JP2020084297A - Cathode plate for electrolysis and electrolytic refining method using the same - Google Patents

Cathode plate for electrolysis and electrolytic refining method using the same Download PDF

Info

Publication number
JP2020084297A
JP2020084297A JP2018224719A JP2018224719A JP2020084297A JP 2020084297 A JP2020084297 A JP 2020084297A JP 2018224719 A JP2018224719 A JP 2018224719A JP 2018224719 A JP2018224719 A JP 2018224719A JP 2020084297 A JP2020084297 A JP 2020084297A
Authority
JP
Japan
Prior art keywords
electrolysis
plate
flat plate
cathode
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018224719A
Other languages
Japanese (ja)
Other versions
JP7196574B2 (en
Inventor
大地 村瀬
Daichi Murase
大地 村瀬
洋平 山口
Yohei Yamaguchi
洋平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018224719A priority Critical patent/JP7196574B2/en
Publication of JP2020084297A publication Critical patent/JP2020084297A/en
Application granted granted Critical
Publication of JP7196574B2 publication Critical patent/JP7196574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a cathode plate for electrolysis capable of making a seed plate group having nearly the same thickness in a plurality of mother boards charged into an electrolytic bath.SOLUTION: A cathode plate 1 for electrolysis comprises a stainless steel flat plate part 10 having an approximately rectangular shape and immersed into an electrolytic solution in an electrolytic bath, and a pair of copper cross beams 20 holding a rectangular protrusion protruding upward from front and rear surfaces in at least both ends of an upper edge part of the flat plate part. A total average value of a plurality of average values obtained by calculating an average value of surface roughness (Ra) of both contact surfaces of the flat plate part 10 and the cross beam 20 about all cathode plates for electrolysis cathode plate for electrolysis charged into one electrolytic bath is less than or equal to 5.0 μm, and the standard deviation is less than or equal to 2.5 μm.SELECTED DRAWING: Figure 1

Description

本発明は、非鉄金属の電解精錬で使用される陰極板及びこれを用いた電解精製方法に関し、より具体的には銅電解精錬の種板電解において母板として使用されるステンレス製の平板部と銅クロスビームとからなる陰極板及びこれを用いた電解精製方法に関する。 The present invention relates to a cathode plate used in electrolytic refining of non-ferrous metals and an electrolytic refining method using the same, and more specifically, a flat plate made of stainless steel used as a mother plate in a seed plate electrolysis of copper electrolytic refining and The present invention relates to a cathode plate composed of a copper cross beam and an electrolytic refining method using the same.

銅などの非鉄金属の電解精製では、電解液で満たされた電解槽内に、陽極板としての複数の不溶性アノードや目的金属アノードと、陰極板としての目的金属の複数の種板とを交互に装入し、これらに直流電流を通電して電気分解することが行われている。後者の複数の種板は、ステンレス等の母板を陰極板に用いて上記と同様の電解を行い、該母板に目的金属が薄く電着した時点でこの薄電着物を母板から剥ぎ取ることで作製される。この種板作製のための電解(種板電解)で使用する母板は、例えば特許文献1に開示されているように、所定の厚みを有する略四角形状のステンレス製の平板部と、該平板部を電解槽内に垂下させるためにその上縁部を挟持すると共に該平板部に給電する役割を担う1対の角棒状の銅クロスビームとから構成されている。 In electrolytic refining of non-ferrous metals such as copper, multiple insoluble anodes or target metal anodes as anode plates and multiple seed plates of target metals as cathode plates are alternately placed in an electrolytic cell filled with an electrolytic solution. It is carried out by charging and electrolyzing them by applying a direct current to them. For the latter plurality of seed plates, the same electrolysis as above is performed using a mother plate such as stainless steel as a cathode plate, and when the target metal is thinly electrodeposited on the mother plate, the thin electrodeposit is stripped from the mother plate. It is made by that. The mother plate used in the electrolysis (seed plate electrolysis) for producing this seed plate is, for example, as disclosed in Patent Document 1, a substantially rectangular flat plate portion made of stainless steel having a predetermined thickness, and the flat plate. It is composed of a pair of rectangular rod-shaped copper cross beams which hold the upper edge of the copper plate to hang it in the electrolytic cell and supply power to the flat plate portion.

