JP2020087747A - Double side coating applicator and double side coating method - Google Patents

Double side coating applicator and double side coating method Download PDF

Info

Publication number
JP2020087747A
JP2020087747A JP2018221462A JP2018221462A JP2020087747A JP 2020087747 A JP2020087747 A JP 2020087747A JP 2018221462 A JP2018221462 A JP 2018221462A JP 2018221462 A JP2018221462 A JP 2018221462A JP 2020087747 A JP2020087747 A JP 2020087747A
Authority
JP
Japan
Prior art keywords
mixture layer
base material
displacement
back surface
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221462A
Other languages
Japanese (ja)
Other versions
JP6945146B2 (en
Inventor
伊達 健二
Kenji Date
健二 伊達
雄大 秋元
Yudai Akimoto
雄大 秋元
吉野 道朗
Michio Yoshino
道朗 吉野
田辺 浩
Hiroshi Tanabe
浩 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018221462A priority Critical patent/JP6945146B2/en
Publication of JP2020087747A publication Critical patent/JP2020087747A/en
Application granted granted Critical
Publication of JP6945146B2 publication Critical patent/JP6945146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a double side coating applicator capable of applying mixture slurry to both front and back surfaces of a base material at the coating them if flexure variations occurs, and forming an electrode plate at high accuracy.SOLUTION: A double side coating applicator 20 includes a front surface coating die 3 that forms a front surface mixture layer 4 by applying mixture slurry onto a front surface of a base material 1 supported by a backup roll 2; a first displacement meter 10 that measures displacement of the base material 1 before formation of the front surface mixture layer 4 and displacement of the same after formation in a width direction intersecting a conveying direction at at least two points; a back surface coating die 6 that applies slurry onto a back surface of the base material 1 to be conveyed by a conveying roll 5 and thereby forming a back surface mixture layer 7; and a second displacement meter 11 that is provided so as to be opposite to the back surface coating die 6 across the base material 1, and measures the displacement of the base material 1 before the formation of the front surface mixture layer 4 and the back surface mixture layer 7 and the displacement of the front surface mixture layer 4 that includes flexure of the base material 1 after the formation in the width direction at at least two points. The thickness is calculated from the displacement and the flexure, and a discharge amount of the slurry are controlled on the basis of this information.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム二次電池などに用いられる電極板において、電極板の両面に電極合剤スラリーを塗布する方法に関する。 The present invention relates to a method of applying an electrode mixture slurry to both surfaces of an electrode plate used in a lithium secondary battery or the like.

携帯用電子機器等の電源として一般にリチウム二次電池が利用されている。このリチウム二次電池では、コバルト酸リチウム等のリチウム含有複合酸化物を正極活物質に用いた正極板、黒鉛材料を負極活物質に用いた負極板、極板間を電子的に絶縁するセパレータ、極板間に充填されている電解液から構成されている。これによって、高電位で高放電容量のリチウム二次電池を実現している。
しかし、近年の電子機器および通信機器の多機能化、さらには電気自動車向け電源としてリチウム二次電池の高容量化や充放電サイクル特性の向上が望まれている。
A lithium secondary battery is generally used as a power source for portable electronic devices and the like. In this lithium secondary battery, a positive electrode plate using a lithium-containing composite oxide such as lithium cobalt oxide as a positive electrode active material, a negative electrode plate using a graphite material as a negative electrode active material, a separator that electrically insulates between the electrode plates, It is composed of an electrolytic solution filled between the electrode plates. As a result, a lithium secondary battery with high potential and high discharge capacity is realized.
However, in recent years, there has been a demand for multifunctional electronic devices and communication devices, as well as for higher capacity and improved charge/discharge cycle characteristics of lithium secondary batteries as power sources for electric vehicles.

その一方でリチウム二次電池の更なる普及のためには低コスト化、即ち生産性の向上が課題であり様々な技術が開発されている。例えば、従来の電極板の製造方法として、表面及び裏面について塗布及び乾燥を順に行う方法がある。この場合、まず、基材の表面に合剤スラリーを塗布し、乾燥炉にて乾燥させた後、電極板を巻き芯に巻き取る。その後、巻き芯ごと電極板を輸送した後に、電極板を巻き出して、基材の裏面に合剤スラリーを塗布し、乾燥炉にて乾燥させた後に電極板を巻き取る。これに対して、基材の表面に合剤スラリーを塗布し、乾燥炉で乾燥させた後に巻き取ることなく折り返して基材の裏面に合剤スラリーを塗布し、乾燥炉で乾燥させた後に電極板を巻き取る製造方法がある。この方法では表面と裏面との工程間の巻き取り、巻き出し作業と電極板の輸送が省略でき、効率的に電極板を製造することが出来る。しかしながら従来方法と比べて設備コストや設備スペースには変わりがなく、生産コスト低減には限界があった。 On the other hand, cost reduction, that is, improvement in productivity, is an issue for further popularization of lithium secondary batteries, and various technologies have been developed. For example, as a conventional method of manufacturing an electrode plate, there is a method of sequentially applying and drying the front surface and the back surface. In this case, first, the mixture slurry is applied to the surface of the base material, dried in a drying oven, and then the electrode plate is wound around a winding core. Then, after transporting the electrode plate together with the winding core, the electrode plate is unwound, the mixture slurry is applied to the back surface of the base material, dried in a drying oven, and then the electrode plate is wound. On the other hand, the mixture slurry is applied to the surface of the base material, dried in a drying oven, and then folded back without winding to apply the mixture slurry to the back surface of the base material and dried in a drying oven before the electrode. There is a manufacturing method for winding a plate. In this method, the winding and unwinding operations and the transportation of the electrode plate between the front and back steps can be omitted, and the electrode plate can be efficiently manufactured. However, compared to the conventional method, the equipment cost and the equipment space are the same, and there is a limit to the reduction of the production cost.

上記課題を解決する方法として、例えば特許文献1のように、ダイ吐出口を基材を挟み込む形で対向させて、両側から合剤スラリーを同時に吐出させながら、基材の両面に合剤層を形成し、乾燥炉で乾燥させて、電極板の表裏面を同時に形成する方法が提案されている。 As a method for solving the above problems, for example, as in Patent Document 1, the die discharge ports are opposed to each other so as to sandwich the base material, and the mixture slurry is simultaneously discharged from both sides to form a mixture layer on both surfaces of the base material. A method has been proposed in which the front and back surfaces of the electrode plate are simultaneously formed by forming and drying in a drying oven.

また、別の形態として、例えば特許文献2のように、表面、裏面の順に塗布のみを行って、その後、乾燥を行う方法が提案されている。この場合、表面はバックアップロールにより基材を支持しながら表面用塗布ダイにより合剤スラリーを塗布する。次いで、基材を水平方向に搬送させ、基材端部を回転体ユニットで把持した上で、基材下側に設置した裏面用塗布ダイにて合剤スラリーを塗布する。その後、乾燥炉で乾燥させることで、電極板の表裏面を形成する。 Further, as another form, a method has been proposed, for example, as in Patent Document 2, in which only the front surface and the back surface are applied in this order and then dried. In this case, the surface is coated with the mixture slurry by a surface coating die while supporting the substrate with a backup roll. Next, the base material is conveyed in the horizontal direction, the end portion of the base material is held by the rotating body unit, and then the mixture slurry is applied by the back surface coating die installed on the lower side of the base material. Then, the front and back surfaces of the electrode plate are formed by drying in a drying furnace.

特許4354598号公報Japanese Patent No. 4354598 WO2011/001648WO2011/001648

しかしながら、特許文献1に記載の方法では、基材位置が固定されていないため、2台のダイごとに吐出量が異なる場合は、基材位置がその影響を受けてバタつき易く、表面と裏面の合剤層重量に差異が生じるという課題があった。 However, in the method described in Patent Document 1, since the base material position is not fixed, when the discharge amount is different for each of the two dies, the base material position is easily affected by the influence, and the front surface and the back surface are affected. However, there is a problem that the weight of the mixture layer differs.

また、特許文献2に記載の方法では、裏面塗布の際に基材両端を回転体ユニットで把持することで、基材のバタつきは緩和されるが、基材の幅方向の撓みは解消できない。従って表面の合剤重量ばらつきや、塗布長さによる重量変動によって基材の撓み量ばらつきが発生することにより、幅方向での裏面合剤重量が不安定になるという課題があった。 Further, in the method described in Patent Document 2, flapping of the base material is alleviated by gripping both ends of the base material by the rotary unit during back surface coating, but bending of the base material in the width direction cannot be eliminated. .. Therefore, there is a problem in that the backside mixture weight becomes unstable in the width direction due to the variation in the amount of the flexure of the base material caused by the variation in the mixture weight on the surface and the variation in the weight depending on the coating length.

本発明は、前記従来の課題を解決するもので、基材の撓み量が変動した場合でも合剤重量ばらつきを低減して塗布でき、精度の高い電極板が得られる両面塗布装置及び両面塗布方法を提供することを目的とする。 The present invention is to solve the above-mentioned conventional problems, and even when the amount of flexure of the base material changes, application can be performed with reduced mixture weight variation, and a highly accurate electrode plate can be obtained. The purpose is to provide.

