JP2020094163A - Fibrous cellulose - Google Patents

Fibrous cellulose Download PDF

Info

Publication number
JP2020094163A
JP2020094163A JP2018247161A JP2018247161A JP2020094163A JP 2020094163 A JP2020094163 A JP 2020094163A JP 2018247161 A JP2018247161 A JP 2018247161A JP 2018247161 A JP2018247161 A JP 2018247161A JP 2020094163 A JP2020094163 A JP 2020094163A
Authority
JP
Japan
Prior art keywords
group
fibrous cellulose
cellulose
mass
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018247161A
Other languages
Japanese (ja)
Other versions
JP7010206B2 (en
Inventor
利奈 田中
Rina Tanaka
利奈 田中
▲祥▼行 堤
Yoshiyuki Tsutsumi
▲祥▼行 堤
浩己 山本
Hiroki Yamamoto
浩己 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to EP19897109.5A priority Critical patent/EP3895865A1/en
Priority to PCT/JP2019/047748 priority patent/WO2020121952A1/en
Priority to CN201980080878.1A priority patent/CN113165209A/en
Priority to US17/311,401 priority patent/US20220024826A1/en
Publication of JP2020094163A publication Critical patent/JP2020094163A/en
Application granted granted Critical
Publication of JP7010206B2 publication Critical patent/JP7010206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

To provide fibrous cellulose excellent in dispersion stability and force-feeding property, and used for manufacturing a calcium carbonate powder-containing preceding agent for concrete pump force-feeding.SOLUTION: Fibrous cellulose is used for manufacturing a preceding agent for concrete pump force-feeding by mixing with calcium carbonate powder. The fibrous cellulose has an ionic group, and contains fine fibrous modified cellulose having a fiber width of 1,000 nm or less.SELECTED DRAWING: None

Description

本発明は、繊維状セルロース、とくに、炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造するために用いられる繊維状セルロースに関する。 The present invention relates to fibrous cellulose, in particular fibrous cellulose used for producing a precursor for concrete pumping by mixing with calcium carbonate powder.

建築物の基礎工事やコンクリート製建築物の建設工事では、コンクリートを所定の場所に打ち込む作業が実施される。
近年では、コンクリートポンプ車を用いて、ホッパーに供給されたコンクリートを所定の打設場所に搬送する方法が広く採用されている。この方法では、コンクリートポンプ車を用いてホッパー内のコンクリートを配管内に圧送し、配管を通してコンクリートを目的の打設場所に搬送する。そして、コンクリートポンプと配管を用いてコンクリートを圧送する場合、ホッパー内に水と圧送用先行剤としてのセメントと混ぜたセメントペーストやモルタルを圧送用先行剤として予め充填しておき、この圧送用先行剤を最初に配管内に送り込み、その後、ホッパー内に生コンクリートを流し込みながら生コンクリートを連続的に配管内に送り込んで圧送する。このように、圧送用先行剤を先に送り込むのは、何も処理せずに硬化前の生コンクリート(流動コンクリート)を導入すると、コンクリートを構成する成分のうち、モルタル分(セメントペースト)だけがポンプや配管内部の表面に付着し、それとともにモルタル分を失ったコンクリートの先端部が次第に分離して配管を閉塞させてしまうことがあるからである。
In the foundation work of a building and the construction work of a concrete building, the work of driving concrete into a predetermined place is carried out.
In recent years, a method of transporting concrete supplied to a hopper to a predetermined pouring place using a concrete pump car has been widely adopted. In this method, concrete in a hopper is pumped into a pipe by using a concrete pump car, and the concrete is conveyed to a target pouring place through the pipe. Then, when concrete is pumped using a concrete pump and piping, cement paste or mortar mixed with water and cement as a preceding agent for pumping is pre-filled as a preceding agent for pumping in the hopper, and the preceding The agent is first fed into the pipe, and then the raw concrete is continuously fed into the pipe while pouring the raw concrete into the hopper for pressure feeding. In this way, the advance agent for pressure-feeding is sent first when only fresh uncured concrete (fluid concrete) is introduced without any treatment, and only mortar (cement paste) is contained among the components of concrete. This is because the tip of the concrete that adheres to the inner surface of the pump or the pipe and loses the mortar component with it may gradually separate and block the pipe.

セメントペーストやモルタルを圧送用先行剤として用いる方法では、輸送中やコンクリート打ち込み先での待機中にその硬化反応が進行するため、コンクリート打ち込み作業の綿密な管理計画を立てる必要がある。また、この方法は圧送用先行剤であるセメントペーストやモルタルなどによる所要の効果を得るためにその使用量を多く設定する必要があり、さらに、圧送用先行剤に使用したセメントペーストやモルタルは廃棄の必要があるため、経済性に欠くだけではなく、セメントペーストやモルタルがコンクリートの品質に悪影響を与える可能性が高い。 In the method of using cement paste or mortar as a precursor for pressure feeding, the hardening reaction progresses during transportation or while waiting at the concrete driving destination, so it is necessary to make a detailed management plan for concrete driving work. In addition, this method requires a large amount to be used in order to obtain the required effects of cement paste and mortar, which are precursors for pressure-feeding, and the cement paste and mortar used for the precursor for pressure-feeding are discarded. In addition to being economically disadvantageous, cement paste and mortar are likely to adversely affect the quality of concrete.

特許文献1には、少量の使用でコンクリートの圧送をなめらかに開始することができるコンクリートポンプ用圧送開始剤を実現することを目的として、吸水性樹脂を含むコンクリートポンプ用圧送開始剤が開示されている。 Patent Document 1 discloses a pressure-feeding initiator for a concrete pump containing a water-absorbent resin, for the purpose of realizing a pressure-feeding initiator for a concrete pump that can smoothly start the pressure-feeding of concrete with a small amount of use. There is.

特開2000−34461号公報JP 2000-34461 A

特許文献1に記載された圧送用先行剤では、吸水性樹脂を使用するなど、経済性に劣り、また、使用条件によっては、吸水性樹脂の吸水が十分に行われないなど、問題があった。
本発明は、分散安定性および圧送性に優れた、炭酸カルシウム粉末を含有するコンクリートポンプ圧送用先行剤を製造するために使用される繊維状セルロースを提供することを目的とする。
The preceding agent for pressure feeding described in Patent Document 1 has a problem in that it is inferior in economic efficiency such as using a water-absorbent resin, and that the water-absorbent resin does not sufficiently absorb water depending on use conditions. ..
It is an object of the present invention to provide a fibrous cellulose which is used for producing a concrete pumping precursor for calcium carbonate powder, which is excellent in dispersion stability and pumping property.

本発明者等は、イオン性基で置換され、かつ繊維幅が1000nm以下である微細繊維状変性セルロースを含有する繊維状セルロースを採用することにより、上記の課題が解決されることを見出した。
すなわち、本発明は、以下の<1>〜<7>に関する。
<1> 炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造するために用いられる繊維状セルロースであって、該繊維状セルロースが、イオン性基を有し、かつ繊維幅が1000nm以下である微細繊維状変性セルロースを含む、繊維状セルロース。
<2> 前記繊維状セルロースの粘度(固形分濃度0.4%分散液、23℃)が、500mPa・s以上である、<1>に記載の繊維状セルロース。
<3> 前記繊維状セルロースの下記式(1)で表されるチクソトロピックインデックス(TI値)が30以上である、<1>または<2>に記載の繊維状セルロース。
TI値
=(せん断速度1/sにおける粘度)/(せん断速度1000/sにおける粘度) (1)
上記粘度は、23℃、固形分濃度0.4%分散液での粘度である。
<4> 前記コンクリートポンプ圧送用先行剤の固形分中の炭酸カルシウム粉末の含有量が、50質量%以上である、<1>〜<3>のいずれかに記載の繊維状セルロース。
<5> 前記炭酸カルシウム粉末100質量部に対する繊維状セルロースの混合量が0.0001質量部以上100質量部以下である、<1>〜<4>のいずれかに記載の繊維状セルロース。
<6> 前記炭酸カルシウム粉末が、多孔質炭酸カルシウム粉末を含有する、<1>〜<5>のいずれかに記載の繊維状セルロース。
<7> さらに顔料、酸化防止剤、およびpH調整剤から選択される少なくとも1つと混合する、<1>〜<6>のいずれかに記載の繊維状セルロース。
The present inventors have found that the above problem can be solved by adopting fibrous cellulose that is substituted with an ionic group and contains fine fibrous modified cellulose having a fiber width of 1000 nm or less.
That is, the present invention relates to the following <1> to <7>.
<1> A fibrous cellulose used for producing a preceding agent for concrete pumping by mixing with calcium carbonate powder, wherein the fibrous cellulose has an ionic group and has a fiber width of 1000 nm or less. Fibrous cellulose, including some fine fibrous modified cellulose.
<2> The fibrous cellulose according to <1>, wherein the fibrous cellulose has a viscosity (solid content concentration 0.4% dispersion liquid, 23° C.) of 500 mPa·s or more.
<3> The fibrous cellulose according to <1> or <2>, wherein the fibrous cellulose has a thixotropic index (TI value) represented by the following formula (1) of 30 or more.
TI value=(viscosity at shear rate 1/s)/(viscosity at shear rate 1000/s) (1)
The above viscosity is the viscosity at 23° C. and 0.4% solid concentration dispersion.
<4> The fibrous cellulose according to any one of <1> to <3>, in which the content of calcium carbonate powder in the solid content of the preceding agent for pumping concrete pump is 50% by mass or more.
<5> The fibrous cellulose according to any one of <1> to <4>, in which a mixing amount of fibrous cellulose with respect to 100 parts by mass of the calcium carbonate powder is 0.0001 parts by mass or more and 100 parts by mass or less.
<6> The fibrous cellulose according to any one of <1> to <5>, in which the calcium carbonate powder contains a porous calcium carbonate powder.
<7> The fibrous cellulose according to any one of <1> to <6>, which is further mixed with at least one selected from a pigment, an antioxidant, and a pH adjuster.

本発明によれば、分散安定性および圧送性に優れた、炭酸カルシウム粉末を含有するコンクリートポンプ圧送用先行剤を製造するために使用される繊維状セルロースを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fibrous cellulose which is excellent in dispersion stability and pumpability, and which is used for manufacturing the concrete pump pumping precursor containing calcium carbonate powder can be provided.

図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and the electric conductivity for fibrous cellulose having a phosphate group. 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electric conductivity for fibrous cellulose having a carboxy group.

[繊維状セルロース]
本発明の繊維状セルロースは、炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造するために用いられ、該繊維状セルロースが、イオン性基を有し、かつ繊維幅が1000nm以下である微細繊維状変性セルロース(以下、単に「微細繊維状変性セルロース」ともいう)を含有する。
本発明の繊維状セルロースを、炭酸カルシウムを含有する圧送用先行剤に添加することにより、分散安定性に優れ、かつ、圧送性に優れるコンクリートポンプ圧送用先行剤(以下、「圧送用先行剤」または「先行剤」ともいう)が得られる。
上記の効果が得られる詳細な理由は不明であるが、一部は以下のように推定される。
微細繊維状変性セルロースを含有する繊維状セルロースは、水に添加してスラリー状とすることによって、高い増粘効果および高い粒子分散効果を発揮する。一方で、該スラリーは、チクソトロピー性を有し、せん断応力を受けた場合に粘度が低下する。
炭酸カルシウムと混合してコンクリートポンプ圧送用先行剤とすると、先行剤として実際に配管内に圧送する場合には圧送用先行剤は水を含有するため、これにより、炭酸カルシウムに対して高い分散安定性を付与するとともに、優れた圧送性が得られるものと考えられる。とくに、微細繊維状セルロースがイオン性基を有することにより、炭酸カルシウムに対する高い分散安定性と、優れた圧送性が得られたものと考えられる。
以下、本発明についてさらに詳細に説明する。
[Fibrous cellulose]
The fibrous cellulose of the present invention is used for producing a precursor for concrete pumping by mixing with calcium carbonate powder, and the fibrous cellulose has an ionic group and has a fiber width of 1000 nm or less. It contains fine fibrous modified cellulose (hereinafter, also simply referred to as "fine fibrous modified cellulose").
By adding the fibrous cellulose of the present invention to a pressure-feeding precursor containing calcium carbonate, the dispersion pump has excellent dispersion stability, and a concrete pump pressure-feeding precursor having excellent pumpability (hereinafter, "pressure-feeding precursor"). Alternatively, it is also referred to as "preceding agent").
Although the detailed reason why the above effects are obtained is unknown, some of them are presumed as follows.
The fibrous cellulose containing the fine fibrous modified cellulose exhibits a high thickening effect and a high particle dispersion effect by being added to water to form a slurry. On the other hand, the slurry has thixotropy and its viscosity decreases when it receives shear stress.
When mixed with calcium carbonate and used as a precursor for pumping concrete pumps, when the precursor is actually pumped into a pipe, the precursor for pumping contains water, which results in high dispersion stability against calcium carbonate. It is considered that excellent pumpability can be obtained while imparting the property. In particular, it is considered that since the fine fibrous cellulose has an ionic group, high dispersion stability with respect to calcium carbonate and excellent pumpability were obtained.
Hereinafter, the present invention will be described in more detail.