ところで、上記の母板から剥ぎ取られた種板には、電着歪や剥ぎ取りの際の歪が生じている。種板は、通常は剥ぎ取られた後にパレットに積み重ねられて保管されるが、このパレット上の保管により歪が矯正されて平坦になることはほとんどない。このような歪んだ状態のままの種板を電解槽内へ装入して電気分解を行うと、陰極板としての当該種板と陽極板との面間距離において局所的に狭い部分が生じるため、その部分でショートを誘発してしまう。その結果、電流効率が低下し、電気銅の生産量が減少する。そこで、電解槽内へ装入する前に種板の歪を矯正することが行われている。上記の種板の歪の一般的な矯正には、ローラーを備えた成形機やプレス等の歪矯正装置を用いる方法が知られている。例えば特許文献2には、可動式圧下ロール及び固定式ロールの組み合わせからなる種板歪取装置を用いる技術が開示されている。 By the way, the seed plate peeled off from the above mother plate suffers from electrodeposition strain and strain at the time of peeling. The seed plate is usually peeled off and then stacked and stored in a pallet, but the storage on the pallet rarely corrects the distortion and flattens it. When a seed plate in such a distorted state is loaded into an electrolytic cell and electrolyzed, a locally narrow portion occurs in the surface distance between the seed plate and the anode plate as a cathode plate. , It causes a short circuit in that part. As a result, the current efficiency is reduced and the production amount of electrolytic copper is reduced. Therefore, the distortion of the seed plate is corrected before charging it into the electrolytic cell. For general correction of the strain of the seed plate, a method using a strain correcting device such as a molding machine or a press equipped with a roller is known. For example, Patent Document 2 discloses a technique of using a seed plate strain removing device that is a combination of a movable reduction roll and a fixed roll.

一方、電解精錬を効率よく行うには、電解槽に装入した複数の母板に対して均一に給電するのが望ましい。しかしながら、母板は種板の剥離後に再利用されるため、繰り返し使用しているうちに変形や腐食等の劣化が生じて複数の母板への電流分布が不均一になることがあった。特に、上記した1対の銅クロスビームが平板部にボルト留めされた構造の場合は、母板の電解槽からの取り出し及び装入などの移動時や種板の剥ぎ取り時に、母板に衝撃や振動などの機械的な力が加わり、当該ボルトが少しずつ弛んで銅クロスビームと平板部との間のすき間に電解液のミストが侵入し、その部分において腐食が進行して腐食生成物が生成することがあった。 On the other hand, in order to efficiently carry out electrolytic refining, it is desirable to uniformly supply power to a plurality of mother plates loaded in the electrolytic cell. However, since the mother plate is reused after the seed plate is peeled off, deterioration such as deformation and corrosion may occur during repeated use, resulting in non-uniform current distribution to the plurality of mother plates. In particular, in the case of the structure in which the pair of copper cross beams described above is bolted to the flat plate part, the mother plate is impacted when the mother plate is taken out of the electrolytic cell and moved, for example, when the seed plate is peeled off. Mechanical force such as vibration or vibration is applied, the bolt gradually loosens and the mist of the electrolytic solution enters the gap between the copper cross beam and the flat plate part, and corrosion progresses in that part and corrosion products are generated. There was something to generate.

その結果、銅クロスビームと平板部との両当接面での接触抵抗が増大し、電流分布が不均一になることがあった。この銅クロスビームと平板部との間の接触抵抗が増大するのを防ぐ方法として、例えば特許文献3には、これら銅クロスビームと平板部とを溶接する技術が提案されている。また、特許文献4には、これら銅クロスビームと平板部との間に金箔を介在させる技術が提案されている。 As a result, the contact resistance at the contact surfaces of the copper cross beam and the flat plate portion may increase, and the current distribution may become uneven. As a method for preventing the contact resistance between the copper cross beam and the flat plate portion from increasing, for example, Patent Document 3 proposes a technique of welding the copper cross beam and the flat plate portion. Further, Patent Document 4 proposes a technique of interposing a gold foil between the copper cross beam and the flat plate portion.

