JP2020086133A - Zoom imaging optical system - Google Patents

Zoom imaging optical system Download PDF

Info

Publication number
JP2020086133A
JP2020086133A JP2018220648A JP2018220648A JP2020086133A JP 2020086133 A JP2020086133 A JP 2020086133A JP 2018220648 A JP2018220648 A JP 2018220648A JP 2018220648 A JP2018220648 A JP 2018220648A JP 2020086133 A JP2020086133 A JP 2020086133A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
refractive power
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018220648A
Other languages
Japanese (ja)
Other versions
JP7134481B2 (en
Inventor
良祐 佐藤
Ryosuke Sato
良祐 佐藤
武久 小山
Takehisa Koyama
武久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2018220648A priority Critical patent/JP7134481B2/en
Publication of JP2020086133A publication Critical patent/JP2020086133A/en
Application granted granted Critical
Publication of JP7134481B2 publication Critical patent/JP7134481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a zoom optical system which features a fixed total length while zooming and focusing, suppressed manufacturing error sensitivity, a small image height change rate while wobbling, good optical performance over an entire range while zooming and focusing, anti-shake functionality, and minimized weight of an anti-shake lens group and focusing lens group.SOLUTION: A zoom imaging optical system comprises a first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, an aperture stop, a fourth lens group having positive refractive power, a fifth lens group having negative refractive power, a sixth lens group having positive refractive power, and a seventh lens group having negative refractive power, in order from an object side to an image side, and is configured such that the first, fifth, and seventh lens groups are stationary relative to the image plane while zooming and that the sixth lens group moves toward the object side along an optical axis when shifting focus from an object at infinity to a nearby object.SELECTED DRAWING: Figure 1

Description

本発明は、デジタルカメラ、ビデオカメラ等の撮像装置に用いられる防振機能を有する変倍結像光学系に関する。 The present invention relates to a variable power imaging optical system having an image stabilizing function used in an image pickup apparatus such as a digital camera or a video camera.

従来、写真用カメラやビデオカメラ等で、変倍時に全長が固定であり、防振機能を有した変倍結像光学系が特許文献1および2に開示されている。 Patent Documents 1 and 2 disclose a variable-magnification image-forming optical system that has a vibration-proof function and has a fixed total length when changing magnification, such as a photographic camera or a video camera.

特開2014−35480号公報JP, 2014-35480, A 特開2015−152665号公報JP-A-2015-152665

一般的に長い焦点距離の光学系(望遠レンズ)は、大型で、高重量のものが多く、全長の小型化が望まれている。なぜなら、フォーカシングレンズ群の重量、および径が大きくなるためであり、合焦速度の高速化や径の小型化に支障をきたしていた。 In general, many optical systems (telephoto lenses) having a long focal length are large and heavy, and miniaturization of the entire length is desired. This is because the weight and diameter of the focusing lens group become large, which hinders high focusing speed and small diameter.

また、望遠端の画角が狭い変倍結像光学系においては、手ぶれなどの振動の影響による撮影画像のぶれが発生しやすいため、光学系の一部のレンズ群(防振レンズ群)を光軸に対して垂直方向に変位させることにより撮影画像のぶれを補正する防振機能を有することが要求されている。さらに、変倍結像光学系において防振機能を有する場合には、防振レンズ群を駆動するためのアクチュエータの大型化を避けるため、防振レンズ群は径が小さく、重量が軽いことが要求される。 Also, in a variable-magnification imaging optical system with a narrow angle of view at the telephoto end, blurring of the captured image is likely to occur due to the effects of vibration such as camera shake, so some lens groups (anti-vibration lens groups) in the optical system It is required to have an anti-vibration function that corrects the blur of a captured image by displacing it in the direction perpendicular to the optical axis. Further, when the variable magnification imaging optical system has an image stabilizing function, it is required that the image stabilizing lens group has a small diameter and a small weight in order to avoid an increase in the size of the actuator for driving the image stabilizing lens group. To be done.

加えて、望遠系では、変倍時に重量バランスが変わることは、撮影時の不具合になるため、可能な限り全長固定型であることが望まれている。従来の全長固定型の変倍結像光学系では、光学系の小型化を図るためには、各レンズ群の屈折力を強めることが考えられる。特に変倍をメインに司る第2レンズ群は、その屈折力により変倍移動量が増減するため、全長の小型化を左右する。しかし小型化のために屈折力を高めると、製造誤差敏感度の悪化を伴うため、屈折力を高めた状態で、実際の製品の光学性能を担保するには、高い加工精度、組み立て調整が必要となり製造コストが上昇する課題が残る。 In addition, in the telephoto system, changing the weight balance during zooming causes a problem during shooting, so it is desired that the length be fixed as much as possible. In the conventional fixed-length variable-magnification imaging optical system, it is conceivable to increase the refractive power of each lens group in order to downsize the optical system. In particular, the second lens group, which mainly controls zooming, increases or decreases the amount of zooming movement due to its refracting power, which affects the downsizing of the entire length. However, if the refracting power is increased for downsizing, the sensitivity to manufacturing error is deteriorated.Therefore, high processing accuracy and assembly adjustment are required to ensure the optical performance of the actual product with the refracting power increased. Therefore, there remains a problem that the manufacturing cost rises.

また、近年では、デジタルスチルカメラを用いた動画撮影が一般的になっている。動画撮影において、被写体に対する合焦状態を維持するために、フォーカスレンズ群を光軸方向に常に微小振動(ウオブリング)させ続けることによりコントラストの変化を常時検出してフォーカスレンズ群の移動方向を決定する方法が多く採用されている。ウオブリングによりフォーカスレンズ群を駆動する場合、フォーカスレンズ群の重量が大きいとフォーカスレンズ群を駆動するためのアクチュエータが大型化し、撮影レンズの小型化・軽量化が困難となってしまう。また、アクチュエータを大型化させずに重量の大きいフォーカスレンズ群を無理にウオブリング駆動させようとすると、アクチュエータから発生する駆動音雑音が動画撮影において音声として記録されてしまうため問題となる。したがって、動画撮影に適応する変倍結像光学系はフォーカスレンズ群の軽量化が要求されている。 In recent years, moving image shooting using a digital still camera has become common. In moving image shooting, the focus lens group is constantly vibrated (wobbling) in the optical axis direction in order to maintain the in-focus state with respect to the subject, thereby constantly detecting a change in contrast and determining the moving direction of the focus lens group. Many methods have been adopted. When the focus lens group is driven by the wobbling, if the weight of the focus lens group is large, the actuator for driving the focus lens group becomes large and it becomes difficult to reduce the size and weight of the taking lens. Further, if the focus lens group having a large weight is forcibly driven by the wobbling without increasing the size of the actuator, driving sound noise generated from the actuator is recorded as a sound in moving image shooting, which is a problem. Therefore, it is required to reduce the weight of the focus lens group in the variable-magnification imaging optical system adapted for shooting moving images.

さらに、このようなフォーカス方式では、ウオブリング時の像高変化率が大きいと、鑑賞者が画面に映る被写体の倍率変動を認識して目障りに感じてしまう問題がある。そのためウオブリング時の像高変化率が小さいフォーカス方式が望まれている。 Further, in such a focus method, if the rate of change in image height at the time of wobbling is large, there is a problem that the viewer recognizes the variation in magnification of the subject on the screen and feels uncomfortable. Therefore, a focus method is desired in which the rate of change in image height during wobbling is small.

特許文献1に開示された光学系は、物体側から順に正、負、正、正の屈折力で構成され、変倍時、フォーカス時に全長固定型の変倍光学系である。また第4レンズ群内を正、負、正の3つの群に分け、中央の負レンズ群を光軸に直行方向に変位させることにより防振機能を実現している。しかしフォーカス方式が、最も口径が大きな第1レンズ群内部を移動させるインナーフォーカス構成としているため、合焦速度の高速化や径の小型化に支障をきたしている。また広角端でのフォーカス時の像高変化率が大きいという課題を有している。さらに変倍を主に司る第2レンズ群の屈折力が高いため、第2レンズ群の残存収差が大きく、製造誤差敏感度が高いという課題を有している。 The optical system disclosed in Patent Document 1 is a variable-magnification optical system that is composed of positive, negative, positive, and positive refracting powers in order from the object side, and has a fixed length during zooming and focusing. The fourth lens group is divided into three groups, positive, negative, and positive, and the center negative lens group is displaced in the orthogonal direction to the optical axis to realize a vibration isolation function. However, since the focus method has an inner focus structure in which the inside of the first lens group having the largest aperture is moved, it is difficult to achieve a high focusing speed and a small diameter. Further, there is a problem that the image height change rate at the time of focusing at the wide-angle end is large. Further, since the second lens group that mainly controls zooming has a high refractive power, there is a problem that the residual aberration of the second lens group is large and the manufacturing error sensitivity is high.

特許文献2に開示された光学系は、物体側から順に正、負、正、正の屈折力で構成され、変倍時、フォーカス時に全長固定型の変倍光学系である。また第4レンズ群内は正の屈折力を持つ第1部分群、負の屈折力を持つ第2部分群、正または負の屈折力を持つ第3部分群に分かれ、第2部分群はフォーカス群であり、無限遠物体から近距離物体へのフォーカス時に像方向へ移動する。さらに第3部分群の最も物体側に、光軸に対して垂直方向に移動することで光学系が振動した際の像のぶれを補正する、正の屈折力の像ぶれ補正レンズ群を有している。フォーカス群に前記第4レンズ群内の第2部分群である負群を用いているため、特にテレ側の至近時の歪曲収差が正方向に悪化するという課題を有している。また変倍を主に司る第2レンズ群の屈折力が高いため、第2レンズ群の残存収差が大きく、製造誤差敏感度が高いという課題を有している。 The optical system disclosed in Patent Document 2 is a variable-magnification optical system that is composed of positive, negative, positive, and positive refracting powers in order from the object side and has a fixed length during zooming and focusing. Further, the fourth lens group is divided into a first partial group having a positive refractive power, a second partial group having a negative refractive power, and a third partial group having a positive or negative refractive power, and the second partial group has a focus. It is a group and moves in the image direction when focusing on an object at infinity to a near object. Further, on the most object side of the third sub-group, there is provided an image blur correction lens group of positive refractive power for correcting the image blur when the optical system vibrates by moving in the direction perpendicular to the optical axis. ing. Since the negative group, which is the second partial group in the fourth lens group, is used as the focus group, there is a problem that the distortion aberration at the telephoto side close to the front becomes worse in the positive direction. Further, since the second lens group, which mainly controls zooming, has a high refractive power, there is a problem that the residual aberration of the second lens group is large and the sensitivity to manufacturing error is high.

本発明は上記問題点に鑑みてなされたものであり、変倍時、フォーカス時に全長固定型であり、製造誤差敏感度を抑え、ウオブリング時の像高変化率が少なく、変倍時、フォーカス時全域にわたり、良好な光学性能を備え、防振機能を有し、防振レンズ群及びフォーカスレンズ群の重量を抑制した、変倍結像光学系を提供することを目的とする。 The present invention has been made in view of the above problems, is a fixed length type during zooming and focusing, suppresses manufacturing error sensitivity, has a small image height change rate during wobbling, and is capable of zooming and focusing. An object of the present invention is to provide a variable power imaging optical system that has good optical performance over the entire area, has an image stabilizing function, and suppresses the weight of the image stabilizing lens group and the focus lens group.

上記課題を解決するための第1の発明は、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動することを特徴とする変倍結像光学系とした。 A first aspect of the invention for solving the above-mentioned problems is, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. , An aperture stop, a fourth lens unit having a positive refracting power, a fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, The first, fifth, and seventh lens groups are fixed with respect to the image plane, and the sixth lens group moves toward the object side along the optical axis when focusing from an object at infinity to a near object. A variable-magnification imaging optical system is used.

また、第2の発明は、前記第2レンズ群は、物体側から像側へ順に、物体側に凸の負の単レンズからなる第2aレンズ群と負の屈折力の第2bレンズ群から構成され、第2aレンズ群と第2bレンズ群の空気間隔が第2レンズ群を構成する空気間隔の内、最も大きくなり、第2aレンズ群の焦点距離と第2レンズ群の焦点距離が以下の条件式を満足することを特徴とする第1の発明に記載の変倍結像光学系とした。
(1)0.35<G2at/G2t<0.80
(2)1.40<G2af/G2f<5.40
ただし
G2t:第2レンズ群の合成厚
G2at:第2aレンズ群と第2bレンズ群に挟まれた空気間隔
G2f:第2レンズ群の焦点距離
G2af:第2aレンズ群の焦点距離
In the second invention, the second lens group comprises, in order from the object side to the image side, a second lens group consisting of a negative single lens convex to the object side and a second lens group having a negative refractive power. The air distance between the 2a lens group and the 2b lens group is the largest among the air distances forming the second lens group, and the focal length of the 2a lens group and the focal length of the 2nd lens group satisfy the following conditions. The variable power imaging optical system according to the first invention is characterized by satisfying the formula.
(1) 0.35<G2at/G2t<0.80
(2) 1.40<G2af/G2f<5.40
However, G2t: combined thickness of the second lens group G2at: air distance between the 2a lens group and the 2b lens group G2f: focal length of the second lens group G2af: focal length of the 2a lens group

また、第3の発明は、前記第6レンズ群は、無限遠物体から近距離物体へのフォーカシングの際、物体方向へ移動し、以下の条件式を満足することを特徴とする第1または第2の発明に記載の変倍結像光学系とした。
ただし
(3)0.19<f6/ft<0.65
(4)1.20<MR^2×(1−M6^2)<6.00
(5)0.19<M6<0.75
ft:望遠端における物体距離無限遠時の焦点距離
f6:前記第6レンズ群G6の焦点距離
M6:物体距離無限遠時の前記第6レンズ群G6の横倍率
MR:物体距離無限遠時の前記第7レンズ群G7の横倍率
A third aspect of the invention is characterized in that the sixth lens group moves toward the object at the time of focusing from an object at infinity to a near object, and satisfies the following conditional expression: The variable power imaging optical system described in the second aspect of the invention is used.
However, (3) 0.19<f6/ft<0.65
(4) 1.20<MR^2*(1-M6^2)<6.00
(5) 0.19<M6<0.75
ft: focal length when the object distance is infinity at the telephoto end f6: focal length of the sixth lens group G6 M6: lateral magnification of the sixth lens group G6 when the object distance is infinity MR: the object distance at infinity Lateral magnification of seventh lens group G7

また、第4の発明は、前記第7レンズ群は、以下の条件式を満足することを特徴とする第1乃至第3の発明のいずれかに記載の変倍結像光学系とした。
(6)−0.85<f7/ft<−0.17
ただし
f7:前記第7レンズ群の焦点距離
ft:望遠端における物体距離無限遠時の焦点距離
A fourth invention is the variable power imaging optical system according to any one of the first to third inventions, characterized in that the seventh lens group satisfies the following conditional expression.
(6)-0.85<f7/ft<-0.17
Where f7: focal length of the seventh lens group ft: object distance at the telephoto end, focal length at infinity

また、第5の発明は、前記第7レンズ群は、物体側から像側へ順に、負の屈折力からなる第7aレンズ群と正の屈折力の第7bレンズ群から構成され、第7aレンズ群を光軸に対して垂直方向に変位させることによって防振を行うことを特徴とする第1乃至第4の発明のいずれかに記載の変倍結像光学系とした。 In a fifth aspect of the present invention, the seventh lens group comprises, in order from the object side to the image side, a 7a lens group having negative refracting power and a 7b lens group having positive refracting power. The variable magnification imaging optical system according to any one of the first to fourth inventions is characterized in that image stabilization is performed by displacing the group in a direction perpendicular to the optical axis.