<微細繊維状変性セルロース>
本発明の繊維状セルロースは、微細繊維状変性セルロースを含有し、該微細繊維状変性セルロースは、繊維幅が1,000nm以下の繊維状セルロースであり、かつ、イオン性基で置換されている。なお、繊維状セルロースおよび微細繊維状変性セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。
繊維状セルロースは、微細繊維状変性セルロースを含有し、さらに、繊維幅が1,000nm以下の未変性微細繊維状セルロース、繊維幅が1,000nmを超える未変性繊維状セルロース、繊維幅が1,000nmを超え、イオン性基で置換されている繊維状変性セルロースを含有してもよい。
繊維状セルロース中の微細繊維状変性セルロースの含有量は、好ましくは30質量%以上、より好ましくは50質量%、さらに好ましくは70質量%以上、よりさらに好ましくは90質量%以上であり、100質量%であってもよい。なお、本発明において、繊維状セルロースとして、微細繊維状変性セルロースと、繊維幅が1000nmを超える未変性繊維状セルロースとを混合して用いる態様や、繊維状セルロースが微細繊維状変性セルロースに加えて、少量の未変性微細繊維状セルロースや、繊維幅が1000nmを超える変性または未変性セルロースを含有する態様を含むものである。
<Fine fibrous modified cellulose>
The fibrous cellulose of the present invention contains a fine fibrous modified cellulose, and the fine fibrous modified cellulose is a fibrous cellulose having a fiber width of 1,000 nm or less and is substituted with an ionic group. The fiber width of the fibrous cellulose and the fine fibrous modified cellulose can be measured by, for example, observing with an electron microscope.
The fibrous cellulose contains fine fibrous modified cellulose, and further has an unmodified fine fibrous cellulose having a fiber width of 1,000 nm or less, an unmodified fibrous cellulose having a fiber width of more than 1,000 nm, and a fiber width of 1. You may contain the fibrous modified cellulose which exceeds 000 nm and is substituted by the ionic group.
The content of the fine fibrous modified cellulose in the fibrous cellulose is preferably 30% by mass or more, more preferably 50% by mass, further preferably 70% by mass or more, still more preferably 90% by mass or more, and 100% by mass. It may be %. In the present invention, as the fibrous cellulose, an embodiment in which fine fibrous modified cellulose and unmodified fibrous cellulose having a fiber width of more than 1000 nm are mixed and used, or fibrous cellulose is added to the fine fibrous modified cellulose It also includes a mode in which a small amount of unmodified fine fibrous cellulose or modified or unmodified cellulose having a fiber width of more than 1000 nm is contained.

微細繊維状変性セルロースの繊維幅は、100nm以下であることが好ましく、30nm以下であることがより好ましく、8nm以下であることがさらに好ましい。また、繊維幅は2nm以上であることが好ましい。
微細繊維状変性セルロースの平均繊維幅は、たとえば1000nm以下である。微細繊維状変性セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。微細繊維状変性セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、微細繊維状変性セルロースによる分散安定性や圧送性の向上という効果をより発現しやすくすることができる。なお、微細繊維状変性セルロースは、たとえば単繊維状のセルロースである。
The fiber width of the fine fibrous modified cellulose is preferably 100 nm or less, more preferably 30 nm or less, and further preferably 8 nm or less. The fiber width is preferably 2 nm or more.
The average fiber width of the fine fibrous modified cellulose is, for example, 1000 nm or less. The average fiber width of the fine fibrous modified cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Is particularly preferable. By setting the average fiber width of the fine fibrous modified cellulose to 2 nm or more, it is possible to prevent the fine fibrous modified cellulose from being dissolved in water, and to more easily exhibit the effect of improving the dispersion stability and the pumpability of the fine fibrous modified cellulose. can do. The fine fibrous modified cellulose is, for example, a single fibrous cellulose.

微細繊維状変性セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の微細繊維状変性セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、微細繊維状変性セルロースの平均繊維幅とする。
The average fiber width of the fine fibrous modified cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fine fibrous modified cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and the suspension is cast on a hydrophilized carbon film-coated grid and observed by TEM. Use as a sample. When a wide fiber is included, an SEM image of the surface cast on glass may be observed. Then, observation with an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times or 50000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
(1) A straight line X is drawn at an arbitrary position in the observed image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber intersecting the straight line X and the straight line Y is visually read from the observed image satisfying the above conditions. In this way, at least three sets of observation images of the surface portions that do not overlap each other are obtained. Then, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read. Thereby, the fiber width of at least 20 fibers×2×3=120 fibers is read. Then, the average value of the read fiber widths is set as the average fiber width of the fine fibrous modified cellulose.

微細繊維状変性セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、微細繊維状変性セルロースの結晶領域の破壊を抑制できる。また、微細繊維状変性セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、微細繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fine fibrous modified cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and 0.1 μm or more and 600 μm or less. Is more preferable. By setting the fiber length within the above range, it is possible to suppress the destruction of the crystalline region of the fine fibrous modified cellulose. Further, it becomes possible to set the slurry viscosity of the fine fibrous modified cellulose in an appropriate range. The fiber length of the fine fibrous cellulose can be determined by image analysis using TEM, SEM, or AFM, for example.

微細繊維状変性セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状変性セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
微細繊維状変性セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、分散安定性および圧送性の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
The fine fibrous modified cellulose preferably has a type I crystal structure. Here, the fact that the fine fibrous modified cellulose has the I-type crystal structure can be identified in the diffraction profile obtained from the wide-angle X-ray diffraction photograph using CuKα (λ=1.5418Å) monochromated with graphite. Specifically, it can be identified by having typical peaks at two positions near 2θ=14° or more and 17° or less and around 2θ=22° or more and 23° or less.
The proportion of the I-type crystal structure in the fine fibrous modified cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. As a result, further excellent performance can be expected in terms of dispersion stability and pumpability. The crystallinity is determined by measuring the X-ray diffraction profile and using the pattern according to a conventional method (Seagal et al., Textile Research Journal, Vol. 29, page 786, 1959).

微細繊維状変性セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状変性セルロースの水分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length/fiber width) of the fine fibrous modified cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less. By setting the axial ratio to the above lower limit or more, it is easy to obtain sufficient thickening when an aqueous dispersion of fine fibrous modified cellulose is prepared. It is preferable that the axial ratio is not more than the above upper limit because handling such as dilution becomes easy when handling fibrous cellulose as an aqueous dispersion.

本実施形態における微細繊維状変性セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状変性セルロースは、後述する微細繊維状変性セルロースの製造方法により実現されるものである。 The fine fibrous modified cellulose in the present embodiment has, for example, both a crystalline region and an amorphous region. In particular, fine fibrous modified cellulose having both a crystalline region and an amorphous region and a high axial ratio is realized by the method for producing a fine fibrous modified cellulose described below.

本実施形態における微細繊維状変性セルロースは、イオン性基を有する。微細繊維状変性セルロースがイオン性基を有することで、分散媒(水)中における繊維の分散性を向上させ、解繊処理における解繊効率を高めることができる。また、炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造した場合に、炭酸カルシウムの水中での分散性を向上させるとともに、圧送性の向上に寄与する。
イオン性基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性基としてアニオン性基を有することがとくに好ましい。
また、微細繊維状変性セルロースは、イオン性基に加え、非イオン性基が導入されていてもよく、非イオン性基としては、アルキル基およびアシル基が例示される。
The fine fibrous modified cellulose in the present embodiment has an ionic group. When the fine fibrous modified cellulose has an ionic group, the dispersibility of the fibers in the dispersion medium (water) can be improved and the defibration efficiency in the defibration treatment can be increased. Further, when mixed with calcium carbonate powder to produce a precursor for pumping concrete by pump, it improves dispersibility of calcium carbonate in water and contributes to improvement of pumpability.
The ionic group may include, for example, one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic group.
The fine fibrous modified cellulose may have a nonionic group introduced in addition to the ionic group, and examples of the nonionic group include an alkyl group and an acyl group.

イオン性基としてのアニオン性基としては、たとえばリン酸基またはリン酸基に由来する基(単にリン酸基ということもある)、カルボキシ基またはカルボキシ基に由来する基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。 Examples of the anionic group as the ionic group include a phosphoric acid group or a group derived from a phosphoric acid group (sometimes referred to simply as a phosphoric acid group), a carboxy group or a group derived from a carboxy group (also referred to simply as a carboxy group) A) and a sulfone group or a group derived from a sulfone group (sometimes simply referred to as a sulfone group), and at least one selected from a phosphoric acid group and a carboxy group. It is more preferable, and a phosphoric acid group is particularly preferable.

リン酸基またはリン酸基に由来する基は、たとえば下記式(1)で表される基であり、リンオキソ酸基またはリンオキソ酸に由来する基として一般化される。
リン酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には−POで表される基である。リン酸基に由来する基には、リン酸基の塩、リン酸エステル基などの基が含まれる。なお、リン酸基に由来する基は、リン酸基が縮合した基(たとえばピロリン酸基)として微細繊維状変性セルロースに含まれていてもよい。また、リン酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リン酸基に由来する基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
The phosphoric acid group or the group derived from the phosphoric acid group is, for example, a group represented by the following formula (1), and is generalized as a phosphorus oxo acid group or a group derived from a phosphorous acid.
The phosphoric acid group is a divalent functional group which corresponds to, for example, phosphoric acid from which a hydroxy group has been removed. Specifically, it is a group represented by —PO 3 H 2 . The group derived from a phosphoric acid group includes groups such as salts of phosphoric acid groups and phosphoric acid ester groups. The group derived from the phosphate group may be contained in the fine fibrous modified cellulose as a group in which the phosphate group is condensed (for example, a pyrophosphate group). The phosphoric acid group may be, for example, a phosphorous acid group (phosphonic acid group), and the group derived from the phosphoric acid group may be a salt of a phosphorous acid group, a phosphorous acid ester group, or the like. Good.

式(1)中、a、bおよびnは自然数である(ただし、a=b×mである)。α,α,・・・,αおよびα’のうちa個がOであり、残りはR,ORのいずれかである。なお、各αおよびα’の全てがOであっても構わない。Rは、各々、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。
飽和−直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、またはn−ブチル基等が挙げられるが、とくに限定されない。飽和−分岐鎖状炭化水素基としては、i−プロピル基、またはt−ブチル基等が挙げられるが、とくに限定されない。飽和−環状炭化水素基としては、シクロペンチル基、またはシクロヘキシル基等が挙げられるが、とくに限定されない。
不飽和−直鎖状炭化水素基としては、ビニル基、またはアリル基等が挙げられるが、とくに限定されない。不飽和−分岐鎖状炭化水素基としては、i−プロペニル基、または3−ブテニル基等が挙げられるが、とくに限定されない。不飽和−環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、とくに限定されない。芳香族基としては、フェニル基、またはナフチル基等が挙げられるが、とくに限定されない。
In the formula (1), a, b and n are natural numbers (however, a=b×m). Of α 1 , α 2 ,..., α n and α′, a is O and the rest is either R or OR. All α n and α′ may be O . R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon, respectively. It is a hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or a derivative group thereof.
Examples of the saturated-linear hydrocarbon group include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like. Examples of the saturated-branched hydrocarbon group include, but are not limited to, i-propyl group and t-butyl group. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
Examples of the unsaturated-straight chain hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited. Examples of the unsaturated-branched hydrocarbon group include i-propenyl group and 3-butenyl group, but are not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited. Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.