特開2011−32564号公報JP, 2011-32564, A 特開平9−165693号公報JP, 9-165693, A 特開平1−319695号公報JP-A-1-319695 特開平7−70783号公報JP, 7-70783, A

上記特許文献1に記載の歪矯正装置を用いた歪低減方法は、種板間で厚みにばらつきがあると歪を良好に矯正できないことがあった。例えば、ローラーを用いて種板の歪を矯正する際、過度に厚い種板はローラーの効きが高まることでかえって歪が増大したり、設備の過負荷により異常が発生したりすることがあった。逆に過度に薄い種板はローラーでの矯正が効かず、この場合も歪がかえって大きくなることがあった。このような歪矯正装置において生ずる問題を抑えるため、種板間で厚みがばらつかないように同じ厚みを有する種板群を作製し、それらを歪矯正装置に導入するのが望ましい。 The strain reduction method using the strain correction device described in Patent Document 1 may not be able to satisfactorily correct the strain if the thickness varies among the seed plates. For example, when correcting the distortion of the seed plate using a roller, an excessively thick seed plate may increase the distortion rather than increasing the effectiveness of the roller, or an abnormality may occur due to overload of equipment. .. On the contrary, if the seed plate was too thin, the correction by the roller was not effective, and in this case, the distortion might be rather large. In order to suppress the problems that occur in such a strain correcting device, it is desirable to prepare a seed plate group having the same thickness so that the thickness does not vary between the seed plates and introduce them into the strain correcting device.

同じ厚みの種板群を作製するには、電解槽に装入した複数の母板に供給する電流分布を均一にするのが好ましい。すなわち、電流分布を均一化させることで複数の母板上にそれぞれ形成される銅電着量がばらつきにくくなり、よって全て同じ厚みを有する種板群を作製することが可能になる。逆に複数の母板に供給する電流がばらつくと種板の厚みにばらつきが生じ、例えば厚みが過度に薄い種板の場合は、母板から剥ぎ取りにくくなるため作業者の負荷が増大するうえ、不良種板が発生する割合が高くなる。 In order to produce a seed plate group having the same thickness, it is preferable to make the distribution of the current supplied to the plurality of mother plates loaded in the electrolytic cell uniform. That is, by uniformizing the current distribution, the copper electrodeposition amounts formed on the plurality of mother plates are less likely to vary, and thus it becomes possible to manufacture a seed plate group having the same thickness. On the contrary, if the current supplied to a plurality of mother plates varies, the thickness of the seed plate will vary.For example, in the case of an excessively thin seed plate, it will be difficult to peel it off from the mother plate, increasing the load on the operator. However, the ratio of defective seed plates is increased.

上記の場合、前述した特許文献3及び4の技術を適用することで電流分布を均一化させることができるため、全て同じ厚みを有する種板群を作製することができる。しかしながら、上記特許文献3に開示されている方法で銅クロスビームと平板部とを溶接すると、加工硬化された銅クロスビームが熱によって焼なまされ、強度が低下するおそれがある。また、ステンレス製の平板部においては、粒界腐食割れが生じるおそれがある。更に、銅クロスビームと平板部とが互いに溶接されているので、長期間の使用で該ステンレス製の平板部又は銅クロスビームのいずれか一方に劣化が生じても、容易にこれらを分離して補修することができない。一方、上記特許文献4に開示されている方法で銅クロスビームと金箔とを接触させると、時間の経過に伴って金箔と銅クロスビームの銅との間で拡散が生じて最終的に金箔が無くなってしまい、その結果、銅クロスビームと平板部との当接面での接触抵抗の上昇により電流分布が不均一になるおそれがある。 In the above case, since the current distribution can be made uniform by applying the techniques of Patent Documents 3 and 4 described above, it is possible to manufacture the seed plate group having the same thickness. However, when the copper cross beam and the flat plate portion are welded by the method disclosed in Patent Document 3, the work-hardened copper cross beam may be annealed by heat and the strength may be reduced. In addition, intergranular corrosion cracking may occur in the flat plate made of stainless steel. Furthermore, since the copper cross beam and the flat plate portion are welded to each other, even if either the flat plate portion made of stainless steel or the copper cross beam is deteriorated by long-term use, they can be easily separated from each other. It cannot be repaired. On the other hand, when the copper cross beam and the gold foil are brought into contact with each other by the method disclosed in Patent Document 4, diffusion occurs between the gold foil and the copper of the copper cross beam with the passage of time, and the gold foil is finally formed. As a result, the current distribution may be non-uniform due to an increase in contact resistance at the contact surface between the copper cross beam and the flat plate portion.