また、第6の発明は、前記第2aレンズ群は、以下の条件式を満足することを特徴とする第2乃至第5の発明のいずれかに記載の変倍結像光学系とした。
(7)−8.0<(G2a2+G2a1)/(G2a2−G2a1)<−1.5
ただし
G2a1:前記第2aレンズ群の物体側の曲率半径
G2a2:前記第2aレンズ群の像側の曲率半径
A sixth invention is the variable power imaging optical system according to any one of the second to fifth inventions, characterized in that the second lens group satisfies the following conditional expression.
(7)-8.0<(G2a2+G2a1)/(G2a2-G2a1)<-1.5
Where G2a1: radius of curvature of the 2a lens group on the object side G2a2: radius of curvature of the 2a lens group on the image side

本発明によれば、変倍時、フォーカス時に全長固定型であり、製造誤差敏感度を抑え、ウオブリング時の像高変化率が少なく、変倍時、フォーカス時全域にわたり、良好な光学性能を備え、防振機能を有し、防振レンズ群及びフォーカスレンズ群の重量を抑制した、変倍結像光学系を提供することが可能となる。 According to the present invention, the total length is fixed during zooming and focusing, the sensitivity to manufacturing error is suppressed, the rate of change in image height during wobbling is small, and good optical performance is provided throughout zooming and focusing. Thus, it becomes possible to provide a variable power imaging optical system having an image stabilizing function and suppressing the weight of the image stabilizing lens group and the focus lens group.

本発明の変倍結像光学系の実施例1に係るレンズ構成図である。It is a lens block diagram which concerns on Example 1 of the variable power imaging optical system of this invention. 実施例1の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。6 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 1 when the wide-angle end is focused at infinity. FIG. 実施例1の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。7 is a longitudinal aberration diagram of the variable power imaging optical system of Example 1 when the intermediate focal length is focused at infinity. FIG. 実施例1の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。7 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 1 when the telephoto end is focused at infinity. FIG. 実施例1の変倍結像光学系の広角端の1m合焦時における縦収差図である。7 is a longitudinal aberration diagram of the variable power imaging optical system of Example 1 when focused at 1 m at the wide-angle end. FIG. 実施例1の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。9 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 1 when the intermediate focal length is 1 m in focus. FIG. 実施例1の変倍結像光学系の望遠端の1m合焦時における縦収差図である。9 is a longitudinal aberration diagram of the variable power imaging optical system of Example 1 when focused at 1 m at the telephoto end. FIG. 実施例1の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 6 is a lateral aberration diagram at the time of wide angle end focusing on infinity of the variable power imaging optical system of Example 1; 実施例1の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。9 is a lateral aberration diagram at the time of focusing on an intermediate focal length of the variable power imaging optical system of Example 1 at infinity. FIG. 実施例1の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 9 is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system of Example 1 when focused on infinity. 実施例1の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 1 at the time of 0.4° vibration isolation. 実施例1の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。9 is a lateral aberration diagram at 0.4° vibration isolation at the time of focusing on an intermediate focal length of the variable magnification imaging optical system of Example 1 at infinity. FIG. 実施例1の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 1 at the time of 0.4° vibration isolation. 本発明の変倍結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram which concerns on Example 2 of the variable power imaging optical system of this invention. 実施例2の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 2 at the wide-angle end when focused on infinity. FIG. 実施例2の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 2 when the intermediate focal length is focused at infinity. FIG. 実施例2の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。FIG. 9 is a longitudinal aberration diagram at the telephoto end of the variable power imaging optical system of Example 2 when focused on infinity. 実施例2の変倍結像光学系の広角端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 2 when focused at 1 m at the wide-angle end. FIG. 実施例2の変倍結像光学系の中間焦点距離の1m合焦時に縦収差図である。FIG. 10 is a longitudinal aberration diagram of the variable power imaging optical system of Example 2 when focused at 1 m of the intermediate focal length. 実施例2の変倍結像光学系の望遠端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 2 when focused at 1 m at the telephoto end. FIG. 実施例2の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 9 is a lateral aberration diagram at the time of wide-angle end focusing on infinity of the variable power imaging optical system of Example 2; 実施例2の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing on an intermediate focal length of the variable power imaging optical system of Example 2 at infinity. 実施例2の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 9 is a lateral aberration diagram at the telephoto end of the variable power imaging optical system of Example 2 when focused on infinity. 実施例2の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。10 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 2 at the time of 0.4° vibration isolation. FIG. 実施例2の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the intermediate focal length of the variable power imaging optical system of Example 2 at the time of 0.4° vibration isolation. 実施例2の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 2 at the time of 0.4° vibration isolation. 本発明の変倍結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram which concerns on Example 3 of the variable power imaging optical system of this invention. 実施例3の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 3 when focused at infinity at the wide-angle end. FIG. 実施例3の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 3 when the intermediate focal length is focused at infinity. FIG. 実施例3の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。FIG. 16 is a longitudinal aberration diagram at the telephoto end of the variable power imaging optical system of Example 3 when focused on infinity. 実施例3の変倍結像光学系の広角端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 3 when focused at 1 m at the wide angle end. FIG. 実施例3の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。FIG. 16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 3 when focused on the intermediate focal length of 1 m. 実施例3の変倍結像光学系の望遠端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 3 when focused at 1 m at the telephoto end. FIG. 実施例3の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the wide-angle end when focused on infinity, in the variable power imaging optical system of Example 3; 実施例3の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。FIG. 13 is a lateral aberration diagram at the time of focusing on an intermediate focal length of the variable power imaging optical system of Example 3 at infinity. 実施例3の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the telephoto end of the variable power imaging optical system of Example 3 when focused on infinity. 実施例3の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 3 at the time of 0.4° vibration isolation. 実施例3の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at 0.4° vibration reduction at infinity focusing of the intermediate focal length of the variable power imaging optical system of Example 3. 実施例3の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 9 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 3 at the time of 0.4° vibration isolation. 本発明の変倍結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram which concerns on Example 4 of the variable power imaging optical system of this invention. 実施例4の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 4 when focused at infinity at the wide-angle end. FIG. 実施例4の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 4 when the intermediate focal length is focused at infinity. FIG. 実施例4の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 4 when focused at infinity at the telephoto end. FIG. 実施例4の変倍結像光学系の広角端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 4 when focused at 1 m at the wide-angle end. FIG. 実施例4の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。FIG. 16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 4 when focused on the intermediate focal length of 1 m. 実施例4の変倍結像光学系の望遠端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 4 when focused at 1 m at the telephoto end. FIG. 実施例4の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the time of wide-angle end focusing on infinity of the variable power imaging optical system of Example 4; 実施例4の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the time when the intermediate focal length of the variable power imaging optical system of Example 4 is focused at infinity. 実施例4の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。16 is a lateral aberration diagram at the telephoto end of the variable-magnification imaging optical system of Example 4 upon focusing on infinity. FIG. 実施例4の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 4 at the time of 0.4° vibration isolation. 実施例4の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.4° image stabilization when the intermediate focal length of the variable power imaging optical system of Example 4 is focused at infinity. 実施例4の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 4 at the time of 0.4° vibration isolation. 本発明の変倍結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram which concerns on Example 5 of the variable power imaging optical system of this invention. 実施例5の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable magnification imaging optical system of Example 5 when the wide-angle end is focused at infinity. FIG. 実施例5の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 5 when the intermediate focal length is focused at infinity. FIG. 実施例5の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 5 when focused on infinity at the telephoto end. FIG. 実施例5の変倍結像光学系の広角端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 5 when focused at 1 m at the wide-angle end. FIG. 実施例5の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。FIG. 16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 5 when focused on the intermediate focal length of 1 m. 実施例5の変倍結像光学系の望遠端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 5 when focused at 1 m at the telephoto end. FIG. 実施例5の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the time of wide-angle end focusing on infinity of the variable magnification imaging optical system of Example 5; 実施例5の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。19 is a lateral aberration diagram at infinity focusing of the intermediate focal length of the variable power imaging optical system of Example 5. FIG. 実施例5の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the telephoto end of the variable power imaging optical system of Example 5 when focused on infinity. 実施例5の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。19 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 5 at the time of 0.4° vibration isolation. FIG. 実施例5の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing at infinity at the intermediate focal length of the variable power imaging optical system of Example 5 at the time of 0.4° vibration isolation. 実施例5の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 5 at the time of 0.4° vibration isolation. 本発明の変倍結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram which concerns on Example 6 of the variable power imaging optical system of this invention. 実施例6の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused at infinity at the wide-angle end. FIG. 実施例6の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused on an intermediate focal length at infinity. FIG. 実施例6の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused on infinity at the telephoto end. FIG. 実施例6の変倍結像光学系の広角端の1m合焦時における縦収差図である。19 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused at 1 m at the wide angle end. FIG. 実施例6の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused on the intermediate focal length of 1 m. 実施例6の変倍結像光学系の望遠端の1m合焦時における縦収差図である。19 is a longitudinal aberration diagram of the variable power imaging optical system of Example 6 when focused at 1 m at the telephoto end. FIG. 実施例6の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the time of wide angle end focusing on infinity of the variable power imaging optical system of Example 6; 実施例6の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。16 is a lateral aberration diagram at infinity focusing of the intermediate focal length of the variable power imaging optical system of Example 6. FIG. 実施例6の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the telephoto end of the variable-magnification imaging optical system of Example 6 upon focusing on infinity. 実施例6の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。16 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 6 at the time of 0.4° image stabilization. 実施例6の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。FIG. 19 is a lateral aberration diagram at the time of focusing at infinity at the intermediate focal length of the variable power imaging optical system of Example 6 at the time of 0.4° vibration isolation. 実施例6の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。16 is a lateral aberration diagram at the time of focusing at infinity at the telephoto end of the variable power imaging optical system of Example 6 at the time of 0.4° vibration isolation. FIG. 本発明の変倍結像光学系の実施例7に係るレンズ構成図である。It is a lens block diagram which concerns on Example 7 of the variable power imaging optical system of this invention. 実施例7の変倍結像光学系の広角端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused at infinity at the wide-angle end. FIG. 実施例7の変倍結像光学系の中間焦点距離の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused on an intermediate focal length at infinity. FIG. 実施例7の変倍結像光学系の望遠端の無限遠合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused on infinity at the telephoto end. FIG. 実施例7の変倍結像光学系の広角端の1m合焦時における縦収差図である。19 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused at 1 m at the wide-angle end. FIG. 実施例7の変倍結像光学系の中間焦点距離の1m合焦時における縦収差図である。FIG. 19 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused on the intermediate focal length of 1 m. 実施例7の変倍結像光学系の望遠端の1m合焦時における縦収差図である。16 is a longitudinal aberration diagram of the variable power imaging optical system of Example 7 when focused at 1 m at the telephoto end. FIG. 実施例7の変倍結像光学系の広角端の無限遠合焦時における横収差図である。FIG. 19 is a lateral aberration diagram at the wide-angle end when focused on infinity, in the variable power imaging optical system of Example 7; 実施例7の変倍結像光学系の中間焦点距離の無限遠合焦時における横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing on an intermediate focal length of the variable power imaging optical system of Example 7 at infinity. 実施例7の変倍結像光学系の望遠端の無限遠合焦時における横収差図である。FIG. 19 is a lateral aberration diagram at the telephoto end of the variable-magnification imaging optical system of Example 7 at the time of focusing at infinity. 実施例7の変倍結像光学系の広角端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 19 is a lateral aberration diagram at the time of focusing at infinity at the wide-angle end of the variable power imaging optical system of Example 7 at the time of 0.4° vibration isolation. 実施例7の変倍結像光学系の中間焦点距離の無限遠合焦時における0.4°防振時の横収差図である。19 is a lateral aberration diagram at the time of focusing at infinity at the intermediate focal length of the variable power imaging optical system of Example 7 at the time of 0.4° vibration isolation. FIG. 実施例7の変倍結像光学系の望遠端の無限遠合焦時における0.4°防振時の横収差図である。FIG. 16 is a lateral aberration diagram at the time of focusing by infinity at the telephoto end of the variable power imaging optical system of Example 7 at the time of 0.4° vibration isolation.

本発明に係る変倍結像光学系は、図1、図14、図27、図40、図53、図66、図79の各実施例のレンズ構成図に示されるとおり、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 The variable power imaging optical system according to the present invention, as shown in the lens configuration diagrams of the respective examples of FIGS. 1, 14, 27, 40, 53, 66, and 79, changes from the object side to the image side. In order of positive refractive power first lens group, negative refractive power second lens group, positive refractive power third lens group, aperture stop, positive refractive power fourth lens group, negative refractive power Of the fifth lens group, the sixth lens group of positive refractive power, and the seventh lens group of negative refractive power, the first, fifth, and seventh lens groups are fixed with respect to the image plane during zooming, When focusing from an object at infinity to a near object, the sixth lens group moves to the object side along the optical axis.

正の屈折力の前記第1レンズ群と負の屈折力の前記第2レンズ群は、広角端から望遠端への変倍時に、その間隔を増加させることにより変倍結像光学系の主な変倍効果を得ている。 The first lens group having a positive refracting power and the second lens group having a negative refracting power increase the distance between the wide-angle end and the telephoto end, thereby increasing the distance between them. It has a scaling effect.

正の屈折力の前記第3レンズ群は、負の屈折力の前記第2レンズ群で発散された光束を略平行に射出し、後続の開口絞りに入射させる。これにより開口絞り機構の光軸方向へのシフト誤差に対し、露出誤差を低減させることが可能となる。 The third lens group having a positive refracting power emits the light flux diverged by the second lens group having a negative refracting power substantially in parallel and makes it enter the subsequent aperture stop. This makes it possible to reduce the exposure error with respect to the shift error of the aperture stop mechanism in the optical axis direction.

正の屈折力の前記第4レンズ群は、その物体側に配置された正の屈折力の前記第3レンズ群により略平行光になったアフォーカル光束が入射する。この間隔を調整することにより、球面収差を悪化させずに、非点収差、調整することが可能となる。 The fourth lens group having a positive refracting power receives an afocal light beam which is substantially parallel light by the third lens group having a positive refracting power arranged on the object side. By adjusting this distance, it becomes possible to adjust the astigmatism without deteriorating the spherical aberration.

負の屈折力の前記第5レンズ群は、前記第1レンズ群から前記第4レンズ群までの収斂系に対し拡大系とすることにより、前記第5レンズ群までの系をテレフォト系の構成とすることにより全長を縮小することが可能となる。 The fifth lens group having a negative refractive power is an expansion system for the converging system from the first lens group to the fourth lens group, so that the system up to the fifth lens group has a telephoto system configuration. By doing so, the total length can be reduced.

