JP2020087829A - Superconducting wire rod and manufacturing method of superconducting wire rod - Google Patents

Superconducting wire rod and manufacturing method of superconducting wire rod Download PDF

Info

Publication number
JP2020087829A
JP2020087829A JP2018223804A JP2018223804A JP2020087829A JP 2020087829 A JP2020087829 A JP 2020087829A JP 2018223804 A JP2018223804 A JP 2018223804A JP 2018223804 A JP2018223804 A JP 2018223804A JP 2020087829 A JP2020087829 A JP 2020087829A
Authority
JP
Japan
Prior art keywords
superconducting layer
superconducting
temperature
superconducting wire
artificial pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223804A
Other languages
Japanese (ja)
Other versions
JP7398663B2 (en
Inventor
和泉 輝郎
Teruo Izumi
輝郎 和泉
顕 衣斐
Akira Ihi
顕 衣斐
正志 三浦
Masashi Miura
正志 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Seikei Gakuen
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Seikei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Seikei Gakuen filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018223804A priority Critical patent/JP7398663B2/en
Publication of JP2020087829A publication Critical patent/JP2020087829A/en
Priority to JP2023008891A priority patent/JP7445238B2/en
Application granted granted Critical
Publication of JP7398663B2 publication Critical patent/JP7398663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a superconducting wire rod high in critical current density and a manufacturing method therefor.SOLUTION: A superconducting wire rod has a superconducting layer represented by a composition formula REBaCuO, where RE is a rare earth element, and an artificial pin added to the superconducting wire rod and represented by a composition formula BaMO, where M is at least one selected from a group consisting of Hf, Zr, Sn, Nb, and Ti, in which added concentration of the artificial pin is 5.0 mol% or more, and a crystal orientation of the artificial pin is aligned in a crystal orientation of the superconducting layer.SELECTED DRAWING: Figure 2

Description

本発明は、超電導線材及び超電導線材の製造方法に関する。 The present invention relates to a superconducting wire and a method for manufacturing the superconducting wire.

超電導体は、完全導電性を示し、電気抵抗に起因する送電ロスを著しく低減できる。そのため、超電導体を利用した超電導線材の開発が進められている。 Superconductors exhibit complete conductivity and can significantly reduce transmission loss due to electrical resistance. Therefore, development of superconducting wire rods using superconductors is under way.

超電導線材は、臨界転移温度及び臨界電流密度の向上が求められている。臨界転移温度は、超電導特性を発現する温度である。臨界転移温度が高ければ、超電導線材を冷却するために必要なコストを抑えられる。臨界電流密度は、超電導体に抵抗ゼロで流すことができる単位面積当たりの電流の最大値である。超電導体は、外部磁場又は電流自身が生じる自己磁場中では、臨界電流密度が低下する。量子化された磁束線が超電導体に侵入し、誘導起電力を生み出すためである。超電導線材の臨界電流密度が高いと、送電ロスをより低減できる。 Superconducting wires are required to have improved critical transition temperature and critical current density. The critical transition temperature is a temperature at which superconducting characteristics are exhibited. If the critical transition temperature is high, the cost required for cooling the superconducting wire can be suppressed. The critical current density is the maximum value of current per unit area that can flow in a superconductor with zero resistance. The critical current density of the superconductor decreases in the external magnetic field or the self magnetic field generated by the current itself. This is because the quantized magnetic flux lines penetrate the superconductor and generate induced electromotive force. When the superconducting wire has a high critical current density, power transmission loss can be further reduced.

非特許文献1には、超電導線材に人工ピンを添加した超電導線材が開示されている。人工ピンは、磁束線がローレンツ力を受けて動くことを留め、磁束線の変化に伴う誘導起電力の発生を防ぐ。非特許文献1には、3.5mol%の人工ピンを添加することが記載されている。 Non-Patent Document 1 discloses a superconducting wire in which artificial pins are added to the superconducting wire. The artificial pin stops the magnetic flux lines from moving under Lorentz force, and prevents the generation of induced electromotive force due to the change of the magnetic flux lines. Non-Patent Document 1 describes that an artificial pin of 3.5 mol% is added.

T. Yoshida et al., Physica C 504 (2014) p.42-46.T. Yoshida et al., Physica C 504 (2014) p.42-46.

人工ピンの添加濃度を更に高めると、臨界電流密度がさらに向上することが期待される。しかしながら、人工ピンの添加濃度を単純に高めても、臨界転移温度が低下し、結果的に臨界電流密度が低下した。 It is expected that the critical current density will be further improved by further increasing the addition concentration of the artificial pin. However, even if the added concentration of artificial pin was simply increased, the critical transition temperature was lowered, and as a result, the critical current density was lowered.

本発明は上記問題に鑑みてなされたものであり、臨界電流密度が高い超電導線材及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a superconducting wire having a high critical current density and a method for manufacturing the same.

本発明者らは、鋭意検討の結果、超電導層の成膜温度を高め、酸素アニールの温度を低くすると、超電導線材の臨界電流密度が高くなることを見出した。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
As a result of earnest studies, the present inventors have found that increasing the film forming temperature of the superconducting layer and decreasing the temperature of oxygen annealing increases the critical current density of the superconducting wire.
That is, the present invention provides the following means in order to solve the above problems.

(1)第1の態様にかかる超電導線材は、組成式REBaCu(REは希土類元素)で表される超電導層と、前記超電導層に添加され、組成式BaMO(MはHf、Zr、Sn、Nb、Tiからなる群から選択される少なくとも一つ)で表される人工ピンと、を有し、前記人工ピンの添加濃度は、5.0mol%以上であり、前記人工ピンの結晶方位は、前記超電導層の結晶方位と揃っている。 (1) A superconducting wire according to a first aspect is a superconducting layer represented by a composition formula REBa 2 Cu 3 O y (RE is a rare earth element) and a composition formula BaMO 3 (M is Hf) added to the superconducting layer. , An artificial pin represented by at least one selected from the group consisting of Zr, Sn, Nb, and Ti), and the addition concentration of the artificial pin is 5.0 mol% or more. The crystal orientation is aligned with the crystal orientation of the superconducting layer.

(2)上記態様に係る超電導線材において、自己磁場中における臨界電流密度が、77Kで5.0×10A/cm以上であってもよい。 (2) In the superconducting wire according to the above aspect, the critical current density in the self-magnetic field may be 5.0×10 6 A/cm 2 or more at 77K.

(3)上記態様にかかる超電導線材において、前記超電導層における(005)面の隣接面間距離d(005)は、理論値の100%以上101%以下であってもよい。 (3) In the superconducting wire according to the above aspect, a distance d(005) between adjacent surfaces of the (005) plane in the superconducting layer may be 100% or more and 101% or less of a theoretical value.

(4)上記態様にかかる超電導線材において、印加磁場が3T、温度が77Kの条件で、臨界電流密度が0.5×10A/cm以上であってもよい。 (4) In the superconducting wire according to the above aspect, the critical current density may be 0.5×10 6 A/cm 2 or more under the conditions of an applied magnetic field of 3 T and a temperature of 77 K.

(5)上記態様にかかる超電導線材において、臨界転移温度Tcが88K以上であってもよい。 (5) In the superconducting wire according to the above aspect, the critical transition temperature Tc may be 88K or higher.

(6)第2の態様にかかる超電導線材の製造方法は、パルスレーザー蒸着法により人工ピンを有する超電導層を成膜する成膜工程と、前記超電導層を酸素雰囲気中でアニールするアニール工程と、を有し、前記成膜工程は、前記超電導層の包晶温度より200度低い温度以上の温度条件で行い、前記アニール工程は、450℃以下の温度域で2時間以上行う。 (6) A method of manufacturing a superconducting wire according to a second aspect comprises a film forming step of forming a superconducting layer having artificial pins by a pulse laser deposition method, an annealing step of annealing the superconducting layer in an oxygen atmosphere, And the annealing step is performed for 2 hours or more in a temperature range of 450° C. or lower, and the annealing step is performed at a temperature of 200° C. or lower lower than the peritectic temperature of the superconducting layer.