本発明はかかる実情に鑑みてなされたものであり、電解槽内に装入した母板としての複数の電解用陰極板への電流分布を均一にすることで、ほぼ同じ厚みを有する種板群を作製することが可能な電解用陰極板及びこれを用いた電解精製方法を提供することを目的とする。 The present invention has been made in view of such circumstances, by making the current distribution to a plurality of electrolysis cathode plates as a mother plate loaded in the electrolytic cell uniform, a seed plate group having substantially the same thickness It is an object of the present invention to provide a cathode plate for electrolysis which can be manufactured and an electrolytic refining method using the same.

本発明者らは、種板作製時の電解における電解槽内の各母板に流れる電流値と、該母板に流れる電流を決定する各抵抗値に関して検討を行ったところ、1対の銅クロスビームとこれらにより挟持される平板部との間の接触抵抗のばらつきが複数の母板に対する電流分布の不均一化の主要因であるとの知見を得、更に検討を進めたところ、この接触抵抗のばらつきはこれら銅クロスビームと平板部との両当接面の表面粗さに起因していることを見出し、本発明を完成するに至った。 The inventors of the present invention examined the current value flowing through each mother plate in the electrolytic cell during electrolysis during the production of the seed plate and the respective resistance values that determine the current flowing through the mother plate. We obtained the knowledge that the variation in the contact resistance between the beam and the flat plate sandwiched between them is the main cause of the non-uniformity of the current distribution across multiple mother plates. The inventors have found that the variation of 1 is caused by the surface roughness of both contact surfaces of the copper cross beam and the flat plate portion, and completed the present invention.

すなわち、本発明に係る電解用陰極板は、電解槽内の電解液に浸漬される略四角形状のステンレス製の平板部と、その上縁部の少なくとも両端において上方に突出する矩形突起部を表裏面から挟持する1対の銅製のクロスビームとからなる電解用陰極板であって、これら平板部とクロスビームとの両当接面の表面粗さ(Ra)の平均値を、1つの電解槽に装入される全ての電解用陰極板について算出して得た複数の平均値の総平均値が5.0μm以下、標準偏差が2.5μm以下であることを特徴としている。 That is, the cathode plate for electrolysis according to the present invention has a substantially rectangular flat plate portion made of stainless steel that is immersed in the electrolytic solution in the electrolytic cell, and a rectangular protrusion that protrudes upward at least at both ends of its upper edge portion. A cathode plate for electrolysis comprising a pair of copper cross beams sandwiched from the back surface, wherein the average value of the surface roughness (Ra) of both abutting surfaces of the flat plate portion and the cross beam is defined as one electrolytic cell. It is characterized in that a total average value of a plurality of average values obtained by calculating for all of the electrolysis cathode plates charged in (1) is 5.0 μm or less and a standard deviation is 2.5 μm or less.

本発明によれば、電解槽内に装入した複数の母板に対する電流分布を均一にすることができるので、不良種板の発生割合を低減させてほぼ同じ厚みを有する種板群を作製することができる。この種板を歪矯正装置に導入することで歪の小さなカソードを安定的に作製することが可能となり、銅電解精錬時の電流効率を高めることができるので、生産性を高めることができる。 According to the present invention, the current distribution can be made uniform for a plurality of mother plates charged in the electrolytic cell, so that the generation ratio of defective seed plates is reduced and a seed plate group having substantially the same thickness is manufactured. be able to. By introducing this seed plate into the strain correction device, it becomes possible to stably manufacture a cathode with a small strain, and it is possible to increase the current efficiency during copper electrolytic refining, so that the productivity can be increased.

本発明に係る電解用陰極板の一具体例の分解斜視図である。It is an exploded perspective view of a specific example of the cathode plate for electrolysis concerning the present invention.