正の屈折力の前記第6レンズ群は、フォーカスレンズ群として機能する。また広角端から望遠端への変倍時に、像面補償作用も担っている。さらに前記第6レンズ群に収斂光が入射することにより、フォーカス時の球面収差の変動を抑えることができる。また無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。絞りを前記第6レンズ群の物点に見立てた場合、至近時にフォーカスする際に物点が前記第6レンズ群に近づく。これにより前記第6レンズ群に入射する主光線入射角が大きくなる。3次の歪曲収差係数は、近軸主光線入射角の3乗で大きくなる為、前記第6レンズ群自身の負の歪曲収差が増加し、これにより物体距離無限遠時の望遠端全系の正の歪曲収差は、至近時にフォーカスする際に補正される方向になる。さらに、後続するレンズ群に収斂光を入射させることにより、後続レンズ群の先頭にある防振群の径を小さくすることが可能となる。 The sixth lens group having a positive refractive power functions as a focus lens group. It also plays a role of compensating for the image plane during zooming from the wide-angle end to the telephoto end. Further, by making the convergent light incident on the sixth lens group, it is possible to suppress the variation of spherical aberration during focusing. When focusing from an object at infinity to a near object, the sixth lens group moves to the object side along the optical axis. When the diaphragm is regarded as the object point of the sixth lens group, the object point approaches the sixth lens group when focusing at a close distance. As a result, the incident angle of the chief ray incident on the sixth lens group becomes large. The third-order distortion aberration coefficient increases with the cube of the paraxial incident angle of the principal ray, so that the negative distortion aberration of the sixth lens group itself increases, which causes the entire telephoto end system at the infinite object distance. The positive distortion aberration tends to be corrected when focusing is performed at a close distance. Further, by making the convergent light incident on the subsequent lens group, it becomes possible to reduce the diameter of the image stabilizing group at the head of the subsequent lens group.

負の屈折力の前記第7レンズ群は、拡大系の倍率負担にすることにより、全系を望遠タイプにし、全長を短縮することが可能となる。さらに物体側から像側へ順に、負の屈折力からなる前記第7aレンズ群と正の屈折力の前記第7bレンズ群から構成し、前記第7aレンズ群を光軸に対して垂直方向に変位させることによって防振を行っている。 The seventh lens group having a negative refracting power makes it possible to make the entire system into a telephoto type and shorten the total length by making the magnification load of the magnifying system. Further, in order from the object side to the image side, it is composed of the 7a lens group having a negative refractive power and the 7b lens group having a positive refractive power, and the 7a lens group is displaced in a direction perpendicular to the optical axis. By doing so, it is performing anti-vibration.

また、本発明に係る変倍結像光学系は、以下に示す条件式を満足することを特徴とする。すなわち、前記第2レンズ群は、物体側から像側へ順に、物体側に凸の負の単レンズからなる前記第2aレンズ群と負の屈折力の前記第2bレンズ群から構成され、前記第2aレンズ群と前記第2bレンズ群の空気間隔が前記第2レンズ群を構成する空気間隔の内、最も大きくなり、前記第2aレンズ群の焦点距離と前記第2レンズ群の焦点距離が以下の条件式を満足することを特徴とする。
(1)0.35<G2at/G2t<0.80
(2)1.40<G2af/G2f<5.40
ただし
G2t:前記第2レンズ群の合成厚
G2at:前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔
G2f:前記第2レンズ群の焦点距離
G2af:前記第2aレンズ群の焦点距離
The variable power imaging optical system according to the present invention is characterized by satisfying the following conditional expression. That is, the second lens group is composed of, in order from the object side to the image side, the 2a lens group consisting of a negative single lens convex to the object side and the 2b lens group having a negative refractive power, and The air distance between the 2a lens group and the second b lens group is the largest of the air distances forming the second lens group, and the focal length of the second a lens group and the focal length of the second lens group are as follows. It is characterized in that the conditional expression is satisfied.
(1) 0.35<G2at/G2t<0.80
(2) 1.40<G2af/G2f<5.40
However, G2t: combined thickness of the second lens group G2at: air gap between the second a lens group and the second b lens group G2f: focal length of the second lens group G2af: focal length of the second lens group

条件式(1)は、変倍を主に司る前記第2レンズ群の合成厚と前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔の比について好ましい範囲を規定するものである。前記第2レンズ群は光学系全体の中で、比較的屈折力が大きく、さらに変倍時の移動が大きいため、この前記第2レンズ群の構造を規定することは、前記第2レンズ群の収差負担を減らし、製造誤差敏感度を抑えるために重要である。 Conditional expression (1) defines a preferable range for the ratio of the combined thickness of the second lens group that mainly controls zooming and the air gap sandwiched between the second-a lens group and the second-b lens group. .. Since the second lens group has a relatively large refracting power in the entire optical system and a large movement at the time of zooming, defining the structure of the second lens group is not limited to that of the second lens group. This is important for reducing the burden of aberration and suppressing the sensitivity to manufacturing errors.

この理由は概略すると以下の通りである。二つのレンズ群で構成される光学系の近軸屈折力は、第1レンズ群の屈折力をφ1、第2レンズ群の屈折力をφ2、第1レンズ群と第2レンズ群の間隔をt、全系の屈折力をφと置くと、
φ=φ1+φ2−t・φ1・φ2 参考式(1)
であるので、φ1、φ2<0の時、tを大きくすると、φは大きくなる。すなわちφを一定とすると、各レンズ群の屈折力φ1、φ2を小さくでき、収差発生量、および製造誤差感度の低減が可能となる。
The reason for this is as follows. The paraxial refracting power of an optical system composed of two lens groups is such that the refracting power of the first lens group is φ1, the refracting power of the second lens group is φ2, and the distance between the first lens group and the second lens group is t. , If the refractive power of the entire system is φ,
φ=φ1+φ2-t・φ1・φ2 Reference formula (1)
Therefore, when φ1 and φ2<0, φ increases when t is increased. That is, if φ is constant, the refracting powers φ1 and φ2 of each lens group can be reduced, and the amount of aberration generation and the manufacturing error sensitivity can be reduced.

また、前記第2aレンズ群を物体側に凸の負の単レンズとすることにより、前記第2aレンズ群への入射角を緩和することが可能となり、収差発生量、製造誤差敏感度を減らすことが可能となる。 Further, by forming the second-a lens group as a negative single lens convex toward the object side, it becomes possible to reduce the incident angle to the second-a lens group, and reduce the amount of aberration generation and the sensitivity to manufacturing error. Is possible.

条件式(1)の上限値を超えて、相対的に前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔が大きくなると、前記第2レンズ群の製造誤差敏感度が小さくなり、前記第2レンズ群の残存収差を減らすことが可能となり、製造しやすい光学系を達成することが可能であるが、前記第2レンズ群の合成厚が大きくなる為、コンパクト化には不利になる。 When the upper limit of conditional expression (1) is exceeded and the air gap between the 2a lens group and the 2b lens group becomes relatively large, the manufacturing error sensitivity of the second lens group becomes small, It is possible to reduce the residual aberration of the second lens group, and it is possible to achieve an optical system that is easy to manufacture. However, the combined thickness of the second lens group becomes large, which is disadvantageous for compactness. ..

一方、条件式(1)の下限値を超えて、相対的に前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔が小さくなると、前記第2レンズ群の合成厚が小さくなる為、変倍のための前記第2レンズ群の移動スペースを少なくでき、光学系全長をコンパクト化しやすくなるが、前記第2aレンズ群、前記第2bレンズ群各々の屈折力が強まるため、前記第2レンズ群の残存収差の増加、製造誤差感度が大きくなる等の課題を解決できない。 On the other hand, when the air gap between the second-a lens group and the second-b lens group becomes relatively small beyond the lower limit of conditional expression (1), the combined thickness of the second lens group becomes small. , The moving space of the second lens unit for zooming can be reduced, and the overall length of the optical system can be easily made compact. However, since the refracting power of each of the second lens unit and the second lens unit is increased, the second lens unit is strengthened. Problems such as an increase in residual aberration of the lens group and an increase in manufacturing error sensitivity cannot be solved.

なお、条件式(1)について、望ましくはその上限値を0.71に、また、下限値を0.38に限定することで、前述の効果をより確実にすることができる。 It is to be noted that, with regard to the conditional expression (1), it is desirable to limit the upper limit value to 0.71 and the lower limit value to 0.38, so that the above-described effect can be further ensured.

また、条件式(2)は、条件式(1)と相俟って、前記第2aレンズ群の屈折力と前記第2レンズ群の屈折力の比について好ましい範囲を規定するものであり、前記第2レンズ群の残存収差、製造誤差感度に影響する。前記第2レンズ群に入射する光線は、前記第1レンズ群が正の屈折力であるために、収斂光線となるが、前記第2レンズ群は負の屈折力を持つため、前記第2レンズ群への入射角がきつくなりやすい。本発明は前記第2レンズ群の屈折力を弱め、特に前記第2aレンズ群の屈折力を弱めることにより、前記第2aレンズ群への入射角を緩和して収差発生量、製造誤差敏感度を減らすことができた。 Further, the conditional expression (2), together with the conditional expression (1), defines a preferable range for the ratio of the refractive power of the second-a lens group and the refractive power of the second-lens group. It affects the residual aberration of the second lens group and the sensitivity to manufacturing error. The light ray that is incident on the second lens group is a convergent light ray because the first lens group has a positive refractive power, but the second lens group has a negative refractive power, and thus the second lens group has a negative refractive power. The angle of incidence on the group tends to be tight. The present invention weakens the refracting power of the second lens group, and in particular, weakens the refracting power of the 2a lens group, thereby relaxing the incident angle to the 2a lens group and reducing the amount of aberration generation and manufacturing error sensitivity. I was able to reduce it.

条件式(2)の上限値を超えて、前記第2aレンズ群の屈折力が相対的に弱くなると、前記第2レンズ群の屈折力を所定の値に保つには、前記第2レンズ群の製造誤差敏感度が小さくなり、前記第2レンズ群の残存収差を減らすことが可能となり、製造しやすい光学系を達成することが可能であるが、前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔が大きくなり、前記第2レンズ群の合成厚が大きくなる為、コンパクト化には不利になる。 When the upper limit of conditional expression (2) is exceeded and the refracting power of the second lens group becomes relatively weak, in order to keep the refracting power of the second lens group at a predetermined value, Manufacturing error sensitivity is reduced, residual aberration of the second lens group can be reduced, and an optical system that is easy to manufacture can be achieved. However, the second a lens group and the second b lens group have The distance between the sandwiched air becomes large, and the combined thickness of the second lens group becomes large, which is disadvantageous for downsizing.

一方、条件式(2)の下限値を超えて、前記第2aレンズ群の屈折力が相対的に強くなると、前記第2レンズ群の残存収差が大きくなり、製造誤差感度が大きくなる課題を解決できない。あるいは前記第2レンズ群の屈折力が弱くなる場合は、変倍による前記第2レンズ群の移動量が増えるため、全長が大型化する。 On the other hand, if the lower limit of conditional expression (2) is exceeded and the refracting power of the 2a lens group becomes relatively strong, the residual aberration of the 2nd lens group becomes large, and the problem of increased manufacturing error sensitivity is solved. Can not. Alternatively, when the refracting power of the second lens group becomes weak, the amount of movement of the second lens group due to zooming increases, and the total length increases.

なお、条件式(2)について、望ましくはその上限値を3.63に、また、下限値を1.69とすることで、前述の効果をより確実にすることができる。 It is to be noted that, with regard to the conditional expression (2), it is desirable to set the upper limit value to 3.63 and the lower limit value to 1.69, so that the above-described effect can be further ensured.

また、前記第6レンズ群は、無限遠物体から近距離物体へのフォーカシングの際、物体方向へ移動し、以下の条件式を満足することが望ましい。
(3)0.19<f6/ft<0.65
(4)1.20<MR^2×(1−M6^2)<6.00
(5)0.19<M6<0.75
ft:望遠端における物体距離無限遠時の焦点距離
f6:前記第6レンズ群G6の焦点距離
M6:物体距離無限遠時の前記第6レンズ群G6の横倍率
MR:物体距離無限遠時の前記第7レンズ群G7の横倍率
Further, it is desirable that the sixth lens group moves toward the object at the time of focusing from an object at infinity to an object at a short distance, and satisfies the following conditional expression.
(3) 0.19<f6/ft<0.65
(4) 1.20<MR^2*(1-M6^2)<6.00
(5) 0.19<M6<0.75
ft: focal length when the object distance is infinity at the telephoto end f6: focal length of the sixth lens group G6 M6: lateral magnification of the sixth lens group G6 when the object distance is infinity MR: the object distance at infinity Lateral magnification of seventh lens group G7

条件式(3)は、フォーカスレンズ群である前記第6レンズ群の焦点距離を規定し、高速な合焦動作、光学系の小型化を実現するための条件である。 Conditional expression (3) defines the focal length of the sixth lens group, which is the focus lens group, and is a condition for realizing high-speed focusing operation and downsizing of the optical system.

条件式(3)の上限値を超えて、前記第6レンズ群G6の焦点距離f6が長くなると、フォーカスのための繰出し量が長くなり、至近に近づく能力が弱くなる。また繰り出し量を確保する空間が必要となり全長の大型化につながり好ましくない。 If the focal length f6 of the sixth lens group G6 becomes longer than the upper limit of the conditional expression (3), the amount of extension for focusing becomes long, and the ability to approach the closest point becomes weak. In addition, a space for securing the amount of payout is required, which leads to an increase in the total length and is not preferable.

条件式(3)の下限値を超えて、前記第6レンズ群G6の焦点距離f6が短くなると、フォーカスのための繰出し量が短くなりすぎ、正確な合焦位置でフォーカスレンズ群を停止させることが困難になる、さらにはフォーカス時の球面収差変動を抑えることが困難になる。 If the focal length f6 of the sixth lens group G6 becomes shorter than the lower limit of conditional expression (3), the amount of extension for focusing becomes too short, and the focus lens group is stopped at an accurate focus position. Becomes difficult, and it becomes difficult to suppress the fluctuation of spherical aberration during focusing.

なお、条件式(3)について、その上限値をさらに0.44に、また、下限値をさらに0.30とすることで、前述の効果をより確実にすることができる。 In conditional expression (3), the upper limit value is further set to 0.44, and the lower limit value is further set to 0.30, whereby the above-described effect can be further ensured.

条件式(4)は、AF時に合焦範囲内にフォーカスレンズ群である第6レンズ群G6を駆動制御するため、前記第6レンズ群G6、および、前記第6レンズ群G6以降の倍率負担を規制する条件であり、前記第6レンズ群G6がフォーカス時に移動した時の結像面の敏感度を規定する。この敏感度を適切に規定することにより、AF時に合焦範囲内にフォーカスレンズ群を駆動制御することが可能になる。 Conditional expression (4) drives and controls the sixth lens group G6, which is a focus lens group, within the focusing range during AF, and therefore the sixth lens group G6 and the magnification burden on and after the sixth lens group G6 are applied. This is a regulation condition and regulates the sensitivity of the image plane when the sixth lens group G6 moves during focusing. By properly defining this sensitivity, it becomes possible to drive and control the focus lens group within the focusing range during AF.

条件式(4)の上限値を超え、結像面の敏感度が大きくなると、フォーカスレンズ群の移動量が少なくなるため、フォーカスレンズ群の微少な動きで結像面が大きく動き、AF合焦範囲内にフォーカスレンズ群である前記第6レンズ群G6を駆動制御することが困難になる。 When the upper limit of conditional expression (4) is exceeded and the sensitivity of the image forming surface increases, the amount of movement of the focus lens group decreases, so even a slight movement of the focus lens group causes the image forming surface to move greatly, resulting in AF focusing. It becomes difficult to drive and control the sixth lens group G6 which is the focus lens group within the range.