また、Rにおける誘導基としては、上記各種炭化水素基の主鎖または側鎖に対し、カルボキシ基、ヒドロキシ基、またはアミノ基などの官能基のうち、少なくとも1種類が付加または置換した状態の官能基が挙げられるが、とくに限定されない。また、Rの主鎖を構成する炭素原子数はとくに限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。 In addition, the derivative group in R is a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added to or substituted on the main chain or side chain of each of the above hydrocarbon groups. Examples thereof include groups, but are not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R in the above range, the molecular weight of the phosphoric acid group can be set in an appropriate range, the permeation into the fiber raw material is facilitated, and the yield of the fine cellulose fiber is increased. You can also

βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、または芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、もしくはリチウム等のアルカリ金属のイオンや、カルシウム、もしくはマグネシウム等の2価金属の陽イオン、または水素イオン等が挙げられるが、とくに限定されない。これらは1種または2種類以上を組み合わせて適用することもできる。有機物または無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、またはカリウムのイオンが好ましいが、とくに限定されない。 β b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or more cations composed of organic substances include aliphatic ammonium and aromatic ammonium, and examples of monovalent or more cations composed of inorganic substances include alkali metal ions such as sodium, potassium, or lithium, Examples thereof include cations of divalent metals such as calcium and magnesium, and hydrogen ions, but are not particularly limited. These may be applied alone or in combination of two or more. As the cation having a valence of 1 or more consisting of an organic substance or an inorganic substance, sodium or potassium ions which are less likely to yellow when the β-containing fiber raw material is heated and which are industrially applicable are preferable, but not particularly limited.

繊維状セルロースにおけるイオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維状セルロースにおけるイオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.50mmol/g以下であることがさらに好ましく、3.00mmol/g以下であることがよりさらに好ましい。イオン性基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、微細繊維状変性セルロースの安定性を高めることが可能となる。また、イオン性基の導入量を上記範囲内とすることにより、繊維状セルロースが分散安定性や圧送性の向上に対して良好な特性を発揮することができる。
ここで、単位mmol/gにおける分母は、イオン性基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。
The amount of ionic groups introduced into the fibrous cellulose is, for example, preferably 0.10 mmol/g or more, more preferably 0.20 mmol/g or more, and 0.50 mmol/g per 1 g (mass) of the fibrous cellulose. It is more preferably at least g, and particularly preferably at least 1.00 mmol/g. The amount of ionic groups introduced into the fibrous cellulose is, for example, preferably 5.20 mmol/g or less per 1 g (mass) of the fibrous cellulose, more preferably 3.65 mmol/g or less. It is more preferably 50 mmol/g or less, still more preferably 3.00 mmol/g or less. By setting the introduction amount of the ionic group within the above range, it is possible to easily miniaturize the fiber raw material and enhance the stability of the fine fibrous modified cellulose. Further, by setting the introduction amount of the ionic group within the above range, the fibrous cellulose can exhibit good characteristics for improving dispersion stability and pumpability.
Here, the denominator in the unit of mmol/g indicates the mass of fibrous cellulose when the counter ion of the ionic group is a hydrogen ion (H + ).

繊維状セルロースに対するイオン性基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。
図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。従って、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
The amount of ionic groups introduced into the fibrous cellulose can be measured, for example, by a conductivity titration method. In the measurement by the conductivity titration method, the introduced amount is measured by determining the change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and electric conductivity for fibrous cellulose having a phosphate group.
The amount of phosphate groups introduced into fibrous cellulose is measured, for example, as follows.
First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the defibration treatment step described below may be performed on the measurement target. Then, a change in electric conductivity is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. As shown in FIG. 1, the electrical conductivity is sharply reduced at first (hereinafter referred to as “first region”). After that, the conductivity starts to slightly increase (hereinafter, referred to as “second region”). After that, the increment of conductivity increases (hereinafter, referred to as “third region”). It should be noted that the boundary point between the second region and the third region is defined as the point where the amount of change in the second derivative of the conductivity, that is, the increment (slope) of the conductivity is the maximum. Thus, three regions appear on the titration curve. Of these, the amount of alkali required in the first region is equal to the amount of strong acidic groups in the slurry used for titration, and the amount of alkali required in the second region is equal to the amount of weak acidic groups in the slurry used for titration. Will be equal. When the phosphoric acid groups undergo condensation, apparently weak acidic groups are lost, and the amount of alkali required in the second region is smaller than the amount of alkali required in the first region. On the other hand, the amount of strongly acidic group is the same as the amount of phosphorus atom regardless of the presence or absence of condensation. For this reason, the term "phosphoric acid group introduced amount (or phosphoric acid group amount)" or "substituent introduced amount (or substituent amount)" simply means the amount of a strongly acidic group. Therefore, the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the phosphate group introduction amount (mmol/ g).

なお、上述のリン酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリン酸基量(以降、リン酸基量(酸型)と呼ぶ)を示している。一方で、リン酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリン酸基量(以降、リン酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リン酸基量(C型)=リン酸基量(酸型)/{1+(W−1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリン酸基由来の総アニオン量(リン酸基の強酸性基量と弱酸性基量を足した値)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
In addition, since the denominator indicates the mass of the acid-type fibrous cellulose, the above-mentioned phosphate group introduction amount (mmol/g) indicates that the acid-type fibrous cellulose has the phosphate group amount (hereinafter, the phosphate group amount). (Called acid type)). On the other hand, when the counterion of the phosphate group is substituted with an arbitrary cation C so as to have a charge equivalent, the denominator is converted into the mass of the fibrous cellulose when the cation C is the counterion. Thus, the amount of phosphate groups in the fibrous cellulose having the cation C as a counterion (hereinafter, the amount of phosphate groups (C type)) can be obtained.
That is, it is calculated by the following calculation formula.
Phosphoric acid group amount (C type)=phosphoric acid group amount (acid type)/{1+(W-1)×A/1000}
A [mmol/g]: Total amount of anions derived from the phosphate group in the fibrous cellulose (value obtained by adding the amount of the strongly acidic group and the amount of the weakly acidic group of the phosphate group)
W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)

図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。なお、必要に応じて、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。
FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity for fibrous cellulose having a carboxy group.
The amount of the carboxy group introduced into the fibrous cellulose is measured, for example, as follows.
First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the defibration treatment step described below may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in FIG. 2 is obtained. In addition, you may perform the defibration process similar to the defibration process process mentioned later with respect to a measurement object as needed. In the titration curve, as shown in FIG. 2, after the electrical conductivity decreases, the first region until the conductivity increase (slope) becomes substantially constant, and then the conductivity increase (slope) increases. It is divided into the second area. The boundary point between the first region and the second region is defined as the point at which the change amount of the second derivative of conductivity, that is, the increment (slope) of conductivity is maximum. Then, a value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the fine fibrous cellulose-containing slurry to be titrated is the amount of introduced carboxy group ( mmol/g).

なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
カルボキシ基量(C型)
=カルボキシ基量(酸型)/{1+(W−1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
In addition, since the denominator is the mass of acid-type fibrous cellulose, the above-mentioned carboxy-group introduction amount (mmol/g) is the amount of carboxy groups in acid-type fibrous cellulose (hereinafter, carboxy group amount (acid-type). ))) is shown. On the other hand, when the cation of the carboxy group is substituted with an arbitrary cation C so that the cation C has a charge equivalent, the denominator should be converted into the mass of the fibrous cellulose when the cation C is the counterion. Then, the amount of carboxy groups in the fibrous cellulose having the cation C as a counterion (hereinafter, the amount of carboxy groups (C type)) can be obtained.
That is, it is calculated by the following calculation formula.
Amount of carboxy group (C type)
=carboxy group amount (acid type)/{1+(W-1) x (carboxy group amount (acid type))/1000}
W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)

なお、滴定法によるイオン性基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、たとえば、0.1N水酸化ナトリウム水溶液を30秒に50μLずつ滴定するなどが望ましい。 In the measurement of the amount of ionic groups by the titration method, if the titration interval of the aqueous sodium hydroxide solution is too short, the amount of substituents may be lower than it should be. Therefore, an appropriate titration interval, for example, 0.1N water is used. It is desirable to titrate 50 μL of the sodium oxide aqueous solution for 30 seconds.

<微細繊維状変性セルロースの製造方法>
(セルロースを含む繊維原料)
微細繊維状変性セルロースは、セルロースを含む繊維原料から製造される。
セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状変性セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状変性セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状変性セルロースを用いると、該微細繊維状変性セルロースを含有するスラリーの粘度が高くなる傾向がある。
セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<Method for producing fine fibrous modified cellulose>
(Fiber raw material containing cellulose)
The fine fibrous modified cellulose is produced from a fiber raw material containing cellulose.
The fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Pulps include, for example, wood pulp, non-wood pulp, and deinked pulp. The wood pulp is not particularly limited, and examples thereof include hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolving pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP). ) And oxygen bleached kraft pulp (OKP) and other chemical pulps, semi-chemical pulp (SCP) and chemimiground wood pulp (CGP) and other semi-chemical pulps, groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP) and the like. Mechanical pulp etc. are mentioned. The non-wood pulp is not particularly limited, but examples thereof include cotton-based pulp such as cotton linter and cotton lint, and non-wood-based pulp such as hemp, straw and bagasse. The deinked pulp is not particularly limited, and examples thereof include deinked pulp made from waste paper. The pulp of this embodiment may be used alone or in a mixture of two or more kinds.
Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of easy availability. Further, among wood pulp, the viewpoint of a high yield of fine fibrous modified cellulose at the time of defibration treatment with a large cellulose ratio, or a long fibrous modified cellulose of long fiber with a small decomposition of cellulose in the pulp and a large axial ratio From the viewpoint of being obtained, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable. When long-fiber fine fibrous modified cellulose having a large axial ratio is used, the viscosity of the slurry containing the fine fibrous modified cellulose tends to increase.
As the fiber raw material containing cellulose, for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used. Further, instead of a fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan may be used.

上述のようなイオン性基を導入した微細繊維状変性セルロースを得るためには、上述したセルロースを含む繊維原料にイオン性基を導入するイオン性基導入工程、洗浄工程、アルカリ処理工程(中和工程)、解繊処理工程をこの順で有することが好ましく、洗浄工程の代わりに、または洗浄工程に加えて、酸処理工程を有していてもよい。イオン性基導入工程としては、リン酸基導入工程およびカルボキシ基導入工程が例示される。以下、それぞれについて説明する。 In order to obtain a fine fibrous modified cellulose having an ionic group as described above, an ionic group introducing step of introducing an ionic group into a fiber raw material containing the above-mentioned cellulose, a washing step, an alkali treatment step (neutralization Step) and the defibration treatment step in this order, and may have an acid treatment step instead of the washing step or in addition to the washing step. Examples of the ionic group introduction step include a phosphate group introduction step and a carboxy group introduction step. Each will be described below.

(イオン性基導入工程)
〔リン酸基導入工程〕
リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)をセルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
(Ionic group introduction step)
[Phosphate group introduction step]
In the phosphoric acid group introduction step, at least one compound selected from compounds capable of introducing a phosphoric acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose (hereinafter, also referred to as “compound A”) It is a step of acting on the fiber raw material containing. Through this step, a phosphoric acid group-introduced fiber is obtained.

本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素およびその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態または湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、とくに乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、とくに水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
In the phosphoric acid group-introducing step according to the present embodiment, the reaction between the fiber raw material containing cellulose and the compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). May be. On the other hand, the reaction of the fiber raw material containing cellulose and the compound A may be carried out in the absence of the compound B.
As an example of a method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B, a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state, or a slurry state can be mentioned. Among these, it is preferable to use the fiber raw material in the dry state or the wet state, and particularly preferable to use the fiber raw material in the dry state, because the reaction is highly uniform. The form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example. Compound A and compound B may be added to the fiber raw material in the form of powder or solution dissolved in a solvent, or heated to a melting point or higher and melted. Among these, since the reaction is highly uniform, it is preferable to add them in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, separately, or as a mixture. The method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be dipped in the solution to absorb the liquid and then taken out. The solution may be added dropwise. In addition, the required amounts of compound A and compound B may be added to the fiber raw material, or excess amounts of compound A and compound B are added to the fiber raw material, respectively, and then excess compound A and compound B are squeezed or filtered. May be removed.