以下、本発明に係る電解用陰極板の実施形態について図1を参照しながら説明する。この本発明の一具体例の陰極板1は、銅電解精錬の種板電解時に使用される母板であり、略四角形状のステンレス製の平板部10と、該平板部10の上縁部を表裏面から挟持する1対の角棒状の銅製のクロスビーム20とから構成される。より具体的に説明すると、上記の平板部10は、その幅方向の長さが装入される電解槽の内側の幅よりわずかに狭く形成されており、その表裏面は所定の表面粗さとなるように研磨処理が施されている。 Hereinafter, an embodiment of a cathode plate for electrolysis according to the present invention will be described with reference to FIG. The cathode plate 1 of this specific example of the present invention is a mother plate used during seed plate electrolysis of copper electrolytic refining, and includes a flat plate portion 10 made of stainless steel having a substantially rectangular shape and an upper edge portion of the flat plate portion 10. It is composed of a pair of square rod-shaped copper cross beams 20 which are sandwiched from the front and back surfaces. More specifically, the flat plate portion 10 is formed so that its length in the width direction is slightly narrower than the inner width of the electrolytic cell into which it is inserted, and its front and back surfaces have a predetermined surface roughness. The polishing process is performed.

この平板部10は、後述する突起部を除いてほぼ全体的に電解液に浸漬させるので、該電解液による腐食、変形に対する耐食性に優れた材料で形成されており、例えばSUS316Lが好適に用いられている。この平板部10には、その一方の側縁部の最上部から最下部までの領域とその下縁部のうちの上記一方の側縁部側の略半分の領域とを覆う略L字状に折り曲げられた断面コの字状の絶縁材11が取り付けられている。この絶縁材11により、種板電解時に両面に電着した電着銅を容易に剥ぎ取ることができる。 Since the flat plate portion 10 is almost entirely immersed in the electrolytic solution except for the projections described later, it is formed of a material having excellent corrosion resistance against corrosion and deformation by the electrolytic solution. For example, SUS316L is preferably used. ing. The flat plate portion 10 has a substantially L-shape that covers a region from the uppermost portion to the lowermost portion of one side edge portion thereof and a substantially half region of the lower edge portion on the one side edge portion side. The bent insulating material 11 having a U-shaped cross section is attached. With this insulating material 11, the electrodeposited copper that has been electrodeposited on both sides during electrolysis of the seed plate can be easily peeled off.

また、この平板部10は、その上縁部の中央部と両端部との3ヶ所に上方に突出する略矩形の突起部12が設けられており、これら3ヶ所の突起部12において上記1対のクロスビーム20との接続が行われる。これにより、平板部10にクロスビーム20を介して電力が供給される。なお、陰極板1の形状は図1に限定されるものではなく、例えば略矩形の突起部が中央部には存在せずに両端部2ケ所のみの場合がある。 In addition, the flat plate portion 10 is provided with substantially rectangular protrusions 12 projecting upward at three locations, that is, the center portion of the upper edge portion and both end portions thereof. The connection with the cross beam 20 is made. As a result, electric power is supplied to the flat plate portion 10 via the cross beam 20. The shape of the cathode plate 1 is not limited to that shown in FIG. 1. For example, there is a case where the substantially rectangular protrusion does not exist in the central portion and only two end portions are provided.

上記の3ヶ所の突起部12は、各々ボルト30の挿通用の貫通孔13が設けられている。上記の1対のクロスビーム20において上記突起部12の貫通孔13に対応する位置にも貫通孔21が設けられており、これら1対のクロスビーム20で平板部10の突起部12を表裏面から挟持し、対応する該突起部12の貫通孔13とクロスビーム20の貫通孔21とにボルト30を挿通してナット31で螺着することで、平板部10とクロスビーム20とを固定することができる。 Each of the above-mentioned three protrusions 12 is provided with a through hole 13 for inserting the bolt 30. A through hole 21 is also provided at a position corresponding to the through hole 13 of the protrusion 12 in the pair of cross beams 20, and the protrusion 12 of the flat plate portion 10 is covered by the pair of cross beams 20. The flat plate portion 10 and the cross beam 20 are fixed to each other by inserting the bolt 30 into the through hole 13 of the protrusion 12 and the through hole 21 of the cross beam 20 and screwing it with the nut 31. be able to.

