according to the following criteria.

[衝撃付与後の絶縁信頼性の判定基準]
○○○:抵抗値が10Ω以上の接続構造体の個数が、20個
○○:抵抗値が10Ω以上の接続構造体の個数が、18個以上20個未満
○:抵抗値が10Ω以上の接続構造体の個数が、15個以上18個未満
△:抵抗値が10Ω以上の接続構造体の個数が、10個以上15個未満
×:抵抗値が10Ω以上の接続構造体の個数が、5個以上10個未満
××:抵抗値が10Ω以上の接続構造体の個数が、5個未満
[Criteria for insulation reliability after impact]
○○○: number of resistance 10 8 Omega more connections structures, 20 ○○: the number of the resistance value is 10 8 Omega more connections structures, less than 20 18 or more ○: resistance the number of 10 8 Omega more connection structure is less than 15 or more 18 △: number of resistance 10 8 Omega more connections structures, 10 or more 15 than ×: resistance 10 8 Omega more 5 or more and less than 10 XX: the number of connection structures having a resistance value of 10 8 Ω or more is less than 5

(4)衝撃付与前後の導通信頼性の変化
上記の(2)衝撃付与後の導通信頼性の評価において、衝撃を付与する前の接続構造体を準備した。衝撃付与前の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。
(4) Change in continuity reliability before and after impact application In the above (2) Evaluation of continuity reliability after impact application, a connection structure before impact application was prepared. The connection resistance between the upper and lower electrodes of the connection structure before impact was measured by the four-terminal method.

衝撃付与前の接続構造体の接続抵抗からの、衝撃付与後の接続構造体の接続抵抗の上昇率により、衝撃付与前後の導通信頼性の変化を下記の基準で判定した。 The rate of increase in the connection resistance of the connection structure after the impact was applied from the connection resistance of the connection structure before the impact was applied was used to determine the change in conduction reliability before and after the application of the impact according to the following criteria.

[衝撃付与後の導通信頼性の判定基準]
○○:接続抵抗の平均値からの抵抗値の上昇率が20%以下
○:接続抵抗の平均値からの抵抗値の上昇率が20%を超え35%以下
△:接続抵抗の平均値からの抵抗値の上昇率が35%を超え50%以下
×:接続抵抗の平均値からの抵抗値の上昇率が50%を超える
[Criteria for continuity reliability after impact]
◯: Rate of increase in resistance value from average value of connection resistance is 20% or less. ◯: Rate of increase in resistance value from average value of connection resistance exceeds 20% and 35% or less. Δ: From average value of connection resistance. The rate of increase in resistance exceeds 35% and 50% or less x: The rate of increase in resistance from the average value of connection resistance exceeds 50%

(5)耐溶剤性
絶縁部付き導電性粒子0.05gと酢酸エチル10gとを混合して得られた粒子分散液を、振とう機(サイエンティフィックインダストリーズ社製「VORTEX−GENIE 2」)を用いて、目盛り9の強度で60秒間振とう処理を行った。振とう処理後の粒子を走査型電子顕微鏡(SEM)で観察し、耐溶剤性を下記の基準で判定した。
(5) Solvent resistance A particle dispersion obtained by mixing 0.05 g of conductive particles with an insulating part and 10 g of ethyl acetate was shaken with a shaker (“VORTEX-GENIE 2” manufactured by Scientific Industries). Using, the shaking treatment with the intensity of the scale 9 was performed for 60 seconds. The particles after the shaking treatment were observed with a scanning electron microscope (SEM), and the solvent resistance was judged according to the following criteria.

[耐溶剤性の判定基準]
A:絶縁部が変形していない
B:絶縁部が変形しているが溶解せず原型を留める
C:絶縁部が完全に溶解
[Solvent resistance criteria]
A: Insulation part is not deformed B: Insulation part is deformed, but it does not melt and holds the prototype C: Insulation part is completely melted

結果を下記の表1,2に示す。なお、表中、Tgは、ガラス転移温度を示す。 The results are shown in Tables 1 and 2 below. In the table, Tg represents the glass transition temperature.

