JP2020091200A - Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method - Google Patents

Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method Download PDF

Info

Publication number
JP2020091200A
JP2020091200A JP2018228604A JP2018228604A JP2020091200A JP 2020091200 A JP2020091200 A JP 2020091200A JP 2018228604 A JP2018228604 A JP 2018228604A JP 2018228604 A JP2018228604 A JP 2018228604A JP 2020091200 A JP2020091200 A JP 2020091200A
Authority
JP
Japan
Prior art keywords
resonance frequency
frequency
signal
mirror element
mems mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018228604A
Other languages
Japanese (ja)
Inventor
智志路 関
Tomoshiro Seki
智志路 関
友英 塚崎
Tomohide Tsukazaki
友英 塚崎
徳嵩 文男
Fumio Tokukasa
文男 徳嵩
メンデサイハン ムンフバト
Munkhbat Mendsaikhan
メンデサイハン ムンフバト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2018228604A priority Critical patent/JP2020091200A/en
Priority to CN201910982804.9A priority patent/CN111289091A/en
Publication of JP2020091200A publication Critical patent/JP2020091200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)

Abstract

To achieve reduction in size of a device, and improvement in work efficiency of a work identifying a resonance frequency.SOLUTION: A resonance frequency identification device, which is configured to enable identification of a resonance frequency fm as a frequency of an AC signal S1 when a deflection angle is maximum in a MEMS mirror element 100 revolving a mirror by a supply of the driving AC signal S1 and changing a deflection angle of reflection light, comprises: a signal output unit 11 that can output the AC signal A1 as changing the frequency; a measurement unit 12 that measures a resistance value R on the basis of an output signal S2 to be output from the MEMS mirror element 100 in a state where the AC signal S1 is supplied to the MEMS mirror element 100; and a processing unit 16 that implements identification processing of identifying the resonance frequency fm on the basis of the frequency when the resistance value R varying accompanied by the change in frequency is an extreme value.SELECTED DRAWING: Figure 1

Description

本発明は、MEMSミラー素子における反射光の振れ角が最大となるときの駆動用の交流信号の周波数としての共振周波数を特定する共振周波数特定装置および共振周波数特定方法、並びに共振周波数に基づいてMEMSミラー素子を検査する検査装置および検査方法に関するものである。 The present invention relates to a resonance frequency identifying device and a resonance frequency identifying method for identifying a resonance frequency as a frequency of an AC signal for driving when a deflection angle of reflected light in a MEMS mirror element is maximum, and a MEMS based on the resonance frequency. The present invention relates to an inspection device and an inspection method for inspecting a mirror element.

駆動用の交流信号の供給により、交流信号の周波数でミラーを回動させて反射光の振れ角を変化させる素子として、MEMSミラー素子が知られている。このMEMSミラー素子では、ミラーやミラーを駆動する駆動系の質量、弾性係数および粘性係数等によって決まるMEMSミラー素子固有の共振周波数(機械的共振周波数)の外力が加わったときにミラーおよび駆動系が共振する。このため、このMEMSミラー素子では、交流信号の周波数が共振周波数のときにミラーの回動量(すなわち、反射光の振れ角)が最大となる。 A MEMS mirror element is known as an element that rotates a mirror at a frequency of an AC signal to change a deflection angle of reflected light by supplying an AC signal for driving. In this MEMS mirror element, when an external force having a resonance frequency (mechanical resonance frequency) peculiar to the MEMS mirror element, which is determined by the mass, elastic coefficient, viscosity coefficient, etc. of the mirror or a driving system for driving the mirror, is applied, the mirror and the driving system are Resonate. Therefore, in this MEMS mirror element, the rotation amount of the mirror (that is, the deflection angle of the reflected light) becomes maximum when the frequency of the AC signal is the resonance frequency.

一方、検査対象のMEMSミラー素子の共振周波数は、その共振周波数が基準範囲内であるか否かによってMEMSミラー素子の良否を検査する際に用いられたり、共振周波数以外の周波数の交流信号で駆動するリニアモードと共振周波数の周波数の交流信号で駆動するノンリニアモードとを切り替えてMEMSミラー素子を駆動させるときに交流信号の周波数を制御する際に用いられたりする。このMEMSミラー素子の共振周波数を測定する方法として、下記特許文献1に開示された測定方法が知られている。この測定方法では、MEMSミラー素子に入射させたレーザビームの反射光の振れ角の範囲内に複数の受光素子を配置し、交流信号の周波数をある値に設定してMEMSミラー素子に供給してMEMSミラー素子を駆動させ、この際に反射光を各受光素子が検出する時間に基づいてその周波数における反射光の振れ角を計算する。次いで、この処理を、交流信号の周波数を変化させつつ繰り返して実行し、反射光の振れ角が最大となったときの交流信号の周波数を、そのMEMSミラー素子の共振周波数(機械的共振周波数)として特定する。 On the other hand, the resonance frequency of the MEMS mirror element to be inspected is used when inspecting the quality of the MEMS mirror element depending on whether or not the resonance frequency is within a reference range, or is driven by an AC signal having a frequency other than the resonance frequency. It is also used for controlling the frequency of the AC signal when driving the MEMS mirror element by switching between the linear mode for driving and the non-linear mode for driving with the AC signal having the frequency of the resonance frequency. As a method of measuring the resonance frequency of this MEMS mirror element, the measuring method disclosed in Patent Document 1 below is known. In this measuring method, a plurality of light receiving elements are arranged within the deflection angle range of the reflected light of the laser beam incident on the MEMS mirror element, and the frequency of the AC signal is set to a certain value and supplied to the MEMS mirror element. The MEMS mirror element is driven, and the deflection angle of the reflected light at that frequency is calculated based on the time when each light receiving element detects the reflected light. Next, this processing is repeatedly executed while changing the frequency of the AC signal, and the frequency of the AC signal when the deflection angle of the reflected light becomes maximum is the resonance frequency (mechanical resonance frequency) of the MEMS mirror element. Specify as.

特許第5027617号公報(第5−14頁、第1図)Japanese Patent No. 5027617 (page 5-14, FIG. 1)

ところが、上記した従来の測定方法には、改善すべき以下の課題がある。具体的には、従来の測定方法では、MEMSミラー素子に入射させるレーザビームを出射するための光学系や、レーザビームの反射光を検出する受光素子が必要なことに加えて、これらをMEMSミラー素子から離れた位置に配置する必要があるため、測定装置が大型化するという課題が存在する。また、従来の測定方法では、レーザビームの出力を安定させるために長い待機時間が必要なため、共振周波数を特定する作業の作業効率が悪いという課題も存在する。 However, the above-mentioned conventional measuring methods have the following problems to be improved. Specifically, the conventional measuring method requires an optical system for emitting a laser beam to be incident on the MEMS mirror element and a light receiving element for detecting reflected light of the laser beam. Since it is necessary to dispose the measurement device at a position distant from the device, there is a problem that the measuring device becomes large. Further, in the conventional measuring method, a long waiting time is required to stabilize the output of the laser beam, so that there is a problem that the work efficiency of the work of specifying the resonance frequency is poor.