1対のクロスビーム20は平板部10の幅よりも長いので、電解槽の対向する壁部の上縁部に該1対のクロスビーム20の両端部を載置することができ、これにより平板部10を1対のクロスビーム20から垂下した状態で電解液に浸漬させることができる。電解槽の上記対向する壁部上にはブスバーと称する給電板が載置されており、この給電板に1対のクロスビーム20の端部が当接することで、電源から該給電板及び1対のクロスビーム20を介して平板部10に給電が行われる。これにより平板部10の表裏面に目的金属としての銅を電着させることができる。 Since the pair of cross beams 20 is longer than the width of the flat plate portion 10, both end portions of the pair of cross beams 20 can be placed on the upper edges of the opposite wall portions of the electrolytic cell. The part 10 can be immersed in the electrolytic solution in a state of being hung from the pair of cross beams 20. A power feeding plate called a bus bar is placed on the opposite wall portions of the electrolytic cell, and the end portions of the pair of cross beams 20 are brought into contact with the power feeding plate, so that the power feeding plate and the pair of power feeding plates are connected from the power source. Power is supplied to the flat plate portion 10 via the cross beam 20 of FIG. As a result, copper as the target metal can be electrodeposited on the front and back surfaces of the flat plate portion 10.

この電着物が所定の厚みになった時点で該陰極板1を電解槽から引き上げ、前述した絶縁材11を用いて該電着物を平板部10から剥ぎ取る。これにより種板が得られる。種板が剥ぎ取られた後の陰極板1は、母板として再度使用することができる。しかしながら、上記1対のクロスビーム20と平板部10の突起部12との間の隙間に電解液が浸入すると、これらの当接部分が腐食される。この腐食の進行速度は該1対のクロスビーム20と、平板部10の突起部12との両当接面の表面粗さが陰極板1間でばらついていると差違を生じ、その結果、接触抵抗においても陰極板1間で差違が生じて複数の陰極板1に対する電流分布が不均一になる。 When this electrodeposit reaches a predetermined thickness, the cathode plate 1 is pulled out of the electrolytic cell, and the electrodeposit is stripped from the flat plate portion 10 using the insulating material 11 described above. This gives a seed plate. The cathode plate 1 after the seed plate is peeled off can be reused as a mother plate. However, when the electrolytic solution enters the gap between the pair of cross beams 20 and the protrusion 12 of the flat plate portion 10, these abutting portions are corroded. The rate of progress of this corrosion causes a difference when the surface roughness of the contact surfaces of the pair of cross beams 20 and the protrusions 12 of the flat plate portion 10 varies between the cathode plates 1, resulting in contact. Differences in resistance also occur between the cathode plates 1, and the current distribution to the plurality of cathode plates 1 becomes uneven.

このような不均一な電流分布の発生を防ぐため、本発明の実施形態においては、1対のクロスビーム20と突起部12との互いの当接面のそれぞれの表面粗さ(Ra)の平均値を、1つの電解槽に装入される全ての陰極板1について算出して得た複数の平均値の総平均値が5.0μm以下、標準偏差が2.5μm以下である。これにより、電解槽内に装入した母板としての複数の陰極板1に対する電流分布を均一にすることができるので、不良種板の発生割合を低減させてほぼ同じ厚みを有する種板群を作製することができる。逆に、上記の表面粗さ(Ra)の総平均値が5.0μmを超えるか、又は標準偏差が2.5μmを超えると、該当接面の接触抵抗のばらつきの影響が大きくなりすぎ、これら全ての陰極板1に対する電流分布が不均一になる。 In order to prevent the occurrence of such a non-uniform current distribution, in the embodiment of the present invention, the average surface roughness (Ra) of the contact surfaces of the pair of cross beams 20 and the protrusions 12 is averaged. The total average value of a plurality of average values obtained by calculating the values for all the cathode plates 1 loaded in one electrolytic cell is 5.0 μm or less, and the standard deviation is 2.5 μm or less. As a result, it is possible to make the current distribution uniform with respect to the plurality of cathode plates 1 as mother plates loaded in the electrolytic cell, so that the generation ratio of defective seed plates can be reduced and seed plate groups having substantially the same thickness can be obtained. It can be made. On the contrary, when the total average value of the above surface roughness (Ra) exceeds 5.0 μm or the standard deviation exceeds 2.5 μm, the influence of the variation of the contact resistance of the corresponding contact surface becomes too large. The current distribution for all cathode plates 1 becomes non-uniform.