条件式(4)の下限値を超え、結像面の敏感度が小さくなると、フォーカスレンズ群の移動量が大きくなり、フォーカシングのための第5レンズ群G5と第6レンズ群G6とのスペースを確保しなければならず、レンズ光学系をコンパクトにすることが困難になる。またウオブリングによる合焦レンズ群の主光線高の変動が大きくなる為、像高変動を抑制する効果が弱くなり、ウオブリング時の像高変動を抑えることが困難になる。 If the lower limit of conditional expression (4) is exceeded and the sensitivity of the imaging surface decreases, the amount of movement of the focus lens group increases, and the space between the fifth lens group G5 and the sixth lens group G6 for focusing is increased. It must be ensured, and it becomes difficult to make the lens optical system compact. Further, since the fluctuation of the chief ray height of the focusing lens group due to the wobbling becomes large, the effect of suppressing the fluctuation of the image height becomes weak and it becomes difficult to suppress the fluctuation of the image height at the time of the wobbling.

なお、条件式(4)について、その上限値をさらに3.62、また、下限値をさらに1.68とすることで、前述の効果をより確実にすることができる。 In conditional expression (4), the upper limit value is further set to 3.62, and the lower limit value is further set to 1.68, whereby the above-described effect can be further ensured.

条件式(5)は、フォーカスレンズ群である前記第6レンズ群のG6の無限遠時の横倍率を規定し、フォーカス時の収差変動の抑制およびフォーカス群の繰り出し量を規定するための条件である。 Conditional expression (5) is a condition for defining the lateral magnification of G6 of the sixth lens group that is the focus lens group at infinity, suppressing aberration fluctuations during focusing, and defining the amount of extension of the focus group. is there.

条件式(5)の上限値を超えて、前記第6レンズ群G6の無限遠時の横倍率が1に近づくと、フォーカスのための繰出し量が大きくなり、繰り出し量を確保する空間が必要となり全長の大型化につながり好ましくない。 If the lateral magnification of the sixth lens group G6 at infinity approaches 1 beyond the upper limit of conditional expression (5), the amount of extension for focusing becomes large, and a space for securing the amount of extension is required. This is not preferable because it leads to an increase in the total length.

一方、条件式(5)の下限値を超えて、前記第6レンズ群G6の無限遠時の横倍率が小さくなると、フォーカス群に入射する光線がアフォーカルに近づく、さらにゼロを超え負になると、フォーカス群が実像系になるため、全系が至近距離にフォーカスする際のフォーカス群である前記第6レンズ群G6の物点の移動が大きくなる為、無限遠から至近に変動した時の収差変動を抑えることが困難になる。 On the other hand, when the lateral magnification of the sixth lens group G6 at infinity is decreased below the lower limit of conditional expression (5), the light beam incident on the focus group approaches afocal, and further exceeds zero and becomes negative. Since the focus group becomes a real image system, the movement of the object point of the sixth lens group G6, which is the focus group when the whole system focuses at a close distance, becomes large, so that the aberration fluctuation when changing from infinity to a close distance It becomes difficult to suppress.

なお、条件式(5)について、その上限値をさらに0.50に、また、下限値をさらに0.28とすることで、前述の効果をより確実にすることができる。 In conditional expression (5), the upper limit value is further set to 0.50, and the lower limit value is further set to 0.28, whereby the above-described effect can be further ensured.

また、前記第7レンズ群は、以下の条件式を満足することが望ましい。
(6)−0.85<f7/ft<−0.17
ただし
f7:前記第7レンズ群の焦点距離
ft:望遠端における物体距離無限遠時の焦点距離
Further, it is desirable that the seventh lens group satisfy the following conditional expression.
(6)-0.85<f7/ft<-0.17
Where f7: focal length of the seventh lens group ft: object distance at the telephoto end, focal length at infinity

条件式(6)は、固定群である前記第7レンズ群の焦点距離を規定し、拡大系の倍率負担とすることにより、全系を望遠タイプにし、全長を短縮するための条件である。 Conditional expression (6) is a condition for defining the focal length of the seventh lens group, which is a fixed group, and making the magnification system burden the magnifying system, thereby making the entire system a telephoto type and shortening the overall length.

条件式(6)の上限値を超えて、前記第7レンズ群の負の屈折力が強くなると、固定群である共役長が短くなる為、全長が小型化するが、球面収差、像面湾曲がプラスに過度に発生し、さらに正の歪曲収差が増大し、それらの補正が困難になる。 When the negative refractive power of the seventh lens group becomes strong beyond the upper limit of conditional expression (6), the conjugate length of the fixed group becomes short, so that the total length becomes small, but spherical aberration and field curvature are reduced. Are excessively generated, and positive distortion is increased, which makes it difficult to correct them.

一方、条件式(6)の下限値を超えて、前記第7レンズ群の負の屈折力が弱くなると、固定群である共役長が長くなる為、全長が大型化し好ましくない。またフォーカス群である前記第6レンズ群との間隔を保持することができなくなる。 On the other hand, when the lower limit of conditional expression (6) is exceeded and the negative refractive power of the seventh lens group becomes weak, the conjugate length of the fixed group becomes long, which undesirably increases the overall length. In addition, it becomes impossible to maintain the distance from the sixth lens group, which is the focus group.

なお、条件式(6)について、その上限値をさらに−0.27に、また、下限値をさらに−0.61とすることで、前述の効果をより確実にすることができる。 In conditional expression (6), the upper limit value is further set to −0.27, and the lower limit value is further set to −0.61, so that the above-described effect can be further ensured.

また、前記第2aレンズ群は、以下の条件式を満足することが望ましい。
(7)−8.0<(G2a2+G2a1)/(G2a2−G2a1)<−1.5
ただし
G2a1:前記第2aレンズ群の物体側の曲率半径
G2a2:前記第2aレンズ群の像側の曲率半径
Further, it is desirable that the second-a lens group satisfies the following conditional expression.
(7)-8.0<(G2a2+G2a1)/(G2a2-G2a1)<-1.5
Where G2a1: radius of curvature of the 2a lens group on the object side G2a2: radius of curvature of the 2a lens group on the image side

条件式(7)は前記第2aレンズ群のレンズ形状、いわゆるシェイプファクターを定義するものである。前記第2レンズ群に入射する光線は、前記第1レンズ群が正の屈折力であるために、収斂光線となるが、前記第2aレンズ群は負の屈折力を持つため、前記第2aレンズ群の物体側の曲率半径がマイナスの場合、入射角がきつくなる。その入射角を緩和するには前記第2aレンズ群の物体側の曲率半径がプラスであることが必須になる。 Conditional expression (7) defines the lens shape of the 2a lens group, that is, the so-called shape factor. The light beam incident on the second lens group is a convergent light beam because the first lens group has a positive refractive power, but the second a lens group has a negative refractive power, and thus the second a lens element has a negative refractive power. When the radius of curvature on the object side of the group is negative, the incident angle becomes tight. In order to reduce the incident angle, it is essential that the radius of curvature of the second-a lens unit on the object side is positive.

条件式(7)の上限値を超えて、前記第2aレンズ群のシェイプファクターが−1に近づくとレンズ形状が平凹レンズに近づくため、前記第2aレンズ群への入射角がきつくなり、好ましくない。 If the shape factor of the second-a lens group approaches -1 beyond the upper limit of the conditional expression (7), the lens shape approaches a plano-concave lens, and the incident angle to the second-a lens group becomes tight, which is not preferable. ..

一方、条件式(7)の下限値を超えて、前記第2aレンズ群のシェイプファクターが負の方向に大きくなると、条件式(2)と相俟って、前記第2aレンズ群の負の屈折力が弱くなるため、前記第2aレンズ群と第2bレンズ群の空気間隔が広がりすぎ、全長が大型化するため好ましくない。 On the other hand, if the shape factor of the second-a lens group becomes large in the negative direction beyond the lower limit of the conditional expression (7), the negative refraction of the second-a lens group is combined with the conditional expression (2). Since the force becomes weak, the air gap between the 2a-th lens group and the 2b-th lens group becomes too wide, and the total length becomes large, which is not preferable.

なお、条件式(7)について、その上限値をさらに−2.5に、また、下限値をさらに−6.0とすることで、前述の効果をより確実にすることができる。 In conditional expression (7), by setting the upper limit value to −2.5 and the lower limit value to −6.0, the above-described effect can be further ensured.

次に、本発明に係る変倍結像光学系の各実施例のレンズ構成について説明する。以下の説明において、レンズ構成を物体側から像側の順番で記載する。Lnは物体側から順番にレンズを数えたときのレンズ番号nに対応するレンズを示す記号であり、接合レンズの場合にはこれを構成するそれぞれのレンズ1枚ごとに記号を示すこととする。 Next, a lens configuration of each embodiment of the variable power imaging optical system according to the present invention will be described. In the following description, the lens configurations will be described in order from the object side to the image side. Ln is a symbol indicating the lens corresponding to the lens number n when the lenses are sequentially counted from the object side, and in the case of a cemented lens, the symbol is indicated for each of the lenses constituting the lens.

次に、本発明に係る変倍結像光学系の各実施例の数値実施例と条件式対応値について説明する。 Next, numerical examples of each embodiment of the variable power imaging optical system according to the present invention and the values corresponding to the conditional expressions will be described.

[面データ]において、面番号は物体側から順番に数えたレンズ面または開口絞りの番号、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長587.56nm)に対する屈折率、νdはd線(波長587.56nm)に対するアッベ数を示している。 In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, and nd is for the d line (wavelength 587.56 nm). The refractive index, νd, represents the Abbe number for the d-line (wavelength 587.56 nm).

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。また、BFはバックフォーカスを表している。 The * (asterisk) attached to the surface number indicates that the lens surface shape is an aspherical surface. BF represents back focus.

面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面又は開口絞りに対する曲率半径には∞(無限大)を記入している。 The (stop) added to the surface number indicates that the aperture stop is located at that position. ∞ (infinity) is entered in the radius of curvature for a plane or an aperture stop.

[非球面データ]には、[面データ]において*を付したレンズ面の非球面形状を与える各係数の値を示している。非球面の形状は、下記の式で表される。以下の式において、光軸に直行する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をKで表している。また、4、6、8、10次の非球面係数をそれぞれA4、A6、A8、A10で表している。

Figure 2020086133
In [Aspherical surface data], the value of each coefficient giving the aspherical surface shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspherical surface is represented by the following formula. In the following equation, y is the displacement from the optical axis in the direction perpendicular to the optical axis, z is the displacement (sag amount) from the intersection of the aspherical surface and the optical axis in the optical axis direction, and the radius of curvature of the reference spherical surface is r, The conic coefficient is represented by K. The fourth, sixth, eighth, and tenth-order aspherical surface coefficients are represented by A4, A6, A8, and A10, respectively.
Figure 2020086133

[各種データ]において、ズーム比及び各焦点距離状態における焦点距離等の値を示している。 [Various data] shows values such as the zoom ratio and the focal length in each focal length state.

[可変間隔データ]において、各焦点距離状態における可変間隔及びBFの値を示している。 [Variable distance data] shows the variable distance and the value of BF in each focal length state.

[レンズ群データ]において、各レンズ群を構成する最も物体側のレンズ面の面番号及びレンズ群全体の焦点距離を示している。 In [lens group data], the surface number of the lens surface closest to the object forming each lens group and the focal length of the entire lens group are shown.

各実施例に対応する各収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、△S、△Mはそれぞれサジタル像面、メリジオナル像面を表している。 In each aberration diagram corresponding to each example, d, g, and C represent d line, g line, and C line, and ΔS and ΔM represent sagittal image plane and meridional image plane, respectively.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the values of the following specifications, the focal length f, the radius of curvature r, the lens surface distance d, and other units of length are millimeters (mm) unless otherwise specified. The system is not limited to this because the same optical performance can be obtained in the proportional enlargement and the proportional reduction.

図1は、本発明の実施例1の結像光学系のレンズ構成図である。 1 is a lens configuration diagram of an image forming optical system according to a first embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, and the first, fifth, and seventh lens units are arranged on the image plane during zooming. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b includes a cemented lens including a biconcave lens L5, a positive meniscus lens L6 having a convex surface directed toward the object side, and a negative meniscus lens L7 having a concave surface directed toward the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と物体側に凸面を向けた正メニスカスレンズL10からなる接合レンズから構成される。 The fourth lens group G4 includes a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a positive meniscus lens L10 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と両凹レンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a biconcave lens L12.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side and having an aspherical object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例1に係る変倍結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 111.0608 1.7040 1.75520 27.53
2 73.1017 10.5748 1.49700 81.61
3 -346.4136 0.1504
4 59.2892 6.4151 1.43700 95.10
5 156.4073 (d5)
6 56.4127 0.9021 1.63854 55.45
7 28.7428 17.9554
8 -76.8907 0.9021 1.48749 70.44
9 35.0716 2.6445 1.84666 23.78
10 96.5282 2.1621
11 -59.3333 0.9021 1.77250 49.62
12 -725.1815 (d12)
13 225.0285 2.3555 1.80450 39.64
14 -110.1587 1.0024
15(絞り) ∞ (d15)
16 43.0010 0.9021 2.00100 29.13
17 26.5925 5.1120 1.59282 68.62
18 1002.3541 (d18)
19 41.1166 3.3579 1.91082 35.25
20 454.5676 0.3608
21 -546.2830 0.9021 1.80000 29.84
22 36.1148 (d22)
23 48.7645 5.4628 1.48749 70.44
24 -37.5281 0.8019 1.69895 30.05
25 -65.7444 (d25)
26 -386.7082 2.8066 1.84666 23.78
27 -38.5004 0.8019 1.59349 67.00
28 29.6196 2.9670
29 -131.2683 0.8019 1.80100 34.97
30 77.4218 1.4434
31 35.2327 7.0666 1.49700 81.61
32 -35.2327 0.1504
33 193.1536 7.5678 1.69895 30.05
34 -19.9970 0.9021 1.84666 23.78
35 -41.9786 0.1504
36 -68.5811 0.9021 1.72916 54.67
37 229.3887 6.0342
38 -24.2169 0.9021 1.83481 42.72
39 -258.5573 0.1504
40* 33.5789 4.9617 1.58913 61.25
41 213.5014 32.6725
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -9.86860E-06
A6 1.44132E-08
A8 -3.96359E-11
A10 5.48186E-14

[各種データ]
ズーム比 2.67
広角 中間 望遠
焦点距離 72.50 118.21 193.90
Fナンバー 4.14 4.14 4.14
全画角2ω 33.45 20.49 12.47
像高Y 21.63 21.63 21.63
レンズ全長 201.53 201.53 201.53

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.6745 19.9570 34.5080
d12 32.6306 17.6314 1.2229
d15 3.8290 1.5062 1.5035
d18 3.9693 2.0095 3.8691
d22 19.1237 16.4996 19.1064
d25 3.1687 5.7922 3.1859
BF 1.1808 1.1807 1.1807