上記目的を達成するために、本発明に係る同時塗布装置は、基材を支持するバックアップロールと、
前記バックアップロールで支持している前記基材の表面に合剤スラリーを塗布して表面合剤層を形成する表面塗布用ダイと、
前記バックアップロールで支持している前記表面合剤層を形成前の前記基材の変位、及び、前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測する第1の変位計と、
前記表面に合剤スラリーを塗布した前記基材を搬送する搬送用ロールと、
前記搬送用ロールで搬送されている前記基材の裏面に合剤スラリーを塗布して裏面合剤層を形成する裏面塗布用ダイと、
前記基材を挟んで前記裏面塗布用ダイと対向して設けられ、前記表面合剤層及び前記裏面合剤層の形成前の前記基材の変位、並びに、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測する第2の変位計と、
前記第1の変位計で計測した前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記第2の変位計で計測した前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御する、吐出量調整機構と、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させる乾燥炉と、
を備える。
In order to achieve the above object, the simultaneous coating device according to the present invention, a backup roll supporting the substrate,
A surface coating die for forming a surface mixture layer by coating a mixture slurry on the surface of the base material supported by the backup roll,
Displacement of the base material before forming the surface mixture layer supported by the backup roll, and displacement of the surface mixture layer after forming the surface mixture layer in the width direction intersecting the transport direction A first displacement meter that measures at least two points,
A transport roll for transporting the base material coated with the mixture slurry on the surface,
A back surface coating die that forms a back surface material mixture layer by applying a material mixture slurry to the back surface of the base material that is being transported by the transport roll,
Displacement of the base material before the formation of the front surface mixture layer and the back surface mixture layer, and the front surface mixture layer and the back surface mixture are provided so as to face the back surface coating die with the base material interposed therebetween. A second displacement meter that measures the displacement of the surface mixture layer including the bending of the base material after the formation of the agent layer at at least two points in the width direction;
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer measured by the first displacement meter, and the displacement of the base material measured by the second displacement meter and the The thickness of the surface mixture layer including the deflection of the substrate is calculated from the displacement of the surface mixture layer including the deflection of the substrate, and the surface mixture including the thickness of the surface mixture layer and the deflection of the substrate. Based on the thickness of the agent layer, the deflection of the base material in the width direction is calculated, and the width from the back surface coating die is opposite to the calculated deflection of the base material in the width direction. A discharge amount adjusting mechanism for controlling the discharge amount of the mixture slurry in the direction,
A drying oven for drying the base material having the front surface mixture layer and the back surface mixture layer,
Equipped with.

また、本発明に係る両面塗布方法は、バックアップロールで支持している表面合剤層を形成前の基材の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び裏面合剤層の形成前の前記基材の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記基材の表面に表面塗布用ダイによって合剤スラリーを塗布して表面合剤層を形成するステップと、
前記バックアップロールで支持している前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材の裏面に裏面塗布用ダイによって合剤スラリーを塗布して裏面合剤層を形成するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記表面合剤層を形成前後の前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記基材を挟んで前記裏面塗布用ダイと対向する位置から計測した前記表面合剤層及び前記裏面合剤層の形成前後の前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御するステップと、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させるステップと、
を含む。
Further, the double-sided coating method according to the present invention comprises a step of measuring the displacement of the base material before forming the surface mixture layer supported by the backup roll at at least two points in the width direction intersecting the transport direction,
Measuring the displacement of the base material before forming the front surface mixture layer and the back surface mixture layer at at least two points in the width direction from a position facing the back surface coating die with the base material interposed therebetween;
Forming a surface mixture layer by applying a mixture slurry with a surface coating die on the surface of the base material supported by the backup roll;
Measuring the displacement of the surface mixture layer after forming the surface mixture layer supported by the backup roll at least at two points in the width direction intersecting the transport direction;
Forming a back surface mixture layer by applying a material mixture slurry to the back surface of the base material by a back surface coating die,
From the position facing the back surface coating die with the base material sandwiched, the displacement of the front surface mixture layer including the deflection of the base material after the formation of the front surface mixture layer and the back surface mixture layer is performed in the width direction. Measuring at least two points,
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer before and after forming the surface mixture layer supported by the backup roll, and the back surface is sandwiched between the base materials. From the displacement of the surface mixture layer including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer and the back surface mixture layer measured from the position facing the coating die of the base material Calculate the thickness of the surface mixture layer including bending, based on the thickness of the surface mixture layer and the thickness of the surface mixture layer including the bending of the base material, of the base material in the width direction. A step of calculating the deflection, and controlling the discharge amount of the mixture slurry in the width direction from the back surface coating die so as to conflict with the calculated deflection of the base material in the width direction,
Drying the substrate having the front surface mixture layer and the back surface mixture layer,
including.

以上のように、本発明に係る両面塗布装置及び両面塗布方法によれば、電極板表面の合剤重量変化や塗布長による電極板の重量変化等で基材の撓み量が変動した場合でも、裏面の合剤重量ばらつきを低減し、精度の高い電極板を得ることが出来る。 As described above, according to the double-sided coating device and the double-sided coating method according to the present invention, even when the deflection amount of the base material changes due to the change in the mixture weight of the electrode plate surface or the change in the electrode plate weight due to the coating length, It is possible to reduce the variation in the mixture weight on the back surface and obtain a highly accurate electrode plate.

実施の形態1に係る両面塗布装置の全体構成を示す概略図である。1 is a schematic diagram showing an overall configuration of a double-sided coating device according to a first embodiment. 実施の形態1に係る両面塗布装置20の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a configuration of a double-sided coating device 20 according to the first embodiment. 図1の両面塗布装置における裏面塗布用ダイと第2の変位計との配置を示す概略側面図である。It is a schematic side view which shows arrangement|positioning of the back coating die and the 2nd displacement meter in the double-sided coating apparatus of FIG. 図3AのA−A方向から見た概略断面図である。It is a schematic sectional drawing seen from the AA direction of FIG. 3A. 基材の撓み量算出および吐出量調整に関するフローチャートである。It is a flow chart regarding the amount of deflection of the base material and the adjustment of the discharge amount. 実施の形態1に係る両面塗布方法のフローチャートである。3 is a flowchart of a double-sided coating method according to the first embodiment.

第1の態様に係る両面塗布装置は、基材を支持するバックアップロールと、
前記バックアップロールで支持している前記基材の表面に合剤スラリーを塗布して表面合剤層を形成する表面塗布用ダイと、
前記バックアップロールで支持している前記表面合剤層を形成前の前記基材の変位、及び、前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測する第1の変位計と、
前記表面に表面合剤層を形成した前記基材を搬送する搬送用ロールと、
前記搬送用ロールで搬送されている前記基材の裏面に合剤スラリーを塗布して裏面合剤層を形成する裏面塗布用ダイと、
前記基材を挟んで前記裏面塗布用ダイと対向して設けられ、前記表面合剤層及び前記裏面合剤層の形成前の前記基材の変位、並びに、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測する第2の変位計と、
前記第1の変位計で計測した前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記第2の変位計で計測した前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御する、吐出量調整機構と、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させる乾燥炉と、
を備える。
The double-sided coating device according to the first aspect includes a backup roll that supports a base material,
A surface coating die for forming a surface mixture layer by coating a mixture slurry on the surface of the base material supported by the backup roll,
Displacement of the base material before forming the surface mixture layer supported by the backup roll, and displacement of the surface mixture layer after forming the surface mixture layer in the width direction intersecting the transport direction A first displacement meter that measures at least two points,
A transport roll for transporting the base material having a surface mixture layer formed on the surface,
A back surface coating die that forms a back surface material mixture layer by applying a material mixture slurry to the back surface of the base material that is being transported by the transport roll,
Displacement of the base material before the formation of the front surface mixture layer and the back surface mixture layer, and the front surface mixture layer and the back surface mixture are provided so as to face the back surface coating die with the base material interposed therebetween. A second displacement meter that measures the displacement of the surface mixture layer including the bending of the base material after the formation of the agent layer at at least two points in the width direction;
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer measured by the first displacement meter, and the displacement of the base material measured by the second displacement meter and the The thickness of the surface mixture layer including the deflection of the substrate is calculated from the displacement of the surface mixture layer including the deflection of the substrate, and the surface mixture including the thickness of the surface mixture layer and the deflection of the substrate. Based on the thickness of the agent layer, the deflection of the base material in the width direction is calculated, and the width from the back surface coating die is opposite to the calculated deflection of the base material in the width direction. A discharge amount adjusting mechanism for controlling the discharge amount of the mixture slurry in the direction,
A drying oven for drying the base material having the front surface mixture layer and the back surface mixture layer,
Equipped with.

上記構成によって、基材の撓みがあった場合、また撓み量が変動した場合でも重量ばらつきが少ない電極板を形成することができる。 With the above structure, it is possible to form an electrode plate with little weight variation even when the base material is bent or when the bending amount is changed.

第2の態様に係る両面塗布装置は、上記第1の態様において、前記第1及び第2の変位計は、前記幅方向について中央と両端とを含む少なくとも3点で合計厚さを計測してもよい。 In the double-sided coating device according to the second aspect, in the first aspect, the first and second displacement meters measure the total thickness at at least three points including the center and both ends in the width direction. Good.

第3の態様に係る両面塗布装置は、上記第1又は第2の態様において、前記吐出量調整機構は、前記幅方向についての前記基材の撓みの最大値と最小値との差が20μm以上の場合に前記裏面塗布用ダイからの合剤スラリーの吐出量を制御してもよい。 In the double-sided coating device according to the third aspect, in the first or second aspect, the discharge amount adjusting mechanism has a difference between the maximum value and the minimum value of the bending of the base material in the width direction of 20 μm or more. In this case, the discharge amount of the mixture slurry from the back surface coating die may be controlled.