具体的には、1つの電解槽に装入される陰極板の合計枚数が例えば50枚の場合は、電解槽の一端部からi番目の陰極板の1対のクロスビーム20の当接面のうちの任意の部位の表面粗さ(Ra)をRa(i)、該i番目の陰極板の突起部12の当接面のうちの任意の部位の表面粗さ(Ra)をRa(i)としたとき、それらの算術平均値x(i)は下記式1で表わすことができる。
[式1]
x(i)=(Ra(i)+Ra(i))/2
Specifically, when the total number of cathode plates loaded in one electrolytic cell is, for example, 50, the contact surface of the pair of cross beams 20 of the i-th cathode plate from one end of the electrolytic cell is any portion of the surface roughness of the inner (Ra) to Ra 1 (i), the i-th any site on the surface roughness of the contact surface of the projection 12 of the cathode plate (Ra) Ra 2 ( i), the arithmetic mean value x(i) can be expressed by the following equation 1.
[Formula 1]
x(i)=(Ra 1 (i)+Ra 2 (i))/2

従って、1つの電解槽に装入される全ての陰極板1について上記関して上記x(i)を算出して得た複数の平均値(すなわち、x(1)、x(2)、・・・、x(50))の総平均値X及び標準偏差Yは、それぞれ下記式2及び式3で求めることができる。よって、下記式2の総平均値Xを5.0μm以下にし、且つ下記式3の標準偏差Yを2.5μm以下にすればよい。
[式2]
X=(x(1)+x(2)+・・・+x(50))/50
[式3]
Y=[((x(1)−X)+(x(2)−X)+・・・+(x(50)−X))/50]1/2
Therefore, a plurality of average values (that is, x(1), x(2),...) Obtained by calculating the above x(i) for all the cathode plates 1 loaded in one electrolytic cell The total average value X and standard deviation Y of x, x(50) can be calculated by the following equations 2 and 3, respectively. Therefore, the total average value X in the following formula 2 may be set to 5.0 μm or less, and the standard deviation Y in the following formula 3 may be set to 2.5 μm or less.
[Formula 2]
X=(x(1)+x(2)+...+x(50))/50
[Formula 3]
Y = [((x (1 ) -X) 2 + (x (2) -X) 2 + ··· + (x (50) -X) 2) / 50] 1/2

本発明の実施形態においては、更に上記の1つの電解槽に装入される全ての陰極板1の各々において、1対のクロスビーム20と突起部12の両当接面の表面粗さ(Ra)の上記式1で得られる平均値が、2.5μm以上7.5μm以下であるのが好ましい。この表面粗さ(Ra)の平均値が7.5μmより大きくなると、上記当接面の隙間に電解液が侵入しやすくなる。逆に2.5μmより小さくするのは手間がかかりすぎるので好ましくない。 In the embodiment of the present invention, the surface roughness (Ra) of both contact surfaces of the pair of cross beams 20 and the projections 12 is further increased in each of all the cathode plates 1 loaded in the one electrolytic cell. It is preferable that the average value obtained by the above equation 1) is 2.5 μm or more and 7.5 μm or less. When the average value of the surface roughness (Ra) is larger than 7.5 μm, the electrolytic solution easily enters the gap between the contact surfaces. On the other hand, it is not preferable to make it smaller than 2.5 μm because it takes too much time and effort.