本発明は、かかる課題に鑑みてなされたものであり、装置の小形化および共振周波数を特定する作業の作業効率の向上を実現し得る共振周波数特定装置、検査装置、共振周波数特定方法および検査方法を提供することを主目的とする。 The present invention has been made in view of the above problems, and a resonance frequency identifying device, an inspection device, a resonance frequency identifying method, and an inspection method capable of realizing miniaturization of the device and improvement of work efficiency of the operation of identifying the resonance frequency. The main purpose is to provide.

上記目的を達成すべく請求項1記載の共振周波数特定装置は、駆動用の交流信号の供給によってミラーを回動させて反射光の振れ角を変化させるMEMSミラー素子における当該振れ角が最大となるときの当該交流信号の周波数としての共振周波数を特定可能に構成された共振周波数特定装置であって、前記周波数を変更させつつ前記交流信号を出力可能な信号出力部と、前記交流信号が前記MEMSミラー素子に供給されている状態において当該MEMSミラー素子から出力される出力信号に基づいて予め決められた物理量を測定する測定部と、前記周波数の変更に伴って変化する前記物理量が極値となったときの当該周波数に基づいて前記共振周波数を特定する特定処理を実行する処理部とを備えている。 In order to achieve the above object, the resonance frequency specifying device according to claim 1 maximizes the deflection angle in the MEMS mirror element that changes the deflection angle of the reflected light by rotating the mirror by supplying a driving AC signal. A resonance frequency identifying device configured to identify a resonance frequency as a frequency of the AC signal at a time, the signal output unit being capable of outputting the AC signal while changing the frequency, and the AC signal being the MEMS. A measurement unit that measures a predetermined physical quantity based on an output signal output from the MEMS mirror element while being supplied to the mirror element, and the physical quantity that changes with the change of the frequency becomes an extreme value. And a processing unit that executes a specifying process for specifying the resonance frequency based on the relevant frequency.

また、請求項2記載の共振周波数特定装置は、請求項1記載の共振周波数特定装置において、前記MEMSミラー素子における前記振れ角の実測値が最大となったときの前記周波数と前記物理量が極値となったときの前記周波数とに基づいて予め規定された補正値を記憶する記憶部を備え、前記処理部は、前記特定処理において、前記物理量が極値となったときの前記周波数を前記補正値で補正し、当該補正後の周波数を前記共振周波数として特定する。 The resonance frequency specifying device according to claim 2 is the resonance frequency specifying device according to claim 1, wherein the frequency and the physical quantity are extreme values when the actual measurement value of the deflection angle in the MEMS mirror element is maximum. And a storage unit that stores a correction value that is defined in advance based on the frequency, and the processing unit corrects the frequency when the physical quantity becomes an extreme value in the specific processing. The value is corrected with a value, and the corrected frequency is specified as the resonance frequency.

また、請求項3記載の検査装置は、請求項1または2記載の共振周波数特定装置と、当該共振周波数特定装置によって特定された前記共振周波数に基づいて前記MEMSミラー素子の良否を検査する検査部とを備えている。 The inspection device according to claim 3 is an inspection unit that inspects the resonance frequency identification device according to claim 1 or 2 and the quality of the MEMS mirror element based on the resonance frequency identified by the resonance frequency identification device. It has and.

また、請求項4記載の共振周波数特定方法は、駆動用の交流信号の供給によってミラーを回動させて反射光の振れ角を変化させるMEMSミラー素子における当該振れ角が最大となるときの当該交流信号の周波数としての共振周波数を特定する共振周波数特定方法であって、前記周波数を変更させつつ前記交流信号を前記MEMSミラー素子に供給している状態において当該MEMSミラー素子から出力される出力信号に基づいて予め決められた物理量を測定し、前記周波数の変更に伴って変化する前記物理量が極値となったときの当該周波数に基づいて前記共振周波数を特定する特定処理を実行する。 Further, the resonance frequency specifying method according to claim 4 is the alternating current when the deflection angle becomes maximum in the MEMS mirror element that rotates the mirror by supplying an AC signal for driving to change the deflection angle of the reflected light. A resonance frequency specifying method for specifying a resonance frequency as a frequency of a signal, wherein the output signal is output from the MEMS mirror element in a state where the AC signal is being supplied to the MEMS mirror element while changing the frequency. Based on this, a predetermined physical quantity is measured, and a specifying process of specifying the resonance frequency is executed based on the frequency when the physical quantity that changes with the change of the frequency becomes an extreme value.

また、請求項5記載の共振周波数特定方法は、請求項4記載の共振周波数特定方法において、前記特定処理では、前記MEMSミラー素子における前記振れ角の実測値が最大となったときの前記周波数と前記物理量が極値となったときの前記周波数とに基づいて予め規定された補正値で当該物理量が極値となったときの当該周波数を補正し、当該補正後の周波数を前記共振周波数として特定する。 The resonance frequency specifying method according to claim 5 is the resonance frequency specifying method according to claim 4, wherein in the specifying process, the frequency when the measured value of the deflection angle in the MEMS mirror element becomes maximum The frequency when the physical quantity becomes the extreme value is corrected with a correction value that is defined in advance based on the frequency when the physical quantity becomes the extreme value, and the corrected frequency is specified as the resonance frequency. To do.

また、請求項6記載の検査方法は、請求項4または5記載の共振周波数特定方法によって特定した前記共振周波数に基づいて前記MEMSミラー素子の良否を検査する。 The inspection method according to claim 6 inspects the quality of the MEMS mirror element based on the resonance frequency identified by the resonance frequency identification method according to claim 4 or 5.

請求項1記載の共振周波数特定装置、請求項3記載の検査装置、請求項4記載の共振周波数特定方法、および請求項6記載の検査方法では、周波数を変更させつつ交流信号をMEMSミラー素子に供給している状態においてMEMSミラー素子から出力される出力信号に基づいて予め決められた物理量を測定し、周波数の変更に伴って変化する物理量が極値となったときの周波数に基づいて共振周波数を特定する特定処理を実行する。このため、この共振周波数特定装置、検査装置、共振周波数特定方法および検査方法によれば、入射光を出力する光源や反射光を検出する検出部を備えた大型の装置を用いて反射光の振れ角を実測する煩雑な作業を行うことなく、交流信号を供給した状態でMEMSミラー素子から出力される出力信号に基づいて抵抗値を測定する簡易な構成で電気的な共振周波数を特定し、その電気的な共振周波数に基づいて機械的な共振周波数を容易に特定することができる。また、この共振周波数特定装置、検査装置、共振周波数特定方法および検査方法では、光源を用いないため、光源からの入射光の出力を安定させるために待機する必要がない分、共振周波数を特定する処理時間を十分に短縮することができる。したがって、この共振周波数特定装置、検査装置、共振周波数特定方法および検査方法によれば、装置の小形化および共振周波数を特定する作業の作業効率の向上を確実に実現することができる。 In the resonance frequency identification device according to claim 1, the inspection device according to claim 3, the resonance frequency identification method according to claim 4, and the inspection method according to claim 6, the alternating signal is applied to the MEMS mirror element while changing the frequency. The resonance frequency is measured based on the frequency when the physical quantity determined in advance is measured based on the output signal output from the MEMS mirror element in the state of being supplied and the physical quantity that changes with the change of the frequency reaches the extreme value. A specific process for specifying is executed. Therefore, according to the resonance frequency identifying device, the inspection device, the resonance frequency identifying method, and the inspection method, the deflection of the reflected light is increased by using a large device including a light source that outputs the incident light and a detection unit that detects the reflected light. The electrical resonance frequency is specified by a simple configuration in which the resistance value is measured based on the output signal output from the MEMS mirror element in the state where the AC signal is supplied, without performing the complicated work of actually measuring the angle. The mechanical resonance frequency can be easily specified based on the electric resonance frequency. Further, in this resonance frequency identifying device, the inspection device, the resonance frequency identifying method, and the inspection method, since the light source is not used, it is not necessary to wait to stabilize the output of the incident light from the light source, and the resonance frequency is identified. The processing time can be shortened sufficiently. Therefore, according to this resonance frequency specifying device, the inspection device, the resonance frequency specifying method, and the inspection method, it is possible to surely realize the downsizing of the device and the improvement of the work efficiency of the work of specifying the resonance frequency.