本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、とくに限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、たとえばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。
これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。
The compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, such as phosphoric acid or a salt thereof, phosphorous acid or a salt thereof, dehydrated condensed phosphoric acid or a salt thereof. Examples thereof include salts and phosphoric anhydride (phosphorus pentoxide), but are not particularly limited. As the phosphoric acid, those having various purities can be used, and for example, 100% phosphoric acid (orthophosphoric acid) or 85% phosphoric acid can be used. Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid). The dehydrated condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Examples of the phosphates, phosphites, and dehydrated condensed phosphates include lithium salt, sodium salt, potassium salt, and ammonium salt of phosphoric acid, phosphorous acid, or dehydrated condensed phosphoric acid. It can be the degree of harmony.
Among these, the efficiency of introduction of a phosphoric acid group is high, the defibration efficiency is more easily improved in the defibration step described later, the cost is low, and from the viewpoint of easy industrial application, phosphoric acid and phosphoric acid A sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.

繊維原料に対する化合物Aの添加量は、とくに限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of the compound A added to the fiber raw material is not particularly limited, but for example, when the amount of the compound A added is converted to the amount of phosphorus atom, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. By setting the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by controlling the amount of phosphorus atoms added to the fiber raw material to be not more than the above upper limit, the effect of improving the yield and the cost can be balanced.

本実施態様で使用する化合物Bは、上述のとおり尿素およびその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1−フェニル尿素、1−ベンジル尿素、1−メチル尿素、および1−エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
The compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Examples of the compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
From the viewpoint of improving the uniformity of the reaction, the compound B is preferably used as an aqueous solution. From the viewpoint of further improving the homogeneity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
The amount of the compound B added to the fiber raw material (extremely dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.

セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、とくにトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and the compound A, in addition to the compound B, for example, amides or amines may be included in the reaction system. Examples of the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine. Among these, triethylamine is known to work particularly as a good reaction catalyst.

リン酸基導入工程においては、繊維原料に化合物A等を添加または混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。
本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物A等を含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物A等を混練または撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物A等の濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物A等が表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分および化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、たとえば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
In the phosphoric acid group introduction step, it is preferable to add or mix the compound A or the like to the fiber raw material and then subject the fiber raw material to heat treatment. As the heat treatment temperature, it is preferable to select a temperature at which the phosphoric acid group can be efficiently introduced while suppressing thermal decomposition or hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50° C. or higher and 300° C. or lower, more preferably 100° C. or higher and 250° C. or lower, and further preferably 130° C. or higher and 200° C. or lower. Further, for the heat treatment, equipment having various heat mediums can be used, and for example, a stirring dryer, a rotary dryer, a disk dryer, a roll type heater, a plate type heater, a fluidized bed dryer, an air stream. A drying device, a reduced pressure drying device, an infrared heating device, a far infrared heating device, or a microwave heating device can be used.
In the heat treatment according to the present embodiment, for example, the compound A or the like is added to a thin sheet-shaped fiber raw material by a method such as impregnation and then heated, or the fiber raw material and the compound A or the like are kneaded or stirred with a kneader or the like. While heating, a method of heating can be adopted. This makes it possible to suppress unevenness in the concentration of the compound A or the like in the fiber raw material and more uniformly introduce the phosphate group into the surface of the cellulose fiber contained in the fiber raw material. This is because when water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A or the like is attracted to the water molecules by the surface tension and similarly moves to the surface of the fiber raw material (that is, uneven concentration of compound A). It is considered that this is caused by the fact that it is possible to suppress
In addition, the heating device used for the heat treatment always uses, for example, the water held by the slurry and the water generated by the dehydration condensation (phosphoric acid esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside. An example of such a heating device is a blower type oven. By constantly discharging the water in the device system, in addition to suppressing the hydrolysis reaction of the phosphoric acid ester bond, which is the reverse reaction of phosphoric acid esterification, it is also possible to suppress the acid hydrolysis of sugar chains in the fiber. it can. Therefore, it becomes possible to obtain fine fibrous cellulose having a high axial ratio.

加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is, for example, preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and more preferably 10 seconds or more and 800 seconds or less after water is substantially removed from the fiber raw material. Is more preferable. In the present embodiment, the introduction amount of the phosphate group can be set within a preferable range by setting the heating temperature and the heating time within appropriate ranges.

リン酸基導入工程は、少なくとも1回行えばよいが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。 The phosphate group introducing step may be performed at least once, but may be repeated twice or more. By performing the phosphoric acid group introduction step twice or more, it is possible to introduce many phosphoric acid groups into the fiber raw material. In the present embodiment, an example of a preferable mode is a case where the phosphate group introducing step is performed twice.

繊維原料に対するリン酸基の量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリン酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状変性セルロースの安定性を高めることができる。 The amount of phosphoric acid groups with respect to the fiber raw material is, for example, preferably 0.10 mmol/g or more, more preferably 0.20 mmol/g or more, and 0.50 mmol/g or more per 1 g (mass) of fibrous cellulose. Is more preferable, and 1.00 mmol/g or more is particularly preferable. The amount of phosphate groups introduced into the fiber raw material is, for example, preferably 5.20 mmol/g or less, more preferably 3.65 mmol/g or less, and 3.00 mmol per 1 g (mass) of fibrous cellulose. /G or less is more preferable. By setting the amount of the phosphate group introduced within the above range, it is possible to facilitate miniaturization of the fiber raw material and enhance the stability of the fine fibrous modified cellulose.

〔カルボキシ基導入工程〕
カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
[Carboxy group introduction step]
In the step of introducing a carboxy group, a fiber raw material containing cellulose is subjected to oxidation treatment such as ozone oxidation, Fenton's method, TEMPO oxidation treatment, a compound having a group derived from a carboxylic acid or a derivative thereof, or a group derived from a carboxylic acid. It is carried out by treating the compound with an acid anhydride or a derivative thereof.

カルボン酸由来の基を有する化合物としては、とくに限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、とくに限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、とくに限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
カルボン酸由来の基を有する化合物の酸無水物としては、とくに限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、とくに限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
The compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid and itaconic acid, and citric acid and aconitic acid. Examples include tricarboxylic acid compounds. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized product of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group. The imidization product of an acid anhydride of a compound having a carboxy group is not particularly limited, and examples thereof include imidization products of dicarboxylic acid compounds such as maleimide, succinimide, and phthalic acid imide.
The acid anhydride of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. An acid anhydride is mentioned. The derivative of the acid anhydride of the compound having a carboxylic acid-derived group is not particularly limited, and examples thereof include compounds having a carboxy group such as dimethyl maleic anhydride, diethyl maleic anhydride, and diphenyl maleic anhydride. Examples thereof include those in which at least a part of hydrogen atoms of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.

カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6−テトラメチルピペリジン−1−オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。
また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
When the TEMPO oxidation treatment is performed in the carboxy group introduction step, for example, the treatment is preferably performed under the condition that the pH is 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment. For the neutral TEMPO oxidation treatment, for example, sodium phosphate buffer (pH=6.8), pulp as a fiber raw material, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst are used. It can be performed by adding nitroxy radical and sodium hypochlorite as a sacrificial reagent. Further, by allowing sodium chlorite to coexist, the aldehyde generated during the oxidation process can be efficiently oxidized to the carboxy group.
Further, the TEMPO oxidation treatment may be performed under the condition that the pH is 10 or more and 11 or less. Such a treatment is also called an alkaline TEMPO oxidation treatment. The alkaline TEMPO oxidation treatment can be performed, for example, by adding nitroxy radicals such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidant to pulp as a fiber raw material. ..

繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。 The amount of the carboxy group introduced into the fiber raw material varies depending on the type of the substituent, but when introducing the carboxy group by TEMPO oxidation, for example, it is preferably 0.10 mmol/g or more per 1 g (mass) of the fibrous cellulose, It is more preferably 0.20 mmol/g or more, further preferably 0.50 mmol/g or more, and particularly preferably 0.90 mmol/g or more. Further, it is preferably 2.5 mmol/g or less, more preferably 2.20 mmol/g or less, and further preferably 2.00 mmol/g or less. In addition, when the substituent is a carboxymethyl group, it may be 5.8 mmol/g or less per 1 g (mass) of fibrous cellulose.

(洗浄工程)
本実施形態における微細繊維状変性セルロースの製造方法においては、必要に応じてイオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
(Washing process)
In the method for producing fine fibrous modified cellulose in the present embodiment, a washing step can be performed on the ionic group-introduced fiber, if necessary. The washing step is performed, for example, by washing the ionic group-introduced fiber with water or an organic solvent. The washing step may be performed after each step described below, and the number of washings performed in each washing step is not particularly limited.

(アルカリ処理工程)
微細繊維状変性セルロースを製造する場合、イオン性基導入工程と、後述する解繊処理工程との間に、イオン性基導入繊維に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、とくに限定されないが、たとえばアルカリ溶液中に、イオン性基導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、とくに限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
(Alkaline treatment process)
When producing the fine fibrous modified cellulose, the ionic group-introduced fiber may be subjected to an alkali treatment between the ionic group-introducing step and the defibration treatment step described below. The method of alkali treatment is not particularly limited, and examples thereof include a method of immersing the ionic group-introduced fiber in an alkali solution.
The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkali compound because of its high versatility. The solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably water or a polar solvent containing a polar organic solvent such as an alcohol, and more preferably an aqueous solvent containing at least water. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.

アルカリ処理工程におけるアルカリ溶液の温度は、とくに限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。
アルカリ処理工程におけるイオン性基導入繊維のアルカリ溶液への浸漬時間は、とくに限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。
アルカリ処理におけるアルカリ溶液の使用量は、とくに限定されないが、たとえばイオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5° C. or higher and 80° C. or lower, and more preferably 10° C. or higher and 60° C. or lower.
The time for immersing the ionic group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100000% by mass or less and 1000% by mass or more and 10000% by mass or less based on the absolute dry mass of the ionic group-introduced fiber. Is more preferable.

アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性基導入工程の後であってアルカリ処理工程の前に、イオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkali treatment step, the ionic group-introduced fiber may be washed with water or an organic solvent after the ionic group introduction step and before the alkali treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated ionic group-introduced fiber with water or an organic solvent from the viewpoint of improving the handleability.

(酸処理工程)
微細繊維状変性セルロースを製造する場合、イオン性基を導入する工程と、後述する解繊処理工程の間に、イオン性基導入繊維に対して酸処理を行ってもよい。たとえば、イオン性基導入工程、酸処理、アルカリ処理および解繊処理をこの順で行ってもよい。
酸処理の方法としては、とくに限定されないが、たとえば酸を含有する酸性液中にイオン性基導入繊維を浸漬する方法が挙げられる。使用する酸性液の濃度は、とくに限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、とくに限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。
酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。
(Acid treatment process)
When producing the fine fibrous modified cellulose, acid treatment may be performed on the ionic group-introduced fiber between the step of introducing the ionic group and the defibration treatment step described below. For example, the ionic group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.
The method of acid treatment is not particularly limited, and examples thereof include a method of immersing the ionic group-introduced fiber in an acidic liquid containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably 10% by mass or less, and more preferably 5% by mass or less. The pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
As the acid contained in the acidic liquid, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.

酸処理における酸溶液の温度は、とくに限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、とくに限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、とくに限定されないが、たとえばイオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5° C. or higher and 100° C. or lower, and more preferably 20° C. or higher and 90° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100000% by mass or less, and 1000% by mass or more and 10000% by mass or less based on the absolute dry mass of the ionic group-introduced fiber. Is more preferable.

(解繊処理工程)
イオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。
解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、とくに限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
(Disentanglement process)
Fine fiber cellulose is obtained by defibrating the ionic group-introduced fiber in the defibrating process.
In the defibration processing step, for example, a defibration processing device can be used. The defibration processing device is not particularly limited, but includes, for example, a high-speed defibration machine, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultrahigh-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disk type refiner, a conical refiner, a twin screw A kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, a beater, or the like can be used. Among the above defibration treatment devices, it is more preferable to use a high-speed defibration machine, a high-pressure homogenizer, and an ultrahigh-pressure homogenizer that are less affected by the grinding media and less likely to cause contamination.