(7)上記態様にかかる超電導線材の製造方法における前記アニール工程において、酸素分圧が1atm以上であってもよい。 (7) In the annealing step in the method for manufacturing a superconducting wire according to the above aspect, the oxygen partial pressure may be 1 atm or more.

上記態様にかかる超電導線材は、臨界電流密度が高く、送電ロスを抑制できる。また上記態様にかかる超電導線材の製造方法は、臨界電流密度の高い超電導線材を作製できる。 The superconducting wire according to the above aspect has a high critical current density and can suppress power transmission loss. Further, the method for producing a superconducting wire according to the above aspect can produce a superconducting wire having a high critical current density.

第1実施形態にかかる超電導線材の斜視模式図である。It is a perspective schematic diagram of the superconducting wire concerning 1st Embodiment. 第1実施形態にかかる超電導線材の超電導層の断面模式図である。It is a cross-sectional schematic diagram of the superconducting layer of the superconducting wire concerning 1st Embodiment. 第1実施形態にかかる超電導線材の超電導層の断面を走査型電子顕微鏡で測定した図である。It is the figure which measured the section of the superconducting layer of the superconducting wire concerning a 1st embodiment with a scanning electron microscope. 別の例にかかる超電導線材の超電導層の断面模式図である。It is a cross-sectional schematic diagram of the superconducting layer of the superconducting wire concerning another example. 測定温度が77K、3Tの外部磁場が印加された状態における実施例1、比較例1及び比較例2の超電導線材の臨界電流密度を示したグラフである。7 is a graph showing the critical current densities of the superconducting wire rods of Example 1, Comparative Example 1 and Comparative Example 2 in a state where an external magnetic field having a measurement temperature of 77K and 3T was applied. 測定温度が65K、5Tの外部磁場が印加された状態における実施例1及び比較例2の超電導線材の臨界電流密度を示したグラフである。6 is a graph showing the critical current densities of the superconducting wire rods of Example 1 and Comparative Example 2 in a state where an external magnetic field having a measurement temperature of 65K and 5T was applied. 酸素アニールの維持温度と、自己磁場中における臨界電流密度と、の関係を示した図である。It is a figure showing the relation between the maintenance temperature of oxygen annealing and the critical current density in a self-magnetic field. 成膜温度と、臨界転移温度と、超電導層の隣接面間距離d(005)と、の関係を示した図である。It is a figure showing the relation of film-forming temperature, critical transition temperature, and distance d (005) between adjacent surfaces of a superconducting layer. 人工ピンの濃度と臨界電流密度との関係を示すグラフである。It is a graph which shows the relationship between the density of an artificial pin, and critical current density.

以下、本発明について、図を適宜参照しながら詳細に説明する。
以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。また、以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the drawings used in the following description, in order to make the features of the present invention easy to understand, there are cases where features are enlarged for the sake of convenience, and the dimensional ratios of each component may differ from the actual ones. is there. Further, the materials, dimensions, and the like illustrated in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented within the scope of the invention.

「第1実施形態」
(超電導線材)
図1は、第1実施形態にかかる超電導線材の斜視模式図である。超電導線材100は、超電導層10と基材20とを備える。以下、基材20に対する超電導層10の積層方向をz方向、z方向からの平面視で超電導層10の長軸方向をx方向、x方向及びz方向に直交する方向をy方向という。
"First embodiment"
(Superconducting wire)
FIG. 1 is a schematic perspective view of the superconducting wire according to the first embodiment. Superconducting wire 100 includes superconducting layer 10 and base material 20. Hereinafter, the stacking direction of the superconducting layer 10 on the base material 20 is referred to as the z direction, and the major axis direction of the superconducting layer 10 in the plan view from the z direction is referred to as the x direction, and the direction orthogonal to the x direction and the z direction is referred to as the y direction.

基材20は、例えば、金属膜と酸化物等からなる中間層との積層体である。金属膜は、例えば、Ni−W合金、NiメッキしたCuである。中間層は、例えば、CeO、LaMnO、MgO、Y、GdZr等である。中間層は、超電導層10の配向性を高める。 The base material 20 is, for example, a laminate of a metal film and an intermediate layer made of an oxide or the like. The metal film is, for example, a Ni-W alloy or Ni-plated Cu. The intermediate layer is, for example, CeO 2 , LaMnO 3 , MgO, Y 2 O 3 , Gd 2 Zr 2 O 7 or the like. The intermediate layer enhances the orientation of the superconducting layer 10.

超電導層10は、基材20の一面に積層されている。超電導層10のz方向の厚みは、例えば、1μm〜3μmである。 The superconducting layer 10 is laminated on one surface of the base material 20. The thickness of the superconducting layer 10 in the z direction is, for example, 1 μm to 3 μm.

図2は、第1実施形態にかかる超電導線材100の超電導層10の断面模式図である。超電導層10は、内部に人工ピン1を有する。超電導層10と人工ピン1との境界には、歪領域2がある。 FIG. 2 is a schematic cross-sectional view of the superconducting layer 10 of the superconducting wire 100 according to the first embodiment. The superconducting layer 10 has an artificial pin 1 inside. At the boundary between the superconducting layer 10 and the artificial pin 1, there is a strained region 2.

超電導層10は、組成式REBaCuで表される超電導体である。REは、希土類元素であり、例えば、Er、Ho、Y、Dy、Gd、Eu、Sm、Nd、Laから選択されるいずれか1種の元素である。yは7−δであり、δは酸素欠損である。δは、好ましくは0.3であり、より好ましくは0.2であり、さらに好ましくは0.1である。酸素欠損量が少ないほど、後述する人工ピン1との間の歪みを抑制できる。 The superconducting layer 10 is a superconductor represented by the composition formula REBa 2 Cu 3 O y . RE is a rare earth element, for example, any one element selected from Er, Ho, Y, Dy, Gd, Eu, Sm, Nd, and La. y is 7-δ, and δ is oxygen deficiency. δ is preferably 0.3, more preferably 0.2, and even more preferably 0.1. The smaller the amount of oxygen deficiency, the more the strain with the artificial pin 1 described later can be suppressed.

人工ピン1は、超電導層10の内部に分布している。人工ピン1は、外部磁場又は自己磁場により生じた磁束線がローレンツ力を受けて動くことを留め、磁束線の変化に伴う誘導起電力の発生を防ぐ。 The artificial pins 1 are distributed inside the superconducting layer 10. The artificial pin 1 stops the magnetic flux lines generated by the external magnetic field or the self magnetic field from moving under the Lorentz force, and prevents the generation of induced electromotive force due to the change of the magnetic flux lines.

人工ピン1は、例えば、略z方向に延びる。図3は、第1実施形態にかかる超電導線材100の超電導層10の断面を走査型電子顕微鏡(SEM)で実際に測定した図である。図3は、それぞれEuBaCuに人工ピンを3.5mol%、5.0mol%、7.5mol%、10.0mol%添加した超電導層の断面である。図3において人工ピン1は、z方向に延びる多数の黒筋として確認できる。 The artificial pin 1 extends, for example, in the substantially z direction. FIG. 3 is a diagram in which the cross section of the superconducting layer 10 of the superconducting wire 100 according to the first embodiment is actually measured with a scanning electron microscope (SEM). FIG. 3 is a cross section of a superconducting layer in which artificial pins of 3.5 mol%, 5.0 mol%, 7.5 mol% and 10.0 mol% are added to EuBa 2 Cu 3 O y , respectively. In FIG. 3, the artificial pin 1 can be confirmed as a large number of black stripes extending in the z direction.

人工ピン1は、超電導層10と結晶方位が揃っている。結晶方位は、結晶を構成する結晶面と垂直な方向である。例えば、人工ピン1と超電導層10は、c軸方向に結晶が成長している。人工ピン1と超電導層10のc軸方向は、例えば、z方向である。そのため、人工ピン1は、略z方向に延びる薄い黒筋として確認される(図3参照)。 The artificial pin 1 has the same crystal orientation as the superconducting layer 10. The crystal orientation is a direction perpendicular to the crystal plane that constitutes the crystal. For example, in the artificial pin 1 and the superconducting layer 10, crystals grow in the c-axis direction. The c-axis direction of the artificial pin 1 and the superconducting layer 10 is, for example, the z direction. Therefore, the artificial pin 1 is confirmed as a thin black line extending substantially in the z direction (see FIG. 3 ).