また、請求項2記載の共振周波数特定装置、請求項3記載の検査装置、請求項5記載の共振周波数特定方法、および請求項6記載の検査方法によれば、特定処理において、MEMSミラー素子における振れ角の実測値が最大となったときの周波数(機械的な共振周波数)と抵抗値が極値となったときの周波数(電気的な共振周波数)とに基づいて予め規定された補正値で抵抗値が極値となったときの周波数を補正し、補正後の周波数を共振周波数として特定することにより、より正確な共振周波数を特定することができる。 Further, according to the resonance frequency specifying device according to claim 2, the inspection device according to claim 3, the resonance frequency specifying method according to claim 5, and the inspection method according to claim 6, in the specifying process, in the MEMS mirror element. With a correction value specified in advance based on the frequency (mechanical resonance frequency) when the actual measured deflection angle is maximum and the frequency (electrical resonance frequency) when the resistance value is extreme. A more accurate resonance frequency can be specified by correcting the frequency when the resistance value becomes the extreme value and specifying the corrected frequency as the resonance frequency.

検査装置1の構成を示す構成図である。It is a block diagram which shows the structure of the inspection apparatus 1. MEMSミラー素子100の構成および動作を説明する説明図である。FIG. 3 is an explanatory diagram illustrating a configuration and an operation of the MEMS mirror element 100. 交流信号S1の周波数fと抵抗値Rとの関係を示す第1の関係図である。FIG. 6 is a first relationship diagram showing a relationship between a frequency f of an AC signal S1 and a resistance value R. 特定処理50のフローチャートである。It is a flowchart of the specific process 50. 交流信号S1の周波数fと抵抗値Rとの関係を示す第2の関係図である。FIG. 6 is a second relationship diagram showing a relationship between the frequency f of the AC signal S1 and the resistance value R.

以下、共振周波数特定装置、検査装置、共振周波数特定方法および検査方法の実施の形態について、添付図面を参照して説明する。 Hereinafter, embodiments of the resonance frequency identifying device, the inspection device, the resonance frequency identifying method, and the inspection method will be described with reference to the accompanying drawings.

最初に、検査装置の一例としての図1に示す検査装置1の構成について説明する。検査装置1は、MEMSミラー素子(例えば、図1,2に示すMEMSミラー素子100)の良否を検査可能に構成されている。 First, the configuration of the inspection device 1 shown in FIG. 1 as an example of the inspection device will be described. The inspection apparatus 1 is configured to inspect the quality of the MEMS mirror element (for example, the MEMS mirror element 100 shown in FIGS. 1 and 2).

ここで、MEMSミラー素子100は、MEMS(Micro Electro Mechanical Systems)素子の一形態であって、図2に示すように、ミラー101、ミラーを駆動するアクチュエータ102、およびアクチュエータを制御する図外の制御回路等を、微細加工技術によって基板103上に配設して形成されている。この場合、MEMSミラー素子100は、同図に概念的に示すように、駆動用の交流信号(後述する信号出力部11から出力される交流信号S1)の供給によってミラー101を回動させて入射した入射光L1(例えば、レーザー光)の反射光L2の振れ角θを変化させる機能を有し、例えば、反射光L2をスクリーン等に照射させて画像をスクリーン上に表示する表示装置等に用いられる。 Here, the MEMS mirror element 100 is one form of a MEMS (Micro Electro Mechanical Systems) element, and as shown in FIG. 2, a mirror 101, an actuator 102 for driving the mirror, and a control (not shown) for controlling the actuator. A circuit and the like are formed on the substrate 103 by a fine processing technique. In this case, the MEMS mirror element 100 rotates and enters the mirror 101 by supplying an AC signal for driving (an AC signal S1 output from a signal output unit 11 described later), as conceptually shown in FIG. It has a function of changing the deflection angle θ of the reflected light L2 of the incident light L1 (for example, laser light), and is used, for example, in a display device or the like that irradiates the screen with the reflected light L2 and displays an image on the screen. Be done.

一方、検査装置1は、図1に示すように、信号出力部11、測定部12、操作部13、記憶部14、表示部15および処理部16を備えて構成されている。この場合、信号出力部11、測定部12、および処理部16における後述する検査処理を実行する機能を除く部分によって共振周波数特定装置が構成され、この共振周波数特定装置によってMEMSミラー素子100における振れ角θが最大となるときの交流信号S1の周波数fとしての共振周波数(後述する機械的な共振周波数fm)が特定される。 On the other hand, as shown in FIG. 1, the inspection device 1 is configured to include a signal output unit 11, a measurement unit 12, an operation unit 13, a storage unit 14, a display unit 15, and a processing unit 16. In this case, the resonance frequency identifying device is configured by the signal output unit 11, the measuring unit 12, and the portion of the processing unit 16 excluding the function of performing the inspection process described later, and the deflection frequency in the MEMS mirror element 100 is formed by the resonance frequency identifying device. A resonance frequency (mechanical resonance frequency fm described later) as the frequency f of the AC signal S1 when θ becomes maximum is specified.

信号出力部11は、処理部16の制御に従って駆動用の交流信号S1(例えば、交流定電流)を出力する。この場合、信号出力部11は、交流信号S1の周波数f(図3参照)を変更しつつ出力可能に構成されている。 The signal output unit 11 outputs a driving AC signal S1 (for example, AC constant current) under the control of the processing unit 16. In this case, the signal output unit 11 is configured to be able to output while changing the frequency f (see FIG. 3) of the AC signal S1.