第4の態様に係る両面塗布方法は、バックアップロールで支持している表面合剤層を形成前の基材の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び裏面合剤層の形成前の前記基材の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記基材の表面に表面塗布用ダイによって合剤スラリーを塗布して表面合剤層を形成するステップと、
前記バックアップロールで支持している前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材の裏面に裏面塗布用ダイによって合剤スラリーを塗布して裏面合剤層を形成するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記表面合剤層を形成前後の前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記基材を挟んで前記裏面塗布用ダイと対向する位置から計測した前記表面合剤層及び前記裏面合剤層の形成前後の前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御するステップと、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させるステップと、
を含む、両面塗布方法。
The double-sided coating method according to the fourth aspect, a step of measuring the displacement of the base material before forming the surface mixture layer supported by the backup roll at at least two points in the width direction intersecting the transport direction,
Measuring the displacement of the base material before forming the front surface mixture layer and the back surface mixture layer at at least two points in the width direction from a position facing the back surface coating die with the base material interposed therebetween;
Forming a surface mixture layer by applying a mixture slurry with a surface coating die on the surface of the base material supported by the backup roll;
Measuring the displacement of the surface mixture layer after forming the surface mixture layer supported by the backup roll at least at two points in the width direction intersecting the transport direction;
Forming a back surface mixture layer by applying a material mixture slurry to the back surface of the base material by a back surface coating die,
From the position facing the back surface coating die with the base material sandwiched, the displacement of the front surface mixture layer including the deflection of the base material after the formation of the front surface mixture layer and the back surface mixture layer is performed in the width direction. Measuring at least two points,
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer before and after forming the surface mixture layer supported by the backup roll, and the back surface is sandwiched between the base materials. From the displacement of the surface mixture layer including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer and the back surface mixture layer measured from the position facing the coating die of the base material Calculate the thickness of the surface mixture layer including bending, based on the thickness of the surface mixture layer and the thickness of the surface mixture layer including the bending of the base material, of the base material in the width direction. A step of calculating the deflection, and controlling the discharge amount of the mixture slurry in the width direction from the back surface coating die so as to conflict with the calculated deflection of the base material in the width direction,
Drying the substrate having the front surface mixture layer and the back surface mixture layer,
Double-sided coating method including.

第5の態様に係る両面塗布方法は、上記第4の態様において、前記表面合剤層の形成前後に前記基材の変位及び前記表面合剤層の変位を前記幅方向について中央と両端とを含む少なくとも3点で合計厚さを計測し、
前記表面合剤層及び前記裏面合剤層の形成前後に前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について中央と両端とを含む少なくとも3点で計測してもよい。
The double-sided coating method according to a fifth aspect is the fourth aspect, wherein the displacement of the base material and the displacement of the surface mixture layer before and after the formation of the surface mixture layer are measured at the center and both ends in the width direction. Measure the total thickness at least 3 points including
The displacement of the surface mixture layer including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer and the back surface mixture layer is at least three points including the center and both ends in the width direction. You may measure.

第6の態様に係る両面塗布方法は、上記第4又は第5の態様において、前記基材の撓みの最大値と最小値の差が20μm以上の場合に前記裏面塗布用ダイからの合剤スラリーの吐出量を制御してもよい。 A double-sided coating method according to a sixth aspect is the mixture slurry from the backside coating die according to the fourth or fifth aspect, when the difference between the maximum value and the minimum value of the bending of the base material is 20 μm or more. May be controlled.

以下、実施の形態に係る両面塗布装置及び両面塗布方法について、添付図面を参照しながら説明する。なお、図面において、実質的に同一の部材には同一の符号を付している。 Hereinafter, a double-sided coating device and a double-sided coating method according to embodiments will be described with reference to the accompanying drawings. In the drawings, substantially the same members are designated by the same reference numerals.

(実施の形態1)
<両面塗布装置>
図1は、実施の形態1に係る基材の表裏両面に合剤スラリーを塗布する両面塗布装置20の全体構成を示す概略図である。図2は、実施の形態1に係る両面塗布装置20の構成の一例を示すブロック図である。なお、図1では、便宜上、基材1の幅方向をX方向とし、基材1の乾燥炉8への搬送方向をY方向とし、鉛直上方をZ方向として示している。
実施の形態1に係る両面塗布装置20は、基材1を支持するバックアップロール2と、表面塗布用ダイ3と、第1の変位計10と、基材1を搬送する搬送用ロール5と、裏面塗布用ダイ6と、第2の変位計11と、吐出量調整機構12と、乾燥炉8と、を備える。表面塗布用ダイ3によって、バックアップロール2で支持している基材1の表面に合剤スラリーを塗布して表面合剤層4を形成する。第1の変位計10によって、表面合剤層4を形成前後のバックアップロール2で支持している基材1の変位及び表面合剤層の変位を搬送方向(Y方向)と交差する幅方向(X方向)について少なくとも2点で計測する。搬送用ロール5によって表面に表面合剤層4を形成した基材1を搬送する。裏面塗布用ダイ6によって搬送用ロール5で搬送されている基材1の裏面に合剤スラリーを塗布して裏面合剤層7を形成する。第2の変位計11は、基材1を挟んで裏面塗布用ダイ6と対向して設けられている。この第2の変位計11によって、表面合剤層4及び裏面合剤層7の形成前後の基材1の変位及び基材1の撓みを含む表面合剤層の変位を幅方向(X方向)について少なくとも2点で計測する。吐出量調整機構12によって、第1の変位計10で計測した基材1の変位及び表面合剤層の変位から表面合剤層4の厚みを算出する。また、第2の変位計11で計測した基材の変位と基材1の撓みを含む表面合剤層の変位から基材の撓みを含む表面合剤層の厚みを算出する。さらに、表面合剤層の厚みと基材の撓みを含む表面合剤層の厚みと、に基づいて、幅方向(X方向)についての基材1の撓みを算出する。そして、算出した幅方向(X方向)についての基材1の撓みと相反するように、裏面塗布用ダイ6からの幅方向(X方向)についての合剤スラリーの吐出量を制御する。乾燥炉8によって表面合剤層4及び裏面合剤層7を有する基材1を乾燥させる。
(Embodiment 1)
<Double-sided coating device>
FIG. 1 is a schematic diagram showing an overall configuration of a double-sided coating device 20 for coating a mixture slurry on both front and back surfaces of a base material according to the first embodiment. FIG. 2 is a block diagram showing an example of the configuration of the double-sided coating device 20 according to the first embodiment. Note that, in FIG. 1, for convenience, the width direction of the substrate 1 is shown as the X direction, the conveying direction of the substrate 1 to the drying furnace 8 is shown as the Y direction, and the vertically upward direction is shown as the Z direction.
The double-sided coating device 20 according to the first embodiment includes a backup roll 2 that supports the substrate 1, a surface coating die 3, a first displacement meter 10, and a transport roll 5 that transports the substrate 1. A back surface coating die 6, a second displacement meter 11, a discharge amount adjusting mechanism 12, and a drying furnace 8 are provided. The mixture slurry is applied to the surface of the substrate 1 supported by the backup roll 2 by the surface coating die 3 to form the surface mixture layer 4. With the first displacement meter 10, the displacement of the base material 1 supporting the surface mixture layer 4 with the backup roll 2 before and after the formation and the displacement of the surface mixture layer are crossed in the width direction (Y direction). Measure at least two points in the (X direction). The substrate 1 having the surface mixture layer 4 formed on the surface thereof is conveyed by the conveying rolls 5. The mixture slurry is applied to the back surface of the substrate 1 being conveyed by the conveying roll 5 by the back surface coating die 6 to form the back surface material mixture layer 7. The second displacement meter 11 is provided so as to face the back surface coating die 6 with the base material 1 interposed therebetween. The displacement of the surface mixture layer including the displacement of the substrate 1 and the deflection of the substrate 1 before and after the formation of the front surface mixture layer 4 and the back surface mixture layer 7 is measured by the second displacement meter 11 in the width direction (X direction). Is measured at at least two points. The discharge amount adjusting mechanism 12 calculates the thickness of the surface mixture layer 4 from the displacement of the base material 1 and the displacement of the surface mixture layer measured by the first displacement meter 10. Further, the thickness of the surface mixture layer including the deflection of the base material is calculated from the displacement of the base material measured by the second displacement meter 11 and the displacement of the surface mixture layer including the deflection of the base material 1. Further, the bending of the base material 1 in the width direction (X direction) is calculated based on the thickness of the surface material mixture layer and the thickness of the surface material mixture layer including the bending of the base material. Then, the discharge amount of the mixture slurry in the width direction (X direction) from the back surface coating die 6 is controlled so as to conflict with the calculated bending of the base material 1 in the width direction (X direction). The substrate 1 having the front surface mixture layer 4 and the back surface mixture layer 7 is dried by a drying oven 8.

実施の形態1に係る両面塗布装置によれば、電極板表面の合剤重量変化や塗布長による電極板の重量変化等で基材の撓み量が変動した場合でも、裏面の合剤重量ばらつきを低減し、精度の高い電極板を得ることが出来る。 According to the double-sided coating device according to the first embodiment, even if the amount of flexure of the base material changes due to a change in the mixture weight on the surface of the electrode plate or a change in the weight of the electrode plate due to the coating length, the mixture weight on the back surface varies. It is possible to reduce the number of electrodes and obtain a highly accurate electrode plate.

