JP2020098587A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2020098587A5 JP2020098587A5 JP2019212083A JP2019212083A JP2020098587A5 JP 2020098587 A5 JP2020098587 A5 JP 2020098587A5 JP 2019212083 A JP2019212083 A JP 2019212083A JP 2019212083 A JP2019212083 A JP 2019212083A JP 2020098587 A5 JP2020098587 A5 JP 2020098587A5
- Authority
- JP
- Japan
- Prior art keywords
- shape
- regression model
- outline
- image
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims 11
- 238000013528 artificial neural network Methods 0.000 claims 9
- 238000009826 distribution Methods 0.000 claims 3
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/222,062 | 2018-12-17 | ||
| US16/222,062 US10943352B2 (en) | 2018-12-17 | 2018-12-17 | Object shape regression using wasserstein distance |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2020098587A JP2020098587A (ja) | 2020-06-25 |
| JP2020098587A5 true JP2020098587A5 (enExample) | 2022-11-29 |
| JP7263216B2 JP7263216B2 (ja) | 2023-04-24 |
Family
ID=68917481
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019212083A Active JP7263216B2 (ja) | 2018-12-17 | 2019-11-25 | ワッサースタイン距離を使用する物体形状回帰 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US10943352B2 (enExample) |
| EP (1) | EP3671555A1 (enExample) |
| JP (1) | JP7263216B2 (enExample) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102905902B1 (ko) * | 2018-12-31 | 2025-12-31 | 인텔 코포레이션 | 인공 지능을 이용한 보안 시스템 |
| CN109993825B (zh) * | 2019-03-11 | 2023-06-20 | 北京工业大学 | 一种基于深度学习的三维重建方法 |
| DE102019210270A1 (de) * | 2019-05-23 | 2020-11-26 | Robert Bosch Gmbh | Verfahren zum Trainieren eines Generative Adversarial Networks (GAN), Generative Adversarial Network, Computerprogramm, maschinenlesbares Speichermedium und Vorrichtung |
| US11068753B2 (en) * | 2019-06-13 | 2021-07-20 | Visa International Service Association | Method, system, and computer program product for generating new items compatible with given items |
| CN113362351B (zh) * | 2020-03-05 | 2025-02-28 | 阿里巴巴集团控股有限公司 | 一种图像处理方法、装置、电子设备以及存储介质 |
| KR20230039702A (ko) * | 2020-07-17 | 2023-03-21 | 에이아이모티브 케이에프티. | 객체 분할을 위한 방법, 데이터 프로세싱 시스템, 컴퓨터 프로그램 제품 및 컴퓨터 판독 가능 매체 |
| US11823379B2 (en) * | 2020-08-05 | 2023-11-21 | Ping An Technology (Shenzhen) Co., Ltd. | User-guided domain adaptation for rapid annotation from user interactions for pathological organ segmentation |
| US12387481B2 (en) * | 2020-08-11 | 2025-08-12 | Nvidia Corporation | Enhanced object identification using one or more neural networks |
| US11762951B2 (en) * | 2020-11-18 | 2023-09-19 | Adobe Inc. | Generative image congealing |
| CN112633350B (zh) * | 2020-12-18 | 2021-10-01 | 湖北工业大学 | 一种基于图卷积的多尺度点云分类实现方法 |
| US12488859B2 (en) * | 2021-04-05 | 2025-12-02 | Nec Corporation | Peptide based vaccine generation system with dual projection generative adversarial networks |
| US20220319635A1 (en) * | 2021-04-05 | 2022-10-06 | Nec Laboratories America, Inc. | Generating minority-class examples for training data |
| CN114627167B (zh) * | 2022-02-25 | 2025-05-30 | 广州瑞多思医疗科技有限公司 | 基于神经网络的任意模态图像配准方法及设备 |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8358839B2 (en) * | 2009-11-30 | 2013-01-22 | Xerox Corporation | Local regression methods and systems for image processing systems |
| CN103093490B (zh) * | 2013-02-02 | 2015-08-26 | 浙江大学 | 基于单个视频摄像机的实时人脸动画方法 |
| EP3136290A1 (en) * | 2015-08-28 | 2017-03-01 | Thomson Licensing | Method and device for determining the shape of an object represented in an image, corresponding computer program product and computer readable medium |