測定部12は、信号出力部11から出力された交流信号S1がMEMSミラー素子100に供給されている状態においてMEMSミラー素子100から出力される出力信号S2(交流電圧)の電圧値V(電圧実効値)を検出し、交流信号S1の電流値I(電流実効値)、電圧値V、および交流信号S1と出力信号S2との位相差に基づいてインピーダンスを求め、次いで、求めたインピーダンスの絶対値から抵抗値R(予め決められた物理量の一例)を求める(測定する)。この場合、測定部12は、信号出力部11から出力される交流信号S1の周波数fが変更される度に抵抗値Rを測定する(図3参照)。なお、この検査装置1では、図1に示すように、信号出力部11に接続されたプローブ21a,21b、および測定部12に接続されたプローブ22a,22bをMEMSミラー素子100の2つの端子に接触させて、四端子法で抵抗値Rを測定する。 The measuring unit 12 measures the voltage value V (voltage effective) of the output signal S2 (AC voltage) output from the MEMS mirror element 100 while the AC signal S1 output from the signal output unit 11 is being supplied to the MEMS mirror element 100. Value), the impedance is obtained based on the current value I (current effective value) of the AC signal S1, the voltage value V, and the phase difference between the AC signal S1 and the output signal S2, and then the absolute value of the obtained impedance. From this, the resistance value R (an example of a predetermined physical quantity) is obtained (measured). In this case, the measurement unit 12 measures the resistance value R every time the frequency f of the AC signal S1 output from the signal output unit 11 is changed (see FIG. 3 ). In the inspection apparatus 1, as shown in FIG. 1, the probes 21a and 21b connected to the signal output unit 11 and the probes 22a and 22b connected to the measurement unit 12 are connected to two terminals of the MEMS mirror element 100. Contact and measure the resistance value R by the four-terminal method.

操作部13は、各種のボタンやキーを備え、これらが操作されたときに操作信号を出力する。 The operation unit 13 includes various buttons and keys, and outputs an operation signal when these are operated.

記憶部14は、処理部16によって実行される特定処理50において用いられる補正値fcを記憶する。ここで、補正値fcは、良品のMEMSミラー素子100に供給している交流信号S1の周波数fを変更させつつ実測した反射光L2の振れ角θの実測値が最大となったときの周波数f(機械的な共振周波数であって、以下、この周波数fを「共振周波数fm」ともいう)と抵抗値Rが極値(極小値または極大値)となったときの周波数f(電気的な共振周波数であって以下、この周波数fを「共振周波数fe」ともいう)とに基づいて予め規定されている。この場合、この例では、共振周波数fmと共振周波数feとの差分値が補正値fcとして規定されている。また、記憶部14は、特定処理50において特定される共振周波数fmを記憶する。また、記憶部14は、処理部16によって実行される検査処理において用いられる基準範囲faを記憶する。 The storage unit 14 stores the correction value fc used in the specific process 50 executed by the processing unit 16. Here, the correction value fc is the frequency f when the measured value of the deflection angle θ of the reflected light L2 measured while changing the frequency f of the AC signal S1 supplied to the non-defective MEMS mirror element 100 is the maximum. (It is a mechanical resonance frequency, and this frequency f is also referred to as "resonance frequency fm" hereinafter) and the frequency f when the resistance value R has an extreme value (minimum value or maximum value) (electrical resonance frequency). It is a frequency, and hereinafter, this frequency f is also defined in advance as "resonance frequency fe". In this case, in this example, the difference value between the resonance frequency fm and the resonance frequency fe is defined as the correction value fc. The storage unit 14 also stores the resonance frequency fm specified in the specifying process 50. The storage unit 14 also stores a reference range fa used in the inspection process executed by the processing unit 16.

表示部15は、処理部16の制御に従い、処理部16によって実行される特定処理50において特定される共振周波数fmや、処理部16によって実行される検査処理の結果を表示する。 Under the control of the processing unit 16, the display unit 15 displays the resonance frequency fm specified in the specifying process 50 executed by the processing unit 16 and the result of the inspection process executed by the processing unit 16.

処理部16は、操作部13から出力される操作信号に従って信号出力部11、測定部12、記憶部14および表示部15を制御すると共に、各種の処理を実行する。具体的には、処理部16は、MEMSミラー素子100のミラー101に入射した入射光L1の反射光L2の振れ角θが最大となるときの交流信号S1の周波数fとしての共振周波数fmを測定部12によって測定された抵抗値Rに基づいて特定する特定処理50(図4参照)を実行する。この場合、処理部16は、特定処理50において、MEMSミラー素子100に供給している交流信号S1の周波数fの変更に伴って変化する抵抗値Rが極値(極小値または極大値)となったときの周波数fに基づいて共振周波数fmを特定する。また、処理部16は、検査部として機能し、特定処理50によって特定した共振周波数fmに基づいてMEMSミラー素子100の良否を検査する検査処理を実行する。 The processing unit 16 controls the signal output unit 11, the measurement unit 12, the storage unit 14, and the display unit 15 according to the operation signal output from the operation unit 13, and executes various processes. Specifically, the processing unit 16 measures the resonance frequency fm as the frequency f of the AC signal S1 when the deflection angle θ of the reflected light L2 of the incident light L1 incident on the mirror 101 of the MEMS mirror element 100 becomes maximum. The specifying process 50 (see FIG. 4) for specifying based on the resistance value R measured by the unit 12 is executed. In this case, in the specific process 50, the processing unit 16 sets the resistance value R, which changes with the change of the frequency f of the AC signal S1 supplied to the MEMS mirror element 100, to an extreme value (a minimum value or a maximum value). The resonance frequency fm is specified based on the frequency f when The processing unit 16 also functions as an inspection unit, and executes inspection processing for inspecting the quality of the MEMS mirror element 100 based on the resonance frequency fm identified by the identification processing 50.

次に、検査装置1を用いてMEMSミラー素子100の共振周波数fmを特定する共振周波数特定方法、および特定した共振周波数fmに基づいてMEMSミラー素子100の良否を検査する検査方法について図面を参照して説明する。 Next, a resonance frequency specifying method for specifying the resonance frequency fm of the MEMS mirror element 100 using the inspection apparatus 1 and an inspection method for inspecting the quality of the MEMS mirror element 100 based on the specified resonance frequency fm will be described with reference to the drawings. Explain.

まず、検査装置1を用いて検査対象のMEMSミラー素子100の共振周波数fm(機械的な共振周波数)を特定する。具体的には、図1に示すように、MEMSミラー素子100の2つの端子に信号出力部11に接続されたプローブ21a,21b、および測定部12に接続されたプローブ22a,22bを接触させる。続いて、操作部13を操作して特定処理の実行を指示する。 First, the resonance frequency fm (mechanical resonance frequency) of the MEMS mirror element 100 to be inspected is specified using the inspection device 1. Specifically, as shown in FIG. 1, the probes 21a and 21b connected to the signal output unit 11 and the probes 22a and 22b connected to the measurement unit 12 are brought into contact with two terminals of the MEMS mirror element 100. Then, the operation unit 13 is operated to instruct execution of the specific process.

次いで、処理部16が、操作部13から出力された操作信号に従い、図4に示す特定処理50を実行する。この特定処理50では、処理部16は、信号出力部11に対して交流信号S1の出力開始を指示すると共に、測定部12に対して抵抗値Rの測定開始を指示する(ステップ51)。これに応じて、信号出力部11が交流信号S1の出力を開始する。この場合、信号出力部11は、交流信号S1の周波数fを予め決められた初期値に設定して、交流信号S1の出力を開始すると共に、周波数fを予め決められた時間間隔で予め決められた値ずつ変更(例えば、上昇)させつつ交流信号S1の出力を継続する。 Next, the processing unit 16 executes the specific process 50 shown in FIG. 4 according to the operation signal output from the operation unit 13. In the specifying process 50, the processing unit 16 instructs the signal output unit 11 to start output of the AC signal S1 and instructs the measuring unit 12 to start measuring the resistance value R (step 51). In response to this, the signal output unit 11 starts outputting the AC signal S1. In this case, the signal output unit 11 sets the frequency f of the AC signal S1 to a predetermined initial value, starts the output of the AC signal S1, and sets the frequency f at a predetermined time interval. The output of the AC signal S1 is continued while changing (for example, increasing) each value.