以下に、この両面塗布装置20を構成する各部材について説明する。 Below, each member which comprises this double-sided coating device 20 is demonstrated.

<第1の変位計>
第1の変位計10は、表面塗布用ダイ3により表面合剤層4が塗布される箇所に設置されている。この第1の変位計10によって、表面合剤層の形成前後の幅方向(X方向)についての基材1の変位及び表面合剤層4の変位を計測する。第1の変位計10は、幅方向(X方向)で基材の変位を計測するために、中央に対して両端にわたって線対象の場合には、中央と一方の端部との少なくとも2箇所に設置すればよい。好ましくは、3箇所以上設置する。
第1の変位計10は、非接触での変位計であればよく、例えば、レーザ変位計を用いることができる。なお、レーザ変位計に限られず、非接触で基材の変位及び表面合剤層4の変位を計測できるものであればよい。
なお、基材1の一部に表面合剤層を形成しない箇所がある場合には、その表面合剤層を形成しない箇所について、表面合剤層の形成後に、基材の変位と表面合剤層の変位とを同時に計測できる。この場合には表面合剤層の形成後の計測のみを行えばよい。
<First displacement gauge>
The first displacement meter 10 is installed at a position where the surface mixture layer 4 is coated by the surface coating die 3. The first displacement meter 10 measures the displacement of the base material 1 and the displacement of the surface mixture layer 4 in the width direction (X direction) before and after the formation of the surface mixture layer. In order to measure the displacement of the base material in the width direction (X direction), the first displacement meter 10 has at least two locations, the center and one end, in the case of line symmetry across the center. Just install it. Preferably, it is installed at three or more places.
The first displacement gauge 10 may be a non-contact displacement gauge, and for example, a laser displacement gauge can be used. The displacement is not limited to the laser displacement meter, and may be any one that can measure the displacement of the base material and the displacement of the surface mixture layer 4 without contact.
When there is a portion where the surface mixture layer is not formed on a part of the base material 1, the displacement of the substrate and the surface mixture after the formation of the surface mixture layer at the portion where the surface mixture layer is not formed. The displacement of layers can be measured simultaneously. In this case, only the measurement after forming the surface mixture layer should be performed.

<第2の変位計>
第2の変位計11は、基材1を挟んで裏面塗布用ダイ6と対向して設けられている。この第2の変位計11によって、表面合剤層及び裏面合剤層の形成前後の幅方向(X方向)についての基材の変位及び基材1の撓みを含む表面合剤層4の変位を計測する。第2の変位計11は、幅方向(X方向)で基材の変位及び表面合剤層の変位を計測するために、中央に対して両端にわたって線対象の場合には、中央と一方の端部との少なくとも2箇所に設置すればよい。好ましくは、3箇所以上設置する。
第2の変位計11は、非接触での変位計であればよく、例えば、レーザ変位計を用いることができる。なお、レーザ変位計に限られず、非接触で基材の変位を計測できるものであればよい。また、設置する複数の第2の変位計は、裏面塗布用ダイ6に対する距離が実質的に同一となるように配置されていることが好ましい。
なお、基材1の一部、特に、端部に表面合剤層及び裏面合剤層を形成しない箇所がある場合には、表面合剤層及び裏面合剤層を形成後にも端部には表面合剤層及び裏面合剤層が形成されていない。そこで、表面合剤層及び裏面合剤層を形成後に端部について基材の変位を計測し、表面合剤層及び裏面合剤層が形成されている箇所について基材の撓みを含む表面合剤層の変位を計測すればよい。この場合には、表面合剤層及び裏面合剤層を形成後の計測のみを行えばよい。
<Second displacement meter>
The second displacement meter 11 is provided so as to face the back surface coating die 6 with the base material 1 interposed therebetween. By the second displacement meter 11, displacement of the base material layer in the width direction (X direction) before and after formation of the front surface mixture layer and the back surface mixture layer and displacement of the front surface mixture layer 4 including bending of the base material 1 are measured. measure. The second displacement meter 11 measures the displacement of the base material and the displacement of the surface mixture layer in the width direction (X direction). It may be installed at least at two places. Preferably, it is installed at three or more places.
The second displacement gauge 11 may be a non-contact displacement gauge, and for example, a laser displacement gauge can be used. Note that the displacement is not limited to the laser displacement meter and may be any one that can measure the displacement of the base material without contact. Further, it is preferable that the plurality of second displacement gauges to be installed are arranged so that the distances to the back surface coating die 6 are substantially the same.
In addition, when there is a part where the surface mixture layer and the back surface mixture layer are not formed on a part of the base material 1, particularly on the end portion, the edge part is not formed even after the surface mixture layer and the back surface mixture layer are formed. The front surface mixture layer and the back surface mixture layer are not formed. Therefore, the displacement of the base material is measured at the ends after the surface mixture layer and the back surface mixture layer are formed, and the surface mixture including the bending of the base material at the position where the surface mixture layer and the back surface mixture layer are formed. The displacement of the layer may be measured. In this case, it suffices to perform only the measurement after forming the front surface mixture layer and the back surface mixture layer.

<吐出量調整機構>
吐出量調整機構12によって、第1の変位計10で計測した幅方向(X方向)についての基材1の変位と第2の変位計11で計測した幅方向(X方向)についての基材1の撓みを含む変位とに基づいて裏面合剤層7形成時の基材1の撓み量を算出する。そして、算出した基材1の撓みに応じて裏面塗布用ダイ6からの幅方向(X方向)についての合剤スラリーの吐出量を制御する。
なお、吐出量調整機構12は、ハードウエアとして実現してもよく、あるいは後述するようにプログラムとして実現してもよい。
<Discharge rate adjustment mechanism>
Displacement of the base material 1 in the width direction (X direction) measured by the first displacement meter 10 and the base material 1 in the width direction (X direction) measured by the second displacement meter 11 by the discharge amount adjusting mechanism 12. The amount of bending of the base material 1 when the back surface material mixture layer 7 is formed is calculated based on the displacement including the bending. Then, the discharge amount of the mixture slurry in the width direction (X direction) from the back surface coating die 6 is controlled according to the calculated bending of the base material 1.
The ejection amount adjusting mechanism 12 may be realized as hardware, or may be realized as a program as described later.

吐出量調整機構12をプログラムとして実現する場合には、例えば、両面塗布装置20は、図2に示すようにプログラムとしての吐出量調整機構12を備えた制御部(コンピュータ装置)30を備える。 When the discharge amount adjusting mechanism 12 is implemented as a program, for example, the double-sided coating device 20 includes a control unit (computer device) 30 including the discharge amount adjusting mechanism 12 as a program as shown in FIG.

<制御部(コンピュータ装置)>
制御部30は、例えば、コンピュータ装置である。このコンピュータ装置としては、汎用的なコンピュータ装置を用いることができ、例えば、図2に示すように、処理部31、記憶部32、表示部33を含む。なお、さらに、入力装置、記憶装置、インタフェース等を含んでもよい。
制御部30によって、裏面塗布用ダイ6を制御する。なお、制御部30によって、バックアップロール2、表面塗布用ダイ3、第1の変位計10、搬送ロール5、裏面塗布用ダイ6、第2の変位計11、乾燥炉8を制御してもよい。
<Control unit (computer device)>
The control unit 30 is, for example, a computer device. A general-purpose computer device can be used as this computer device, and includes, for example, a processing unit 31, a storage unit 32, and a display unit 33, as shown in FIG. Further, an input device, a storage device, an interface, etc. may be included.
The controller 30 controls the back surface coating die 6. The control unit 30 may control the backup roll 2, the front surface coating die 3, the first displacement meter 10, the transport roll 5, the back surface coating die 6, the second displacement meter 11, and the drying oven 8. ..

<処理部>
処理部31は、例えば、中央処理演算子(CPU)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であればよい。
<Processing unit>
The processing unit 31 may be, for example, a central processing operator (CPU), a microcomputer, or a processing device that can execute computer-executable instructions.

<記憶部>
記憶部32は、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
記憶部32には、プログラム35を含む。なお、制御部30がネットワークに接続されている場合には、必要に応じてプログラム35をネットワークからダウンロードしてもよい。
<Memory>
The storage unit 32 may be, for example, at least one of ROM, EEPROM, RAM, flash SSD, hard disk, USB memory, magnetic disk, optical disk, magneto-optical disk, and the like.
The storage unit 32 includes a program 35. When the control unit 30 is connected to the network, the program 35 may be downloaded from the network as needed.

<プログラム>
プログラム35には、吐出量調整機構12を含んでいる。吐出量調整機構12は、実行時には、記憶部32から読み出されて処理部31にて実行される。
<Program>
The program 35 includes the ejection amount adjusting mechanism 12. The discharge amount adjusting mechanism 12 is read from the storage unit 32 and executed by the processing unit 31 at the time of execution.