Figure 2020098764
Figure 2020098764

Figure 2020098764
Figure 2020098764

1…絶縁部付き導電性粒子
2…導電性粒子
3…絶縁部
11…基材粒子
12…導電部
21…絶縁部付き導電性粒子
22…導電性粒子
31…導電部
32…芯物質
33…突起
41…絶縁部付き導電性粒子
42…導電性粒子
51…導電部
52…突起
61…絶縁部付き導電性粒子
62…絶縁部
81…接続構造体
82…第1の接続対象部材
82a…第1の電極
83…第2の接続対象部材
83a…第2の電極
84…接続部
DESCRIPTION OF SYMBOLS 1... Conductive particle with insulating part 2... Conductive particle 3... Insulating part 11... Base material particle 12... Conductive part 21... Conductive particle with insulating part 22... Conductive particle 31... Conductive part 32... Core substance 33... Protrusion 41... Conductive particles with insulating part 42... Conductive particle 51... Conductive part 52... Protrusion 61... Conductive particle with insulating part 62... Insulating part 81... Connection structure 82... First connection target member 82a... First Electrode 83...Second connection target member 83a...Second electrode 84...Connection part

Claims (16)

導電部を少なくとも表面に有する導電性粒子と、
前記導電性粒子の表面上に配置された絶縁部とを備え、
前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、
前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、
前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含み、
前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有する、絶縁部付き導電性粒子。
Conductive particles having a conductive portion on at least the surface,
An insulating portion disposed on the surface of the conductive particles,
The insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds,
The polymerizable component includes a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group,
The polymerizable component does not include a crosslinking agent, and the polymerizable component is 10% by weight of a polymerizable compound having a glass transition temperature of a homopolymer of less than 100° C. in 100% by weight of the polymerizable component. Including the above,
Conductive particles with an insulating part, wherein the polymer has the first reactive functional group and the second reactive functional group.
前記第1の反応性官能基と前記第2の反応性官能基とが、刺激により反応可能な性質を有する、請求項1に記載の絶縁部付き導電性粒子。 The electrically conductive particle with an insulating part according to claim 1, wherein the first reactive functional group and the second reactive functional group have a property of being capable of reacting by stimulation. 前記刺激が、加熱又は光の照射である、請求項2に記載の絶縁部付き導電性粒子。 The electrically conductive particles with an insulating portion according to claim 2, wherein the stimulus is heating or irradiation of light. 導電部を少なくとも表面に有する導電性粒子と、
前記導電性粒子の表面上に配置された絶縁部とを備え、
前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、
前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、
前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含み、
前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とが反応した構造を含む、絶縁部付き導電性粒子。
Conductive particles having a conductive portion on at least the surface,
An insulating portion disposed on the surface of the conductive particles,
The insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds,
The polymerizable component includes a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group,
The polymerizable component does not include a crosslinking agent, and the polymerizable component is 10% by weight of a polymerizable compound having a glass transition temperature of a homopolymer of less than 100° C. in 100% by weight of the polymerizable component. Including the above,
Conductive particles with an insulating part, wherein the polymer includes a structure in which the first reactive functional group reacts with the second reactive functional group.
下記式(1)により求められる前記絶縁部の架橋度が、10以上である、請求項1〜4のいずれか1項に記載の絶縁部付き導電性粒子。
架橋度=[(A/B)×100] 式(1)
前記式(1)中、Aは前記第1の反応性官能基を有する重合性化合物及び前記第2の反応性官能基を有する重合性化合物の合計のモル数であり、Bは前記重合性化合物の合計のモル数である。
The conductive particles with an insulating part according to any one of claims 1 to 4, wherein the degree of crosslinking of the insulating part, which is obtained by the following formula (1), is 10 or more.
Crosslinking degree=[(A/B)×100] Formula (1)
In the formula (1), A is the total number of moles of the polymerizable compound having the first reactive functional group and the polymerizable compound having the second reactive functional group, and B is the polymerizable compound. Is the total number of moles of.