解繊処理工程においては、たとえばイオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n−ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリジノン(NMP)等が挙げられる。
解繊処理時の微細繊維状変性セルロースの固形分濃度は適宜設定できる。また、イオン性基導入繊維を分散媒に分散させて得たスラリー中には、たとえば水素結合性のある尿素などのイオン性基導入繊維以外の固形分が含まれていてもよい。
In the defibration treatment step, for example, the ionic group-introduced fibers are preferably diluted with a dispersion medium to form a slurry. As the dispersion medium, water or one or more selected from organic solvents such as polar organic solvents can be used. The polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, and isobutyl alcohol. Examples of polyhydric alcohols include ethylene glycol, propylene glycol and glycerin. Examples of ketones include acetone and methyl ethyl ketone (MEK). Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether, and the like. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc) and N-methyl-2-pyrrolidinone (NMP).
The solid content concentration of the fine fibrous modified cellulose during the defibration treatment can be appropriately set. Further, the slurry obtained by dispersing the ionic group-introduced fiber in the dispersion medium may contain solid components other than the ionic group-introduced fiber such as urea having hydrogen bonding property.

<繊維状セルロースの物性>
(粘度)
本発明において、繊維状セルロースを固形分濃度が0.4%(0.4質量%)に調整した分散液(スラリー)の23℃における粘度は、炭酸カルシウム粉末の分散安定性をより向上させる観点から、好ましくは500mPa・s以上、より好ましくは1.0×10mPa・s以上であり、さらに好ましくは3×10mPa・s以上、よりさらに好ましくは5.0×10mPa・s以上であり、同様の観点から、好ましくは1×10mPa・s以下、より好ましくは7×10mPa・s以下、さらに好ましくは5×10mPa・s以下、よりさらに好ましくは3.5×10mPa・s以下、よりさらに好ましくは2.5×10mPa・s以下、よりさらに好ましくは1.5×10mPa・s以下である。
上記の粘度は、繊維状セルロースの固形分濃度を0.4%に調整したスラリーを1500rpmで5分間、ディスパーサーにて撹拌した後、測定前に23℃、相対湿度50%の環境下に24時間静置した後、B型粘度計を用いて23℃、回転数3rpmの条件で測定する。より具体的には、たとえばB型粘度計であるBLOOKFIELD社製、アナログ粘度計T−LVTを用いることができる。測定条件は、たとえば液温23℃にて、粘度計の回転数は3rpmにて測定を行い、測定開始から3分のときの粘度値を当該分散液の粘度とする。なお、上記分散液は、繊維状セルロースが完全に溶解していてもよく、分散状態であってもよい。
<Physical properties of fibrous cellulose>
(viscosity)
In the present invention, the viscosity of the dispersion liquid (slurry) in which the solid content concentration of the fibrous cellulose is adjusted to 0.4% (0.4% by mass) at 23° C. is a viewpoint of further improving the dispersion stability of the calcium carbonate powder. Therefore, it is preferably 500 mPa·s or more, more preferably 1.0×10 3 mPa·s or more, still more preferably 3×10 3 mPa·s or more, still more preferably 5.0×10 3 mPa·s. From the same viewpoint, it is preferably 1×10 5 mPa·s or less, more preferably 7×10 4 mPa·s or less, still more preferably 5×10 4 mPa·s or less, still more preferably 3. It is 5×10 4 mPa·s or less, more preferably 2.5×10 4 mPa·s or less, and even more preferably 1.5×10 4 mPa·s or less.
The above viscosity was measured by stirring the slurry in which the solid content concentration of the fibrous cellulose was adjusted to 0.4% at 1500 rpm for 5 minutes with a disperser, and then measuring the temperature at 23° C. and a relative humidity of 50% in an environment of 24. After standing for a period of time, measurement is performed using a B-type viscometer under the conditions of 23° C. and rotation speed of 3 rpm. More specifically, for example, an analog viscometer T-LVT manufactured by BLOOKFIELD, which is a B-type viscometer, can be used. The measurement conditions are, for example, a liquid temperature of 23° C. and a viscometer rotation speed of 3 rpm, and the viscosity value at 3 minutes from the start of measurement is the viscosity of the dispersion liquid. The above-mentioned dispersion liquid may have the fibrous cellulose completely dissolved or may be in a dispersed state.

(TI値)
本発明において、繊維状セルロースの下記式(1)で表されるチクソトロピックインデックス(TI値)は、より圧送性に優れる先行剤を得る観点から、好ましくは30以上、より好ましくは50以上、さらに好ましくは60以上、よりさらに好ましくは75以上、よりさらに好ましくは90以上である。
そして、上限はとくに限定されないが、繊維状セルロースの入手容易性および先行剤の分散安定性の観点から、好ましくは600以下、より好ましくは500以下、さらに好ましくは400以下、よりさらに好ましくは350以下である。
TI値
=(せん断速度1/sにおける粘度)/(せん断速度1000/sにおける粘度) (1)
上記粘度は、23℃、固形分濃度0.4%分散液での粘度である。
TI値は、実施例に記載の方法により測定される。
(TI value)
In the present invention, the thixotropic index (TI value) represented by the following formula (1) of the fibrous cellulose is preferably 30 or more, more preferably 50 or more, further from the viewpoint of obtaining a predecessor having more excellent pumpability. It is preferably 60 or more, more preferably 75 or more, still more preferably 90 or more.
And the upper limit is not particularly limited, but from the viewpoint of easy availability of fibrous cellulose and dispersion stability of the precursor, preferably 600 or less, more preferably 500 or less, further preferably 400 or less, still more preferably 350 or less. Is.
TI value=(viscosity at shear rate 1/s)/(viscosity at shear rate 1000/s) (1)
The above viscosity is the viscosity at 23° C. and 0.4% solid concentration dispersion.
The TI value is measured by the method described in the example.

[コンクリートポンプ圧送用先行剤]
本発明の繊維状セルロースは、炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造するために使用される。
本発明において、コンクリートポンプ圧送用先行剤は、通常粉末状またはペースト状であり、使用前に水を加えて分散し、これにより得られる分散液として、コンクリートポンプのホッパー内に投入される。なお、「コンクリートポンプ圧送用先行剤」は、粉末状の状態のみを意味するものではなく、水中に分散された分散液となっているものをも意味する。
従って、本発明において、繊維状セルロースがウェットパウダー状等の粉末状であり、炭酸カルシウムと混合して、全体として粉末状である圧送用先行剤として存在するものであってもよく、繊維状セルロースが分散液の状態(スラリー状)であり、炭酸カルシウムを含む粉末を水分散液とする際に、繊維状セルロースを含有する分散液(スラリー)を添加して、炭酸カルシウムと混合して、先行剤(分散液)としてもよい。
[Preceding agent for concrete pumping]
The fibrous cellulose of the present invention is used to mix with calcium carbonate powder to make a precursor for concrete pumping.
In the present invention, the precursor for pumping concrete pump is usually in the form of powder or paste, and is dispersed by adding water before use, and the dispersion obtained by this is put into the hopper of the concrete pump. The "concrete pumping predecessor" does not mean only a powdery state, but also a dispersion in water.
Therefore, in the present invention, the fibrous cellulose is in a powder form such as a wet powder form, and may be present as a precursor for pumping which is a powder form as a whole when mixed with calcium carbonate. Is a state of dispersion (slurry), and when the powder containing calcium carbonate is made into an aqueous dispersion, a dispersion (slurry) containing fibrous cellulose is added and mixed with calcium carbonate, It may be used as an agent (dispersion liquid).

本発明において、炭酸カルシウム粉末100質量部に対する繊維状セルロースの混合量は、分散安定性および圧送性に優れる先行剤を得る観点から、好ましくは0.0001質量部以上、より好ましくは0.001質量部以上、さらに好ましくは0.01質量部以上であり、そして、同様の観点から、好ましくは100質量部以下、より好ましくは10質量部以下、さらに好ましくは1質量部以下、よりさらに好ましくは0.1質量部以下である。
なお、繊維状セルロースの混合量は、乾燥した繊維状セルロースとしての混合量を意味する。
In the present invention, the amount of fibrous cellulose mixed with 100 parts by mass of calcium carbonate powder is preferably 0.0001 parts by mass or more, and more preferably 0.001 parts by mass, from the viewpoint of obtaining a precursor having excellent dispersion stability and pumpability. Parts by mass or more, more preferably 0.01 parts by mass or more, and from the same viewpoint, preferably 100 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 1 part by mass or less, and even more preferably 0. It is 1 part by mass or less.
The amount of fibrous cellulose mixed means the amount of dried fibrous cellulose mixed.

本発明において、先行剤は、少なくとも炭酸カルシウムを含有する。
先行剤の固形分中の炭酸カルシウムの含有量は、分散性および圧送性に優れる観点、並びにコンクリート配管の閉塞を抑制する観点から、好ましくは50質量%、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上であり、そして、好ましくは99.9質量%以下である。
In the present invention, the preceding agent contains at least calcium carbonate.
The content of calcium carbonate in the solid content of the precursor is preferably 50% by mass, more preferably 60% by mass or more, further preferably from the viewpoint of excellent dispersibility and pumpability, and from the viewpoint of suppressing clogging of concrete pipes. Is 70% by mass or more, more preferably 80% by mass or more, and preferably 99.9% by mass or less.

炭酸カルシウムとしては、沈降性炭酸カルシウムのような軽質炭酸カルシウムであってもよく、また、石灰石を粉砕した重質炭酸カルシウムであってもよく、とくに限定されないが、先行剤として優れた性能を得る観点から、粒子径が小さな炭酸カルシウム粉末であることが好ましい。また、粒度調整や成分調整を行った炭酸カルシウム粉末を使用してもよい。
これらの中でも、先行剤として優れた性能を発揮する観点から、多孔質炭酸カルシウム粉末を含有することが好ましい。多孔質炭酸カルシウムとしては、たとえば、生コンスラッジを粒度調整および成分調整して得られた多孔質炭酸カルシウムが挙げられる。
さらに、炭酸カルシウム粉末として、沈降性炭酸カルシウムのように、粒子形状が均一な微粉末炭酸カルシウムを含有してもよい。
The calcium carbonate may be light calcium carbonate such as precipitated calcium carbonate, or may be ground calcium carbonate obtained by crushing limestone, and is not particularly limited, but excellent performance as a precursor is obtained. From the viewpoint, it is preferable that the calcium carbonate powder has a small particle size. Moreover, you may use the calcium carbonate powder which carried out the particle size adjustment and the component adjustment.
Among these, it is preferable to contain a porous calcium carbonate powder from the viewpoint of exhibiting excellent performance as a precursor. Examples of the porous calcium carbonate include porous calcium carbonate obtained by adjusting the particle size and the components of fresh raw sludge.
Further, the calcium carbonate powder may contain fine powder calcium carbonate having a uniform particle shape, such as precipitated calcium carbonate.

本発明において、先行剤は、炭酸カルシウム粉末および繊維状セルロースに加えて、その他の成分を含有してもよい。
その他の成分としては、炭酸カルシウム以外の無機粉体、吸水性樹脂、水溶性樹脂、顔料、酸化防止剤、pH調整剤などが例示される。本発明において、繊維状セルロースは、顔料、酸化防止剤、およびpH調整剤からなる群から選択される少なくとも1つと混合することがより好ましい。
上記炭酸カルシウム以外の無機粉体としては、水酸化カルシウム、ハイドロタルサイト、酸化カルシウムなどが例示される。また、顔料としては、無機顔料および有機顔料のいずれでもよい。顔料を含有することにより、排出される先行剤の視認性を向上させ、先行剤の排出終了をモニターすることが容易となる。有機顔料としては、視認性の観点から、有機系蛍光顔料がとくに好ましい。
また、酸化防止やpH調整を目的として、エリソルビン酸等の酸化防止剤やpH調整剤を添加してもよい。酸化防止剤、pH調整剤等を添加することにより、先行剤の分散性をより改善するとともに、配管中の腐食や、コンクリートに混入した時の影響が低減される。
In the present invention, the precursor may contain other components in addition to the calcium carbonate powder and the fibrous cellulose.
Examples of other components include inorganic powders other than calcium carbonate, water-absorbent resins, water-soluble resins, pigments, antioxidants, pH adjusters and the like. In the present invention, the fibrous cellulose is more preferably mixed with at least one selected from the group consisting of pigments, antioxidants, and pH adjusters.
Examples of the inorganic powder other than calcium carbonate include calcium hydroxide, hydrotalcite, calcium oxide and the like. The pigment may be either an inorganic pigment or an organic pigment. By including the pigment, the visibility of the discharged precursor agent is improved, and it becomes easy to monitor the discharge completion of the precursor agent. As the organic pigment, an organic fluorescent pigment is particularly preferable from the viewpoint of visibility.
Further, an antioxidant such as erythorbic acid or a pH adjuster may be added for the purpose of preventing oxidation or adjusting the pH. By adding an antioxidant, a pH adjuster and the like, the dispersibility of the preceding agent is further improved, and the corrosion in the pipe and the influence when mixed with concrete are reduced.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with reference to Examples and Comparative Examples. The materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limitedly interpreted by the following specific examples.