ここで、吐出量調整機構12における幅方向(X方向)についての基材1の撓み量および撓み量の算出について図3A及び図3Bを用いて説明する。図3Aは、裏面への合剤スラリーの塗布時の裏面塗布用ダイ6と第2の変位計11との配置を示す概略側面図である。図3Bは、図3Aにおける視野A(A−A方向)から見た概略断面図である。裏面塗布用ダイ6で合剤スラリーを基材1の裏面に塗布する際、図3Bに示すように基材1は表面合剤層4の重みにより幅方向に中凹み形状に撓む。この撓みにより裏面塗布用ダイ6の吐出口と基材1との間隔(以下、塗布ギャップと称する)に幅方向(X方向)で差異が発生する。本発明者は、これまでの検討で、この塗布ギャップと塗布重量とに強い相関関係があることを確認しており、基材1の幅方向(X方向)で塗布ギャップを安定化させることが塗布精度の向上に繋がることを見出し、本発明に至った。 Here, the amount of bending of the substrate 1 in the width direction (X direction) and calculation of the amount of bending in the discharge amount adjusting mechanism 12 will be described with reference to FIGS. 3A and 3B. FIG. 3A is a schematic side view showing the arrangement of the back surface coating die 6 and the second displacement meter 11 when the mixture slurry is applied to the back surface. FIG. 3B is a schematic cross-sectional view seen from the visual field A (the AA direction) in FIG. 3A. When the back surface coating die is applied to the back surface of the base material 1 by the back surface coating die 6, the base material 1 is bent in the width direction into a concave shape due to the weight of the front surface mixture layer 4, as shown in FIG. 3B. Due to this bending, a difference occurs in the width direction (X direction) between the discharge port of the back surface coating die 6 and the substrate 1 (hereinafter referred to as the coating gap). The present inventor has confirmed through previous studies that there is a strong correlation between the coating gap and the coating weight, and it is possible to stabilize the coating gap in the width direction (X direction) of the substrate 1. They have found that this leads to an improvement in coating accuracy and have completed the present invention.

そこで、本実施の形態1では、塗布ギャップ、すなわち基材1の撓み量を幅方向で定量的に把握するために、裏面塗布用ダイ6の直上に第2の変位計11a、11b、11cを備えている。なお、幅方向(X方向)で基材の変位及び表面合剤層の変位を計測するために、中央に対して両端にわたって線対象の場合には、中央と一方の端部との少なくとも2箇所に第1及び第2の変位計10、11を設置すればよい。好ましくは、3箇所以上設置する。図3Bでは3箇所設置しているが、幅方向の基材の変位及び表面合剤層の変位を計測可能であれば、この形態に限定されるものではない。 Therefore, in the first embodiment, in order to quantitatively grasp the coating gap, that is, the bending amount of the base material 1, the second displacement gauges 11a, 11b, 11c are provided directly above the back surface coating die 6. I have it. In addition, in order to measure the displacement of the base material and the displacement of the surface mixture layer in the width direction (X direction), in the case of line symmetry across both ends with respect to the center, at least two locations, the center and one end The first and second displacement gauges 10 and 11 may be installed in the. Preferably, it is installed at three or more places. Although it is installed at three locations in FIG. 3B, it is not limited to this form as long as the displacement of the base material and the displacement of the surface mixture layer in the width direction can be measured.

なお、第2の変位計11で得られる表面合剤層の変位は、基材1の撓みと表面合剤層4の厚みも含んでいるため、基材1の撓みだけを直接計測することは不可能である。そこで、本発明者は、表面合剤層4の形成直後の箇所に設置されている第1の変位計10にて表面合剤層4の形成前後の幅方向(X方向)についての基材1の変位及び表面合剤層4の変位を計測している。これによって表面合剤層4の厚みを算出できる。また、表面合剤層4及び裏面合剤層7の形成前後時に、第2の変位計11にて幅方向(X方向)についての基材の変位及び基材1の撓みも含んだ表面合剤層4の変位を計測している。これによって基材の撓みを含む表面合剤層の厚みを算出できる。その後、表面合剤層の厚みと基材の撓みを含む表面合剤層の厚みとの両者の差分にて幅方向(X方向)についての基材1の撓み量を算出している。また、この幅方向(X方向)についての基材1の撓み量は、塗布速度の影響や基材1のバタつきによらず、未乾燥の塗膜表面であっても精度よく算出できることを確認している。 Since the displacement of the surface mixture layer obtained by the second displacement meter 11 includes the bending of the base material 1 and the thickness of the surface mixture layer 4, it is not possible to directly measure only the bending of the base material 1. It is impossible. Therefore, the present inventor uses the first displacement meter 10 installed immediately after the formation of the surface mixture layer 4 to form the base material 1 in the width direction (X direction) before and after the formation of the surface mixture layer 4. And the displacement of the surface mixture layer 4 are measured. Thereby, the thickness of the surface mixture layer 4 can be calculated. Further, before and after the formation of the front surface mixture layer 4 and the back surface mixture layer 7, the front surface mixture including the displacement of the base material in the width direction (X direction) and the flexure of the base material 1 by the second displacement meter 11 The displacement of layer 4 is measured. Thereby, the thickness of the surface mixture layer including the bending of the base material can be calculated. Then, the amount of bending of the base material 1 in the width direction (X direction) is calculated by the difference between the thickness of the surface material mixture layer and the thickness of the surface material mixture layer including the bending of the base material. In addition, it was confirmed that the amount of flexure of the base material 1 in the width direction (X direction) can be calculated accurately even on an undried coating film surface, regardless of the influence of the coating speed and the flapping of the base material 1. is doing.

次に、幅方向(X方向)で少なくとも3箇所以上について、同様にして基材1の撓み量を算出することで撓み量のばらつき(幅方向(X方向)で撓み量の最大値から最小値を引いた値)が得られる。このばらつきが塗布ギャップのばらつきに繋がり、合剤重量ばらつきとなるため、裏面塗布用ダイ6に備えられている吐出量調整機構12a、12b、12cにより吐出量を調整する。例えば、基材1の撓み量が大きい箇所に設置してある吐出量調整機構12bにてダイの吐出隙間を広げて吐出量を増加させることで基材1を持ち上げて、幅方向(X方向)についての撓み量が揃うように調整する。つまり、基材の撓みと相反するように吐出量を調整する。 Next, the flexure amount of the base material 1 is calculated in the same manner at least at three or more locations in the width direction (X direction), thereby varying the flexure amount (from the maximum value to the minimum value of the flexure amount in the width direction (X direction)). The value obtained by subtracting is obtained. Since this variation leads to variation in the coating gap and variation in the mixture weight, the ejection rate is adjusted by the ejection rate adjusting mechanisms 12a, 12b, 12c provided in the back surface coating die 6. For example, the base material 1 is lifted by increasing the discharge quantity by widening the discharge gap of the die by the discharge quantity adjusting mechanism 12b installed at a position where the base material 1 has a large deflection amount, and the base material 1 is moved in the width direction (X direction). Adjust so that the amount of deflection is uniform. That is, the discharge amount is adjusted so as to be opposite to the bending of the base material.

ここで、吐出量調整機構12を使用する撓み量の閾値について説明する。この調整機構は合剤重量ばらつきを低減するためのものであり、基材1の撓み量及び塗布ギャップが安定していれば使用する必要はなく、一定以上撓み量ばらつきが発生した場合に使用すればよい。今回、本発明者は、裏面合剤重量ばらつき(幅方向で合剤重量の最大値から最小値を引いた値で幅方向の合剤重量の平均値を除した値)として4%を閾値として設定した。これは表面合剤層の重量ばらつきの実力値であり、裏面合剤層を表面同等の精度で形成することにより高品位の電極板9が得られる。なお、この閾値は高精度の電極板9が得られるのであれば4%に限定されるものではない。そして、この合剤重量ばらつきと基材の撓み量との関係性について、検証した結果、合剤重量ばらつき4%を満たすには撓み量のばらつきを20μm以内に抑える必要があることがわかった。
したがって、吐出量調整機構を使用する基材の撓み量ばらつきの閾値として20μm以上と設定している。なお、この目標値は高精度の電極板9が得られるのであれば20μm以上に限定されるものではない。
Here, the threshold value of the bending amount using the ejection amount adjusting mechanism 12 will be described. This adjusting mechanism is for reducing the variation in the mixture weight, and it is not necessary to use it if the amount of deflection of the base material 1 and the coating gap are stable. Good. This time, the present inventor set a threshold value of 4% as the back surface mixture weight variation (value obtained by dividing the average value of the mixture weight in the width direction by the value obtained by subtracting the minimum value from the maximum value of the mixture weight in the width direction). Set. This is an actual value of the variation in weight of the surface mixture layer, and the high-quality electrode plate 9 can be obtained by forming the back surface mixture layer with the same accuracy as the surface. The threshold value is not limited to 4% as long as the highly accurate electrode plate 9 can be obtained. Then, as a result of verifying the relationship between the variation in the mixture weight and the bending amount of the base material, it was found that the variation in the bending amount needs to be suppressed to 20 μm or less to satisfy the variation 4% in the mixture weight.
Therefore, the threshold value of the variation in the bending amount of the base material using the discharge amount adjusting mechanism is set to 20 μm or more. The target value is not limited to 20 μm or more as long as the electrode plate 9 with high accuracy can be obtained.