また、処理部16の指示に応じて、測定部12が抵抗値Rの測定を開始する。この場合、測定部12は、MEMSミラー素子100に対する交流信号S1(交流定電流)の供給に伴ってMEMSミラー素子100から出力される出力信号S2(交流電圧)の電圧値V(電圧実効値)を検出し、交流信号S1の電流値I(電流実効値)、電圧値V、および交流信号S1と出力信号S2との位相差に基づいてインピーダンスを求め、次いで、求めたインピーダンスの絶対値から抵抗値Rを測定する処理を、信号出力部11による交流信号S1の周波数fの変更に連動して(信号出力部11が周波数fを変更する時間間隔で)繰り返して実行する。 Further, in response to an instruction from the processing unit 16, the measuring unit 12 starts measuring the resistance value R. In this case, the measurement unit 12 causes the voltage value V (voltage effective value) of the output signal S2 (AC voltage) output from the MEMS mirror element 100 along with the supply of the AC signal S1 (AC constant current) to the MEMS mirror element 100. Is detected, the impedance is obtained based on the current value I (current effective value) of the AC signal S1, the voltage value V, and the phase difference between the AC signal S1 and the output signal S2, and then the resistance is calculated from the absolute value of the obtained impedance. The process of measuring the value R is repeatedly executed in association with the change of the frequency f of the AC signal S1 by the signal output unit 11 (at the time interval when the signal output unit 11 changes the frequency f).

続いて、処理部16は、測定部12によって測定された抵抗値Rを周波数fと関連付けて記憶部14に記憶させる(ステップ52)。次いで、処理部16は、予め決められた交流信号S1の周波数fが予め決められた周波数に達した時点で、信号出力部11に対して交流信号S1の出力停止を指示すると共に、測定部12に対して抵抗値Rの測定終了を指示する(ステップ53)。これに応じて、信号出力部11が交流信号S1の出力を停止し、測定部12が抵抗値Rの測定を終了する。 Subsequently, the processing unit 16 stores the resistance value R measured by the measurement unit 12 in the storage unit 14 in association with the frequency f (step 52). Next, the processing unit 16 instructs the signal output unit 11 to stop the output of the AC signal S1 at the time when the frequency f of the predetermined AC signal S1 reaches the predetermined frequency, and the measuring unit 12 Is instructed to end the measurement of the resistance value R (step 53). In response to this, the signal output unit 11 stops outputting the AC signal S1, and the measurement unit 12 ends the measurement of the resistance value R.

続いて、処理部16は、測定部12によって測定された周波数f毎の抵抗値Rを記憶部14から読み出し、次いで、周波数fの変化に対する抵抗値Rの変化から、抵抗値Rの極値(極大値または極小値)となったときの周波数fを特定する(ステップ54)。 Subsequently, the processing unit 16 reads out the resistance value R for each frequency f measured by the measurement unit 12 from the storage unit 14, and then changes the resistance value R with respect to the change in the frequency f to determine the extreme value of the resistance value R ( The frequency f when it becomes the maximum value or the minimum value is specified (step 54).

この場合、MEMSミラー素子100を構成するアクチュエータ102および制御回路等によってRLC直列共振回路が構成されるときには、図3に示すように、MEMSミラー素子100に供給される交流信号S1の周波数fが共振周波数(電気的な共振周波数fe)のときに抵抗値Rが極小値となる。したがって、この場合には、抵抗値Rが極小値となったときの周波数fをMEMSミラー素子100の電気的な共振周波数feとして特定することができる。また、MEMSミラー素子100を構成するアクチュエータ102および制御回路等によってRLC並列共振回路が構成されるときには、図5に示すように、MEMSミラー素子100に供給される交流信号S1の周波数fが共振周波数(電気的な共振周波数fe)のときに抵抗値Rが極大値となる。したがって、この場合には、抵抗値Rが極大値となったときの周波数fをMEMSミラー素子100の電気的な共振周波数feとして特定することができる。 In this case, when the RLC series resonance circuit is configured by the actuator 102 and the control circuit that configure the MEMS mirror element 100, as shown in FIG. 3, the frequency f of the AC signal S1 supplied to the MEMS mirror element 100 resonates. The resistance value R has a minimum value at the frequency (electrical resonance frequency fe). Therefore, in this case, the frequency f when the resistance value R becomes the minimum value can be specified as the electrical resonance frequency fe of the MEMS mirror element 100. Further, when the RLC parallel resonance circuit is configured by the actuator 102 and the control circuit that configure the MEMS mirror element 100, as shown in FIG. 5, the frequency f of the AC signal S1 supplied to the MEMS mirror element 100 is the resonance frequency. The resistance value R has a maximum value at (electrical resonance frequency fe). Therefore, in this case, the frequency f when the resistance value R reaches the maximum value can be specified as the electrical resonance frequency fe of the MEMS mirror element 100.

続いて、処理部16は、記憶部14から補正値fcを読み出す(ステップ55)。この例では、補正値fcは、良品のMEMSミラー素子100に供給している交流信号S1の周波数fを変更させつつ実測した反射光L2の振れ角θの実測値が最大となったときの周波数fである機械的な共振周波数fmと、抵抗値Rが極値(極小値または極大値)となったときの周波数fである電気的な共振周波数feとの差分値(例えば、fe−fm)が補正値fcとして規定されている。 Subsequently, the processing unit 16 reads the correction value fc from the storage unit 14 (step 55). In this example, the correction value fc is the frequency when the actual measurement value of the deflection angle θ of the reflected light L2 measured while changing the frequency f of the AC signal S1 supplied to the non-defective MEMS mirror element 100 is the maximum. A difference value (for example, fe-fm) between the mechanical resonance frequency fm which is f and the electric resonance frequency fe which is the frequency f when the resistance value R becomes the extreme value (minimum value or maximum value). Is defined as the correction value fc.

次いで、処理部16は、共振周波数feから補正値fcを差し引いて補正した周波数f(fe−fc)を共振周波数fmとして特定する(ステップ56)。続いて、処理部16は、特定した共振周波数fmを記憶部14に記憶させると共に表示部15に表示させて(ステップ57)、特定処理50を終了する。以上により、共振周波数fmの特定が終了する。 Next, the processing unit 16 specifies the corrected frequency f(fe-fc) by subtracting the correction value fc from the resonance frequency fe as the resonance frequency fm (step 56). Subsequently, the processing unit 16 stores the identified resonance frequency fm in the storage unit 14 and causes the display unit 15 to display the resonance frequency fm (step 57), and ends the identification process 50. With the above, the identification of the resonance frequency fm is completed.