広角 中間 望遠
d0 798.4724 798.4723 798.4724
d5 0.6745 19.9570 34.5080
d12 32.6306 17.6314 1.2229
d16 3.8290 1.5062 1.5035
d18 3.9693 2.0095 3.8691
d22 16.9538 11.1532 4.8329
d25 5.3386 11.1386 17.4594
BF 1.1808 1.1806 1.1808

[レンズ群データ]
群 始面 焦点距離
G1 1 107.91
G2 6 -31.81
G3 13 92.22
G4 16 132.97
G5 19 -478.75
G6 23 67.63
G7 26 -61.86
G2a 6 -92.95
G2b 8 -59.30
G7a 26 -30.32
G7b 31 48.90
Next, the various values of the variable power imaging optical system according to the first embodiment are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 111.0608 1.7040 1.75520 27.53
2 73.1017 10.5748 1.49700 81.61
3 -346.4136 0.1504
4 59.2892 6.4151 1.43700 95.10
5 156.4073 (d5)
6 56.4127 0.9021 1.63854 55.45
7 28.7428 17.9554
8 -76.8907 0.9021 1.48749 70.44
9 35.0716 2.6445 1.84666 23.78
10 96.5282 2.1621
11 -59.3333 0.9021 1.77250 49.62
12 -725.1815 (d12)
13 225.0285 2.3555 1.80450 39.64
14 -110.1587 1.0024
15 (Aperture) ∞ (d15)
16 43.0010 0.9021 2.00100 29.13
17 26.5925 5.1120 1.59282 68.62
18 1002.3541 (d18)
19 41.1166 3.3579 1.91082 35.25
20 454.5676 0.3608
21 -546.2830 0.9021 1.80000 29.84
22 36.1148 (d22)
23 48.7645 5.4628 1.48749 70.44
24 -37.5281 0.8019 1.69895 30.05
25 -65.7444 (d25)
26 -386.7082 2.8066 1.84666 23.78
27 -38.5004 0.8019 1.59349 67.00
28 29.6196 2.9670
29 -131.2683 0.8019 1.80100 34.97
30 77.4218 1.4434
31 35.2327 7.0666 1.49700 81.61
32 -35.2327 0.1504
33 193.1536 7.5678 1.69895 30.05
34 -19.9970 0.9021 1.84666 23.78
35 -41.9786 0.1504
36 -68.5811 0.9021 1.72916 54.67
37 229.3887 6.0342
38 -24.2169 0.9021 1.83481 42.72
39 -258.5573 0.1504
40* 33.5789 4.9617 1.58913 61.25
41 213.5014 32.6725
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -9.86860E-06
A6 1.44132E-08
A8 -3.96359E-11
A10 5.48186E-14

[Various data]
Zoom ratio 2.67
Wide-angle mid-telephoto focal length 72.50 118.21 193.90
F number 4.14 4.14 4.14
Full angle of view 2ω 33.45 20.49 12.47
Image height Y 21.63 21.63 21.63
Total lens length 201.53 201.53 201.53

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.6745 19.9570 34.5080
d12 32.6306 17.6314 1.2229
d15 3.8290 1.5062 1.5035
d18 3.9693 2.0095 3.8691
d22 19.1237 16.4996 19.1064
d25 3.1687 5.7922 3.1859
BF 1.1808 1.1807 1.1807

Wide-angle mid-telephoto
d0 798.4724 798.4723 798.4724
d5 0.6745 19.9570 34.5080
d12 32.6306 17.6314 1.2229
d16 3.8290 1.5062 1.5035
d18 3.9693 2.0095 3.8691
d22 16.9538 11.1532 4.8329
d25 5.3386 11.1386 17.4594
BF 1.1808 1.1806 1.1808

[Lens group data]
Focal length of group start surface
G1 1 107.91
G2 6 -31.81
G3 13 92.22
G4 16 132.97
G5 19 -478.75
G6 23 67.63
G7 26 -61.86
G2a 6 -92.95
G2b 8 -59.30
G7a 26 -30.32
G7b 31 48.90

図14は、本発明の実施例2の結像光学系のレンズ構成図である。 FIG. 14 is a lens configuration diagram of an image forming optical system according to a second embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, and the first, fifth, and seventh lens units are arranged on the image plane during zooming. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b includes a cemented lens including a biconcave lens L5, a positive meniscus lens L6 having a convex surface directed toward the object side, and a negative meniscus lens L7 having a concave surface directed toward the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と物体側に凸面を向けた正メニスカスレンズL10からなる接合レンズから構成される。 The fourth lens group G4 includes a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a positive meniscus lens L10 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と両凹レンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a biconcave lens L12.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side and having an aspherical object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例2に係る変倍結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 101.7607 1.7026 1.75520 27.53
2 65.7345 10.5661 1.49700 81.61
3 -250.7871 0.1502
4 51.5785 6.4098 1.43700 95.10
5 114.3649 (d5)
6 56.0323 0.9014 1.80610 33.27
7 23.8739 6.2391
8 -78.7396 0.9014 1.48749 70.44
9 27.4411 4.0562 1.84666 23.78
10 134.2158 3.3050
11 -36.3075 0.9014 1.77250 49.62
12 -79.8378 (d12)
13 224.8436 2.3536 1.80450 39.64
14 -110.0682 1.0015
15(絞り) ∞ (d15)
16 42.9656 0.9014 2.00100 29.13
17 26.5706 5.1078 1.59282 68.62
18 1001.5303 (d18)
19 41.0828 3.3551 1.91082 35.25
20 454.1940 0.3606
21 -545.8340 0.9014 1.80000 29.84
22 36.0851 (d22)
23 48.7244 5.4583 1.48749 70.44
24 -37.4973 0.8012 1.69895 30.05
25 -65.6904 (d25)
26 -386.3904 2.8043 1.84666 23.78
27 -38.4688 0.8012 1.59349 67.00
28 29.5952 2.9645
29 -131.1604 0.8012 1.80100 34.97
30 77.3582 1.4422
31 35.2038 7.0608 1.49700 81.61
32 -35.2038 0.1502
33 192.9949 7.5616 1.69895 30.05
34 -19.9805 0.9014 1.84666 23.78
35 -41.9441 0.1502
36 -68.5247 0.9014 1.72916 54.67
37 229.2002 6.0292
38 -24.1970 0.9014 1.83481 42.72
39 -258.3447 0.1502
40* 33.5513 4.9576 1.58913 61.25
41 213.3260 32.6457
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -9.92595E-06
A6 1.41198E-08
A8 -4.23238E-11
A10 6.42943E-14

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.50 118.67 193.98
Fナンバー 4.15 4.15 4.14
全画角2ω 33.92 20.60 12.56
像高Y 21.63 21.63 21.63
レンズ全長 196.11 196.11 196.11

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7612 19.5355 33.5940
d12 31.6310 17.1362 1.2219
d15 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 19.1079 16.4679 19.1869
d25 3.1661 5.8055 3.0871
BF 5.9575 5.9575 5.9584

広角 中間 望遠
d0 803.8872 803.8871 803.8862
d5 0.7612 19.5355 33.5940
d12 31.6310 17.1362 1.2219
d16 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 17.1202 11.4796 5.8620
d25 5.1539 10.7938 16.4120
BF 5.9574 5.9577 5.9585

[レンズ群データ]
群 始面 焦点距離
G1 1 98.32
G2 6 -30.87
G3 13 92.14
G4 16 132.86
G5 19 -478.36
G6 23 67.57
G7 26 -61.81
G2a 6 -52.26
G2b 8 -94.08
G7a 26 -30.29
G7b 31 48.86
Next, the following are the specifications of the variable power imaging optical system according to the second embodiment.
Numerical Example 2
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 101.7607 1.7026 1.75520 27.53
2 65.7345 10.5661 1.49700 81.61
3 -250.7871 0.1502
4 51.5785 6.4098 1.43700 95.10
5 114.3649 (d5)
6 56.0323 0.9014 1.80610 33.27
7 23.8739 6.2391
8 -78.7396 0.9014 1.48749 70.44
9 27.4411 4.0562 1.84666 23.78
10 134.2158 3.3050
11 -36.3075 0.9014 1.77250 49.62
12 -79.8378 (d12)
13 224.8436 2.3536 1.80450 39.64
14 -110.0682 1.0015
15 (Aperture) ∞ (d15)
16 42.9656 0.9014 2.00100 29.13
17 26.5706 5.1078 1.59282 68.62
18 1001.5303 (d18)
19 41.0828 3.3551 1.91082 35.25
20 454.1940 0.3606
21 -545.8340 0.9014 1.80000 29.84
22 36.0851 (d22)
23 48.7244 5.4583 1.48749 70.44
24 -37.4973 0.8012 1.69895 30.05
25 -65.6904 (d25)
26 -386.3904 2.8043 1.84666 23.78
27 -38.4688 0.8012 1.59349 67.00
28 29.5952 2.9645
29 -131.1604 0.8012 1.80100 34.97
30 77.3582 1.4422
31 35.2038 7.0608 1.49700 81.61
32 -35.2038 0.1502
33 192.9949 7.5616 1.69895 30.05
34 -19.9805 0.9014 1.84666 23.78
35 -41.9441 0.1502
36 -68.5247 0.9014 1.72916 54.67
37 229.2002 6.0292
38 -24.1970 0.9014 1.83481 42.72
39 -258.3447 0.1502
40* 33.5513 4.9576 1.58913 61.25
41 213.3260 32.6457
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -9.92595E-06
A6 1.41198E-08
A8 -4.23238E-11
A10 6.42943E-14

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.50 118.67 193.98
F number 4.15 4.15 4.14
Full angle of view 2ω 33.92 20.60 12.56
Image height Y 21.63 21.63 21.63
Total lens length 196.11 196.11 196.11

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7612 19.5355 33.5940
d12 31.6310 17.1362 1.2219
d15 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 19.1079 16.4679 19.1869
d25 3.1661 5.8055 3.0871
BF 5.9575 5.9575 5.9584

Wide-angle mid-telephoto
d0 803.8872 803.8871 803.8862
d5 0.7612 19.5355 33.5940
d12 31.6310 17.1362 1.2219
d16 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 17.1202 11.4796 5.8620
d25 5.1539 10.7938 16.4120
BF 5.9574 5.9577 5.9585

[Lens group data]
Focal length of group start surface
G1 1 98.32
G2 6 -30.87
G3 13 92.14
G4 16 132.86
G5 19 -478.36
G6 23 67.57
G7 26 -61.81
G2a 6 -52.26
G2b 8 -94.08
G7a 26 -30.29
G7b 31 48.86

図27は、本発明の実施例3の結像光学系のレンズ構成図である。 FIG. 27 is a lens configuration diagram of the image forming optical system according to the third embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, and the first, fifth, and seventh lens units are arranged on the image plane during zooming. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、両凹レンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The second-b lens group G2b is composed of a biconcave lens L5, a cemented lens including a positive meniscus lens L6 having a convex surface directed toward the object side, and a biconcave lens L7.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と物体側に凸面を向けた正メニスカスレンズL10からなる接合レンズから構成される。 The fourth lens group G4 includes a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a positive meniscus lens L10 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と両凹レンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a biconcave lens L12.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side and having an aspherical object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例3に係る変倍結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 110.9696 1.7026 1.75520 27.53
2 73.0416 10.5661 1.49700 81.61
3 -346.1290 0.1502
4 65.1865 6.4098 1.43700 95.10
5 154.7626 (d5)
6 37.8414 0.9014 1.80611 40.73
7 27.0937 16.3681
8 -161.6665 0.9014 1.48749 70.44
9 27.3888 4.3929 1.84666 23.78
10 57.7810 2.7590
11 -58.1927 0.9014 1.77250 49.62
12 898.8382 (d12)
13 224.8436 2.3536 1.80450 39.64
14 -110.0682 1.0015
15(絞り ∞ (d15)
16 42.9657 0.9014 2.00100 29.13
17 26.5706 5.1078 1.59282 68.62
18 1001.5306 (d18)
19 41.0828 3.3551 1.91082 35.25
20 454.1941 0.3606
21 -545.8342 0.9014 1.80000 29.84
22 36.0851 (d22)
23 48.7245 5.4583 1.48749 70.44
24 -37.4973 0.8012 1.69895 30.05
25 -65.6904 (d25)
26 -386.3905 2.8043 1.84666 23.78
27 -38.4688 0.8012 1.59349 67.00
28 29.5952 2.9645
29 -131.1604 0.8012 1.80100 34.97
30 77.3582 1.4422
31 35.2038 7.0608 1.49700 81.61
32 -35.2038 0.1502
33 192.9950 7.5616 1.69895 30.05
34 -19.9805 0.9014 1.84666 23.78
35 -41.9441 0.1502
36 -68.5247 0.9014 1.72916 54.67
37 229.2003 6.0292
38 -24.1970 0.9014 1.83481 42.72
39 -258.3448 0.1502
40* 33.5513 4.9576 1.58913 61.25
41 213.3260 29.7391
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -1.02110E-05
A6 1.75156E-08
A8 -4.79764E-11
A10 6.21487E-14

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.50 118.13 193.95
Fナンバー 4.00 3.99 4.00
全画角2ω 33.22 20.36 12.38
像高Y 21.63 21.63 21.63
レンズ全長 200.60 200.60 200.60

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7612 21.1417 36.7324
d12 34.7694 18.6685 1.2219
d15 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 19.1080 16.4046 19.1739
d25 3.1661 5.8689 3.1002
BF 0.2946 0.2947 0.2953

広角 中間 望遠
d0 799.3985 799.3985 799.3979
d5 0.7612 21.1417 36.7324
d12 34.7694 18.6685 1.2219
d16 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 16.7686 10.6751 3.7874
d25 5.5055 11.5983 18.4867
BF 0.2946 0.2947 0.2951

[レンズ群データ]
群 始面 焦点距離
G1 1 116.42
G2 6 -33.87
G3 13 92.14
G4 16 132.86
G5 19 -478.36
G6 23 67.57
G7 26 -61.81
G2a 6 -122.94
G2b 8 -54.96
G7a 26 -30.29
G7b 31 48.86
Next, the following are the specifications of the variable power imaging optical system according to the third embodiment.
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 110.9696 1.7026 1.75520 27.53
2 73.0416 10.5661 1.49700 81.61
3 -346.1290 0.1502
4 65.1865 6.4098 1.43700 95.10
5 154.7626 (d5)
6 37.8414 0.9014 1.80611 40.73
7 27.0937 16.3681
8 -161.6665 0.9014 1.48749 70.44
9 27.3888 4.3929 1.84666 23.78
10 57.7810 2.7590
11 -58.1927 0.9014 1.77250 49.62
12 898.8382 (d12)
13 224.8436 2.3536 1.80450 39.64
14 -110.0682 1.0015
15 (Aperture ∞ (d15)
16 42.9657 0.9014 2.00100 29.13
17 26.5706 5.1078 1.59282 68.62
18 1001.5306 (d18)
19 41.0828 3.3551 1.91082 35.25
20 454.1941 0.3606
21 -545.8342 0.9014 1.80000 29.84
22 36.0851 (d22)
23 48.7245 5.4583 1.48749 70.44
24 -37.4973 0.8012 1.69895 30.05
25 -65.6904 (d25)
26 -386.3905 2.8043 1.84666 23.78
27 -38.4688 0.8012 1.59349 67.00
28 29.5952 2.9645
29 -131.1604 0.8012 1.80100 34.97
30 77.3582 1.4422
31 35.2038 7.0608 1.49700 81.61
32 -35.2038 0.1502
33 192.9950 7.5616 1.69895 30.05
34 -19.9805 0.9014 1.84666 23.78
35 -41.9441 0.1502
36 -68.5247 0.9014 1.72916 54.67
37 229.2003 6.0292
38 -24.1970 0.9014 1.83481 42.72
39 -258.3448 0.1502
40* 33.5513 4.9576 1.58913 61.25
41 213.3260 29.7391
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -1.02110E-05
A6 1.75156E-08
A8 -4.79764E-11
A10 6.21487E-14