図4は、基材1の撓み量算出および吐出量調整に関するフローチャートである。
(1)第1の変位計10により合剤塗布前の基材1の変位(Z1a)を計測する(S01)。表面合剤層の形成前なので、基材1自体の変位が計測される。
(2)第1の変位計10により合剤塗布後の表面合剤層4の変位(Z1b)を計測する(S02)。
(3)表面合剤層4の厚みT1を式(Z1b−Z1a)にて算出する(S03)。
(4)第2の変位計11により合剤塗布前の基材1の変位(Z2a)を計測する(S04)。
(5)第2の変位計11により合剤塗布後の表面合剤層4の変位(Z2b)を計測する(S05)。
(6)基材1の撓みも含めた表面合剤層4の厚みT2を式(Z2b−Z2a)にて算出する(S06)。
(7)基材の撓み量(D)を式(T2−T1)により算出する(S07)。なお、基材の幅方向(X方向)で少なくとも3箇所以上で基材の撓みを算出することが好ましい。
(8)基材1の幅方向(X方向)での撓み量の最大値と最小値との差(DMax−Dmin)が20μm以上であるか判断する(S08)。この撓み量の最大値と最小値との差(DMax−Dmin)を撓み量ばらつきという。
(9)上記撓み量ばらつきが20μm以上の場合には、幅方向(X方向)の撓み量の差異に応じて裏面塗布用ダイ6に備えられている吐出量調整機構12により合剤スラリーの吐出量を調整する(S09)。
(10)その後、さらに変位計測及び吐出量調整に戻る(S10)。この場合には、ステップS01及びS04に戻る。
(11)一方、上記撓み量ばらつきが20μm未満の場合には調整完了となる(S11)なお、この場合にも変位計測及び吐出量調整に戻るようにしてもよい。
以上によって、幅方向(X方向)についての基材1の撓み量のばらつき及び基材1の表面及び裏面の合剤重量のばらつき低減が実現できる。
FIG. 4 is a flowchart regarding the calculation of the amount of bending of the base material 1 and the adjustment of the discharge amount.
(1) The displacement (Z1a) of the base material 1 before application of the mixture is measured by the first displacement meter 10 (S01). Since the surface mixture layer is not yet formed, the displacement of the base material 1 itself is measured.
(2) The displacement (Z1b) of the surface mixture layer 4 after application of the mixture is measured by the first displacement meter 10 (S02).
(3) The thickness T1 of the surface mixture layer 4 is calculated by the formula (Z1b-Z1a) (S03).
(4) The displacement (Z2a) of the base material 1 before application of the mixture is measured by the second displacement meter 11 (S04).
(5) The displacement (Z2b) of the surface mixture layer 4 after the mixture is applied is measured by the second displacement meter 11 (S05).
(6) The thickness T2 of the surface mixture layer 4 including the bending of the base material 1 is calculated by the formula (Z2b-Z2a) (S06).
(7) The flexure amount (D) of the base material is calculated by the formula (T2-T1) (S07). In addition, it is preferable to calculate the bending of the base material at least at three or more positions in the width direction (X direction) of the base material.
(8) It is determined whether or not the difference (DMax-Dmin) between the maximum value and the minimum value of the bending amount of the base material 1 in the width direction (X direction) is 20 μm or more (S08). The difference (DMax-Dmin) between the maximum value and the minimum value of the bending amount is called the bending amount variation.
(9) When the variation of the deflection amount is 20 μm or more, the mixture amount slurry is ejected by the ejection amount adjusting mechanism 12 provided in the back surface coating die 6 according to the difference in the deflection amount in the width direction (X direction). The amount is adjusted (S09).
(10) After that, the process returns to displacement measurement and discharge amount adjustment (S10). In this case, the process returns to steps S01 and S04.
(11) On the other hand, if the variation in the deflection amount is less than 20 μm, the adjustment is completed (S11). In this case, the displacement measurement and the ejection amount adjustment may be returned to.
As described above, it is possible to reduce variations in the amount of bending of the base material 1 in the width direction (X direction) and variations in the weight of the mixture on the front and back surfaces of the base material 1.

<両面塗布方法>
図5は、実施の形態1に係る両面塗布方法のフローチャートである。実施の形態1に係る両面塗布方法について、図5を用いて説明する。
(a)バックアップロール2で支持している表面合剤層を形成前の基材1の変位を搬送方向と交差する幅方向について少なくとも2点で計測する(S21)。
(b)基材1を挟んで裏面塗布用ダイ6と対向する位置から、表面合剤層及び裏面合剤層の形成前の基材1の変位を幅方向について少なくとも2点で計測する(S22)。
(c)バックアップロール2で支持している基材1の表面に表面塗布用ダイ3によって合剤スラリーを塗布して表面合剤層4を形成する(S23)。基材1は、巻出機(図示しない)から供給される。
(d)バックアップロール2で支持している表面合剤層4を形成後の基材1の表面合剤層の変位を搬送方向(Y方向)と交差する幅方向(X方向)について少なくとも2点で計測する(S24)。この場合、基材1は、バックアップロール2で支持しているので、基材1の撓みを考慮しなくてよい。そこで、表面合剤層を形成前に計測した基材1の変位及び表面合剤層4の形成後に計測した表面合剤層4の変位から表面合剤層4の厚みを算出できる。
(e)基材1の裏面に裏面塗布用ダイ6によって合剤スラリーを塗布して裏面合剤層7を形成する(S25)。この場合には、図3Bに示されるように、基材1を支持できないので、表面合剤層4の重みで基材1が中凹状に撓む。そこで幅方向について合剤スラリーの吐出量を調整しない場合には裏面合剤層7は、基材1の中凹状の形状に合わせて形成される。
(f)基材1を挟んで裏面塗布用ダイ6と対向する位置から、表面合剤層4及び裏面合剤層7の形成後の基材1の撓みを含む表面合剤層4の変位を幅方向(X方向)について少なくとも2点で計測する(S26)。この場合、表面合剤層4及び裏面合剤層7の形成前後の基材の変位及び基材の撓みを含む表面合剤層4の変位を計測することで、基材1の撓みを含む表面合剤層4の厚みを算出できる。
(g)バックアップロール2で支持している表面合剤層4の形成前後に計測した基材1の変位と、表面合剤層4の変位とに基づいて、幅方向(X方向)についての表面合剤層の厚みを算出する(S27)。
(h)表面合剤層4及び裏面合剤層7の形成前後に計測した基材1の変位と基材1の撓みを含む表面合剤層4の変位と、に基づいて、幅方向(X方向)についての基材1の撓みを含む表面合剤層の厚みを算出する(S28)。
(i)表面合剤層の厚みと基材1の撓みを含む表面合剤層の厚みとに基づいて幅方向(X方向)についての基材1の撓みを算出し、算出した幅方向についての基材1の撓みと相反するように、裏面塗布用ダイ6からの幅方向(X方向)についての合剤スラリーの吐出量を制御する(S29)。
(f)表面合剤層4及び裏面合剤層7を有する基材1を乾燥させる(S30)。
以上によって、表面合剤層4及び裏面合剤層7を有する基材1である電極板9を形成できる。この場合、幅方向(X方向)についての基材1の撓み量のばらつきに応じて合剤スラリーの吐出量を調整できるので、基材1の表面及び裏面の合剤重量のばらつき低減を実現できる。
<Double-sided coating method>
FIG. 5 is a flowchart of the double-sided coating method according to the first embodiment. The double-sided coating method according to the first embodiment will be described with reference to FIG.
(A) The displacement of the base material 1 before forming the surface mixture layer supported by the backup roll 2 is measured at at least two points in the width direction intersecting the transport direction (S21).
(B) From the position facing the back surface coating die 6 with the base material 1 interposed therebetween, the displacement of the base material 1 before the formation of the front surface mixture layer and the back surface mixture layer is measured at at least two points in the width direction (S22). ).
(C) The surface mixture die 4 is applied to the surface of the substrate 1 supported by the backup roll 2 to form the surface mixture layer 4 (S23). The base material 1 is supplied from an unwinder (not shown).
(D) At least two displacements of the surface mixture layer of the base material 1 after forming the surface mixture layer 4 supported by the backup roll 2 in the width direction (X direction) intersecting the transport direction (Y direction). Is measured (S24). In this case, since the base material 1 is supported by the backup roll 2, the bending of the base material 1 need not be considered. Therefore, the thickness of the surface mixture layer 4 can be calculated from the displacement of the base material 1 measured before the formation of the surface mixture layer and the displacement of the surface mixture layer 4 measured after the formation of the surface mixture layer 4.
(E) The back surface mixture layer 7 is formed by applying the material mixture slurry to the back surface of the substrate 1 by the back surface coating die 6 (S25). In this case, as shown in FIG. 3B, since the base material 1 cannot be supported, the weight of the surface mixture layer 4 causes the base material 1 to bend in a concave shape. Therefore, when the discharge amount of the mixture slurry is not adjusted in the width direction, the back surface mixture layer 7 is formed according to the concave shape of the base material 1.
(F) From the position facing the back surface coating die 6 with the base material 1 interposed therebetween, the displacement of the front surface material mixture layer 4 including the bending of the base material 1 after the formation of the front surface material mixture layer 4 and the back surface material mixture layer 7 is performed. At least two points are measured in the width direction (X direction) (S26). In this case, by measuring the displacement of the surface mixture layer 4 including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer 4 and the back surface mixture layer 7, the surface including the deflection of the base material 1 is measured. The thickness of the mixture layer 4 can be calculated.
(G) The surface in the width direction (X direction) based on the displacement of the base material 1 measured before and after the formation of the surface mixture layer 4 supported by the backup roll 2 and the displacement of the surface mixture layer 4. The thickness of the mixture layer is calculated (S27).
(H) Based on the displacement of the base material 1 measured before and after the formation of the front surface mixture layer 4 and the back surface mixture layer 7 and the displacement of the front surface mixture layer 4 including the bending of the base material 1, the width direction (X The thickness of the surface mixture layer including the bending of the base material 1 in the (direction) is calculated (S28).
(I) The deflection of the substrate 1 in the width direction (X direction) is calculated based on the thickness of the surface mixture layer and the thickness of the surface mixture layer including the deflection of the substrate 1, and the calculated width direction is calculated. The discharge amount of the mixture slurry in the width direction (X direction) from the back surface coating die 6 is controlled so as to conflict with the bending of the base material 1 (S29).
(F) The base material 1 having the front surface mixture layer 4 and the back surface mixture layer 7 is dried (S30).
As described above, the electrode plate 9 which is the base material 1 having the front surface mixture layer 4 and the back surface mixture layer 7 can be formed. In this case, since the discharge amount of the mixture slurry can be adjusted according to the variation in the bending amount of the base material 1 in the width direction (X direction), it is possible to reduce the variation in the mixture weight on the front surface and the back surface of the base material 1. .