各実施例および比較例で使用した繊維状セルロースは次の製造例により、製造したものを用いた。
(製造例1)
(リン酸基導入パルプの作製)
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700mL)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸基導入パルプ(以下、「リン酸化パルプ」ともいう)を得た。次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
これにより得られたリン酸化パルプに対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm−1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、後述する測定方法で測定されるリン酸基量(強酸性基量)は、1.45mmol/gだった。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
The fibrous cellulose used in each of the examples and comparative examples was produced by the following production example.
(Production Example 1)
(Preparation of phosphate group-introduced pulp)
As a raw material pulp, a softwood kraft pulp made by Oji Paper Co., Ltd. (solid content 93 mass %, basis weight 208 g/m 2 sheet shape, Canadian standard freeness (CSF) measured in accordance with JIS P 8121 is 700 mL) It was used. This raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to give 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. Was adjusted to obtain a chemical-impregnated pulp. Next, the obtained chemical liquid-impregnated pulp is heated for 200 seconds with a hot air dryer at 165° C. to introduce a phosphate group into the cellulose in the pulp to obtain a phosphate group-introduced pulp (hereinafter, also referred to as “phosphorylated pulp”). Obtained. Then, the phosphorylated pulp obtained was subjected to a washing treatment. The washing treatment was carried out by repeating the operation of pouring the pulp dispersion obtained by pouring 10 L of ion-exchanged water to 100 g of phosphorylated pulp (absolute dry mass) so that the pulp was uniformly dispersed, and then filtering and dehydrating. went. When the electric conductivity of the filtrate became 100 μS/cm or less, the washing end point was set.
Next, the phosphorylated pulp after washing was subjected to neutralization treatment as follows. First, the phosphorylated pulp after washing was diluted with 10 L of ion-exchanged water, and 1N aqueous sodium hydroxide solution was added little by little while stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a neutralized phosphorylated pulp. Next, the above washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on a phosphate group was observed around 1230 cm −1 , and it was confirmed that the phosphate group was added to the pulp. The amount of phosphoric acid groups (the amount of strong acidic groups) measured by the measuring method described later was 1.45 mmol/g. Also, the phosphorylated pulp obtained was tested and analyzed by an X-ray diffractometer, and it was found at two positions, that is, 2θ=14° or more and 17° or less and 2θ=22° or more and 23° or less. A typical peak was confirmed and it was confirmed to have a cellulose type I crystal.

(繊維状セルロース分散液の作製)
得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて1回処理し、微細繊維状変性セルロースを含む繊維状セルロース分散液1を得た。X線回折により、この微細繊維状変性セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状変性セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。
なお、後述する測定方法で測定される繊維状セルロースのリン酸基量(強酸性基量)は1.45mmol/g、重合度は680であった。
(Preparation of fibrous cellulose dispersion)
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated once with a wet atomizer (manufactured by Sugino Machine Ltd., Starburst) at a pressure of 200 MPa to obtain a fibrous cellulose dispersion liquid 1 containing fine fibrous modified cellulose. It was confirmed by X-ray diffraction that the fine fibrous modified cellulose maintained the cellulose type I crystal. The fiber width of the fine fibrous modified cellulose was measured with a transmission electron microscope, and it was 3 to 5 nm.
The amount of phosphoric acid groups (the amount of strongly acidic groups) of the fibrous cellulose measured by the measuring method described later was 1.45 mmol/g, and the degree of polymerization was 680.

(製造例2)
製造例1において、繊維状セルロースの重合度が590となるように湿式微粒化装置で200MPaの圧力にて2回処理した以外は、製造例1と同様に行い繊維状セルロース分散液2を得た。
(Production Example 2)
A fibrous cellulose dispersion 2 was obtained in the same manner as in Production Example 1 except that the fibrous cellulose was treated twice with a wet atomizer at a pressure of 200 MPa so that the degree of polymerization of fibrous cellulose was 590. ..

(製造例3)
製造例1において、繊維状セルロースの重合度が499となるように湿式微粒化装置で200MPaの圧力にて4回処理した以外は、製造例1と同様に行い繊維状セルロース分散液3を得た。
(Production Example 3)
Fibrous Cellulose Dispersion 3 was obtained in the same manner as in Production Example 1 except that the fibrous cellulose was treated 4 times at a pressure of 200 MPa with a wet atomizer so that the degree of polymerization of fibrous cellulose was 499. ..

(製造例4)
製造例1において、繊維状セルロースの重合度が459となるように湿式微粒化装置で200MPaの圧力にて6回処理した以外は、製造例1と同様に行い繊維状セルロース分散液4を得た。
(Production Example 4)
Fibrous Cellulose Dispersion Liquid 4 was obtained in the same manner as in Production Example 1 except that the treatment was performed 6 times at a pressure of 200 MPa with a wet atomizer so that the degree of polymerization of fibrous cellulose was 459. ..

(製造例5)
(リン酸基導入パルプの作製)
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700mL)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸基導入パルプ(リン酸化パルプ)を得た。次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。洗浄後のリン酸化パルプに対して、さらに上記リン酸化処理、上記洗浄処理をこの順に1回ずつ行った。
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
これにより得られたリン酸化パルプに対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm−1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、後述する測定方法で測定されるリン酸基量(強酸性基量)は、2.00mmol/gだった。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(Production Example 5)
(Preparation of phosphate group-introduced pulp)
As a raw material pulp, a softwood kraft pulp made by Oji Paper Co., Ltd. (solid content 93 mass %, basis weight 208 g/m 2 sheet shape, Canadian standard freeness (CSF) measured in accordance with JIS P 8121 is 700 mL) It was used. This raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to give 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. Was adjusted to obtain a chemical-impregnated pulp. Next, the obtained chemical liquid-impregnated pulp was heated for 200 seconds with a hot air dryer at 165° C. to introduce a phosphate group into the cellulose in the pulp to obtain a phosphate group-introduced pulp (phosphorylated pulp). Then, the phosphorylated pulp obtained was subjected to a washing treatment. The washing treatment was carried out by repeating the operation of pouring the pulp dispersion obtained by pouring 10 L of ion-exchanged water to 100 g of phosphorylated pulp (absolute dry mass) so that the pulp was uniformly dispersed, and then filtering and dehydrating. went. When the electric conductivity of the filtrate became 100 μS/cm or less, the washing end point was set. The phosphorylated pulp after washing was further subjected to the above-mentioned phosphorylation treatment and the above-mentioned washing treatment once in this order.
Next, the phosphorylated pulp after washing was subjected to neutralization treatment as follows. First, the phosphorylated pulp after washing was diluted with 10 L of ion-exchanged water, and 1N aqueous sodium hydroxide solution was added little by little while stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a neutralized phosphorylated pulp. Next, the above washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on a phosphate group was observed around 1230 cm −1 , and it was confirmed that the phosphate group was added to the pulp. The amount of phosphoric acid groups (the amount of strong acidic groups) measured by the measuring method described later was 2.00 mmol/g. Also, the phosphorylated pulp obtained was tested and analyzed by an X-ray diffractometer, and it was found at two positions, that is, 2θ=14° or more and 17° or less and 2θ=22° or more and 23° or less. A typical peak was confirmed and it was confirmed to have a cellulose type I crystal.

(繊維状セルロース分散液の作製)
得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて1回処理し、微細繊維状変性セルロースを含む繊維状セルロース分散液5を得た。X線回折により、この微細繊維状変性セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状変性セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。
なお、後述する測定方法で測定される繊維状セルロースのリン酸基量(強酸性基量)は2.00mmol/g、重合度は625であった。
(Preparation of fibrous cellulose dispersion)
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. The slurry was treated once with a wet atomizer (manufactured by Sugino Machine Ltd., Starburst) at a pressure of 200 MPa to obtain a fibrous cellulose dispersion 5 containing fine fibrous modified cellulose. It was confirmed by X-ray diffraction that the fine fibrous modified cellulose maintained the cellulose type I crystal. The fiber width of the fine fibrous modified cellulose was measured with a transmission electron microscope, and it was 3 to 5 nm.
The amount of phosphoric acid groups (the amount of strongly acidic groups) of the fibrous cellulose measured by the measuring method described later was 2.00 mmol/g, and the degree of polymerization was 625.

(製造例6)
製造例5において、繊維状セルロースのリン酸基量が2.00mmol/g、重合度が536となるように湿式微粒化装置で200MPaの圧力にて2回処理した以外は、製造例1と同様に行い繊維状セルロース分散液6を得た。
(Production Example 6)
In Production Example 5, except that the fibrous cellulose was treated twice with a wet atomization device at a pressure of 200 MPa so that the amount of phosphoric acid groups in the fibrous cellulose was 2.00 mmol/g and the degree of polymerization was 536. Then, a fibrous cellulose dispersion liquid 6 was obtained.

(製造例7)
製造例5において、繊維状セルロースのリン酸基量が2.00mmol/g、重合度が482となるように湿式微粒化装置で200MPaの圧力にて4回処理した以外は、製造例5と同様に行い繊維状セルロース分散液7を得た。
(Production Example 7)
In Production Example 5, the same as Production Example 5 except that the fibrous cellulose was treated 4 times at a pressure of 200 MPa with a wet atomizer so that the amount of phosphate groups in the fibrous cellulose was 2.00 mmol/g and the degree of polymerization was 482. Then, a fibrous cellulose dispersion liquid 7 was obtained.

(製造例8)
製造例5において、繊維状セルロースのリン酸基量が2.00mmol/g、重合度が444となるように湿式微粒化装置で200MPaの圧力にて6回処理した以外は、製造例5と同様に行い繊維状セルロース分散液8を得た。
(Production Example 8)
In Production Example 5, the same as Production Example 5, except that the fibrous cellulose was treated 6 times at a pressure of 200 MPa with a wet atomization apparatus so that the amount of phosphate groups was 2.00 mmol/g and the degree of polymerization was 444. The fibrous cellulose dispersion liquid 8 was obtained.

(製造例9)
(亜リン酸基導入パルプの作製)
リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例1と同様に操作を行い、亜リン酸基導入パルプ(以下、「亜リン酸化パルプ」ともいう。)を得た。
次いで、得られた亜リン酸化パルプに対して洗浄処理を行った。洗浄処理は、亜リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するように撹拌した後、濾過脱水する操作を繰り返すことにより行った。濾液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後の亜リン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後の亜リン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずる添加することにより、pHが12以上13以下の亜リン酸化パルプスラリーを得た。次いで、当該亜リン酸化パルプスラリーを脱水して、中和処理が施された亜リン酸化パルプを得た。次いで、中和処理後の亜リン酸化パルプに対して、上記洗浄処理を行った。
これにより得られた亜リン酸化パルプに対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm−1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。
また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(Production Example 9)
(Preparation of phosphite group-introduced pulp)
Except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate, the same operation as in Production Example 1 was repeated to prepare a phosphorous acid group-introduced pulp (hereinafter, also referred to as “phosphorylated pulp”). I said.)
Then, the obtained phosphorous-oxidized pulp was washed. In the washing treatment, a pulp dispersion obtained by pouring 10 L of ion-exchanged water to 100 g of phosphorous pulp (absolute dry mass) is stirred so that the pulp is uniformly dispersed, and then filtration and dehydration are repeated. I went by. When the electric conductivity of the filtrate was 100 μS/cm or less, the washing end point was set.
Then, the washed phosphorous acid pulp was neutralized as follows. First, after diluting the washed phosphite pulp with 10 L of ion-exchanged water, 1N sodium hydroxide aqueous solution is slightly added while stirring to give a phosphite pulp slurry having a pH of 12 or more and 13 or less. Obtained. Then, the phosphorous oxide pulp slurry was dehydrated to obtain a phosphorous acid pulp subjected to neutralization treatment. Next, the washing treatment was performed on the phosphorous acid pulp after the neutralization treatment.
The infrared absorption spectrum of the phosphorous-oxidized pulp thus obtained was measured using FT-IR. As a result, the absorption based on P=O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed in the vicinity of 1210 cm -1 , and the phosphite group (phosphonic acid group) was added to the pulp. Was confirmed.
Moreover, when the obtained phosphorous phosphite pulp was tested and analyzed by an X-ray diffractometer, two positions of 2θ=14° or more and 17° or less and 2θ=22° or more and 23° or less were determined. Was confirmed to have a typical peak, and it was confirmed to have a cellulose type I crystal.