| CN108475424B (zh) * | 2016-07-12 | 2023-08-29 | 微软技术许可有限责任公司 | 用于3d面部跟踪的方法、装置和系统 |
| EP4131172A1 (en) * | 2016-09-12 | 2023-02-08 | Dassault Systèmes | Deep convolutional neural network for 3d reconstruction of a real object |
| US10679046B1 (en) * | 2016-11-29 | 2020-06-09 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Machine learning systems and methods of estimating body shape from images |
| JP2020510463A (ja) * | 2017-01-27 | 2020-04-09 | アーテリーズ インコーポレイテッド | 全層畳み込みネットワークを利用する自動化されたセグメンテーション |
| US10497257B2 (en) * | 2017-08-31 | 2019-12-03 | Nec Corporation | Parking lot surveillance with viewpoint invariant object recognition by synthesization and domain adaptation |
| US10614557B2 (en) * | 2017-10-16 | 2020-04-07 | Adobe Inc. | Digital image completion using deep learning |
| US10733699B2 (en) * | 2017-10-24 | 2020-08-04 | Deep North, Inc. | Face replacement and alignment |
| US10878529B2 (en) * | 2017-12-22 | 2020-12-29 | Canon Medical Systems Corporation | Registration method and apparatus |
| US11445994B2 (en) * | 2018-01-24 | 2022-09-20 | Siemens Healthcare Gmbh | Non-invasive electrophysiology mapping based on affordable electrocardiogram hardware and imaging |
| US20190347567A1 (en) * | 2018-03-13 | 2019-11-14 | Genetic Intelligence, Inc. | Methods for data segmentation and identification |
| US10825227B2 (en) * | 2018-04-03 | 2020-11-03 | Sri International | Artificial intelligence for generating structured descriptions of scenes |
| US10614207B1 (en) * | 2019-07-09 | 2020-04-07 | Capital One Services, Llc | Generating captcha images using variations of the same object |
-
2018
- 2018-12-17 US US16/222,062 patent/US10943352B2/en active Active
-
2019
- 2019-11-25 JP JP2019212083A patent/JP7263216B2/ja active Active
- 2019-12-13 EP EP19216337.6A patent/EP3671555A1/en not_active Ceased
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2020098587A5 (enExample) | ||
| US11200404B2 (en) | Feature point positioning method, storage medium, and computer device | |
| US11238604B1 (en) | Densifying sparse depth maps | |
| EP4145353A1 (en) | Neural network construction method and apparatus | |
| JP7263216B2 (ja) | ワッサースタイン距離を使用する物体形状回帰 | |
| CN108122027B (zh) | 一种神经网络模型的训练方法、装置及芯片 | |
| CN112639878B (zh) | 无监督深度预测神经网络 | |
| JP2020107356A5 (enExample) | ||
| JP6031554B2 (ja) | 単眼カメラに基づく障害物検知方法及び装置 | |
| US20190126472A1 (en) | Reinforcement and imitation learning for a task | |
| JP2021503134A (ja) | 画像深度とエゴモーション予測ニューラルネットワークの教師なし学習 | |
| US12437191B2 (en) | Training neural network model based on data point selection | |
| JP2020524861A5 (enExample) | ||
| JP2019509566A (ja) | ビデオ理解のための動きベースアテンションを用いたリカレントネットワーク | |
| CN116229448B (zh) | 三维目标检测方法、装置、设备及可读存储介质 | |
| US10595006B2 (en) | Method, system and medium for improving the quality of 2D-to-3D automatic image conversion using machine learning techniques | |
| US20230062756A1 (en) | Preserving geometry details in a sequence of tracked meshes | |
| JP7459452B2 (ja) | ニューラルネットワークモデルベースの深度推定 | |
| US20210304516A1 (en) | 3d dataset generation for neural network model training | |
| CN113627332A (zh) | 一种基于梯度控制联邦学习的分心驾驶行为识别方法 | |
| JP2021166284A5 (enExample) | ||
| US20200285247A1 (en) | Systems and methods for autonomous robot navigation | |
| CN110276801A (zh) | 一种物体定位方法、装置及存储介质 | |
| CN109949394A (zh) | 渲染任务处理时间的生成方法及装置 | |
| JP2013061876A (ja) | 情報処理装置、情報処理装置の制御方法、およびプログラム |