以下、実施例を用いてさらに詳細に説明する。 Hereinafter, it will be described in more detail with reference to examples.

(実施例1)
合剤スラリーとして、人造黒鉛を100重量部、バインダーとしてスチレン−ブタジエン共重合体ゴム粒子分散体を負極活物質100重量部に対して2.5重量部(バインダーの固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを負極活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌、混練し作製した。
(Example 1)
As a mixture slurry, 100 parts by weight of artificial graphite and 2.5 parts by weight of a styrene-butadiene copolymer rubber particle dispersion as a binder per 100 parts by weight of the negative electrode active material (1 part by weight in terms of binder solid content). Then, carboxymethyl cellulose as a thickener was prepared by stirring and kneading with 1 part by weight of 100 parts by weight of the negative electrode active material and an appropriate amount of water in a double-arm type kneader.

この合剤スラリー及び基材幅300mm、厚み10μmの銅箔基材を使用し、図1に示す両面塗布装置において、ウェット厚み200μm、塗布幅280mm、塗布速度5m/minにて、基材の表面及び裏面に合剤スラリーを塗布した。また、図3のフローチャート図に示す基材の撓み量算出および吐出量調整を行った後に乾燥し、電極板を得た。なお、変位測定にはレーザー変位計(LK−G30、キーエンス製)を用い、基材の幅方向中心部と合剤層端部から10mmの位置の計3箇所に設置し、計測を行った。 Using this mixture slurry and a copper foil base material having a base material width of 300 mm and a thickness of 10 μm, the double-sided coating device shown in FIG. 1 has a wet thickness of 200 μm, a coating width of 280 mm, and a coating speed of 5 m/min. And the mixture slurry was applied to the back surface. Further, after the bending amount of the base material shown in the flowchart of FIG. 3 was calculated and the discharge amount was adjusted, the base material was dried to obtain an electrode plate. A laser displacement meter (LK-G30, manufactured by Keyence Corporation) was used for the displacement measurement, and the measurement was carried out by installing the laser displacement meter at a total of 3 positions of 10 mm from the center of the base material in the width direction and the end of the mixture layer.

作製された電極板において、上記の変位計設置箇所と同じ位置をφ30mmに打ち抜い
た後に、電子天秤にて裏面合剤重量を測定し、幅方向(X方向)についての重量ばらつきを算出した。
In the produced electrode plate, after punching the same position as the above-mentioned displacement gauge installation place into 30 mm in diameter, the backside mixture weight was measured by an electronic balance to calculate the weight variation in the width direction (X direction).

(比較例1)
吐出量調整を行わなかった以外は実施例1に記載と同様に電極板を作製し、幅方向(X方向)についての重量ばらつきの評価を行った。
(Comparative Example 1)
An electrode plate was prepared in the same manner as described in Example 1 except that the discharge amount was not adjusted, and the weight variation in the width direction (X direction) was evaluated.

下記の表1に実施例1および比較例1の基材の幅方向(X方向)についての撓み量ばらつきと作製した電極板の裏面合剤層の重量ばらつきの結果を示す。 Table 1 below shows the results of variations in the amount of bending in the width direction (X direction) of the base materials of Example 1 and Comparative Example 1 and variations in the weight of the back surface material mixture layers of the manufactured electrode plates.

表1から明らかなように実施例1と比較例1では合剤重量ばらつきに明らかな差が現れている。これは、実施例1では基材の撓み量ばらつきに応じてダイの吐出量を調整し、ダイ吐出口と基材との間隔である塗布ギャップが安定化し、幅方向(X方向)で均一な塗布が実現できたと考えられる。 As is clear from Table 1, in Example 1 and Comparative Example 1, there is a clear difference in the mixture weight variation. This is because in Example 1, the discharge amount of the die is adjusted according to the variation in the bending amount of the base material, the coating gap that is the distance between the die discharge port and the base material is stabilized, and the width is uniform in the width direction (X direction). It is considered that the coating was realized.

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。 It should be noted that the present disclosure includes appropriate combination of any of the various embodiments and/or examples described above, and each of the embodiments and/or The effects of the embodiment can be achieved.

本発明に係る両面塗布装置及び両面塗布方法によれば、基材の表裏両面に合剤層を高精度かつ同時に形成可能であり、リチウム二次電池用電極板の低コスト化が実現可能である。 According to the double-sided coating device and the double-sided coating method according to the present invention, it is possible to form a mixture layer on both front and back surfaces of a base material with high precision and at the same time, and it is possible to reduce the cost of an electrode plate for a lithium secondary battery. ..

1 基材
2 バックアップロール
3 表面塗布用ダイ
4 表面合剤層
5 搬送用ロール
6 裏面塗布用ダイ
7 裏面合剤層
8 乾燥炉
9 電極板
10 第1の変位計
11、11a、11b、11c 第2の変位計
12、12a、12b、12c 吐出量調整機構
1 Base Material 2 Backup Roll 3 Surface Coating Die 4 Surface Mixing Layer 5 Conveying Roll 6 Backside Coating Die 7 Backside Mixing Layer 8 Drying Oven 9 Electrode Plate 10 First Displacement Meter 11, 11a, 11b, 11c 2 displacement gauges 12, 12a, 12b, 12c Discharge amount adjusting mechanism

Claims (6)