ここで、発明者らは、MEMSミラー素子100に供給している交流信号S1の周波数fを変更させつつ反射光L2の振れ角θを実測して、反射光L2の振れ角θが最大となったときの周波数fである共振周波数fm(機械的な共振周波数)を特定すると共に、MEMSミラー素子100に供給している交流信号S1の周波数fを変更させつつMEMSミラー素子100の抵抗値Rを測定して、抵抗値Rが極値となったときの周波数fである共振周波数fe(電気的な共振周波数)を特定し、共振周波数fmと共振周波数feとを比較する検証試験を行った結果、共振周波数fmと共振周波数feとがほぼ一致することを見いだした。このため、発明者らは、このことに直目して、電気的な共振周波数feに基づいて(共振周波数feをそのまま、または共振周波数feを補正して)共振周波数fmを特定するこの共振周波数特定装置および共振周波数特定方法を開発した。 Here, the inventors actually measure the deflection angle θ of the reflected light L2 while changing the frequency f of the AC signal S1 supplied to the MEMS mirror element 100, and the deflection angle θ of the reflected light L2 becomes maximum. The resonance frequency fm (mechanical resonance frequency), which is the frequency f at that time, is specified, and the resistance value R of the MEMS mirror element 100 is changed while changing the frequency f of the AC signal S1 supplied to the MEMS mirror element 100. Results of a verification test in which the resonance frequency fe (electrical resonance frequency), which is the frequency f when the resistance value R becomes the extreme value, is measured and the resonance frequency fm and the resonance frequency fe are compared. It has been found that the resonance frequency fm and the resonance frequency fe substantially match. For this reason, the inventor takes this fact directly and specifies the resonance frequency fm based on the electric resonance frequency fe (the resonance frequency fe as it is or by correcting the resonance frequency fe). An identification device and resonance frequency identification method have been developed.

この場合、この共振周波数特定装置および共振周波数特定方法では、入射光L1を出力する光源や反射光L2を検出する検出部を備えた大型の装置を用いて反射光L2の振れ角θを実測する煩雑な作業を行うことなく、交流信号S1を供給した状態でMEMSミラー素子100から出力される出力信号S2に基づいて抵抗値Rを測定する簡易な構成で電気的な共振周波数feを特定し、その共振周波数feに基づいて機械的な共振周波数fmを容易に特定することが可能となっている。また、この共振周波数特定装置および共振周波数特定方法では、光源を用いないため、光源からの入射光L1の出力を安定させるために待機する必要がない分、共振周波数fmを特定する処理時間を十分に短縮することが可能となっている。 In this case, in the resonance frequency identifying device and the resonance frequency identifying method, the deflection angle θ of the reflected light L2 is measured by using a large-sized device including a light source that outputs the incident light L1 and a detection unit that detects the reflected light L2. The electrical resonance frequency fe is specified by a simple configuration in which the resistance value R is measured based on the output signal S2 output from the MEMS mirror element 100 in a state where the AC signal S1 is supplied, without performing complicated work. It is possible to easily specify the mechanical resonance frequency fm based on the resonance frequency fe. Further, in this resonance frequency specifying device and the resonance frequency specifying method, since the light source is not used, it is not necessary to wait for stabilizing the output of the incident light L1 from the light source, and therefore the processing time for specifying the resonance frequency fm is sufficient. It is possible to shorten to.

また、この共振周波数特定装置および共振周波数特定方法では、振れ角θを実測して得た機械的な共振周波数fmとMEMSミラー素子100の抵抗値Rを測定して得た電気的な共振周波数feとに基づいて予め規定した補正値fcで共振周波数feを補正することで、より正確な共振周波数fmを特定することが可能となっている。 Further, in the resonance frequency identifying device and the resonance frequency identifying method, the mechanical resonance frequency fm obtained by actually measuring the deflection angle θ and the electrical resonance frequency fe obtained by measuring the resistance value R of the MEMS mirror element 100. By correcting the resonance frequency fe with the correction value fc defined in advance based on the above, it is possible to specify the resonance frequency fm more accurately.

次いで、操作部13を操作して、検査の実行を指示する。これに応じて、処理部16は、検査処理を実行する。この検査処理では、処理部16は、特定処理50において特定した検査対象のMEMSミラー素子100についての共振周波数fmを記憶部14から読み出すと共に、MEMSミラー素子100の良否を判定するための基準範囲faを記憶部14から読み出す。続いて、処理部16は、共振周波数fmが基準範囲fa内であるか否かを判別する。この場合、共振周波数fmが基準範囲fa内であるときには、MEMSミラー素子100が良品であると判定し、共振周波数fmが基準範囲fa外であるときには、MEMSミラー素子100が不良品であると判定する。 Then, the operation unit 13 is operated to instruct execution of the inspection. In response to this, the processing unit 16 executes the inspection process. In this inspection process, the processing unit 16 reads out the resonance frequency fm of the MEMS mirror element 100 to be inspected identified in the identification process 50 from the storage unit 14, and the reference range fa for determining the quality of the MEMS mirror element 100. Is read from the storage unit 14. Subsequently, the processing unit 16 determines whether the resonance frequency fm is within the reference range fa. In this case, when the resonance frequency fm is within the reference range fa, it is determined that the MEMS mirror element 100 is a good product, and when the resonance frequency fm is outside the reference range fa, it is determined that the MEMS mirror element 100 is a defective product. To do.

なお、特定した共振周波数fmは、上記したMEMSミラー素子100の検査以外の用途にも用いられる。具体的には、MEMSミラー素子100は、共振周波数fm以外の周波数fの交流信号S1で駆動するリニアモード、および共振周波数fmで駆動するノンリニアモードで使用される。このため、特定した共振周波数fmは、この2つのモードを切り替えてMEMSミラー素子100を駆動させるときに交流信号S1の周波数fを制御する際にも用いられる。 The specified resonance frequency fm is also used for purposes other than the inspection of the MEMS mirror element 100 described above. Specifically, the MEMS mirror element 100 is used in the linear mode driven by the AC signal S1 having a frequency f other than the resonance frequency fm and the non-linear mode driven by the resonance frequency fm. Therefore, the specified resonance frequency fm is also used when controlling the frequency f of the AC signal S1 when switching the two modes to drive the MEMS mirror element 100.