人工ピン1は、組成式BaMOで表される酸化物である。Mは、Hf、Zr、Sn、Nb、Tiからなる群から選択される少なくとも一つである。 The artificial pin 1 is an oxide represented by the composition formula BaMO 3 . M is at least one selected from the group consisting of Hf, Zr, Sn, Nb, and Ti.

人工ピン1の添加量は、5.0mol%以上である。また人工ピン1の添加量は、7.0mol%以上でもよく、10.0mol%以上でもよい。図3に示すように、人工ピン1の添加量が5.0mol%以上でも結晶構造に明らかな構造的欠陥は確認されない。 The addition amount of the artificial pin 1 is 5.0 mol% or more. The addition amount of the artificial pin 1 may be 7.0 mol% or more, or 10.0 mol% or more. As shown in FIG. 3, no clear structural defect is confirmed in the crystal structure even when the added amount of artificial pin 1 is 5.0 mol% or more.

歪領域2は、人工ピン1と超電導層10との境界に形成される。人工ピン1と超電導層10とは、上述のように結晶方位が揃っている。一方で、人工ピン1をなすBaMOと、超電導層10をなすREBaCuとは、格子定数が異なる。歪領域2は、人工ピン1と超電導層10との格子定数の違いを緩和するために、結晶構造が歪んだ領域である。 The strained region 2 is formed at the boundary between the artificial pin 1 and the superconducting layer 10. The artificial pin 1 and the superconducting layer 10 have the same crystal orientation as described above. On the other hand, BaMO 3 forming the artificial pin 1 and REBa 2 Cu 3 O y forming the superconducting layer 10 have different lattice constants. The strained region 2 is a region in which the crystal structure is strained in order to reduce the difference in lattice constant between the artificial pin 1 and the superconducting layer 10.

歪領域2は、人工ピン1と超電導層10とのc軸長の違いを緩和するため、xy面内に広がる。隣接する歪領域2の間には、歪みが解消された部分があり、隣接する歪領域2同士は干渉していない。 The strained region 2 spreads in the xy plane in order to reduce the difference in c-axis length between the artificial pin 1 and the superconducting layer 10. There is a portion where the strain is eliminated between the adjacent strain regions 2, and the adjacent strain regions 2 do not interfere with each other.

図4は、別の例にかかる超電導層10’の断面模式図である。図4に示す超電導層10’は、内部に人工ピン1を有し、人工ピン1と超電導層10’との境界に歪領域2’を有する。歪領域2’は、xy方向に広がり、隣接する歪領域2’同士が干渉している。 FIG. 4 is a schematic sectional view of a superconducting layer 10' according to another example. The superconducting layer 10' shown in FIG. 4 has an artificial pin 1 inside and a strained region 2'at the boundary between the artificial pin 1 and the superconducting layer 10'. The strained regions 2'expand in the xy directions, and the strained regions 2'adjacent to each other interfere with each other.

超電導層10において電子は、CuO面に沿って伝導する。CuO面が乱れると、超電導が発現する臨界転移温度が低下する。またCuO面が乱れると、場合によっては、超電導自体が発現しなくなる。歪領域2’は、人工ピン1と超電導層10とのc軸長(z方向の格子定数)の違いを緩和するため、CuO面がxy面から傾いている。歪領域2’が隣接する歪領域2’同士に干渉するまで広がると、CuO面が平坦ではなくなり臨界転移温度が低下する。また臨界転移温度の低下に伴い、臨界電流密度も低下する。 In the superconducting layer 10, electrons are conducted along the CuO plane. When the CuO surface is disturbed, the critical transition temperature at which superconductivity is exhibited is lowered. If the CuO surface is disturbed, superconductivity itself does not appear in some cases. In the strained region 2 ′, the CuO plane is tilted from the xy plane in order to reduce the difference in c-axis length (lattice constant in the z direction) between the artificial pin 1 and the superconducting layer 10. When the strained regions 2'expand until the strained regions 2'adjacent to each other interfere with each other, the CuO surface becomes non-flat and the critical transition temperature decreases. Further, as the critical transition temperature decreases, the critical current density also decreases.

歪領域2の広がりは、製造方法により抑制できる。詳細は後述するが、成膜温度を高温にすると、超電導層10のヤング率が小さくなり、歪が広がる範囲が狭まる。またアニール温度を低温にすると、超電導層10への酸素の導入量を高まり、超電導層10の格子定数が小さくなる。超電導層10の格子定数が小さくなると、人工ピン1との格子定数の差が小さくなり、歪が抑制される。 The spread of the strained region 2 can be suppressed by the manufacturing method. As will be described later in detail, when the film forming temperature is increased, the Young's modulus of the superconducting layer 10 becomes small and the range in which the strain spreads becomes narrow. Further, when the annealing temperature is lowered, the amount of oxygen introduced into the superconducting layer 10 is increased and the lattice constant of the superconducting layer 10 is reduced. When the lattice constant of the superconducting layer 10 becomes small, the difference in lattice constant with the artificial pin 1 becomes small, and the strain is suppressed.

超電導層10の格子定数と人工ピン1との格子定数との差は小さいほど歪みが抑制される。超電導層10における(005)面の隣接面間距離d(005)は、好ましくは理論値の100%以上101%以下であり、より好ましくは理論値の100%以上100.6%以下%以下であり、さらに好ましくは理論値の100%以上100.5%以下である。超電導層10の隣接面間距離d(005)は、超電導層10への酸素導入量が多くなるほど小さくなる。 The smaller the difference between the lattice constant of the superconducting layer 10 and the lattice constant of the artificial pin 1, the more the strain is suppressed. The inter-adjacent surface distance d(005) of the (005) plane in the superconducting layer 10 is preferably 100% or more and 101% or less of the theoretical value, and more preferably 100% or more and 100.6% or less of the theoretical value. Yes, and more preferably 100% or more and 100.5% or less of the theoretical value. The distance d(005) between the adjacent surfaces of the superconducting layer 10 becomes smaller as the amount of oxygen introduced into the superconducting layer 10 increases.

超電導層10における(005)面のc軸長(隣接面間距離d(005)の約5倍に対応)の理論値は、例えば、超電導層10を構成する希土類元素がYbの場合は11.650Å、Erの場合は11.659Å、Erの場合は11.659Å、Hoの場合は11.670Å、Yの場合は11.657Å、Dyの場合は11.668Å、Gdの場合は11.703Å、Euの場合は11.704Å、Smの場合は11.721Å、Ndの場合は11.736Å、Laの場合は11.783Åである。超電導層10におけるc軸長(X線回折(XRD)の(005)面の回折ピーク位置より求めた)の実測値は、例えば、超電導層10を構成する希土類元素がYの場合、11.7665Å以下であることが好ましく、11.7199Å以下であることがより好ましく、11.7190Å以下であることがさらに好ましい。また超電導層10を構成する希土類元素がGdの場合、前記実測値は、11.8200Å以下であることが好ましく、11.7732Å以下であることがより好ましく、11.7200Å以下であることがさらに好ましい。また超電導層10を構成する希土類元素がEuの場合、前記実測値は、11.8210Å以下であることが好ましく、11.7742Å以下であることがより好ましく、11.7300Å以下であることがさらに好ましい。 The theoretical value of the c-axis length of the (005) plane in the superconducting layer 10 (corresponding to about 5 times the inter-adjacent surface distance d(005)) is, for example, when the rare earth element forming the superconducting layer 10 is Yb. 650Å, 11.659Å for Er, 11.65Å for Er, 11.670Å for Ho, 11.657Å for Y, 11.668Å for Dy, 11.703Å for Gd, In the case of Eu, 11.704Å, in Sm, 11.721Å, in Nd, 11.736Å, and in La, 11.783Å. The measured value of the c-axis length (obtained from the diffraction peak position of the (005) plane of X-ray diffraction (XRD)) in the superconducting layer 10 is, for example, 11.7665Å when the rare earth element forming the superconducting layer 10 is Y. It is preferably below, more preferably below 11.7199 Å, even more preferably below 11.7190 Å. When the rare earth element forming the superconducting layer 10 is Gd, the measured value is preferably 11.8200Å or less, more preferably 11.7322Å or less, and further preferably 11.7200Å or less. .. When the rare earth element forming the superconducting layer 10 is Eu, the measured value is preferably 11.82110 Å or less, more preferably 11.7742 Å or less, and further preferably 11.7300 Å or less. ..