(繊維状セルロース分散液の作製)
得られた亜リン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状変性セルロースを含む繊維状セルロース分散液9を得た。X線回折により、この微細繊維状変性セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状変性セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。
なお、後述する測定方法で測定される繊維状セルロースの亜リン酸基量(強酸性基量)は1.80mmol/g、重合度は430であった。
(Preparation of fibrous cellulose dispersion)
Ion-exchanged water was added to the obtained phosphorous oxide pulp to prepare a slurry having a solid content concentration of 2% by mass. The slurry was treated 6 times with a wet atomizer (manufactured by Sugino Machine Ltd., Starburst) at a pressure of 200 MPa to obtain a fibrous cellulose dispersion 9 containing fine fibrous modified cellulose. It was confirmed by X-ray diffraction that the fine fibrous modified cellulose maintained the cellulose type I crystal. The fiber width of the fine fibrous modified cellulose was measured with a transmission electron microscope, and it was 3 to 5 nm.
The amount of phosphite group (the amount of strongly acidic group) of the fibrous cellulose measured by the measuring method described later was 1.80 mmol/g, and the degree of polymerization was 430.

(製造例10)
(カルボキシ基導入パルプの作製)
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700mL)を使用した。この原料パルプに対してTEMPO酸化処理を次のようにして行った。
まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6−テトラメチルピペリジン−1−オキシル)1.6質量部と、臭化ナトリウム10質量部とを、水10,000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
次いで、得られたカルボキシ基導入パルプ(以下、「TEMPO酸化パルプ」ともいう)に対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5,000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。濾液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(Production Example 10)
(Preparation of carboxy group-introduced pulp)
As a raw material pulp, a softwood kraft pulp made by Oji Paper Co., Ltd. (solid content 93 mass %, basis weight 208 g/m 2 sheet shape, Canadian standard freeness (CSF) measured in accordance with JIS P 8121 is 700 mL) It was used. This raw pulp was subjected to TEMPO oxidation treatment as follows.
First, the raw material pulp corresponding to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 10 parts by mass of sodium bromide, and 10 parts of water. It was dispersed in 1,000 parts by mass. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 10 g of 1.0 g of pulp to start the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to maintain the pH at 10 or more and 10.5 or less, and the reaction was considered to be complete when no change in pH was observed.
Then, the obtained carboxy group-introduced pulp (hereinafter, also referred to as “TEMPO oxidized pulp”) was subjected to a washing treatment. The washing treatment is to dehydrate the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pour 5,000 parts by mass of ion-exchanged water, stir to uniformly disperse, and then repeat the operation of filtering and dehydrating. I went by. When the electric conductivity of the filtrate was 100 μS/cm or less, the washing end point was set.
Moreover, when the obtained TEMPO oxidized pulp was tested and analyzed by an X-ray diffractometer, it was found to be at two positions of 2θ=14° or more and 17° or less and 2θ=22° or more and 23° or less. A typical peak was confirmed and it was confirmed to have a cellulose type I crystal.

(繊維状セルロース分散液の作製)
得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状変性セルロースを含む繊維状セルロース分散液10を得た。
なお、後述する測定方法で測定される繊維状セルロースのカルボキシ基量は1.80mmol/g、重合度は336であった。
(Preparation of fibrous cellulose dispersion)
Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated 6 times with a wet atomizer (manufactured by Sugino Machine Ltd., Starburst) at a pressure of 200 MPa to obtain a fibrous cellulose dispersion liquid 10 containing fine fibrous modified cellulose.
The carboxy group content of the fibrous cellulose measured by the measuring method described later was 1.80 mmol/g, and the degree of polymerization was 336.

<測定方法>
(繊維状セルロース分散液のイオン性基量の測定)
繊維状セルロースのイオン性基量は、対象となる微細繊維状変性セルロースを含む繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記微細繊維状変性セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ(株)製、コンディショニング済)を加え、振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1N水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。イオン性基量(mmol/g)は、計測結果のうち図1または2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
<Measurement method>
(Measurement of ionic group content of fibrous cellulose dispersion)
The ionic group content of the fibrous cellulose is a fibrous cellulose prepared by diluting a fibrous cellulose dispersion liquid containing the target fine fibrous modified cellulose with ion-exchanged water to a content of 0.2% by mass. The contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure.
The treatment with an ion-exchange resin was performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; manufactured by Organo Co., Ltd., conditioned) to the slurry containing the fine fibrous modified cellulose, and performing a shaking treatment. After that, the resin and the slurry were separated by pouring onto a mesh having an opening of 90 μm.
In addition, titration using an alkali was performed by adding 50 μL of an aqueous 0.1 N sodium hydroxide solution to the slurry containing fine fibrous cellulose after the treatment with an ion exchange resin once every 30 seconds, and showing the electrical conductivity of the slurry. It was performed by measuring the change in the value of. The amount of ionic groups (mmol/g) is the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 1 or 2 in the measurement results as the solid content (g) in the slurry to be titrated. It was calculated by dividing.

(繊維状セルロースの重合度の測定)
繊維状セルロースの重合度は、Tappi T230に従い測定した。すなわち、測定対象の繊維状セルロースを分散媒に分散させて測定した粘度度(ηとする)、および分散媒体のみで測定したブランク粘度(ηとする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定した。
ηSP=(η/η)−1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の繊維状セルロースの濃度を示す。
さらに、下記式から繊維状セルロースの重合度(DP)を算出した。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
(Measurement of degree of polymerization of fibrous cellulose)
The degree of polymerization of the fibrous cellulose was measured according to Tappi T230. That is, after measuring the viscosity (η 1 ) measured by dispersing the fibrous cellulose to be measured in the dispersion medium and the blank viscosity (η 0 ) measured only with the dispersion medium, the specific viscosity (η sp ) and the intrinsic viscosity ([η]) were measured according to the following formulas.
η SP =(η 10 )-1
[Η]=η sp /(c(1+0.28×η sp ))
Here, c in the formula represents the concentration of fibrous cellulose at the time of viscosity measurement.
Further, the degree of polymerization (DP) of fibrous cellulose was calculated from the following formula.
DP=1.75×[η]
Since this degree of polymerization is an average degree of polymerization measured by a viscosity method, it may be referred to as a “viscosity average degree of polymerization”.

(繊維状セルロース分散液の粘度の測定)
繊維状セルロース分散液の粘度は、次のように測定した。まず、繊維状セルロース分散液を固形分濃度が0.4%となるようにイオン交換水により希釈した後に、ディスパーザーにて1,500rpmで5分間撹拌した。次いで、これにより得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T−LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置した。測定時の分散液の液温は23℃であった。
(Measurement of viscosity of fibrous cellulose dispersion)
The viscosity of the fibrous cellulose dispersion was measured as follows. First, the fibrous cellulose dispersion was diluted with ion-exchanged water so that the solid content concentration was 0.4%, and then stirred with a disperser at 1,500 rpm for 5 minutes. Then, the viscosity of the dispersion liquid thus obtained was measured using a B-type viscometer (manufactured by BLOOKFIELD, analog viscometer T-LVT). The measurement conditions were a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement was taken as the viscosity of the dispersion liquid. Further, the dispersion liquid to be measured was allowed to stand for 24 hours in an environment of 23° C. and 50% relative humidity before the measurement. The liquid temperature of the dispersion liquid at the time of measurement was 23°C.

(レオメーターによる繊維状セルロース分散液の粘度の測定)
繊維状セルロース分散液をイオン交換水で固形分濃度0.4%に希釈した後、レオメーター(HAAKE社製、RheoStress6000)を用いて粘度を測定した。なお、せん断速度については、下記の条件で変化させた。
測定温度:23℃
測定治具:コーンプレート(直径40mm、角度1°)
せん断速度:0.001〜1000sec−1
データ点数:100点
データ分布:Log間隔
測定時間:5分
(Measurement of viscosity of fibrous cellulose dispersion by rheometer)
The fibrous cellulose dispersion was diluted with ion-exchanged water to a solid content concentration of 0.4%, and then the viscosity was measured using a rheometer (manufactured by HAAKE, RheoStress 6000). The shear rate was changed under the following conditions.
Measurement temperature: 23 ℃
Measuring jig: cone plate (diameter 40 mm, angle 1°)
Shear rate: 0.001 to 1000 sec -1
Number of data points: 100 points Data distribution: Log interval Measurement time: 5 minutes

(TI値の算出)
粘度をレオメーターにより測定し、せん断速度1sec−1の条件で測定した粘度の値(η)を、せん断速度1,000sec−1の条件で測定した粘度の値(η)で除して得られる値を、チキソトロピックインデックス値(TI値)とした。
すなわち、TI値は下記式で定義した。
TI値=η/η
η1:せん断速度1sec−1の条件で測定した粘度
η2:せん断速度1,000sec−1の条件で測定した粘度
(Calculation of TI value)
The viscosity was measured by a rheometer, and the value of viscosity (η 1 ) measured under the condition of shear rate of 1 sec −1 was divided by the value of viscosity (η 2 ) measured under the condition of shear rate of 1,000 sec −1. The obtained value was used as a thixotropic index value (TI value).
That is, the TI value was defined by the following formula.
TI value=η 12
.eta.1: Viscosity was measured at a shear rate of 1 sec -1 .eta.2: viscosity measured under the conditions of a shear rate of 1,000 sec -1

(モデル圧送用先行剤の作製)
(実施例1)
多孔質炭酸カルシウム100質量部、水200質量部を混合し、そこへ繊維状セルロース分散液1を固形分として0.015質量部添加し、よく混合し、モデル圧送用先行剤を作製した。
(Preparation of antecedent for model pumping)
(Example 1)
100 parts by mass of porous calcium carbonate and 200 parts by mass of water were mixed, and 0.015 parts by mass of the fibrous cellulose dispersion 1 as a solid content was added thereto and well mixed to prepare a model pressure-feeding precursor.

(実施例2〜10)
繊維状セルロース分散液1の代わりに、上記製造例2〜10により得られた繊維状セルロース分散液2〜10をそれぞれ使用した以外は、実施例1と同様にして、モデル圧送用先行剤を作製した。
(Examples 2 to 10)
In place of the fibrous cellulose dispersion 1, the fibrous cellulose dispersions 2 to 10 obtained in the above Production Examples 2 to 10 were used, respectively, to prepare a model pressure-feed advance agent in the same manner as in Example 1. did.

(比較例1)
繊維状セルロース分散液1の代わりに、繊維状セルロース分散液11((株)スギノマシン製、IMa−10002)を使用した以外は、実施例1と同様にして、モデル圧送用先行剤を作製した。
(Comparative Example 1)
A fibrous cellulose dispersion liquid 11 (manufactured by Sugino Machine Limited, IMa-10002) was used in place of the fibrous cellulose dispersion liquid 1 in the same manner as in Example 1 to prepare a model delivery precursor. ..

(比較例2)
グアーガム(東京化成工業(株)製)を使用した以外は、実施例1と同様にして、モデル圧送用先行剤を作製した。
(Comparative example 2)
A model pressure-feeding precursor agent was prepared in the same manner as in Example 1 except that guar gum (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.

(参考例)
繊維状セルロース分散液1の代わりに、水を使用した以外は実施例1と同様にして、モデル圧送用先行剤を作製した。
(Reference example)
A model pressure-feeding precursor was prepared in the same manner as in Example 1 except that water was used instead of the fibrous cellulose dispersion 1.