前記第1の反応性官能基が、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基である、請求項1〜5のいずれか1項に記載の絶縁部付き導電性粒子。 The conductive particle with an insulating part according to claim 1, wherein the first reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group or a nitrile group. 前記環状エーテル基が、エポキシ基又はオキセタニル基である、請求項6に記載の絶縁部付き導電性粒子。 The conductive particle with an insulating part according to claim 6, wherein the cyclic ether group is an epoxy group or an oxetanyl group. 前記第2の反応性官能基が、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基である、請求項1〜7のいずれか1項に記載の絶縁部付き導電性粒子。 The electrically conductive particles with an insulating part according to claim 1, wherein the second reactive functional group is an amide group, a hydroxyl group, a carboxyl group, an imide group or an amino group. 前記絶縁部が、絶縁性粒子である、請求項1〜8のいずれか1項に記載の絶縁部付き導電性粒子。 The electrically conductive particles with an insulating part according to claim 1, wherein the insulating part is an insulating particle. 前記導電性粒子の粒子径の、前記絶縁性粒子の粒子径に対する比が、3以上100以下である、請求項9に記載の絶縁部付き導電性粒子。 The conductive particle with an insulating part according to claim 9, wherein a ratio of a particle diameter of the conductive particle to a particle diameter of the insulating particle is 3 or more and 100 or less. 前記導電性粒子の粒子径が、1μm以上5μm以下である、請求項1〜10のいずれか1項に記載の絶縁部付き導電性粒子。 The particle diameter of the said electroconductive particle is 1 micrometer or more and 5 micrometers or less, The electroconductive particle with an insulation part of any one of Claims 1-10. 導電部を少なくとも表面に有する導電性粒子と、絶縁性材料とを用いて、絶縁部付き導電性粒子を製造する方法であり、
前記導電性粒子の表面上に前記絶縁性材料を配置して絶縁部を形成する絶縁部形成工程を備え、
前記絶縁部が、複数種の重合性化合物を含む重合性成分の重合体であり、
前記重合性成分が、第1の反応性官能基を有する重合性化合物と、前記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含み、
前記重合性成分が、架橋剤を含まず、かつ、前記重合性成分が、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含む、絶縁部付き導電性粒子の製造方法。
Conductive particles having a conductive portion on at least the surface, and using an insulating material, a method for producing conductive particles with an insulating portion,
An insulating portion forming step of forming an insulating portion by disposing the insulating material on the surface of the conductive particles,
The insulating portion is a polymer of a polymerizable component containing a plurality of types of polymerizable compounds,
The polymerizable component includes a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group,
The polymerizable component does not include a crosslinking agent, and the polymerizable component is 10% by weight of a polymerizable compound having a glass transition temperature of a homopolymer of less than 100° C. in 100% by weight of the polymerizable component. A method for producing conductive particles with an insulating portion, including the above.
前記絶縁部形成工程の温度が50℃未満であり、
前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有する絶縁部付き導電性粒子を得る、請求項12に記載の絶縁部付き導電性粒子の製造方法。
The temperature of the insulating part forming step is less than 50° C.,
The method for producing conductive particles with an insulating part according to claim 12, wherein the polymer obtains conductive particles with an insulating part having the first reactive functional group and the second reactive functional group.
前記絶縁部形成工程の後に、前記絶縁部付き導電性粒子を加熱する加熱工程を備え、
前記加熱工程の加熱温度が70℃以上であり、前記加熱工程の加熱時間が1時間以上であり、
前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とが反応した構造を含む絶縁部付き導電性粒子を得る、請求項12又は13に記載の絶縁部付き導電性粒子の製造方法。
After the insulating portion forming step, a heating step of heating the insulating portion-attached conductive particles is provided,
The heating temperature in the heating step is 70° C. or higher, the heating time in the heating step is 1 hour or longer,
The conductive material with an insulating part according to claim 12 or 13, wherein the polymer obtains a conductive particle with an insulating part including a structure in which the first reactive functional group and the second reactive functional group react with each other. Of producing hydrophilic particles.
請求項1〜11のいずれか1項に記載の絶縁部付き導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles with an insulating portion according to any one of claims 1 to 11 and a binder resin. 第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
前記接続部の材料が、請求項1〜11のいずれか1項に記載の絶縁部付き導電性粒子であるか、又は前記絶縁部付き導電性粒子とバインダー樹脂とを含む導電材料であり、
前記第1の電極と前記第2の電極とが、前記絶縁部付き導電性粒子における前記導電部により電気的に接続されている、接続構造体。
A first connection target member having a first electrode on its surface;
A second connection target member having a second electrode on the surface;
A first connection target member, and a connection portion connecting the second connection target member,
The material of the connection portion is the conductive particles with an insulating portion according to any one of claims 1 to 11, or a conductive material containing the conductive particles with an insulating portion and a binder resin,
A connection structure in which the first electrode and the second electrode are electrically connected by the conductive portion in the conductive particle with an insulating portion.
JP2019157287A 2018-12-13 2019-08-29 Conductive particles with an insulating part, method for producing conductive particles with an insulating part, conductive material and connected structure Active JP7348776B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233588 2018-12-13
JP2018233588 2018-12-13