上述のように、第1実施形態にかかる超電導線材100は、超電導層10の歪みの広がりが抑制されている。そのため、超電導線材100は、高い臨界電流密度を実現できる。 As described above, in the superconducting wire 100 according to the first embodiment, the spread of strain in the superconducting layer 10 is suppressed. Therefore, the superconducting wire 100 can realize a high critical current density.

超電導線材100は、好ましくは、自己磁場中における臨界電流密度が、77Kで5.0×10A/cm以上である。自己磁場中とは、外部磁場を印加していないことを意味する。臨界電流密度の具体的な測定法を以下に示す。臨界電流密度の測定は、例えば、4端子法、米国カンタムデザイン社製のMPMS(Magnetic Property Measurement System)装置等を用いて行う。臨界電流密度の測定は、測定方法で多少ずれる場合があるが、いずれかの方法で、上記臨界電流密度を満たすことが好ましい。測定方法の中で、MPMS装置を用いる例について具体的に説明する。MPMS装置は、任意に資料の温度及び磁場を変えて磁性を測定できる。測定は、磁化検出素子(SQUID素子)と超電導マグネットとを液体ヘリウムで冷却して行う。測定試料は、3.1mm×3.1mmのサイズに加工する。測定試料を測定温度(例えば、77K)まで冷却した後、測定試料に外部磁場を印加する。印加する外部磁場は、例えば、0T、7T、−7T、7T、0Tと順に変化させる。その結果、測定試料の磁化率の変化が測定される。磁化率の変化は、具体的には、第1象限と第4象限のヒステリシスを測定する。そして、得られた磁化率の変化を、拡張型ビーンモデルを用いて臨界電流密度Jcに変化する。このような手順で、任意の温度におけるJc(B)が求められる。 Superconducting wire 100 preferably has a critical current density in a self-magnetic field of 5.0×10 6 A/cm 2 or more at 77K. “In the self-magnetic field” means that no external magnetic field is applied. The specific method for measuring the critical current density is shown below. The critical current density is measured using, for example, a 4-terminal method, an MPMS (Magnetic Property Measurement System) device manufactured by Quantum Design, Inc., USA. The measurement of the critical current density may be slightly different depending on the measuring method, but it is preferable that the critical current density is satisfied by any method. Among the measurement methods, an example using an MPMS device will be specifically described. The MPMS device can measure magnetism by arbitrarily changing the temperature and magnetic field of the material. The measurement is performed by cooling the magnetization detecting element (SQUID element) and the superconducting magnet with liquid helium. The measurement sample is processed into a size of 3.1 mm×3.1 mm. After cooling the measurement sample to the measurement temperature (for example, 77K), an external magnetic field is applied to the measurement sample. The external magnetic field to be applied is sequentially changed to 0T, 7T, -7T, 7T, 0T, for example. As a result, the change in magnetic susceptibility of the measurement sample is measured. For the change in magnetic susceptibility, specifically, the hysteresis in the first quadrant and the fourth quadrant is measured. Then, the change of the obtained magnetic susceptibility is changed to the critical current density Jc by using the extended bean model. By such a procedure, Jc(B) at an arbitrary temperature is obtained.

また超電導線材100は、好ましくは、印加磁場が3T、温度が77Kの条件で、臨界電流密度が0.5×10A/cm以上である。また超電導線材100は、好ましくは、印加磁場が5T、温度が65Kの条件で、臨界電流密度が1.5×10A/cm以上である。印加磁場の印加方向は、z方向を0度とし、y方向への傾き角をθとする。θが0度から90度のいずれにおいても、超電導線材100は、上記臨界電流密度を満たすことが好ましい。 Further, the superconducting wire 100 preferably has a critical current density of 0.5×10 6 A/cm 2 or more under the conditions of an applied magnetic field of 3 T and a temperature of 77 K. Further, the superconducting wire 100 preferably has a critical current density of 1.5×10 6 A/cm 2 or more under the conditions of an applied magnetic field of 5 T and a temperature of 65 K. The applied direction of the applied magnetic field is 0 degree in the z direction and θ is the inclination angle in the y direction. It is preferable that the superconducting wire 100 satisfy the above critical current density regardless of the angle θ of 0° to 90°.

また超電導線材100は、好ましくは臨界転移温度Tcが88K以上であり、より好ましくは臨界転移温度Tcが90K以上である。歪領域2のxy方向への広がり幅が抑制されることで、臨界転移温度Tcが高くなる。 Further, the superconducting wire 100 preferably has a critical transition temperature Tc of 88K or higher, and more preferably a critical transition temperature Tc of 90K or higher. The critical transition temperature Tc is increased by suppressing the spread width of the strained region 2 in the xy directions.

臨界転移温度の具体的な測定法を以下に示す。臨界転移温度の測定は、臨界電流密度の測定と同様に、例えば、米国カンタムデザイン社製のMPMS(Magnetic Property Measurement System)装置を用いて行う。まず測定試料を3.1mm×3.1mmのサイズに加工する。そして、測定試料を5Kまで冷却し、0.5K/minの条件で温度を上昇させ、磁化率の温度変化を測定する。そして超電導−常電導転移に対応する磁化率の変化を測定し、臨界転移温度を求める。 The specific method for measuring the critical transition temperature is shown below. The measurement of the critical transition temperature is performed by using, for example, an MPMS (Magnetic Property Measurement System) device manufactured by Quantum Design, Inc. in the same manner as the measurement of the critical current density. First, the measurement sample is processed into a size of 3.1 mm×3.1 mm. Then, the measurement sample is cooled to 5 K, the temperature is raised under the condition of 0.5 K/min, and the temperature change of the magnetic susceptibility is measured. Then, the change in magnetic susceptibility corresponding to the superconducting-normal conducting transition is measured to determine the critical transition temperature.

上述のように、第1実施形態にかかる超電導線材100は、臨界電流密度が高い。臨界電流密度が高い超電導線材100は、様々な環境下で用いることができる。第1実施形態にかかる超電導線材100は、ケーブル、変圧器、限流器、シリコン引き上げ用磁石、リニアモーターカー、超電導電力貯蔵装置(SMES)等に用いることができる。 As described above, the superconducting wire 100 according to the first embodiment has a high critical current density. The superconducting wire 100 having a high critical current density can be used in various environments. The superconducting wire 100 according to the first embodiment can be used for a cable, a transformer, a current limiting device, a silicon pulling magnet, a linear motor car, a superconducting power storage device (SMES), and the like.

「第2実施形態」
(超電導線材の製造方法)
超電導線材の製造方法は、パルスレーザー蒸着法により人工ピンを有する超電導層を成膜する成膜工程と、超電導層を酸素雰囲気中でアニールするアニール工程と、を有する。
"Second embodiment"
(Method for manufacturing superconducting wire)
The method for manufacturing a superconducting wire includes a film forming step of forming a superconducting layer having artificial pins by a pulse laser vapor deposition method, and an annealing step of annealing the superconducting layer in an oxygen atmosphere.

成膜工程は、基材20に超電導層10を成膜する。成膜は、パルスレーザー蒸着(PLD)法を用いて行う。 In the film forming step, the superconducting layer 10 is formed on the base material 20. The film formation is performed using a pulse laser deposition (PLD) method.