<評価方法>
(分散安定性評価)
実施例1〜10、比較例1および2、並びに参考例のモデル圧送用先行剤を固形分濃度1%となるようにイオン交換水で希釈し、10mLスクリューバイアル瓶(アズワン(株)製)に分取して5分間静置した。バイアル瓶底面から液面までの距離は3cmとした。以下の評価基準で分散安定性を評価した。結果を表1に示す。
A:分離することなく、良好な分散安定性を示す
B:若干の分離はあるものの、使用上問題ない分散安定性を示す
C:著しい分離が見られ、使用できない
また、実施例1および比較例1について、スクリュー瓶内の液面と分離によって生じる水との界面の間の距離を計測した。結果を表2に示す。
<Evaluation method>
(Dispersion stability evaluation)
The model pressure-feeding precursors of Examples 1 to 10, Comparative Examples 1 and 2, and Reference Example were diluted with ion-exchanged water so as to have a solid content concentration of 1%, and added to a 10 mL screw vial bottle (manufactured by AS ONE Corporation). The mixture was collected and allowed to stand for 5 minutes. The distance from the bottom of the vial to the liquid surface was 3 cm. The dispersion stability was evaluated according to the following evaluation criteria. The results are shown in Table 1.
A: Good dispersion stability without separation B: Slight dispersion, but dispersion stability that does not cause any problems in use C: Significant separation is not observed and cannot be used. In addition, Example 1 and Comparative Example For No. 1, the distance between the liquid surface in the screw bottle and the interface between water and water generated by the separation was measured. The results are shown in Table 2.

[結果]
表1に示すように、実施例1、3、4、7、8のモデル圧送用先行剤の希釈液では経時に伴う炭酸カルシウムの分離が見られず、良好な分散安定性を示した。また、実施例2、5、6、9、10では、若干の分離はあるものの、使用上問題ない分散安定性を示した。一方、比較例および参考例では、著しい分離が見られた。
また、表2に示すように、スクリュー瓶内の液面と分離によって生じる水との境界面の間の距離は、比較例1に比べて実施例1で顕著に少なく、長時間静置しても分離を抑制して、高い分散安定性を示すことが示された。
上記の結果から、イオン性基で置換された微細繊維状変性セルロースを含有する繊維状セルロースを添加した圧送用先行剤では、炭酸カルシウムの分散安定性が向上することが示された。
[result]
As shown in Table 1, no separation of calcium carbonate was observed with time in the diluted solutions of the model pressure-feeding precursors of Examples 1, 3, 4, 7, and 8, indicating good dispersion stability. In addition, in Examples 2, 5, 6, 9, and 10, although there were some separations, dispersion stability showing no problem in use was shown. On the other hand, in the comparative example and the reference example, remarkable separation was observed.
In addition, as shown in Table 2, the distance between the boundary surface between the liquid surface in the screw bottle and the water generated by the separation was significantly smaller in Example 1 than in Comparative Example 1, and was allowed to stand for a long time. It also showed that it suppressed the separation and showed high dispersion stability.
From the above results, it was shown that the dispersion stability of calcium carbonate was improved in the precursor for pressure feeding containing the fibrous cellulose containing the fine fibrous modified cellulose substituted with the ionic group.

(圧送性評価)
50mLディスポシリンジ(テルモ(株)製)に実施例1、比較例1および2、並びに参考例のモデル圧送用先行剤を10g詰め、全量の押出に要した時間を計測した。このときの押出圧力は約0.1kPaであった。結果を表3に示す。
(Evaluation of pumpability)
A 50 mL disposable syringe (manufactured by Terumo Corp.) was filled with 10 g of the model pressure-feeding precursor of Example 1, Comparative Examples 1 and 2, and Reference Example, and the time required for extrusion of the entire amount was measured. The extrusion pressure at this time was about 0.1 kPa. The results are shown in Table 3.

[結果]
実施例1は所要時間が30秒程度とスムーズに押出せたことを示しており、微粒子の分散安定化に効果的に作用していることが示唆された。一方、比較例1および2、並びに参考例1では、実施例1の2倍以上の押出時間が必要であった。
本発明の繊維状セルロースを含有する圧送用先行剤では、分散安定性に優れるとともに、圧送時にはより低い圧力で圧送可能であることが示された。
[result]
Example 1 showed that the required time was about 30 seconds and that the extrusion was smooth, suggesting that it was effective in stabilizing the dispersion of the fine particles. On the other hand, in Comparative Examples 1 and 2 and Reference Example 1, the extrusion time that was twice as long as that in Example 1 was required.
It was shown that the precursor for pressure feeding containing the fibrous cellulose of the present invention is excellent in dispersion stability and can be pressure-fed at a lower pressure during pressure feeding.

本発明の繊維状セルロースにより、分散安定性および圧送性に優れた、炭酸カルシウム粉末を含有するコンクリートポンプ圧送用先行剤を提供することができ、少量の使用で、配管を通してコンクリートの圧送を円滑に開始することが期待される。 By the fibrous cellulose of the present invention, it is possible to provide a precursor for concrete pump pumping containing calcium carbonate powder, which is excellent in dispersion stability and pumpability, and enables the smooth pumping of concrete through piping by using a small amount. Expected to start.

Claims (7)

炭酸カルシウム粉末と混合してコンクリートポンプ圧送用先行剤を製造するために用いられる繊維状セルロースであって、
該繊維状セルロースが、イオン性基を有し、かつ繊維幅が1000nm以下である微細繊維状変性セルロースを含む、繊維状セルロース。
A fibrous cellulose used for producing a precursor for concrete pumping by mixing with calcium carbonate powder,
A fibrous cellulose containing the fine fibrous modified cellulose having an ionic group and having a fiber width of 1000 nm or less.
前記繊維状セルロースの粘度(固形分濃度0.4%分散液、23℃)が、500mPa・s以上である、請求項1に記載の繊維状セルロース。 The fibrous cellulose according to claim 1, wherein the viscosity of the fibrous cellulose (solid content concentration 0.4% dispersion liquid, 23°C) is 500 mPa·s or more. 前記繊維状セルロースの下記式(1)で表されるチクソトロピックインデックス(TI値)が30以上である、請求項1または2に記載の繊維状セルロース。
TI値
=(せん断速度1/sにおける粘度)/(せん断速度1000/sにおける粘度) (1)
上記粘度は、23℃、固形分濃度0.4%分散液での粘度である。
The fibrous cellulose according to claim 1 or 2, wherein a thixotropic index (TI value) represented by the following formula (1) of the fibrous cellulose is 30 or more.
TI value=(viscosity at shear rate 1/s)/(viscosity at shear rate 1000/s) (1)
The above viscosity is the viscosity at 23° C. and 0.4% solid concentration dispersion.
前記コンクリートポンプ圧送用先行剤の固形分中の炭酸カルシウム粉末の含有量が、50質量%以上である、請求項1〜3のいずれかに記載の繊維状セルロース。 The fibrous cellulose according to any one of claims 1 to 3, wherein the content of the calcium carbonate powder in the solid content of the preceding agent for pumping concrete pump is 50% by mass or more. 前記炭酸カルシウム粉末100質量部に対する繊維状セルロースの混合量が0.0001質量部以上100質量部以下である、請求項1〜4のいずれかに記載の繊維状セルロース。 The fibrous cellulose according to claim 1, wherein a mixing amount of fibrous cellulose with respect to 100 parts by mass of the calcium carbonate powder is 0.0001 parts by mass or more and 100 parts by mass or less. 前記炭酸カルシウム粉末が、多孔質炭酸カルシウム粉末を含有する、請求項1〜5のいずれかに記載の繊維状セルロース。 The fibrous cellulose according to claim 1, wherein the calcium carbonate powder contains a porous calcium carbonate powder. さらに顔料、酸化防止剤、およびpH調整剤から選択される少なくとも1つと混合する、請求項1〜6のいずれかに記載の繊維状セルロース。 The fibrous cellulose according to any one of claims 1 to 6, further mixed with at least one selected from a pigment, an antioxidant, and a pH adjuster.
JP2018247161A 2018-12-11 2018-12-28 Fibrous cellulose Active JP7010206B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19897109.5A EP3895865A1 (en) 2018-12-11 2019-12-06 Fibrous cellulose
PCT/JP2019/047748 WO2020121952A1 (en) 2018-12-11 2019-12-06 Fibrous cellulose
CN201980080878.1A CN113165209A (en) 2018-12-11 2019-12-06 Fibrous cellulose
US17/311,401 US20220024826A1 (en) 2018-12-11 2019-12-06 Fibrous cellulose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018232042 2018-12-11
JP2018232042 2018-12-11

Publications (2)

Publication Number Publication Date
JP2020094163A true JP2020094163A (en) 2020-06-18
JP7010206B2 JP7010206B2 (en) 2022-01-26

Family

ID=71084586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247161A Active JP7010206B2 (en) 2018-12-11 2018-12-28 Fibrous cellulose

Country Status (1)

Country Link
JP (1) JP7010206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070209A (en) * 2020-10-26 2022-05-12 大王製紙株式会社 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110630A (en) * 1997-06-25 1999-01-19 Aigami Sangyo:Kk Packaging mortar preceding mortar of pump vehicle transfer
JP2000034461A (en) * 1998-07-16 2000-02-02 Sumitomo Seika Chem Co Ltd Aid for start of pressurized feed for concrete feed pump
JP2012096530A (en) * 2010-10-05 2012-05-24 Chemius Japan:Kk Concrete inducing agent
JP2017025235A (en) * 2015-07-24 2017-02-02 第一工業製薬株式会社 Piping friction resistance reduction agent and transport medium
JP2019082101A (en) * 2017-10-20 2019-05-30 有限会社川端工業 Concrete inducer, method of placing concrete, and method of determining suitability of use of concrete inducer
JP2019123793A (en) * 2018-01-16 2019-07-25 タケ・サイト株式会社 Preceding material for pressure feeding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110630A (en) * 1997-06-25 1999-01-19 Aigami Sangyo:Kk Packaging mortar preceding mortar of pump vehicle transfer
JP2000034461A (en) * 1998-07-16 2000-02-02 Sumitomo Seika Chem Co Ltd Aid for start of pressurized feed for concrete feed pump
JP2012096530A (en) * 2010-10-05 2012-05-24 Chemius Japan:Kk Concrete inducing agent
JP2017025235A (en) * 2015-07-24 2017-02-02 第一工業製薬株式会社 Piping friction resistance reduction agent and transport medium
JP2019082101A (en) * 2017-10-20 2019-05-30 有限会社川端工業 Concrete inducer, method of placing concrete, and method of determining suitability of use of concrete inducer
JP2019123793A (en) * 2018-01-16 2019-07-25 タケ・サイト株式会社 Preceding material for pressure feeding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070209A (en) * 2020-10-26 2022-05-12 大王製紙株式会社 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
JP7213926B2 (en) 2020-10-26 2023-01-27 大王製紙株式会社 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin

Also Published As

Publication number Publication date
JP7010206B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP6361836B1 (en) Fibrous cellulose-containing material and method for producing fibrous cellulose-containing material
WO2020080393A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
JPWO2020085479A1 (en) Fine fibrous cellulose-containing composition and method for producing the same
WO2021153590A1 (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP7140165B2 (en) Fine fibrous cellulose, dispersion, sheet and method for producing fine fibrous cellulose
JP7010206B2 (en) Fibrous cellulose
JP6769468B2 (en) Method for producing fibrous cellulose, fibrous cellulose dispersion and fibrous cellulose
WO2020121952A1 (en) Fibrous cellulose
JP2020165018A (en) Manufacturing method of sheet
JP7107267B2 (en) Composition
JP2021116519A (en) Method for producing microfibrous cellulose/micro inorganic laminar compound-containing material, and microfibrous cellulose/micro inorganic laminar compound-containing material
JP2020033476A (en) Solid-like body and fibrous cellulose-containing resin composition
JP7351305B2 (en) Fibrous cellulose-containing composition, liquid composition and molded article
JP2021098870A (en) Fibrous cellulose, fibrous cellulose fluid dispersion and manufacturing method of fibrous cellulose
JP7346878B2 (en) Method for producing phosphorus oxo-oxidized pulp
EP3895865A1 (en) Fibrous cellulose
JP6940008B2 (en) Method for producing fibrous cellulose, fibrous cellulose dispersion liquid and fibrous cellulose
JP7040576B2 (en) Method for Producing Fibrous Cellulose, Fibrous Cellulose Dispersion Liquid and Fibrous Cellulose
JP6816837B1 (en) Dispersion
WO2021107148A1 (en) Dispersion liquid
WO2021107147A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and sheet
WO2021107146A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and sheet
JP2021116518A (en) Method for producing microfibrous cellulose/micro inorganic laminar compound-containing material, and microfibrous cellulose/micro inorganic laminar compound-containing material
JP7375319B2 (en) Method for producing fibrous cellulose-containing sheet
JP6769510B2 (en) Method for producing fibrous cellulose, fibrous cellulose dispersion and fibrous cellulose

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7010206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150