基材を支持するバックアップロールと、
前記バックアップロールで支持している前記基材の表面に合剤スラリーを塗布して表面合剤層を形成する表面塗布用ダイと、
前記バックアップロールで支持している前記表面合剤層を形成前の前記基材の変位、及び、前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測する第1の変位計と、
前記表面に合剤スラリーを塗布した前記基材を搬送する搬送用ロールと、
前記搬送用ロールで搬送されている前記基材の裏面に合剤スラリーを塗布して裏面合剤層を形成する裏面塗布用ダイと、
前記基材を挟んで前記裏面塗布用ダイと対向して設けられ、前記表面合剤層及び前記裏面合剤層の形成前の前記基材の変位、並びに、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測する第2の変位計と、
前記第1の変位計で計測した前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記第2の変位計で計測した前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御する、吐出量調整機構と、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させる乾燥炉と、
を備えた、両面塗布装置。
A backup roll that supports the base material,
A surface coating die for forming a surface mixture layer by coating a mixture slurry on the surface of the base material supported by the backup roll,
Displacement of the base material before forming the surface mixture layer supported by the backup roll, and displacement of the surface mixture layer after forming the surface mixture layer in the width direction intersecting the transport direction A first displacement meter that measures at least two points,
A transport roll for transporting the base material coated with the mixture slurry on the surface,
A back surface coating die that forms a back surface material mixture layer by applying a material mixture slurry to the back surface of the base material that is being transported by the transport roll,
Displacement of the base material before the formation of the front surface mixture layer and the back surface mixture layer, and the front surface mixture layer and the back surface mixture are provided so as to face the back surface coating die with the base material interposed therebetween. A second displacement meter that measures the displacement of the surface mixture layer including the bending of the base material after the formation of the agent layer at at least two points in the width direction;
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer measured by the first displacement meter, and the displacement of the base material measured by the second displacement meter and the The thickness of the surface mixture layer including the deflection of the substrate is calculated from the displacement of the surface mixture layer including the deflection of the substrate, and the surface mixture including the thickness of the surface mixture layer and the deflection of the substrate. Based on the thickness of the agent layer, the deflection of the base material in the width direction is calculated, and the width from the back surface coating die is opposite to the calculated deflection of the base material in the width direction. A discharge amount adjusting mechanism for controlling the discharge amount of the mixture slurry in the direction,
A drying oven for drying the base material having the front surface mixture layer and the back surface mixture layer,
A double-sided coating device equipped with.
前記第1及び第2の変位計は、前記幅方向について中央と両端とを含む少なくとも3点で合計厚さを計測する、請求項1に記載の両面塗布装置。 The double-sided coating device according to claim 1, wherein the first and second displacement gauges measure the total thickness at at least three points including the center and both ends in the width direction. 前記吐出量調整機構は、前記幅方向についての前記基材の撓みの最大値と最小値との差が20μm以上の場合に前記裏面塗布用ダイからの合剤スラリーの吐出量を制御する、請求項1又は2に記載の両面塗布装置。 The discharge amount adjusting mechanism controls the discharge amount of the mixture slurry from the back surface coating die when the difference between the maximum value and the minimum value of the bending of the base material in the width direction is 20 μm or more. Item 3. The double-sided coating device according to Item 1 or 2. バックアップロールで支持している表面合剤層を形成前の基材の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び裏面合剤層の形成前の前記基材の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記基材の表面に表面塗布用ダイによって合剤スラリーを塗布して表面合剤層を形成するステップと、
前記バックアップロールで支持している前記表面合剤層を形成後の前記表面合剤層の変位を搬送方向と交差する幅方向について少なくとも2点で計測するステップと、
前記基材の裏面に裏面塗布用ダイによって合剤スラリーを塗布して裏面合剤層を形成するステップと、
前記基材を挟んで裏面塗布用ダイと対向する位置から、前記表面合剤層及び前記裏面合剤層の形成後の前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について少なくとも2点で計測するステップと、
前記バックアップロールで支持している前記表面合剤層を形成前後の前記基材の変位及び前記表面合剤層の変位から前記表面合剤層の厚みを算出し、前記基材を挟んで前記裏面塗布用ダイと対向する位置から計測した前記表面合剤層及び前記裏面合剤層の形成前後の前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位から前記基材の撓みを含む前記表面合剤層の厚みを算出し、前記表面合剤層の厚みと前記基材の撓みを含む前記表面合剤層の厚みとに基づいて、前記幅方向についての前記基材の撓みを算出し、算出した前記幅方向についての前記基材の撓みと相反するように、前記裏面塗布用ダイからの前記幅方向についての合剤スラリーの吐出量を制御するステップと、
前記表面合剤層及び前記裏面合剤層を有する前記基材を乾燥させるステップと、
を含む、両面塗布方法。
Measuring the displacement of the base material before forming the surface mixture layer supported by the backup roll at at least two points in the width direction intersecting the transport direction;
Measuring the displacement of the base material before forming the front surface mixture layer and the back surface mixture layer at at least two points in the width direction from a position facing the back surface coating die with the base material interposed therebetween;
Forming a surface mixture layer by applying a mixture slurry with a surface coating die on the surface of the base material supported by the backup roll;
Measuring the displacement of the surface mixture layer after forming the surface mixture layer supported by the backup roll at least at two points in the width direction intersecting the transport direction;
Forming a back surface mixture layer by applying a material mixture slurry to the back surface of the base material by a back surface coating die,
From the position facing the back surface coating die with the base material sandwiched, the displacement of the front surface mixture layer including the deflection of the base material after the formation of the front surface mixture layer and the back surface mixture layer is performed in the width direction. Measuring at least two points,
The thickness of the surface mixture layer is calculated from the displacement of the base material and the displacement of the surface mixture layer before and after forming the surface mixture layer supported by the backup roll, and the back surface is sandwiched between the base materials. From the displacement of the surface mixture layer including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer and the back surface mixture layer measured from the position facing the coating die of the base material Calculate the thickness of the surface mixture layer including bending, based on the thickness of the surface mixture layer and the thickness of the surface mixture layer including the bending of the base material, of the base material in the width direction. A step of calculating the deflection, and controlling the discharge amount of the mixture slurry in the width direction from the back surface coating die so as to conflict with the calculated deflection of the base material in the width direction,
Drying the substrate having the front surface mixture layer and the back surface mixture layer,
Double-sided coating method including.
前記表面合剤層の形成前後に前記基材の変位及び前記表面合剤層の変位を前記幅方向について中央と両端とを含む少なくとも3点で合計厚さを計測し、
前記表面合剤層及び前記裏面合剤層の形成前後に前記基材の変位及び前記基材の撓みを含む前記表面合剤層の変位を前記幅方向について中央と両端とを含む少なくとも3点で計測する、請求項4に記載の両面塗布方法。
Before and after the formation of the surface mixture layer, the displacement of the substrate and the displacement of the surface mixture layer are measured at a total thickness of at least three points including the center and both ends in the width direction,
The displacement of the surface mixture layer including the displacement of the base material and the deflection of the base material before and after the formation of the front surface mixture layer and the back surface mixture layer is at least three points including the center and both ends in the width direction. The double-sided coating method according to claim 4, which is measured.
前記吐出量の制御は、前記幅方向についての前記基材の撓みの最大値と最小値の差が20μm以上の場合に前記裏面塗布用ダイからの合剤スラリーの吐出量を制御する、請求項4又は5に記載の両面塗布方法。 The control of the discharge amount controls the discharge amount of the mixture slurry from the back surface coating die when the difference between the maximum value and the minimum value of the bending of the base material in the width direction is 20 μm or more. The double-sided coating method according to 4 or 5.
JP2018221462A 2018-11-27 2018-11-27 Double-sided coating device and double-sided coating method Active JP6945146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221462A JP6945146B2 (en) 2018-11-27 2018-11-27 Double-sided coating device and double-sided coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221462A JP6945146B2 (en) 2018-11-27 2018-11-27 Double-sided coating device and double-sided coating method

Publications (2)

Publication Number Publication Date
JP2020087747A true JP2020087747A (en) 2020-06-04
JP6945146B2 JP6945146B2 (en) 2021-10-06

Family

ID=70908647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221462A Active JP6945146B2 (en) 2018-11-27 2018-11-27 Double-sided coating device and double-sided coating method

Country Status (1)

Country Link
JP (1) JP6945146B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131271A1 (en) * 2020-12-18 2022-06-23 富士フイルム株式会社 Method for manufacturing layered body
WO2022131272A1 (en) * 2020-12-18 2022-06-23 富士フイルム株式会社 Method for producing multilayer body
EP4095939A1 (en) * 2021-05-28 2022-11-30 Siemens Aktiengesellschaft Method of fabricating a battery cell
US20230341184A1 (en) * 2021-10-29 2023-10-26 Contemporary Amperex Technology Co., Limited Electrode plate drying device and coating device
WO2024066081A1 (en) * 2022-09-30 2024-04-04 广东利元亨智能装备股份有限公司 Die head apparatus, coating device, and coating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079164A (en) * 2000-09-07 2002-03-19 Matsushita Electric Ind Co Ltd Extrusion type nozzle, coater and method for manufacturing dielectric layer on plasma display panel front surface plate
JP2012225848A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Film thickness distribution measurement device and film formation device
JP2015044138A (en) * 2013-08-27 2015-03-12 株式会社ジェイテクト Web coating device
JP2017079180A (en) * 2015-10-21 2017-04-27 東レエンジニアリング株式会社 Battery electrode plate manufacturing device and battery electrode plate manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079164A (en) * 2000-09-07 2002-03-19 Matsushita Electric Ind Co Ltd Extrusion type nozzle, coater and method for manufacturing dielectric layer on plasma display panel front surface plate
JP2012225848A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Film thickness distribution measurement device and film formation device
JP2015044138A (en) * 2013-08-27 2015-03-12 株式会社ジェイテクト Web coating device
JP2017079180A (en) * 2015-10-21 2017-04-27 東レエンジニアリング株式会社 Battery electrode plate manufacturing device and battery electrode plate manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131271A1 (en) * 2020-12-18 2022-06-23 富士フイルム株式会社 Method for manufacturing layered body
WO2022131272A1 (en) * 2020-12-18 2022-06-23 富士フイルム株式会社 Method for producing multilayer body
EP4095939A1 (en) * 2021-05-28 2022-11-30 Siemens Aktiengesellschaft Method of fabricating a battery cell
US20230341184A1 (en) * 2021-10-29 2023-10-26 Contemporary Amperex Technology Co., Limited Electrode plate drying device and coating device
WO2024066081A1 (en) * 2022-09-30 2024-04-04 广东利元亨智能装备股份有限公司 Die head apparatus, coating device, and coating method

Also Published As

Publication number Publication date
JP6945146B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP6945146B2 (en) Double-sided coating device and double-sided coating method
US9088043B2 (en) Apparatus and method for coating a functional layer
CN104009201B (en) Rolling equipment and thickness measurement system
US7690326B2 (en) System and method for controlling coating width of electrode plate
US8267039B2 (en) Coating apparatus and method of applying coating liquid
JP3848519B2 (en) Battery electrode manufacturing apparatus and battery electrode manufacturing method
CN105336972B (en) Manufacturing equipment and manufacturing method for secondary cell
JP5316904B2 (en) Method for inspecting width of coating film and inspection apparatus used for the inspection method
JP5711031B2 (en) Coating apparatus and coating film forming system
JP2012216375A (en) Coating device and coating film formation system
US9748577B2 (en) Dual coating method for electrode
JP2014065000A (en) Double-sided coating apparatus, double-sided coating method, and film forming system
JP2018167193A (en) Double-sided coating apparatus and coating film formation system
KR20140024207A (en) Method and apparatus for manufacturing electrode for lithium-ion secondary battery and electrode for lithium-ion secondary battery
JP6906194B2 (en) Battery plate manufacturing method and coating equipment
JP2017004608A (en) Electrode plate, storage battery, method for manufacturing electrode plate, and position measuring method
CN106000768B (en) Apparatus for coating, coating method and film form system
JP2014096302A (en) Electrode paste coating device and electrode paste coating method
JP6184819B2 (en) Nozzle adjustment method and double-side coating apparatus
JP2013048995A (en) Coating apparatus, coating film forming system, coating method, and coating film forming method
JP4359989B2 (en) Continuous production equipment for battery plates
KR20170093343A (en) Coating Device of Electrode Mix Having Main Discharging Member and Auxiliary Discharging Member and Method for Coating with the Same
CN114551779A (en) Method for manufacturing electrode and electrode paste coating apparatus
JP2012217947A (en) Coating apparatus, coating method and electrode manufacturing method
JP2016064339A (en) Coater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R151 Written notification of patent or utility model registration

Ref document number: 6945146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151