まず超電導層10の前駆体材料と人工ピン1との焼結体を作製する。焼結体は、固相反応法で作製する。前駆体材料は、例えば、希土類元素の酸化物、炭酸バリウム、酸化銅を用いる。人工ピン1は、上述の材料が用いられる。人工ピン1は、前駆体材料の仕込み量に対して所定のモル比で添加する。 First, a sintered body of the precursor material of the superconducting layer 10 and the artificial pin 1 is produced. The sintered body is produced by the solid phase reaction method. As the precursor material, for example, an oxide of a rare earth element, barium carbonate, or copper oxide is used. The above-mentioned materials are used for the artificial pin 1. The artificial pin 1 is added at a predetermined molar ratio with respect to the charged amount of the precursor material.

次いで、焼結体と基材20とをチャンバー内に対向して配置する。チャンバー内を酸素雰囲気にして、焼結体にレーザーを照射する。レーザーが照射された部分にプルームが生じ、焼結体の表面から数原子層が飛散し、基材20に蒸着する。 Next, the sintered body and the base material 20 are arranged to face each other in the chamber. The inside of the chamber is made into an oxygen atmosphere and the sintered body is irradiated with a laser. A plume is generated in the portion irradiated with the laser, and a few atomic layers are scattered from the surface of the sintered body and deposited on the base material 20.

成膜工程における成膜温度は、超電導層の包晶温度より200度低い温度以上の温度条件で行う。包晶温度は、超電導層10を構成する主物質(人工ピンを除く超電導体)が、1つの固相の状態から別の固相と液相とに分離する温度をいう。成膜工程における成膜温度は、好ましくは超電導層の包晶温度より150度低い温度以上であり、より好ましくは超電導層の包晶温度より100度低い温度以上であり、さらに好ましくは超電導層の包晶温度以上である。 The film-forming temperature in the film-forming step is 200° C. lower than the peritectic temperature of the superconducting layer. The peritectic temperature refers to a temperature at which the main substance (superconductor except the artificial pin) forming the superconducting layer 10 separates from one solid phase state into another solid phase and a liquid phase. The film forming temperature in the film forming step is preferably 150° C. or more lower than the peritectic temperature of the superconducting layer, more preferably 100° C. or more lower than the peritectic temperature of the superconducting layer, and further preferably, the superconducting layer. It is above the peritectic temperature.

包晶温度は、例えば超電導層10を構成する希土類元素がYbの場合は900℃、Erの場合は970℃、Hoの場合は990℃、Yの場合は1005℃、Dyの場合は1005℃、Gdの場合は1045℃、Euの場合は1050℃、Smの場合は1060℃、Ndの場合は1086℃、Laの場合は1073℃である。成膜温度は、人工ピン1のモル比が5.0mol%であり、希土類元素がYbの場合は760℃以上が好ましく、Erの場合は830℃以上が好ましく、Hoの場合は860℃以上が好ましく、Yの場合は865℃以上が好ましく、Dyの場合は865℃以上が好ましく、Gdの場合は905℃以上が好ましく、Euの場合は910℃以上が好ましく、Smの場合は920℃以上が好ましく、Ndの場合は946℃以上が好ましい。 The peritectic temperature is, for example, 900° C. when the rare earth element forming the superconducting layer 10 is Yb, 970° C. when Er, 990° C. when Ho, 1005° C. when Y, 1005° C. when Dy, The temperature is 1045° C. for Gd, 1050° C. for Eu, 1060° C. for Sm, 1086° C. for Nd, and 1073° C. for La. The film formation temperature is preferably 760° C. or higher when the molar ratio of the artificial pin 1 is 5.0 mol% and the rare earth element is Yb, 830° C. or higher when Er is used, and 860° C. or higher when Ho is used. Preferably, Y is 865°C or higher, Dy is 865°C or higher, Gd is 905°C or higher, Eu is 910°C or higher, and Sm is 920°C or higher. In the case of Nd, it is preferably 946° C. or higher.

成膜温度は具体的には、以下の条件で求めた温度である。まず非成膜体である基板を、成膜チャンバー内の各ターンに数cm程度の間隔で接続する。これらの基板は、いずれも成膜領域内に入るように設置する。次いで、基板の最表面層(例えば、中間層であるCeO層)にAgペーストで熱電対を設置する。そして、チャンバー内を実際の成膜条件と同様に設定して、基板の最表面の温度を測定する。この際、設定温度に対して、任意の線速で基板を送り、リアルタイムに温度変化を記録する。このような手順で求められた成膜チャンバーの設定温度と実測温度との関係が求められる。この結果を用いて、実際の成膜温度は換算される。 The film forming temperature is specifically the temperature obtained under the following conditions. First, a substrate which is a non-film forming body is connected to each turn in the film forming chamber at intervals of about several cm. All of these substrates are installed so as to enter the film formation region. Then, a thermocouple is placed on the outermost surface layer of the substrate (for example, the CeO 2 layer as the intermediate layer) with Ag paste. Then, the inside of the chamber is set in the same manner as the actual film forming conditions, and the temperature of the outermost surface of the substrate is measured. At this time, the substrate is sent at an arbitrary linear velocity with respect to the set temperature, and the temperature change is recorded in real time. The relationship between the set temperature of the film forming chamber and the actually measured temperature obtained by such a procedure is obtained. The actual film forming temperature is converted using this result.

超電導層10の成膜温度が高いと、結晶成長時における人工ピン1及び超電導層10のヤング率が小さくなる。ヤング率は、伸縮方向と同軸方向の歪みと応力の比例係数である。ヤング率が大きいほど、剛性が高くなり伸びにくくなる。つまり、成膜温度が高いほど超電導層10の結晶格子が歪みやすくなり、短い幅で人工ピン1と超電導層10との格子定数の違いを緩和できる。 When the film forming temperature of the superconducting layer 10 is high, the Young's modulus of the artificial pin 1 and the superconducting layer 10 during crystal growth becomes small. Young's modulus is a proportional coefficient of strain and stress in the expansion/contraction direction and the coaxial direction. The larger the Young's modulus, the higher the rigidity and the more difficult it is to stretch. That is, the higher the film forming temperature, the more easily the crystal lattice of the superconducting layer 10 is distorted, and the difference in lattice constant between the artificial pin 1 and the superconducting layer 10 can be relaxed with a short width.

アニール工程は、超電導層を酸素雰囲気中でアニールする。アニールは、450℃以下の温度域で2時間以上行う。アニールは、350℃以下の温度域で1時間以上行うことが好ましく、300℃以下の温度域で1時間以上行うことがより好ましい。 In the annealing step, the superconducting layer is annealed in an oxygen atmosphere. Annealing is performed in a temperature range of 450° C. or lower for 2 hours or more. Annealing is preferably performed in a temperature range of 350° C. or lower for 1 hour or more, and more preferably in a temperature range of 300° C. or lower for 1 hour or more.

またアニール工程は、所定の温度で温度を維持することが好ましい。所定の維持温度は、好ましくは350℃以下であり、より好ましくは300℃以下である。所定の維持温度で維持する時間は、好ましくは1時間以上であり、より好ましくは2時間以上である。アニール時の温度は、成膜時の温度と同様の方法で測定される。 Further, it is preferable that the annealing step maintain the temperature at a predetermined temperature. The predetermined maintenance temperature is preferably 350°C or lower, and more preferably 300°C or lower. The time of maintaining at the predetermined maintaining temperature is preferably 1 hour or more, more preferably 2 hours or more. The temperature during annealing is measured by the same method as the temperature during film formation.

アニール条件は、超電導層10を構成する希土類元素によって変えてもよい。例えば、Erの場合は450℃以下、Hoの場合は400℃以下、Yの場合は450℃以下、Dyの場合は350℃以下、Gdの場合は400℃以下、Euの場合は350℃以下、Smの場合は350℃以下、Ndの場合は300℃以下、Laの場合は300℃以下でアニールすることが好ましい。また例えば、例えば、Erの場合は2時間以上、Hoの場合は2時間以上、Yの場合は2時間以上、Dyの場合は2時間以上、Gdの場合は2時間以上、Euの場合は2時間以上、Smの場合は2時間以上、Ndの場合は2時間以上、Laの場合は2時間以上アニールすることが好ましい。 The annealing conditions may be changed depending on the rare earth element forming the superconducting layer 10. For example, 450° C. or lower for Er, 400° C. or lower for Ho, 450° C. or lower for Y, 350° C. or lower for Dy, 400° C. or lower for Gd, 350° C. or lower for Eu, It is preferable to anneal at 350° C. or lower for Sm, 300° C. or lower for Nd, and 300° C. or lower for La. Further, for example, for Er, 2 hours or more, for Ho, 2 hours or more, for Y, 2 hours or more, for Dy, 2 hours or more, for Gd, 2 hours or more, and for Eu, 2 It is preferable to anneal for at least 2 hours, for Sm 2 hours or more, for Nd 2 hours or more, and for La 2 hours or more.