Publications (2)

Publication Number Publication Date
JP2020098764A true JP2020098764A (en) 2020-06-25
JP7348776B2 JP7348776B2 (en) 2023-09-21

Family

ID=71106044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157287A Active JP7348776B2 (en) 2018-12-13 2019-08-29 Conductive particles with an insulating part, method for producing conductive particles with an insulating part, conductive material and connected structure

Country Status (1)

Country Link
JP (1) JP7348776B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2008529254A (en) * 2005-02-02 2008-07-31 ハンファ ケミカル コーポレーション High performance anisotropic insulated conductive ball for electrical connection, method for preparing the same, and product using the same
JP2013108026A (en) * 2011-11-24 2013-06-06 Hitachi Chemical Co Ltd Submicron polymer particle and insulation-coated electroconductive particle comprising the same
JP2015005499A (en) * 2013-05-22 2015-01-08 積水化学工業株式会社 Conductive particle with insulative particles, conductive material and connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2008529254A (en) * 2005-02-02 2008-07-31 ハンファ ケミカル コーポレーション High performance anisotropic insulated conductive ball for electrical connection, method for preparing the same, and product using the same
JP2013108026A (en) * 2011-11-24 2013-06-06 Hitachi Chemical Co Ltd Submicron polymer particle and insulation-coated electroconductive particle comprising the same
JP2015005499A (en) * 2013-05-22 2015-01-08 積水化学工業株式会社 Conductive particle with insulative particles, conductive material and connection structure

Also Published As

Publication number Publication date
JP7348776B2 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP2018029071A (en) Conductive particles with insulating particles, conductive material, and connection structure
WO2019194135A1 (en) Conductive particles having insulating particles, conductive material, and connection structure
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP2022022293A (en) Conductive particle, conductive material, and connection structure
JP7412100B2 (en) Conductive particles with insulating particles, conductive materials and connected structures
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP7348776B2 (en) Conductive particles with an insulating part, method for producing conductive particles with an insulating part, conductive material and connected structure
JP7312108B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure
JP7312109B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7235611B2 (en) Conductive materials and connecting structures
WO2024101449A1 (en) Electroconductive particle, electroconductive material, and connection structure
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP7132112B2 (en) Conductive film and connection structure
WO2022239776A1 (en) Conductive particles, conductive material, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R151 Written notification of patent or utility model registration

Ref document number: 7348776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151