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.50 118.13 193.95
F number 4.00 3.99 4.00
Full angle of view 2ω 33.22 20.36 12.38
Image height Y 21.63 21.63 21.63
Total lens length 200.60 200.60 200.60

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7612 21.1417 36.7324
d12 34.7694 18.6685 1.2219
d15 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 19.1080 16.4046 19.1739
d25 3.1661 5.8689 3.1002
BF 0.2946 0.2947 0.2953

Wide-angle mid-telephoto
d0 799.3985 799.3985 799.3979
d5 0.7612 21.1417 36.7324
d12 34.7694 18.6685 1.2219
d16 3.8258 1.5050 1.5023
d18 3.9661 2.0079 3.8659
d22 16.7686 10.6751 3.7874
d25 5.5055 11.5983 18.4867
BF 0.2946 0.2947 0.2951

[Lens group data]
Focal length of group start surface
G1 1 116.42
G2 6 -33.87
G3 13 92.14
G4 16 132.86
G5 19 -478.36
G6 23 67.57
G7 26 -61.81
G2a 6 -122.94
G2b 8 -54.96
G7a 26 -30.29
G7b 31 48.86

図40は、本発明の実施例4の結像光学系のレンズ構成図である。 FIG. 40 is a lens configuration diagram of the image forming optical system according to the fourth embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b includes a cemented lens including a biconcave lens L5, a positive meniscus lens L6 having a convex surface directed toward the object side, and a negative meniscus lens L7 having a concave surface directed toward the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と物体側に凸面を向けた正メニスカスレンズL10からなる接合レンズから構成される。 The fourth lens group G4 includes a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a positive meniscus lens L10 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と両凹レンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a biconcave lens L12.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、両凹レンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a biconcave lens L22, and a positive meniscus lens L23 having an aspherical surface on the object side with the convex surface facing the object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例4に係る変倍結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 111.1168 1.7049 1.75520 27.53
2 73.1385 10.5802 1.49700 81.61
3 -346.5881 0.1504
4 59.3191 6.4183 1.43700 95.10
5 156.4861 (d5)
6 40.2447 0.9026 1.80610 33.27
7 25.0514 11.3323
8 -148.4231 0.9026 1.48749 70.44
9 26.6560 4.0616 1.84666 23.78
10 71.3534 3.3094
11 -49.6215 0.9026 1.77250 49.62
12 -680.9412 (d12)
13 225.1418 2.3567 1.80450 39.64
14 -110.2142 1.0029
15(絞り) ∞ (d15)
16 43.0227 0.9026 2.00100 29.13
17 26.6058 5.1146 1.59282 68.62
18 1002.8590 (d18)
19 41.1373 3.3596 1.91082 35.25
20 454.7965 0.3610
21 -546.5581 0.9026 1.80000 29.84
22 36.1330 (d22)
23 44.9983 5.4656 1.48749 70.44
24 -27.0486 0.8023 1.69895 30.05
25 -48.7755 (d25)
26 -81.6613 2.6227 1.84666 23.78
27 -26.7123 0.8023 1.59349 67.00
28 36.8809 2.9685
29 -94.8464 0.8023 1.80100 34.97
30 75.8443 1.4441
31 34.3543 14.9390 1.49700 81.61
32 -38.2701 0.1504
33 59.0195 6.5978 1.69895 30.05
34 -23.3936 0.9026 1.84666 23.78
35 -64.2996 0.3287
36 -51.9365 0.9026 1.72916 54.67
37 221.8872 11.6776
38 -25.8522 0.9026 1.83481 42.72
39 381.8915 0.1504
40* 38.5889 9.7065 1.58913 61.25
41 -138.5520 25.3345
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -5.76833E-06
A6 8.01478E-09
A8 -1.60060E-11
A10 1.44689E-14

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.26 118.11 193.36
Fナンバー 4.16 4.15 4.15
全画角2ω 34.17 20.85 12.72
像高Y 21.63 21.63 21.63
レンズ全長 201.36 201.36 201.36

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7622 20.4768 35.3909
d12 33.4253 17.9953 1.2235
d15 3.8309 1.5070 1.5043
d18 3.9713 2.0105 3.8710
d22 14.2027 12.1292 14.2027
d25 2.1568 4.2304 2.1569
BF 0.1500 0.1501 0.1501

広角 中間 望遠
d0 798.6356 798.6356 798.6356
d5 0.7622 20.4768 35.3909
d12 33.4253 17.9953 1.2235
d15 3.8309 1.5070 1.5043
d18 3.9713 2.0105 3.8710
d22 12.5339 7.9515 3.0187
d25 3.8256 8.4081 13.3408
BF 0.1502 0.1500 0.1501

[レンズ群データ]
群 始面 焦点距離
G1 1 107.96
G2 6 -32.57
G3 13 92.26
G4 16 133.04
G5 19 -478.99
G6 23 58.60
G7 26 -51.41
G2a 6 -84.56
G2b 8 -64.10
G7a 26 -26.69
G7b 31 43.95
Next, the values of specifications of the variable power imaging optical system according to Example 4 are shown below.
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 111.1168 1.7049 1.75520 27.53
2 73.1385 10.5802 1.49700 81.61
3 -346.5881 0.1504
4 59.3191 6.4183 1.43700 95.10
5 156.4861 (d5)
6 40.2447 0.9026 1.80610 33.27
7 25.0514 11.3323
8 -148.4231 0.9026 1.48749 70.44
9 26.6560 4.0616 1.84666 23.78
10 71.3534 3.3094
11 -49.6215 0.9026 1.77250 49.62
12 -680.9412 (d12)
13 225.1418 2.3567 1.80450 39.64
14 -110.2142 1.0029
15 (Aperture) ∞ (d15)
16 43.0227 0.9026 2.00100 29.13
17 26.6058 5.1146 1.59282 68.62
18 1002.8590 (d18)
19 41.1373 3.3596 1.91082 35.25
20 454.7965 0.3610
21 -546.5581 0.9026 1.80000 29.84
22 36.1330 (d22)
23 44.9983 5.4656 1.48749 70.44
24 -27.0486 0.8023 1.69895 30.05
25 -48.7755 (d25)
26 -81.6613 2.6227 1.84666 23.78
27 -26.7123 0.8023 1.59349 67.00
28 36.8809 2.9685
29 -94.8464 0.8023 1.80100 34.97
30 75.8443 1.4441
31 34.3543 14.9390 1.49700 81.61
32 -38.2701 0.1504
33 59.0195 6.5978 1.69895 30.05
34 -23.3936 0.9026 1.84666 23.78
35 -64.2996 0.3287
36 -51.9365 0.9026 1.72916 54.67
37 221.8872 11.6776
38 -25.8522 0.9026 1.83481 42.72
39 381.8915 0.1504
40* 38.5889 9.7065 1.58913 61.25
41 -138.5520 25.3345
42 ∞ 2.1000 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -5.76833E-06
A6 8.01478E-09
A8 -1.60060E-11
A10 1.44689E-14

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.26 118.11 193.36
F number 4.16 4.15 4.15
Full angle of view 2ω 34.17 20.85 12.72
Image height Y 21.63 21.63 21.63
Total lens length 201.36 201.36 201.36

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7622 20.4768 35.3909
d12 33.4253 17.9953 1.2235
d15 3.8309 1.5070 1.5043
d18 3.9713 2.0105 3.8710
d22 14.2027 12.1292 14.2027
d25 2.1568 4.2304 2.1569
BF 0.1500 0.1501 0.1501

Wide-angle mid-telephoto
d0 798.6356 798.6356 798.6356
d5 0.7622 20.4768 35.3909
d12 33.4253 17.9953 1.2235
d15 3.8309 1.5070 1.5043
d18 3.9713 2.0105 3.8710
d22 12.5339 7.9515 3.0187
d25 3.8256 8.4081 13.3408
BF 0.1502 0.1500 0.1501

[Lens group data]
Focal length of group start surface
G1 1 107.96
G2 6 -32.57
G3 13 92.26
G4 16 133.04
G5 19 -478.99
G6 23 58.60
G7 26 -51.41
G2a 6 -84.56
G2b 8 -64.10
G7a 26 -26.69
G7b 31 43.95

図53は、本発明の実施例5の結像光学系のレンズ構成図である。 FIG. 53 is a lens configuration diagram of an image forming optical system according to a fifth embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, and the first, fifth, and seventh lens units are arranged on the image plane during zooming. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b includes a cemented lens including a biconcave lens L5, a positive meniscus lens L6 having a convex surface directed toward the object side, and a negative meniscus lens L7 having a concave surface directed toward the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と両凸レンズL10からなる接合レンズから構成される。 The fourth lens group G4 is composed of a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a biconvex lens L10.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a negative meniscus lens L12 having a convex surface directed toward the object side.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向けた正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. A negative meniscus lens L21 having a concave surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side. Further, the seventh-a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例5に係る変倍結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 111.4996 1.7107 1.75520 27.53
2 73.3905 10.6166 1.49700 81.61
3 -347.7821 0.1509
4 59.5235 6.4404 1.43700 95.10
5 157.0252 (d5)
6 40.3834 0.9057 1.80610 33.27
7 25.1377 11.3713
8 -148.9345 0.9057 1.48749 70.44
9 26.7478 4.0756 1.84666 23.78
10 71.5992 3.3208
11 -49.7924 0.9057 1.77250 49.62
12 -683.2872 (d12)
13 225.9175 2.3648 1.80450 39.64
14 -110.5939 1.0063
15(絞り) ∞ (d15)
16 43.4304 0.9057 2.00100 29.13
17 27.6721 5.1322 1.59282 68.62
18 -541.7930 (d18)
19 52.9918 3.3712 1.91082 35.25
20 166.1745 1.7092
21 1284.5288 0.9057 1.80000 29.84
22 43.0279 (d22)
23 62.0542 5.4844 1.48749 70.44
24 -46.9488 0.8051 1.69895 30.05
25 -83.0493 (d25)
26 -331.0637 2.8177 1.84666 23.78
27 -41.9781 0.8051 1.59349 67.00
28 40.0619 2.9787
29 -126.0625 0.8051 1.80100 34.97
30 82.1949 1.4491
31 35.8414 9.7980 1.49700 81.61
32 -33.0783 0.1509
33 321.2237 10.0342 1.69895 30.05
34 -21.9990 0.9057 1.84666 23.78
35 -49.4138 0.5072
36 -39.2668 0.9057 1.72916 54.67
37 -360.0812 5.8938
38 -22.9759 0.9057 1.83481 42.72
39 -48.5945 0.1509
40 44.7047 4.9813 1.58913 61.25
41 249.8810 21.5993
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
像面 ∞

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.50 130.40 194.00
Fナンバー 4.14 4.13 4.13
全画角2ω 34.10 18.95 12.70
像高Y 21.63 21.63 21.63
レンズ全長 208.71 208.71 208.71

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7648 23.7231 35.5159
d12 33.5435 14.8846 1.2277
d15 3.8441 1.5122 1.5095
d18 3.9850 2.0175 3.8844
d22 25.7351 20.7134 25.7157
d25 3.3789 8.3997 3.3983
BF 8.5724 8.5733 8.5724

広角 中間 望遠
d0 791.2925 791.2924 791.2924
d5 0.7648 23.7231 35.5159
d12 33.5435 14.8846 1.2277
d16 3.8441 1.5122 1.5095
d18 3.9850 2.0175 3.8844
d22 22.1246 10.1066 1.7655
d25 6.9894 19.0066 27.3486
BF 8.5724 8.5733 8.5724

[レンズ群データ]
群 始面 焦点距離
G1 1 108.33
G2 6 -32.68
G3 13 92.58
G4 16 105.21
G5 19 -197.22
G6 23 85.91
G7 26 -118.33
G2a 6 -84.85
G2b 8 -64.32
G7a 26 -35.58
G7b 31 47.92
Subsequently, the various specifications of the variable power imaging optical system according to Example 5 are shown below.
Numerical Example 5
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 111.4996 1.7107 1.75520 27.53
2 73.3905 10.6166 1.49700 81.61
3 -347.7821 0.1509
4 59.5235 6.4404 1.43700 95.10
5 157.0252 (d5)
6 40.3834 0.9057 1.80610 33.27
7 25.1377 11.3713
8 -148.9345 0.9057 1.48749 70.44
9 26.7478 4.0756 1.84666 23.78
10 71.5992 3.3208
11 -49.7924 0.9057 1.77250 49.62
12 -683.2872 (d12)
13 225.9175 2.3648 1.80450 39.64
14 -110.5939 1.0063
15 (Aperture) ∞ (d15)
16 43.4304 0.9057 2.00100 29.13
17 27.6721 5.1322 1.59282 68.62
18 -541.7930 (d18)
19 52.9918 3.3712 1.91082 35.25
20 166.1745 1.7092
21 1284.5288 0.9057 1.80000 29.84
22 43.0279 (d22)
23 62.0542 5.4844 1.48749 70.44
24 -46.9488 0.8051 1.69895 30.05
25 -83.0493 (d25)
26 -331.0637 2.8177 1.84666 23.78
27 -41.9781 0.8051 1.59349 67.00
28 40.0619 2.9787
29 -126.0625 0.8051 1.80100 34.97
30 82.1949 1.4491
31 35.8414 9.7980 1.49700 81.61
32 -33.0783 0.1509
33 321.2237 10.0342 1.69895 30.05
34 -21.9990 0.9057 1.84666 23.78
35 -49.4138 0.5072
36 -39.2668 0.9057 1.72916 54.67
37 -360.0812 5.8938
38 -22.9759 0.9057 1.83481 42.72
39 -48.5945 0.1509
40 44.7047 4.9813 1.58913 61.25
41 249.8810 21.5993
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.50 130.40 194.00
F number 4.14 4.13 4.13
Full angle of view 2ω 34.10 18.95 12.70
Image height Y 21.63 21.63 21.63
Total lens length 208.71 208.71 208.71

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7648 23.7231 35.5159
d12 33.5435 14.8846 1.2277
d15 3.8441 1.5122 1.5095
d18 3.9850 2.0175 3.8844
d22 25.7351 20.7134 25.7157
d25 3.3789 8.3997 3.3983
BF 8.5724 8.5733 8.5724

Wide-angle mid-telephoto
d0 791.2925 791.2924 791.2924
d5 0.7648 23.7231 35.5159
d12 33.5435 14.8846 1.2277
d16 3.8441 1.5122 1.5095
d18 3.9850 2.0175 3.8844
d22 22.1246 10.1066 1.7655
d25 6.9894 19.0066 27.3486
BF 8.5724 8.5733 8.5724