またアニール工程における酸素分圧は、好ましくは1atm以上であり、より好ましくは1.1atm以上である。 The oxygen partial pressure in the annealing step is preferably 1 atm or more, more preferably 1.1 atm or more.

アニール工程において、アニール温度、アニール時間、酸素分圧は、以下の範囲内とすることが特に好ましい。例えば、アニール温度を350℃とした場合は、アニール時間は2時間以上とすることが好ましく、酸素分圧は1atm以上とすることが好ましい。また例えば、アニール温度を250℃とした場合は、アニール時間は2時間以上とすることが好ましく、酸素分圧は1atm以上とすることが好ましい。例えば、アニール温度を400℃とした場合は、アニール時間は2時間以上とすることが好ましく、酸素分圧は1atm以上とすることが好ましい。 In the annealing step, the annealing temperature, the annealing time, and the oxygen partial pressure are particularly preferably within the following ranges. For example, when the annealing temperature is 350° C., the annealing time is preferably 2 hours or more, and the oxygen partial pressure is preferably 1 atm or more. Further, for example, when the annealing temperature is 250° C., the annealing time is preferably 2 hours or more, and the oxygen partial pressure is preferably 1 atm or more. For example, when the annealing temperature is 400° C., the annealing time is preferably 2 hours or more, and the oxygen partial pressure is preferably 1 atm or more.

上記条件で超電導層10をアニールすると、超電導層10に十分な酸素が導入される。超電導層10に酸素が十分導入されると、超電導層10の格子定数が短くなる。その結果、人工ピン1と超電導層10との間の歪みが小さくなる。 When the superconducting layer 10 is annealed under the above conditions, sufficient oxygen is introduced into the superconducting layer 10. When oxygen is sufficiently introduced into superconducting layer 10, the lattice constant of superconducting layer 10 becomes short. As a result, the strain between the artificial pin 1 and the superconducting layer 10 is reduced.

上述のように、第2実施形態にかかる超電導線材の製造方法によると、歪領域2の幅を狭くできる。その結果、臨界転移温度及び臨界電流密度が高い超電導線材を得ることができる。 As described above, according to the method for manufacturing the superconducting wire according to the second embodiment, the width of the strained region 2 can be narrowed. As a result, a superconducting wire having a high critical transition temperature and a high critical current density can be obtained.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Can be modified and changed.

<検討1>
検討1では、人工ピンの添加量の違いが臨界電流密度に及ぼす影響を確認した。
<Study 1>
In Study 1, the effect of the difference in the additive amount of the artificial pin on the critical current density was confirmed.

(実施例1)
まず基材を準備した。基材は、HastelloyC276にCeO/LaMnO/MgO/Y/GdZrを積層したものとした。基材は、幅10mm、長さ100mm、厚み0.1mmとした。
(Example 1)
First, a base material was prepared. The base material was made by stacking CeO 2 /LaMnO 3 /MgO/Y 2 O 3 /Gd 2 Zr 2 O 7 on Hastelloy C276. The base material had a width of 10 mm, a length of 100 mm and a thickness of 0.1 mm.

次いで、固相反応法により超電導層の前駆体材料と人工ピンとの焼結体を作製した。超電導層の前駆体材料は、Eu、BaCO、CuOを用いた。人工ピンは、BaHfOとした。前駆体材料に対して人工ピンを5.0mol%の割合で添加した。焼結体は、これらの材料を十分混合した後、900℃で焼成した。 Then, a sintered body of the precursor material for the superconducting layer and the artificial pin was prepared by the solid-phase reaction method. Precursor material of the superconducting layer, using a Eu 2 O 3, BaCO 3, CuO. The artificial pin was BaHfO 3 . The artificial pin was added at a ratio of 5.0 mol% with respect to the precursor material. The sintered body was fired at 900° C. after sufficiently mixing these materials.

次いで、焼結体と基材とをチャンバー内に対向して配置した。チャンバー内を酸素雰囲気にして、焼結体にレーザーを照射して、超電導層を成膜した。レーザーは、XeCl エキシマレーザ(波長:308nm)を用い、酸素圧: 600mTorr(80Pa)、基板−ターゲット間距離:97〜98mm、レーザー発振エネルギー: 500〜600mJ、 レーザエネルギー密度:2〜3J/cm、基材送り速度:30m/hという条件で照射した。超電導層を成膜時の温度は、910℃以上とした。 Next, the sintered body and the base material were arranged in the chamber so as to face each other. The inside of the chamber was made into an oxygen atmosphere and the sintered body was irradiated with a laser to form a superconducting layer. The laser is a XeCl excimer laser (wavelength: 308 nm), oxygen pressure: 600 mTorr (80 Pa), substrate-target distance: 97-98 mm, laser oscillation energy: 500-600 mJ, laser energy density: 2-3 J/cm 2. Irradiation was carried out under the condition that the substrate feed rate was 30 m/h. The temperature during film formation of the superconducting layer was 910° C. or higher.

次いで、作製した超電導層を以下のプロファイルでアニールした。アニールのプロファイルは、500℃で1時間保ち、その後250℃まで温度を下げ、250℃で3時間保ち、その後室温まで徐冷した。成膜にかかった時間は7時間以上であり、250℃以下の温度域で6時間以上、酸素雰囲気に曝した。この時の酸素分圧は、1.1atmであった。上記手順で、実施例1にかかる超電導線材を作製した。 Next, the produced superconducting layer was annealed with the following profile. The annealing profile was maintained at 500° C. for 1 hour, then lowered to 250° C., maintained at 250° C. for 3 hours, and then gradually cooled to room temperature. The time required for film formation was 7 hours or longer, and the film was exposed to an oxygen atmosphere in a temperature range of 250° C. or lower for 6 hours or longer. The oxygen partial pressure at this time was 1.1 atm. The superconducting wire according to Example 1 was manufactured by the above procedure.

(比較例1)
比較例1は、人工ピンの添加量を3.5mol%とした点が、実施例1と異なる。その他の条件は、実施例1と同様とした。
(Comparative Example 1)
Comparative Example 1 is different from Example 1 in that the amount of artificial pin added was 3.5 mol %. Other conditions were the same as in Example 1.

(比較例2)
比較例2は、希土類元素をY及びGdとし、人工ピンを添加しなかった点が、実施例1と異なる。その他の条件は、実施例1と同様とした。
(Comparative example 2)
Comparative Example 2 differs from Example 1 in that the rare earth elements are Y and Gd and no artificial pin is added. Other conditions were the same as in Example 1.

図5は、測定温度が77K、3Tの外部磁場が印加された状態における実施例1、比較例1及び比較例2の超電導線材の臨界電流密度を示したグラフである。横軸は、外部磁場の印加方向であり、z方向を0度とし、y方向への傾き角をθとする。θ=90°は、y方向と一致する。縦軸は、超電導線材の臨界電流密度である。 FIG. 5 is a graph showing the critical current densities of the superconducting wires of Example 1, Comparative Example 1 and Comparative Example 2 in the state where an external magnetic field having a measurement temperature of 77K and 3T was applied. The horizontal axis is the direction of applying the external magnetic field, where the z direction is 0 degree and the tilt angle in the y direction is θ. θ=90° coincides with the y direction. The vertical axis represents the critical current density of the superconducting wire.