このように、この共振周波数特定装置、検査装置1、共振周波数特定方法および検査方法では、周波数fを変更させつつ交流信号S1をMEMSミラー素子100に供給している状態においてMEMSミラー素子100から出力される出力信号S2に基づいて抵抗値Rを測定し、周波数fの変更に伴って変化する抵抗値Rが極値となったときの周波数fに基づいて共振周波数fmを特定する特定処理を実行する。このため、この共振周波数特定装置、検査装置1、共振周波数特定方法および検査方法によれば、入射光L1を出力する光源や反射光L2を検出する検出部を備えた大型の装置を用いて反射光L2の振れ角θを実測する煩雑な作業を行うことなく、交流信号S1を供給した状態でMEMSミラー素子100から出力される出力信号S2に基づいて抵抗値Rを測定する簡易な構成で電気的な共振周波数feを特定し、その共振周波数feに基づいて機械的な共振周波数fmを容易に特定することができる。また、この共振周波数特定装置、検査装置1、共振周波数特定方法および検査方法では、光源を用いないため、光源からの入射光L1の出力を安定させるために待機する必要がない分、共振周波数fmを特定する処理時間を十分に短縮することができる。したがって、この共振周波数特定装置、検査装置1、共振周波数特定方法および検査方法によれば、装置の小形化および共振周波数fmを特定する作業の作業効率の向上を確実に実現することができる。 As described above, in the resonance frequency identifying device, the inspection device 1, the resonance frequency identifying method, and the inspection method, the output from the MEMS mirror element 100 while the AC signal S1 is being supplied to the MEMS mirror element 100 while changing the frequency f. The resistance value R is measured based on the output signal S2 that is generated, and a specific process that specifies the resonance frequency fm based on the frequency f when the resistance value R that changes with the change of the frequency f becomes the extreme value is executed. To do. Therefore, according to the resonance frequency specifying device, the inspection device 1, the resonance frequency specifying method, and the inspection method, reflection is performed by using a large-sized device including a light source that outputs the incident light L1 and a detection unit that detects the reflected light L2. The resistance value R is measured based on the output signal S2 output from the MEMS mirror element 100 with the AC signal S1 supplied, without performing the complicated work of measuring the deflection angle θ of the light L2. It is possible to easily specify a mechanical resonance frequency fe and to easily specify a mechanical resonance frequency fm based on the resonance frequency fe. In addition, in the resonance frequency identifying device, the inspection device 1, the resonance frequency identifying method, and the inspection method, since the light source is not used, it is not necessary to wait for stabilizing the output of the incident light L1 from the light source, and therefore the resonance frequency fm. It is possible to sufficiently reduce the processing time for specifying Therefore, according to the resonance frequency specifying device, the inspection device 1, the resonance frequency specifying method, and the inspection method, it is possible to surely realize the downsizing of the device and the improvement of the work efficiency of the work of specifying the resonance frequency fm.

また、この共振周波数特定装置、検査装置1、共振周波数特定方法および検査方法によれば、特定処理において、MEMSミラー素子100における振れ角θの実測値が最大となったときの周波数f(機械的な共振周波数fm)と抵抗値Rが極値となったときの周波数f(電気的な共振周波数fe)とに基づいて予め規定された補正値fcで抵抗値Rが極値となったときの周波数fを補正し、補正後の周波数fを共振周波数fmとして特定することにより、より正確な共振周波数fmを特定することができる。 Further, according to the resonance frequency identifying device, the inspection device 1, the resonance frequency identifying method, and the inspection method, the frequency f (mechanical) when the actual measurement value of the deflection angle θ in the MEMS mirror element 100 becomes maximum in the identifying process. Of the resonance frequency fm) and the frequency f (electrical resonance frequency fe) when the resistance value R becomes the extreme value, the resistance value R becomes the extreme value with a correction value fc that is defined in advance. A more accurate resonance frequency fm can be specified by correcting the frequency f and specifying the corrected frequency f as the resonance frequency fm.

なお、共振周波数特定装置、検査装置、共振周波数特定方法および検査方法は、上記の構成および方法に限定されない。例えば、予め決められた物理量として抵抗値Rを用いる例について上記したが、測定部12によって検出された出力信号S2の電圧値Vを予め決められた物理量として用いて、周波数fの変更に伴って変化する電圧値Vが極値となったときの周波数fに基づいて共振周波数fmを特定する構成および方法を採用することもできる。 The resonance frequency identification device, the inspection device, the resonance frequency identification method, and the inspection method are not limited to the above configurations and methods. For example, the example in which the resistance value R is used as the predetermined physical quantity has been described above, but the voltage value V of the output signal S2 detected by the measuring unit 12 is used as the predetermined physical quantity and the frequency f is changed. A configuration and method for identifying the resonance frequency fm based on the frequency f when the changing voltage value V reaches the extreme value can also be adopted.

また、交流信号S1としての交流定電流を出力可能に信号出力部11を構成した例について上記したが、交流信号S1としての交流電流(交流定電流ではなく通常の交流電流)を出力する電流出力部と、この交流電流の電流値Iを測定する電流測定部とを備えて信号出力部11を構成してもよい。 In addition, the example in which the signal output unit 11 is configured to be capable of outputting the AC constant current as the AC signal S1 has been described above, but a current output that outputs the AC current as the AC signal S1 (normal AC current instead of AC constant current). The signal output unit 11 may be configured to include a unit and a current measuring unit that measures the current value I of the alternating current.

また、良品のMEMSミラー素子100についての共振周波数fmと共振周波数feとの差分値(fe−fm)を補正値fcとして規定し、共振周波数feから補正値fcを差し引いて補正した周波数f(fe−fc)を共振周波数fmとして特定する例について上記したが、共振周波数fmと共振周波数feとの比率(fm/fe)を補正値fcとして規定し、共振周波数feに補正値fcを乗算して補正した周波数f(fe×fc)を共振周波数fmとして特定する構成および方法を採用することもできる。 Further, the difference value (fe-fm) between the resonance frequency fm and the resonance frequency fe of the good MEMS mirror element 100 is defined as the correction value fc, and the corrected frequency f(fe is subtracted from the resonance frequency fe to correct the correction value fc. The example in which −fc) is specified as the resonance frequency fm has been described above. However, the ratio (fm/fe) between the resonance frequency fm and the resonance frequency fe is defined as the correction value fc, and the resonance frequency fe is multiplied by the correction value fc. A configuration and method of specifying the corrected frequency f(fe×fc) as the resonance frequency fm can also be adopted.

また、補正値fcで共振周波数feを補正して、補正後の周波数fを共振周波数fmとして特定する構成および方法について上記したが、共振周波数fmと共振周波数feとの差が僅かであることが予め知られているMEMSミラー素子100についての共振周波数fmを特定するときには、補正する処理を省略して、共振周波数feをそのまま共振周波数fmとして特定する構成および方法を採用することもできる。 Further, the configuration and method for correcting the resonance frequency fe with the correction value fc and specifying the corrected frequency f as the resonance frequency fm have been described above, but the difference between the resonance frequency fm and the resonance frequency fe may be small. When the resonance frequency fm of the MEMS mirror element 100 that is known in advance is specified, the correction process may be omitted and the resonance frequency fe may be directly specified as the resonance frequency fm.