[Lens group data]
Focal length of group start surface
G1 1 108.33
G2 6 -32.68
G3 13 92.58
G4 16 105.21
G5 19 -197.22
G6 23 85.91
G7 26 -118.33
G2a 6 -84.85
G2b 8 -64.32
G7a 26 -35.58
G7b 31 47.92

図66は、本発明の実施例6の結像光学系のレンズ構成図である。 66 is a lens configuration diagram of an image forming optical system according to a sixth embodiment of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power, and the first, fifth, and seventh lens units are arranged on the image plane during zooming. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b includes a cemented lens including a biconcave lens L5, a positive meniscus lens L6 having a convex surface directed toward the object side, and a negative meniscus lens L7 having a concave surface directed toward the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3, and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と両凸レンズL10からなる接合レンズから構成される。 The fourth lens group G4 is composed of a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a biconvex lens L10.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL11と両凹レンズL12から構成される。 The fifth lens group G5 includes a positive meniscus lens L11 having a convex surface directed toward the object side and a biconcave lens L12.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side and having an aspherical object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例6に係る変倍結像光学系の諸元値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 110.8869 1.7013 1.75520 27.53
2 72.9872 10.5583 1.49700 81.61
3 -345.8710 0.1501
4 59.1964 6.4050 1.43700 95.10
5 156.1623 (d5)
6 40.1615 0.9007 1.80610 33.27
7 24.9996 11.3089
8 -148.1160 0.9007 1.48749 70.44
9 26.6008 4.0532 1.84666 23.78
10 71.2058 3.3026
11 -49.5188 0.9007 1.77250 49.62
12 -679.5324 (d12)
13 224.6760 2.3518 1.80450 39.64
14 -109.9862 1.0008
15(絞り) ∞ (d15)
16 39.7929 0.9007 2.00100 29.13
17 25.4554 5.1040 1.59282 68.62
18 -200.5164 (d18)
19 66.9425 1.9938 1.91082 35.25
20 321.3737 0.6288 1.00000 0.00
21 -180.7817 0.9007 1.80000 29.84
22 69.2506 (d22)
23 70.2323 5.4543 1.48749 70.44
24 -37.6316 0.8006 1.69895 30.05
25 -64.6406 (d25)
26 -386.1025 2.8022 1.84666 23.78
27 -38.4401 0.8006 1.59349 67.00
28 29.5732 2.9623
29 -131.0627 0.8006 1.80100 34.97
30 77.3006 1.4411
31 35.1776 7.0555 1.49700 81.61
32 -35.1776 0.1501
33 192.8511 7.5559 1.69895 30.05
34 -19.9656 0.9007 1.84666 23.78
35 -41.9128 0.1501
36 -68.4736 0.9007 1.72916 54.67
37 229.0294 6.0247
38 -24.1789 0.9007 1.83481 42.72
39 -258.1522 0.1501
40* 33.5263 4.9539 1.58913 61.25
41 213.1670 30.3551
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -1.12050E-05
A6 2.28367E-08
A8 -6.93799E-11
A10 9.63136E-14

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.50 117.60 193.95
Fナンバー 4.15 4.11 4.14
全画角2ω 33.12 20.41 12.34
像高Y 21.63 21.63 21.63
レンズ全長 193.72 193.72 193.72

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7606 20.4344 35.3177
d12 33.3561 17.9581 1.2210
d15 3.8230 1.5039 1.5012
d18 3.9631 2.0064 3.8630
d22 19.1453 15.0714 19.1011
d25 3.0024 7.0744 3.0468
BF 0.3481 0.3504 0.3485

広角 中間 望遠
d0 806.2799 806.2795 806.2793
d5 0.7606 20.4344 35.3177
d12 33.3561 17.9581 1.2210
d16 3.8230 1.5039 1.5012
d18 3.9631 2.0064 3.8630
d22 16.5109 8.8545 2.3153
d25 5.6367 13.2914 19.8325
BF 0.3482 0.3504 0.3486

[レンズ群データ]
群 始面 焦点距離
G1 1 107.74
G2 6 -32.50
G3 13 92.07
G4 16 82.39
G5 19 -208.66
G6 23 83.37
G7 26 -61.77
G2a 6 -84.39
G2b 8 -63.96
G7a 26 -30.27
G7b 31 48.82
Next, the following are the specifications of the variable power imaging optical system according to Example 6.
Numerical Example 6
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 110.8869 1.7013 1.75520 27.53
2 72.9872 10.5583 1.49700 81.61
3 -345.8710 0.1501
4 59.1964 6.4050 1.43700 95.10
5 156.1623 (d5)
6 40.1615 0.9007 1.80610 33.27
7 24.9996 11.3089
8 -148.1160 0.9007 1.48749 70.44
9 26.6008 4.0532 1.84666 23.78
10 71.2058 3.3026
11 -49.5188 0.9007 1.77250 49.62
12 -679.5324 (d12)
13 224.6760 2.3518 1.80450 39.64
14 -109.9862 1.0008
15 (Aperture) ∞ (d15)
16 39.7929 0.9007 2.00100 29.13
17 25.4554 5.1040 1.59282 68.62
18 -200.5164 (d18)
19 66.9425 1.9938 1.91082 35.25
20 321.3737 0.6288 1.00000 0.00
21 -180.7817 0.9007 1.80000 29.84
22 69.2506 (d22)
23 70.2323 5.4543 1.48749 70.44
24 -37.6316 0.8006 1.69895 30.05
25 -64.6406 (d25)
26 -386.1025 2.8022 1.84666 23.78
27 -38.4401 0.8006 1.59349 67.00
28 29.5732 2.9623
29 -131.0627 0.8006 1.80100 34.97
30 77.3006 1.4411
31 35.1776 7.0555 1.49700 81.61
32 -35.1776 0.1501
33 192.8511 7.5559 1.69895 30.05
34 -19.9656 0.9007 1.84666 23.78
35 -41.9 128 0.1501
36 -68.4736 0.9007 1.72916 54.67
37 229.0294 6.0247
38 -24.1789 0.9007 1.83481 42.72
39 -258.1522 0.1501
40* 33.5263 4.9539 1.58913 61.25
41 213.1670 30.3551
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -1.12050E-05
A6 2.28367E-08
A8 -6.93799E-11
A10 9.63136E-14

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.50 117.60 193.95
F number 4.15 4.11 4.14
Full angle of view 2ω 33.12 20.41 12.34
Image height Y 21.63 21.63 21.63
Total lens length 193.72 193.72 193.72

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7606 20.4344 35.3177
d12 33.3561 17.9581 1.2210
d15 3.8230 1.5039 1.5012
d18 3.9631 2.0064 3.8630
d22 19.1453 15.0714 19.1011
d25 3.0024 7.0744 3.0468
BF 0.3481 0.3504 0.3485

Wide-angle mid-telephoto
d0 806.2799 806.2795 806.2793
d5 0.7606 20.4344 35.3177
d12 33.3561 17.9581 1.2210
d16 3.8230 1.5039 1.5012
d18 3.9631 2.0064 3.8630
d22 16.5109 8.8545 2.3153
d25 5.6367 13.2914 19.8325
BF 0.3482 0.3504 0.3486

[Lens group data]
Focal length of group start surface
G1 1 107.74
G2 6 -32.50
G3 13 92.07
G4 16 82.39
G5 19 -208.66
G6 23 83.37
G7 26 -61.77
G2a 6 -84.39
G2b 8 -63.96
G7a 26 -30.27
G7b 31 48.82

図79は、本発明の実施例7の結像光学系のレンズ構成図である。 FIG. 79 is a lens configuration diagram of an image forming optical system according to Example 7 of the present invention.

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、開口絞り、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群、負の屈折力の第7レンズ群からなり、変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動する。 From the object side to the image side, in order from the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the fourth lens group having a positive refractive power. , A fifth lens unit having a negative refracting power, a sixth lens unit having a positive refracting power, and a seventh lens unit having a negative refracting power. The sixth lens group is fixed to the object side and moves toward the object side along the optical axis during focusing from an object at infinity to a near object.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface directed toward the object side and a biconvex lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.

第2レンズ群G2は、物体側より順に負の屈折力の第2aレンズ群G2aと負の屈折力の第2bレンズ群G2bから構成され、第2aレンズ群G2aは、物体側に凸面を向けた負メニスカスレンズL4で構成される。第2bレンズ群G2bは、両凹レンズL5と、物体側に凸面を向けた正メニスカスレンズL6接合レンズ、物体側に凹面を向けた負メニスカスレンズL7から構成される。 The second lens group G2 is composed of, in order from the object side, a second lens group G2a having a negative refractive power and a second lens group G2b having a negative refractive power, and the second lens group G2a has a convex surface directed toward the object side. It is composed of a negative meniscus lens L4. The 2b-th lens group G2b is composed of a biconcave lens L5, a positive meniscus lens L6 cemented lens with a convex surface facing the object side, and a negative meniscus lens L7 with a concave surface facing the object side.

第3レンズ群G3は、両凸レンズL8から構成される。 The third lens group G3 is composed of a biconvex lens L8.

開口絞りは第3レンズ群G3の像側に備えられ、変倍に伴って第3レンズ群G3と一体で移動する。 The aperture stop is provided on the image side of the third lens group G3 and moves integrally with the third lens group G3 as the magnification changes.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL9と両凸レンズL10からなる接合レンズから構成される。 The fourth lens group G4 is composed of a cemented lens including a negative meniscus lens L9 having a convex surface directed toward the object side and a biconvex lens L10.

第5レンズ群G5は、物体側に両凸レンズL11と両凹レンズL12から構成される。 The fifth lens group G5 is composed of a biconvex lens L11 and a biconcave lens L12 on the object side.

第6レンズ群G6は、両凸レンズL13と物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズから構成される。 The sixth lens group G6 is composed of a cemented lens including a biconvex lens L13 and a negative meniscus lens L14 having a concave surface facing the object side.

第7レンズ群G7は、物体側より順に負の屈折力の第7aレンズ群G7aと正の屈折力の第7bレンズ群G7bから構成され、第7aレンズ群G7aは、物体側に凹面を向けた正メニスカスレンズL15と両凹レンズL16からなる接合レンズ、両凹レンズL17から構成され、第7bレンズ群G7bは、両凸レンズL18、両凸レンズL19と物体側に凹面を向けた負メニスカスレンズL20からなる接合レンズ、両凹レンズL21、物体側に凹面を向けた負メニスカスレンズL22、物体側に凸面を向け、物体側が非球面の正メニスカスレンズL23から構成される。さらに第7aレンズ群G7aを光軸に対して垂直方向に変位させることによって防振を行う。 The seventh lens group G7 is composed of, in order from the object side, a 7a lens group G7a having a negative refractive power and a 7b lens group G7b having a positive refractive power, and the 7a lens group G7a has a concave surface facing the object side. The cemented lens includes a positive meniscus lens L15 and a biconcave lens L16, and a biconcave lens L17. The 7bth lens group G7b includes a biconvex lens L18, a biconvex lens L19, and a negative meniscus lens L20 having a concave surface facing the object side. , A biconcave lens L21, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side and having an aspherical object side. Further, the 7a lens group G7a is displaced in the direction perpendicular to the optical axis to perform image stabilization.

続いて、以下に実施例7に係る変倍結像光学系の諸元値を示す。
数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ ∞
1 111.1569 1.7055 1.75520 27.53
2 73.1649 10.5840 1.49700 81.61
3 -346.7131 0.1505
4 59.3405 6.4206 1.43700 95.10
5 156.5426 (d5)
6 40.2592 0.9029 1.80610 33.27
7 25.0605 11.3364
8 -148.4767 0.9029 1.48749 70.44
9 26.6656 4.0630 1.84666 23.78
10 71.3792 3.3106
11 -49.6394 0.9029 1.77250 49.62
12 -681.1868 (d12)
13 225.2230 2.3576 1.80450 39.64
14 -110.2540 1.0032
15(絞り) ∞ (d15)
16 60.6077 0.9029 2.00100 29.13
17 35.3647 5.1164 1.59282 68.62
18 -318.3229 (d18)
19 45.6946 3.6851 1.91082 35.25
20 -365.9192 0.3612
21 -123.2499 0.9029 1.80000 29.84
22 39.9208 20.4777
23 48.9552 5.4676 1.48749 70.44
24 -32.4081 0.8026 1.69895 30.05
25 -54.8727 (d25)
26 -387.0425 2.8090 1.84666 23.78
27 -38.5337 0.8026 1.59349 67.00
28 29.6452 2.9695
29 -131.3818 0.8026 1.80100 34.97
30 77.4888 1.4446
31 35.2632 7.0727 1.49700 81.61
32 -35.2632 0.1505
33 193.3206 7.5743 1.69895 30.05
34 -20.0143 0.9029 1.84666 23.78
35 -42.0149 0.1505
36 -68.6404 0.9029 1.72916 54.67
37 229.5871 6.0394
38 -24.2378 0.9029 1.83481 42.72
39 -258.7808 0.1505
40* 33.6079 4.9659 1.58913 61.25
41 213.6860 32.5958
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
像面 ∞

[非球面データ]
40面
K 0.00000
A4 -9.46295E-06
A6 9.11007E-09
A8 -1.51677E-11
A10 1.39524E-14

[各種データ]
ズーム比 2.68
広角 中間 望遠
焦点距離 72.50 118.62 194.03
Fナンバー 4.14 4.14 4.13
全画角2ω 33.49 20.42 12.46
像高Y 21.63 21.63 21.63
レンズ全長 202.61 202.61 202.61

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 0.7624 20.4842 35.4037
d12 33.4373 18.0018 1.2239
d15 3.8323 1.5075 1.5048
d18 3.9728 2.0113 3.8724
d22 20.4777 17.9854 20.4813
d25 5.3192 7.8115 5.3156
BF 1.5882 1.5887 1.5889

広角 中間 望遠
d0 797.3947 797.3943 797.3940
d5 0.7624 20.4842 35.4037
d12 33.4373 18.0018 1.2239
d16 3.8323 1.5075 1.5048
d18 3.9728 2.0113 3.8724
d22 18.4198 12.8003 6.5463
d25 7.3710 12.9835 19.2506
BF 1.6076 1.6308 1.5888


[レンズ群データ]
群 始面 焦点距離
G1 1 108.00
G2 6 -32.58
G3 13 92.30
G4 16 145.38
G5 19 -356.10
G6 23 62.81
G7 26 -61.92
G2a 6 -84.59
G2b 8 -64.12
G7a 26 -30.35
G7b 31 48.94
Next, the following are the specifications of the variable power imaging optical system according to Example 7.
Numerical Example 7
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ ∞
1 111.1569 1.7055 1.75520 27.53
2 73.1649 10.5840 1.49700 81.61
3 -346.7131 0.1505
4 59.3405 6.4206 1.43700 95.10
5 156.5426 (d5)
6 40.2592 0.9029 1.80610 33.27
7 25.0605 11.3364
8 -148.4767 0.9029 1.48749 70.44
9 26.6656 4.0630 1.84666 23.78
10 71.3792 3.3106
11 -49.6394 0.9029 1.77250 49.62
12 -681.1868 (d12)
13 225.2230 2.3576 1.80450 39.64
14 -110.2540 1.0032
15 (Aperture) ∞ (d15)
16 60.6077 0.9029 2.00100 29.13
17 35.3647 5.1164 1.59282 68.62
18 -318.3229 (d18)
19 45.6946 3.6851 1.91082 35.25
20 -365.9192 0.3612
21 -123.2499 0.9029 1.80000 29.84
22 39.9208 20.4777
23 48.9552 5.4676 1.48749 70.44
24 -32.4081 0.8026 1.69895 30.05
25 -54.8727 (d25)
26 -387.0425 2.8090 1.84666 23.78
27 -38.5337 0.8026 1.59349 67.00
28 29.6452 2.9695
29 -131.3818 0.8026 1.80100 34.97
30 77.4888 1.4446
31 35.2632 7.0727 1.49700 81.61
32 -35.2632 0.1505
33 193.3206 7.5743 1.69895 30.05
34 -20.0143 0.9029 1.84666 23.78
35 -42.0 149 0.1505
36 -68.6404 0.9029 1.72916 54.67
37 229.5871 6.0394
38 -24.2378 0.9029 1.83481 42.72
39 -258.7808 0.1505
40* 33.6079 4.9659 1.58913 61.25
41 213.6860 32.5958
42 ∞ 2.1074 1.51680 64.17
43 ∞ (BF)
Image plane ∞