人工ピンが添加されていない比較例2に対して、実施例1及び実施例2はいずれも臨界電流密度が向上した。また実施例1と比較例1とを比較すると、実施例1は比較例1に対していずれの角度においても臨界電流密度が向上していることが分かる。実施例1の超電導線材は、いずれの角度においても、臨界電流密度が0.6×10A/cm以上である。 The critical current density was improved in both Example 1 and Example 2 as compared with Comparative Example 2 in which the artificial pin was not added. In addition, comparing Example 1 and Comparative Example 1, it can be seen that Example 1 has improved critical current density at any angle with respect to Comparative Example 1. The superconducting wire of Example 1 has a critical current density of 0.6×10 6 A/cm 2 or more at any angle.

また図6は、測定温度が65K、5Tの外部磁場が印加された状態における実施例1及び比較例2の超電導線材の臨界電流密度を示したグラフである。横軸は、外部磁場の印加方向であり、z方向を0度とし、y方向への傾き角をθとする。θ=90°は、y方向と一致する。縦軸は、超電導線材の臨界電流密度である。 FIG. 6 is a graph showing the critical current densities of the superconducting wire rods of Example 1 and Comparative Example 2 in the state where an external magnetic field having a measurement temperature of 65K and 5T was applied. The horizontal axis is the direction of applying the external magnetic field, where the z direction is 0 degree and the tilt angle in the y direction is θ. θ=90° coincides with the y direction. The vertical axis represents the critical current density of the superconducting wire.

人工ピンが添加されていない比較例2に対して、実施例1及び実施例2はいずれも臨界電流密度が向上した。また実施例1の超電導線材は、いずれの角度においても、臨界電流密度が1.5×10A/cm以上である。 The critical current density was improved in both Example 1 and Example 2 as compared with Comparative Example 2 in which the artificial pin was not added. Further, the superconducting wire of Example 1 has a critical current density of 1.5×10 6 A/cm 2 or more at any angle.

<検討2>
検討2は、酸素アニールの温度を変動させた際における臨界電流密度の挙動を調べた。検討2は、人工ピンの濃度が5.0mol%の場合(実施例1の系列)と、3.5mol%の場合(比較例1の系列)と、で行った。それぞれの場合において、酸素アニール時における維持温度を250℃、300℃、350℃、400℃、450℃とした。臨界電流密度は、外部磁場を印加していない自己磁場中で測定した。その他の条件は、実施例1と同様の手順で作製し、評価した。
<Study 2>
In Study 2, the behavior of the critical current density when the temperature of oxygen annealing was changed was investigated. Study 2 was performed when the artificial pin concentration was 5.0 mol% (series of Example 1) and 3.5 mol% (series of Comparative Example 1). In each case, the maintaining temperature during oxygen annealing was set to 250°C, 300°C, 350°C, 400°C and 450°C. The critical current density was measured in a self magnetic field without applying an external magnetic field. Other conditions were prepared and evaluated in the same procedure as in Example 1.

図7は、酸素アニールの維持温度と自己磁場中における臨界電流密度との関係を示した図である。横軸は、酸素アニールの維持温度であり、縦軸は自己磁場中における臨界電流密度である。図7に示すように、人工ピンの濃度が5.0mol%の場合において、酸素アニールの維持温度を350℃以下にすると、自己磁場中における臨界電流密度が5.0×10A/cm以上となった。なお、酸素アニールの温度が400℃を超えると、酸素アニールの時間を十分長くしても、臨界電流密度は5.0×10A/cmまでは至らなかった。 FIG. 7 is a diagram showing the relationship between the maintaining temperature of oxygen annealing and the critical current density in a self-magnetic field. The horizontal axis represents the temperature for maintaining oxygen annealing, and the vertical axis represents the critical current density in the self-magnetic field. As shown in FIG. 7, when the artificial pin concentration was 5.0 mol% and the oxygen annealing maintenance temperature was 350° C. or lower, the critical current density in the self-magnetic field was 5.0×10 6 A/cm 2. That's it. When the oxygen annealing temperature exceeded 400° C., the critical current density did not reach 5.0×10 6 A/cm 2 even when the oxygen annealing time was sufficiently long.

<検討3>
検討3は、成膜時の成膜温度を変動させた際における臨界転移温度の変化及び超電導層の隣接面間距離d(005)の変化を調べた。
<Study 3>
In Study 3, changes in the critical transition temperature and changes in the distance d(005) between adjacent surfaces of the superconducting layer were examined when the film forming temperature during film formation was changed.

検討3は、人工ピンの濃度を10mol%とした。成膜温度は、1040℃、1060℃、1080℃、1100℃、1120℃、1140℃、1160℃の場合をそれぞれ検討した。 In Study 3, the artificial pin concentration was set to 10 mol %. The film forming temperatures were 1040° C., 1060° C., 1080° C., 1100° C., 1120° C., 1140° C. and 1160° C., respectively.

図8は、成膜温度と、臨界転移温度と、超電導層のc軸長と、の関係を示した図である。横軸は、成膜温度であり、縦軸の左欄は臨界転移温度であり、右欄は超電導層のc軸長である。c軸長は、X線回折(XRD)の(005)面の回折ピーク位置より求めた。図8に示す結果は、酸素アニール前の結果である。 FIG. 8 is a diagram showing the relationship among the film forming temperature, the critical transition temperature, and the c-axis length of the superconducting layer. The horizontal axis is the film forming temperature, the left column on the vertical axis is the critical transition temperature, and the right column is the c-axis length of the superconducting layer. The c-axis length was determined from the diffraction peak position of the (005) plane of X-ray diffraction (XRD). The results shown in FIG. 8 are the results before oxygen annealing.

臨界転移温度は、成膜温度が高くなると、高くなった。成膜温度が高くなることで、超電導層のヤング率が小さくなり、歪領域の広がり幅が狭まったためと考えられる。臨界転移温度は、隣接する歪領域の間に歪みが解消された領域が形成されると、電子の伝導パスが形成され、向上する。 The critical transition temperature increased as the film forming temperature increased. It is conceivable that the Young's modulus of the superconducting layer decreased and the width of the strained region narrowed as the film forming temperature increased. The critical transition temperature is improved by forming a conduction path of electrons when a region where strain is released is formed between adjacent strain regions.

また超電導層のc軸長は、成膜温度が高くなると、狭くなった。歪み領域の広がり幅が狭まり、超電導層の平均値として求められるc軸長が狭くなったためと考えられる。c軸長が狭くなると、人工ピンと超電導層と格子定数の差が小さくなり、歪みが抑制される。 Further, the c-axis length of the superconducting layer became narrower as the film forming temperature increased. It is considered that this is because the width of the strained region was narrowed and the c-axis length obtained as the average value of the superconducting layer was narrowed. When the c-axis length becomes narrow, the difference in lattice constant between the artificial pin and the superconducting layer becomes small, and the strain is suppressed.

なお、検討3は、酸素アニール前のため、臨界転移温度は向上したが、臨界電流密度は十分な値が得られなかった。すなわち、酸素アニールにより十分な酸素を導入しないと臨界電流密度の向上は実現できなかった。 In Study 3, the critical transition temperature was improved because it was before oxygen annealing, but the critical current density was not sufficient. That is, the critical current density could not be improved unless sufficient oxygen was introduced by oxygen annealing.

<検討4>
検討4は、超電導層に十分な酸素アニールを行わなかった場合に、人工ピンの濃度と、臨界電流密度との関係を調べた。
<Study 4>
In Study 4, the relationship between the concentration of artificial pins and the critical current density was investigated when sufficient oxygen annealing was not performed on the superconducting layer.

検討4のサンプル作製条件は、人工ピンの濃度を変更し、酸素アニールのプロファイルを以下とした点が実施例1と異なる。人工ピンの濃度は、0%(pure)、3.5%、5%、10%の場合をそれぞれ検討した。酸素アニールのプロファイルは、500℃で1時間保ち、その後室温まで徐冷した。成膜にかかった時間は7時間以上であり、250℃以下の温度域の通過時間は3時間であった。 The sample preparation conditions of Study 4 differ from Example 1 in that the concentration of the artificial pin was changed and the oxygen annealing profile was set as follows. The concentrations of the artificial pin were 0% (pure), 3.5%, 5%, and 10%, respectively. The profile of oxygen annealing was maintained at 500° C. for 1 hour and then gradually cooled to room temperature. The film formation time was 7 hours or longer, and the passage time in the temperature range of 250° C. or lower was 3 hours.