1 検査装置
11 信号出力部
12 測定部
14 記憶部
16 処理部
100 MEMSミラー素子
101 ミラー
f 周波数
fc 補正値
fe 共振周波数
fm 共振周波数
L2 反射光
R 抵抗値
S1 交流信号
S2 出力信号
V 電圧値
θ 振れ角
1 inspection device 11 signal output unit 12 measurement unit 14 storage unit 16 processing unit 100 MEMS mirror element 101 mirror f frequency fc correction value fe resonant frequency fm resonant frequency L2 reflected light R resistance value S1 AC signal S2 output signal V voltage value θ swing Horn

Claims (6)

駆動用の交流信号の供給によってミラーを回動させて反射光の振れ角を変化させるMEMSミラー素子における当該振れ角が最大となるときの当該交流信号の周波数としての共振周波数を特定可能に構成された共振周波数特定装置であって、
前記周波数を変更させつつ前記交流信号を出力可能な信号出力部と、
前記交流信号が前記MEMSミラー素子に供給されている状態において当該MEMSミラー素子から出力される出力信号に基づいて予め決められた物理量を測定する測定部と、
前記周波数の変更に伴って変化する前記物理量が極値となったときの当該周波数に基づいて前記共振周波数を特定する特定処理を実行する処理部とを備えている共振周波数特定装置。
The resonance frequency as the frequency of the AC signal when the deflection angle is maximum in the MEMS mirror element that rotates the mirror by changing the deflection angle of the reflected light by supplying the driving AC signal is specified. A resonance frequency identifying device,
A signal output unit capable of outputting the AC signal while changing the frequency,
A measuring unit that measures a predetermined physical quantity based on an output signal output from the MEMS mirror element while the AC signal is being supplied to the MEMS mirror element;
A resonance frequency identification device, comprising: a processing unit that executes a specification process that identifies the resonance frequency based on the frequency when the physical quantity that changes with the change in the frequency reaches an extreme value.
前記MEMSミラー素子における前記振れ角の実測値が最大となったときの前記周波数と前記物理量が極値となったときの前記周波数とに基づいて予め規定された補正値を記憶する記憶部を備え、
前記処理部は、前記特定処理において、前記物理量が極値となったときの前記周波数を前記補正値で補正し、当該補正後の周波数を前記共振周波数として特定する請求項1記載の共振周波数特定装置。
A storage unit that stores a correction value defined in advance based on the frequency when the measured value of the deflection angle in the MEMS mirror element becomes maximum and the frequency when the physical quantity reaches an extreme value ,
The resonance frequency identification according to claim 1, wherein in the identification processing, the processing unit corrects the frequency when the physical quantity reaches an extreme value with the correction value and identifies the corrected frequency as the resonance frequency. apparatus.
請求項1または2記載の共振周波数特定装置と、当該共振周波数特定装置によって特定された前記共振周波数に基づいて前記MEMSミラー素子の良否を検査する検査部とを備えている検査装置。 An inspection apparatus comprising: the resonance frequency identification device according to claim 1; and an inspection unit that inspects the quality of the MEMS mirror element based on the resonance frequency identified by the resonance frequency identification device. 駆動用の交流信号の供給によってミラーを回動させて反射光の振れ角を変化させるMEMSミラー素子における当該振れ角が最大となるときの当該交流信号の周波数としての共振周波数を特定する共振周波数特定方法であって、
前記周波数を変更させつつ前記交流信号を前記MEMSミラー素子に供給している状態において当該MEMSミラー素子から出力される出力信号に基づいて予め決められた物理量を測定し、前記周波数の変更に伴って変化する前記物理量が極値となったときの当該周波数に基づいて前記共振周波数を特定する特定処理を実行する共振周波数特定方法。
Resonance frequency identification for identifying the resonance frequency as the frequency of the AC signal when the deflection angle is maximum in the MEMS mirror element that rotates the mirror by changing the deflection angle of the reflected light by supplying the driving AC signal Method,
A physical quantity determined in advance based on an output signal output from the MEMS mirror element while the AC signal is being supplied to the MEMS mirror element while changing the frequency is measured. A resonance frequency specifying method for executing a specifying process for specifying the resonance frequency based on the frequency when the changing physical quantity reaches an extreme value.
前記特定処理において、前記MEMSミラー素子における前記振れ角の実測値が最大となったときの前記周波数と前記物理量が極値となったときの前記周波数とに基づいて予め規定された補正値で当該物理量が極値となったときの当該周波数を補正し、当該補正後の周波数を前記共振周波数として特定する請求項4記載の共振周波数特定方法。 In the specific processing, the correction value is defined in advance based on the frequency when the actual measurement value of the deflection angle in the MEMS mirror element is maximum and the frequency when the physical quantity is an extreme value. The resonance frequency specifying method according to claim 4, wherein the frequency when the physical quantity reaches an extreme value is corrected, and the corrected frequency is specified as the resonance frequency. 請求項4または5記載の共振周波数特定方法によって特定した前記共振周波数に基づいて前記MEMSミラー素子の良否を検査する検査方法。 An inspection method for inspecting the quality of the MEMS mirror element based on the resonance frequency specified by the resonance frequency specifying method according to claim 4.
JP2018228604A 2018-12-06 2018-12-06 Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method Pending JP2020091200A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018228604A JP2020091200A (en) 2018-12-06 2018-12-06 Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method
CN201910982804.9A CN111289091A (en) 2018-12-06 2019-10-16 Resonance frequency determination device, inspection device, resonance frequency determination method, and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228604A JP2020091200A (en) 2018-12-06 2018-12-06 Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method

Publications (1)

Publication Number Publication Date
JP2020091200A true JP2020091200A (en) 2020-06-11

Family

ID=71013739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228604A Pending JP2020091200A (en) 2018-12-06 2018-12-06 Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method

Country Status (2)

Country Link
JP (1) JP2020091200A (en)
CN (1) CN111289091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188649A (en) * 2021-04-30 2021-07-30 歌尔股份有限公司 Resonance frequency detection method and device of vibration motor, terminal equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188649A (en) * 2021-04-30 2021-07-30 歌尔股份有限公司 Resonance frequency detection method and device of vibration motor, terminal equipment and storage medium
CN113188649B (en) * 2021-04-30 2023-11-14 歌尔股份有限公司 Method and device for detecting resonant frequency of vibration motor, terminal equipment and storage medium

Also Published As

Publication number Publication date
CN111289091A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP2011123481A (en) Method and device for monitoring movement of mirror in mems device
JP2010522441A (en) Semiconductor wafer foreign matter inspection and repair system and method
JP2009003133A (en) Solid immersion lens holder
JP6636464B2 (en) Container thickness inspection device
JP2013184225A (en) Monitoring device for resistance welding, and method and system therefor
CN107533221A (en) Light scanning apparatus and its manufacture method, optical scanning control device
KR102245726B1 (en) Apparatus for testing wire harness error for resolver using ferrite
CN111562091A (en) Method and device for measuring azimuth angle of polarizing axis
JP2020091200A (en) Resonance frequency identification device, inspection device, resonance frequency identification method and inspection method
JPH0627085A (en) Method and equipment for inspecting carbon fiber reinforced tubular composite material
JP2007189113A (en) Probe needle contact detecting method and device thereof
JP3839512B2 (en) Ultra-micro hardness measuring device
JP5432213B2 (en) Pattern inspection device
CN111614950B (en) Lens detection device
JP2011185625A (en) Inspection device
JP5308948B2 (en) Semiconductor device inspection apparatus and method
JP2019035587A (en) Substrate inspection device
JP2009294074A (en) Display panel inspection device and inspection method
JP5904027B2 (en) Circuit board inspection system and image forming apparatus
TWI802991B (en) Ultrasonic vibration type defect detection device and wire defect detection system
JP2019007880A (en) Substrate inspection device and substrate inspection method
JP4983482B2 (en) Inspection device for vibration type physical quantity sensor
JP2007178339A (en) Continuity testing method and testing device thereof
KR100484907B1 (en) Equipment and method automatic coordinatec recognition of movable probe
JP2000058330A (en) Device for inspecting differential transformer