[Aspherical data]
40 sides
K 0.00000
A4 -9.46295E-06
A6 9.11007E-09
A8 -1.51677E-11
A10 1.39524E-14

[Various data]
Zoom ratio 2.68
Wide-angle mid-telephoto focal length 72.50 118.62 194.03
F number 4.14 4.14 4.13
Full angle of view 2ω 33.49 20.42 12.46
Image height Y 21.63 21.63 21.63
Total lens length 202.61 202.61 202.61

[Variable interval data]
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d5 0.7624 20.4842 35.4037
d12 33.4373 18.0018 1.2239
d15 3.8323 1.5075 1.5048
d18 3.9728 2.0113 3.8724
d22 20.4777 17.9854 20.4813
d25 5.3192 7.8115 5.3156
BF 1.5882 1.5887 1.5889

Wide-angle mid-telephoto
d0 797.3947 797.3943 797.3940
d5 0.7624 20.4842 35.4037
d12 33.4373 18.0018 1.2239
d16 3.8323 1.5075 1.5048
d18 3.9728 2.0113 3.8724
d22 18.4198 12.8003 6.5463
d25 7.3710 12.9835 19.2506
BF 1.6076 1.6308 1.5888


[Lens group data]
Focal length of group start surface
G1 1 108.00
G2 6 -32.58
G3 13 92.30
G4 16 145.38
G5 19 -356.10
G6 23 62.81
G7 26 -61.92
G2a 6 -84.59
G2b 8 -64.12
G7a 26 -30.35
G7b 31 48.94

以下に各実施例に対応する条件式対応値を示す。

条件式/実施例 ex1 ex2 ex3
(1) 0.35<G2at/G2t<0.80 0.71 0.38 0.62
(2) 1.40<G2af/G2f<5.40 2.92 1.69 3.63
(3) 0.19<f6/ft<0.85 0.35 0.35 0.35
(4)1.20<MR^2×(1−M6^2)<6.0 2.78 3.07 2.55
(5) 0.19<M6 <0.75 0.36 0.34 0.38
(6) −0.85<F7/ft<−0.17 -0.32 -0.32 -0.32
(7) 下記参照 -3.08 -2.48 -6.04

条件式/実施例 ex4 ex5
(1) 0.35<G2at/G2t<0.80 0.53 0.53
(2) 1.40<G2af/G2f<5.40 2.60 2.60
(3) 0.19<f6/ft<0.85 0.30 0.44
(4)1.20<MR^2×(1−M6^2)<6.0 3.62 1.68
(5) 0.19<M6 <0.75 0.32 0.41
(6) −0.85<F7/ft<−0.17 -0.27 -0.61
(7) 下記参照 -4.30 -4.30

条件式/実施例 ex6 ex7
(1) 0.35<G2at/G2t<0.80 0.53 0.53
(2) 1.40<G2af/G2f<5.40 2.60 2.60
(3) 0.19<f6/ft<0.85 0.43 0.32
(4)1.20<MR^2×(1−M6^2)<6.0 2.26 2.96
(5) 0.19<M6 <0.75 0.50 0.28
(6) −0.85<F7/ft<−0.17 -0.32 -0.32
(7) 下記参照 -4.30 -4.30

※条件式(7) −8.0<(G2a2+G2a1)/(G2a2-G2a1)<−1.5
The values corresponding to the conditional expressions corresponding to the respective examples are shown below.

Conditional expression/Example ex1 ex2 ex3
(1) 0.35<G2at/G2t<0.80 0.71 0.38 0.62
(2) 1.40<G2af/G2f<5.40 2.92 1.69 3.63
(3) 0.19<f6/ft<0.85 0.35 0.35 0.35
(4) 1.20<MR^2×(1-M6^2)<6.0 2.78 3.07 2.55
(5) 0.19 <M6 <0.75 0.36 0.34 0.38
(6) -0.85<F7/ft<-0.17 -0.32 -0.32 -0.32
(7) See below -3.08 -2.48 -6.04

Conditional expression/Example ex4 ex5
(1) 0.35<G2at/G2t<0.80 0.53 0.53
(2) 1.40<G2af/G2f<5.40 2.60 2.60
(3) 0.19<f6/ft<0.85 0.30 0.44
(4) 1.20<MR^2×(1-M6^2)<6.0 3.62 1.68
(5) 0.19<M6 <0.75 0.32 0.41
(6) -0.85<F7/ft<-0.17 -0.27 -0.61
(7) See below -4.30 -4.30

Conditional expression/Example ex6 ex7
(1) 0.35<G2at/G2t<0.80 0.53 0.53
(2) 1.40<G2af/G2f<5.40 2.60 2.60
(3) 0.19<f6/ft<0.85 0.43 0.32
(4) 1.20<MR^2×(1-M6^2)<6.0 2.26 2.96
(5) 0.19 <M6 <0.75 0.50 0.28
(6) -0.85<F7/ft<-0.17 -0.32 -0.32
(7) See below -4.30 -4.30

* Conditional expression (7) -8.0<(G2a2+G2a1)/(G2a2-G2a1)<-1.5

G1 第1レンズ群
G2 第2レンズ群
G2a 第2aレンズ群
G2b 第2bレンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
G7 第7レンズ群
G7a 第7aレンズ群
G7b 第7bレンズ群
S 開口絞り
F フィルター
I 像面
G1 1st lens group G2 2nd lens group G2a 2a lens group G2b 2b lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group G7 7th lens group G7a 7a lens group G7b 7b Lens group S Aperture stop F Filter I Image plane

Claims (6)

物体側から像側へ順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、開口絞りと、正の屈折力の第4レンズ群と、負の屈折力の第5レンズ群と、正の屈折力の第6レンズ群と、負の屈折力の第7レンズ群とからなり、
変倍時に、前記第1、5、7レンズ群が像面に対し固定であり、
無限遠物体から近距離物体へのフォーカシングに際して、前記第6レンズ群が光軸に沿って物体側に移動することを特徴とする変倍結像光学系。
In order from the object side to the image side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the aperture stop, and the positive refractive power A fourth lens group, a fifth lens group having a negative refractive power, a sixth lens group having a positive refractive power, and a seventh lens group having a negative refractive power,
At the time of zooming, the first, fifth and seventh lens units are fixed with respect to the image plane,
A variable power imaging optical system, wherein the sixth lens group moves toward the object side along the optical axis when focusing from an object at infinity to a near object.
前記第2レンズ群は、物体側から像側へ順に、物体側に凸の負の単レンズからなる第2aレンズ群と負の屈折力の第2bレンズ群から構成され、
前記第2aレンズ群と前記第2bレンズ群の空気間隔が前記第2レンズ群を構成する空気間隔の内、最も大きくなり、
前記第2aレンズ群の焦点距離と前記第2レンズ群の焦点距離が以下の条件式を満足することを特徴とする請求項1に記載の変倍結像光学系。
(1)0.35<G2at/G2t<0.80
(2)1.40<G2af/G2f<5.40
ただし
G2t:前記第2レンズ群の合成厚
G2at:前記第2aレンズ群と前記第2bレンズ群に挟まれた空気間隔
G2f:前記第2レンズ群の焦点距離
G2af:第2aレンズ群の焦点距離
The second lens group includes, in order from the object side to the image side, a second lens group consisting of a negative single lens convex to the object side and a second lens group having a negative refractive power.
The air gap between the 2a-th lens group and the 2b-th lens group is the largest among the air gaps forming the second lens group,
2. The variable power imaging optical system according to claim 1, wherein the focal length of the second-a lens unit and the focal length of the second-lens unit satisfy the following conditional expression.
(1) 0.35<G2at/G2t<0.80
(2) 1.40<G2af/G2f<5.40
However, G2t: combined thickness of the second lens group G2at: air gap between the second a lens group and the second b lens group G2f: focal length of the second lens group G2af: focal length of the second lens group
前記第6レンズ群は、無限遠物体から近距離物体へのフォーカシングの際、物体方向へ移動し、以下の条件式を満足することを特徴とする請求項1または請求項2に記載の変倍結像光学系。
ただし
(3)0.19<f6/ft<0.65
(4)1.20<MR^2×(1−M6^2)<6.00
(5)0.19<M6<0.75
ft:望遠端における物体距離無限遠時の焦点距離
f6:前記第6レンズ群G6の焦点距離
M6:物体距離無限遠時の前記第6レンズ群G6の横倍率
MR:物体距離無限遠時の前記第7レンズ群G7の横倍率
The variable power according to claim 1 or 2, wherein the sixth lens group moves toward the object at the time of focusing from an object at infinity to a near object and satisfies the following conditional expression. Imaging optics.
However, (3) 0.19<f6/ft<0.65
(4) 1.20<MR^2*(1-M6^2)<6.00
(5) 0.19<M6<0.75
ft: focal length when the object distance is infinity at the telephoto end f6: focal length of the sixth lens group G6 M6: lateral magnification of the sixth lens group G6 when the object distance is infinity MR: the object distance at infinity Lateral magnification of seventh lens group G7
前記第7レンズ群は、以下の条件式を満足することを特徴とする請求項1乃至3のいずれかに記載の変倍結像光学系。
(6)−0.85<f7/ft<−0.17
ただし
f7:前記第7レンズ群の焦点距離
ft:望遠端における物体距離無限遠時の焦点距離
4. The variable power imaging optical system according to claim 1, wherein the seventh lens group satisfies the following conditional expression.
(6)-0.85<f7/ft<-0.17
Where f7: focal length of the seventh lens group ft: object distance at the telephoto end, focal length at infinity
前記第7レンズ群は、物体側から像側へ順に、負の屈折力の第7aレンズ群と正の屈折力の第7bレンズ群から構成され、前記第7aレンズ群を光軸に対して垂直方向に変位させることによって防振を行うことを特徴とする請求項1乃至4のいずれかに記載の変倍結像光学系。 The seventh lens group includes, in order from the object side to the image side, a 7a lens group having a negative refractive power and a 7b lens group having a positive refractive power, and the 7a lens group is perpendicular to the optical axis. The variable power imaging optical system according to any one of claims 1 to 4, wherein the image stabilization is performed by displacing in a direction. 前記第2aレンズ群は、以下の条件式を満足することを特徴とする請求項2乃至5のいずれかに記載の変倍結像光学系。
(7)−8.0<(G2a2+G2a1)/(G2a2−G2a1)<−1.5
ただし
G2a1:前記第2aレンズ群の物体側の曲率半径
G2a2:前記第2aレンズ群の像側の曲率半径
6. The variable power imaging optical system according to claim 2, wherein the second-a lens group satisfies the following conditional expression.
(7)-8.0<(G2a2+G2a1)/(G2a2-G2a1)<-1.5
Where G2a1: radius of curvature of the 2a lens group on the object side G2a2: radius of curvature of the 2a lens group on the image side
JP2018220648A 2018-11-26 2018-11-26 Variable magnification imaging optical system Active JP7134481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220648A JP7134481B2 (en) 2018-11-26 2018-11-26 Variable magnification imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220648A JP7134481B2 (en) 2018-11-26 2018-11-26 Variable magnification imaging optical system

Publications (2)

Publication Number Publication Date
JP2020086133A true JP2020086133A (en) 2020-06-04
JP7134481B2 JP7134481B2 (en) 2022-09-12

Family

ID=70907814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220648A Active JP7134481B2 (en) 2018-11-26 2018-11-26 Variable magnification imaging optical system

Country Status (1)

Country Link
JP (1) JP7134481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089523A (en) * 2021-12-17 2022-02-25 舜宇光学(中山)有限公司 Zoom lens
JP2023001329A (en) * 2018-12-26 2023-01-04 株式会社ニコン Zoom optical system and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
US20080068725A1 (en) * 2006-09-15 2008-03-20 Asia Optical Co., Inc Zoom lens
JP2015212726A (en) * 2014-05-01 2015-11-26 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US20160209632A1 (en) * 2015-01-21 2016-07-21 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens device, and camera system
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2018054989A (en) * 2016-09-30 2018-04-05 キヤノン株式会社 Optical system and optical instrument including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
US20080068725A1 (en) * 2006-09-15 2008-03-20 Asia Optical Co., Inc Zoom lens
JP2015212726A (en) * 2014-05-01 2015-11-26 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US20160209632A1 (en) * 2015-01-21 2016-07-21 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens device, and camera system
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2018054989A (en) * 2016-09-30 2018-04-05 キヤノン株式会社 Optical system and optical instrument including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023001329A (en) * 2018-12-26 2023-01-04 株式会社ニコン Zoom optical system and optical device
JP7420200B2 (en) 2018-12-26 2024-01-23 株式会社ニコン Variable magnification optics and optical equipment
CN114089523A (en) * 2021-12-17 2022-02-25 舜宇光学(中山)有限公司 Zoom lens

Also Published As

Publication number Publication date
JP7134481B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
JP4834360B2 (en) Zoom lens and imaging apparatus having the same
JP4217990B2 (en) Zoom lens and imaging device
JP5111059B2 (en) Zoom lens and imaging apparatus having the same
JP5200527B2 (en) Zoom lens and imaging device
JP4738823B2 (en) Zoom lens and imaging apparatus having the same
JP4976867B2 (en) Zoom lens and imaging apparatus having the same
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP5836654B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JP5258317B2 (en) Zoom lens and imaging apparatus having the same
JP6952235B2 (en) Variable magnification imaging optical system
JP2013003240A5 (en)
US20060146417A1 (en) Zoom lens system and image pickup apparatus including the same
JP2001033703A (en) Rear focus type zoom lens
JP2006058584A (en) Zoom lens and imaging device incorporating it
US8503101B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP4914097B2 (en) Zoom lens and imaging apparatus having the same
JP5646313B2 (en) Anti-vibration zoom lens and image pickup apparatus having the same
JP7134481B2 (en) Variable magnification imaging optical system
JP2003098434A (en) Zoom lens and optical equipment having the same
JP7148130B2 (en) Variable magnification imaging optical system
JP2018072581A (en) Large-aperture telephoto zoom lens with anti-shake functionality
JP6071578B2 (en) Zoom lens and imaging apparatus having the same
JP7217935B2 (en) Variable magnification imaging optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R150 Certificate of patent or registration of utility model

Ref document number: 7134481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150