図9は、人工ピンの濃度と臨界電流密度との関係を示すグラフである。横軸は、測定温度であり、縦軸は、外部磁場3T中における臨界電流密度である。人工ピンの濃度が高くなると、各測定温度における臨界電流密度が低下した。この結果は、検討1における実施例1と比較例1との結果と反対であった。検討4は、酸素アニールの条件が十分ではなく、超電導層に十分な酸素が導入されなかったためと考えられる。 FIG. 9 is a graph showing the relationship between the concentration of artificial pins and the critical current density. The horizontal axis represents the measured temperature, and the vertical axis represents the critical current density in the external magnetic field 3T. As the artificial pin concentration increased, the critical current density at each measurement temperature decreased. This result was opposite to the results of Example 1 and Comparative Example 1 in Study 1. Examination 4 is considered to be because the oxygen annealing conditions were not sufficient and sufficient oxygen was not introduced into the superconducting layer.

1 人工ピン
2、2’ 歪領域
10、10’ 超電導層
20 基材
100 超電導線材
1 Artificial Pin 2, 2'Strained Area 10, 10' Superconducting Layer 20 Base Material 100 Superconducting Wire

Claims (7)

組成式REBaCu(REは希土類元素)で表される超電導層と、
前記超電導層に添加され、組成式BaMO(MはHf、Zr、Sn、Nb、Tiからなる群から選択される少なくとも一つ)で表される人工ピンと、を有し、
前記人工ピンの添加濃度は、5.0mol%以上であり、
前記人工ピンの結晶方位は、前記超電導層の結晶方位と揃っている、超電導線材。
A superconducting layer represented by the composition formula REBa 2 Cu 3 O y (RE is a rare earth element);
An artificial pin added to the superconducting layer and represented by a composition formula BaMO 3 (M is at least one selected from the group consisting of Hf, Zr, Sn, Nb, and Ti),
The addition concentration of the artificial pin is 5.0 mol% or more,
A superconducting wire rod in which the crystal orientation of the artificial pin is aligned with the crystal orientation of the superconducting layer.
自己磁場中における臨界電流密度が、77Kで5.0×10A/cm以上である、請求項1に記載の超電導線材。 The superconducting wire according to claim 1, which has a critical current density in a self-magnetic field of not less than 5.0×10 6 A/cm 2 at 77K. 前記超電導層における(005)面の隣接面間距離d(005)は、理論値の100%以上101%以下である、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein a distance d(005) between adjacent surfaces of the (005) plane in the superconducting layer is 100% or more and 101% or less of a theoretical value. 印加磁場が3T、温度が77Kの条件で、臨界電流密度が0.5×10A/cm以上である、請求項1から3のいずれか一項に記載の超電導線材。 The superconducting wire according to claim 1, which has a critical current density of 0.5×10 6 A/cm 2 or more under the conditions of an applied magnetic field of 3 T and a temperature of 77 K. 5. 臨界転移温度Tcが88K以上である、請求項1から4のいずれか一項に記載の超電導線材。 The superconducting wire according to any one of claims 1 to 4, which has a critical transition temperature Tc of 88K or higher. パルスレーザー蒸着法により人工ピンを有する超電導層を成膜する成膜工程と、
前記超電導層を酸素雰囲気中でアニールするアニール工程と、を有し、
前記成膜工程は、前記超電導層の包晶温度より200度低い温度以上の温度条件で行い、
前記アニール工程は、450℃以下の温度域で2時間以上行う、超電導線材の製造方法。
A film forming step of forming a superconducting layer having an artificial pin by a pulse laser deposition method,
An annealing step of annealing the superconducting layer in an oxygen atmosphere,
The film forming step is performed under a temperature condition of 200° C. or less lower than the peritectic temperature of the superconducting layer,
The method of manufacturing a superconducting wire, wherein the annealing step is performed in a temperature range of 450° C. or lower for 2 hours or more.
前記アニール工程において、酸素分圧が1atm以上である、請求項6に記載の超電導線材の製造方法。 The method for manufacturing a superconducting wire according to claim 6, wherein the partial pressure of oxygen is 1 atm or more in the annealing step.
JP2018223804A 2018-11-29 2018-11-29 Superconducting wire and method for manufacturing superconducting wire Active JP7398663B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018223804A JP7398663B2 (en) 2018-11-29 2018-11-29 Superconducting wire and method for manufacturing superconducting wire
JP2023008891A JP7445238B2 (en) 2018-11-29 2023-01-24 Superconducting wire and method for manufacturing superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223804A JP7398663B2 (en) 2018-11-29 2018-11-29 Superconducting wire and method for manufacturing superconducting wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023008891A Division JP7445238B2 (en) 2018-11-29 2023-01-24 Superconducting wire and method for manufacturing superconducting wire

Publications (2)

Publication Number Publication Date
JP2020087829A true JP2020087829A (en) 2020-06-04
JP7398663B2 JP7398663B2 (en) 2023-12-15

Family

ID=70908669

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018223804A Active JP7398663B2 (en) 2018-11-29 2018-11-29 Superconducting wire and method for manufacturing superconducting wire
JP2023008891A Active JP7445238B2 (en) 2018-11-29 2023-01-24 Superconducting wire and method for manufacturing superconducting wire

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023008891A Active JP7445238B2 (en) 2018-11-29 2023-01-24 Superconducting wire and method for manufacturing superconducting wire

Country Status (1)

Country Link
JP (2) JP7398663B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090803A (en) * 2013-11-06 2015-05-11 株式会社フジクラ Oxide superconductive wire rod and method of producing oxide superconductive wire rod

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123433A (en) 2008-11-20 2010-06-03 Sumitomo Electric Ind Ltd Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod
CN103620702B (en) 2011-06-30 2016-08-17 株式会社藤仓 RE123 series superconductive wire and manufacture method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090803A (en) * 2013-11-06 2015-05-11 株式会社フジクラ Oxide superconductive wire rod and method of producing oxide superconductive wire rod

Also Published As

Publication number Publication date
JP2023052599A (en) 2023-04-11
JP7445238B2 (en) 2024-03-07
JP7398663B2 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
Goyal et al. Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire
US8119571B2 (en) High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods
US20110287939A1 (en) High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods
US8124568B2 (en) Oxide superconductor and method of fabricating same
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
JP6422342B2 (en) Oxide superconducting thin film
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
JP2014227329A (en) Iron-based superconducting material, and iron-based superconducting layer, iron-based superconducting tape wire, and iron-based superconducting wire comprising the material
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
JP5416924B2 (en) Superconducting wire and method for manufacturing the same
JP2003206134A (en) High temperature superconducting thick film member and method for producing the same
EP3764411B1 (en) Quality control of high performance superconductor tapes
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
US8216977B2 (en) High temperature superconductors
JP2016522534A (en) Semiconductors with improved flux pinning at low temperatures
KR100721901B1 (en) Superconducting article and its manufacturing method
Miura et al. Magnetic Field Dependence of Critical Current Density and Microstructure in ${\rm Sm} _ {1+ x}{\rm Ba} _ {2-x}{\rm Cu} _ {3}{\rm O} _ {y} $ Films on Metallic Substrates
JP6155402B2 (en) Superconducting wire and method for manufacturing the same
US7618923B2 (en) Method for making a superconductor with improved microstructure
JP2011096510A (en) Rare earth oxide superconducting wire material and method of manufacturing the same
Panth Engineering Interfaces for Improved Vortex Pinning on Superconductor Nanocomposite Films
Sathyamurthy et al. American superconductor: Second generation superconductor wire—from research to power grid applications
Lee Growth and Characterization of Cobalt-doped Barium Iron Arsenide Epitaxial Thin Films and Superlattices
Sefat E3. 3.1 Introduction
Sugihara et al. Investigation of the Longitudinal Magnetic Field Effect on Multilayered-$\text {SmBa} _ {2}\text {Cu} _ {3}\text {O} _ {y} $ Films Fabricated on Single-Crystal and Metal Substrates

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230203

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230217

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7398663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150