なお、上記の1対のクロスビーム20と平板部10の突起部12との両当接面の表面粗さ(Ra)が上記の要件を満たさない場合は、該当接面に研磨を施せばよい。この研磨方法としては、一般的な平面研削盤や走行式のホイール研磨機などによる研磨方法を用いることができる。また、上記1対のクロスビーム20と平板部10の突起部12との間の隙間に電解液のミストが浸入するのを防止するため、上記の1対のクロスビーム20及び突起部12を覆うカバーを設けたり、該隙間の入口部をコーキングしたりするのが好ましい。 When the surface roughness (Ra) of the contact surfaces of the pair of cross beams 20 and the protrusions 12 of the flat plate portion 10 does not satisfy the above requirements, the contact surfaces may be polished. .. As this polishing method, a polishing method using a general surface grinder or a traveling wheel polishing machine can be used. Further, in order to prevent the mist of the electrolytic solution from entering the gap between the pair of cross beams 20 and the protrusion 12 of the flat plate portion 10, the pair of cross beams 20 and the protrusion 12 are covered. It is preferable to provide a cover or caulk the entrance of the gap.

次に、上記した本発明の一具体例の電解用陰極板を用いた銅電解精製用種板の製造方法について説明する。上記したように先ず銅製の1対のクロスビームとステンレス製の平板部を用意し、それらの互いの当接面を研磨した後、平板部の電着面に剥離剤を塗布して乾燥させる。そして、これら1対のクロスビームと平板部とをボルト、ナットで固定して母板を組み立てる。この1対のクロスビームの両端部を電解槽の対向する壁部上に載置することで、該電解槽下に吊り下げられる陰極としての平板部に対して該1対のクロスビームを介して電力が供給される。更に、この平板部の表裏の電着面に対向する位置にはそれぞれ粗銅からなる陽極が装入され電力が供給される。 Next, a method for producing a copper electrolytic refining seed plate using the above-described electrolysis cathode plate of one embodiment of the present invention will be described. As described above, first, a pair of cross beams made of copper and a flat plate portion made of stainless steel are prepared, and their contact surfaces are polished, and then a release agent is applied to the electrodeposition surface of the flat plate portion and dried. Then, the pair of cross beams and the flat plate portion are fixed with bolts and nuts to assemble the mother plate. By placing both ends of the pair of cross beams on the opposite wall portions of the electrolytic cell, a flat plate portion as a cathode suspended under the electrolytic cell can be inserted through the pair of cross beams. Power is supplied. Further, anodes made of blister copper are inserted into the positions facing the electrodeposited surfaces on the front and back sides of the flat plate portion to supply electric power.

このように1対のクロスビームと平板部とからなる母板の陰極と粗銅の陽極との間に通電することにより、該母板の表裏両面の電着面に銅を電着させる。電解液には硫酸銅溶液が使用され、必要に応じて添加剤が添加される。なお電解条件は電解装置や工程に見合ったものを適宜選べばよい。母板の電着面に形成させる種板の厚みは0.6mm程度である。この電着の終了後、引き剥がし装置により母板の電着面から種板が引き剥がされる。引き剥がす際に発生した破れやシワを有する種板は検査工程で検出され、不良品として処理される。 In this way, by energizing the cathode of the mother plate composed of the pair of cross beams and the flat plate portion and the anode of the blunt copper, copper is electrodeposited on the front and back electrodeposited surfaces of the mother plate. A copper sulfate solution is used as the electrolytic solution, and an additive is added if necessary. The electrolysis conditions may be appropriately selected depending on the electrolyzer and process. The seed plate formed on the electrodeposition surface of the mother plate has a thickness of about 0.6 mm. After completion of this electrodeposition, the peeling device peels the seed plate from the electrodeposited surface of the mother plate. The seed plate having tears and wrinkles that occur when it is peeled off is detected in the inspection process and treated as a defective product.

[参考例]
横1070mm、縦1050mm、厚み3mmの電着部の上縁部の中央と両端の3ヶ所にいずれも縦35mm、横200mmの突起部が一体成形された形状のステンレス製の平板部と、該突起部を表裏面から挟持する1対の銅製のクロスビーム(長さ1460mm、幅35mm、厚み10mm)を用意した。上記の突起部をクロスビームで挟持する前に、これらが互いに当接する当接面のそれぞれの算術平均粗さ(Ra)を、JIS B0601−2001に準拠して求めた。なお、算術平均粗さ(Ra)を求めるための粗さ曲線の作成にはミツトヨ社製の触針式粗さ測定機(SJ−201)を用いた。そして、上記突起部を1対のクロスビームで挟持した後、該突起部に各々設けた2ヶ所の内径10mmの貫通孔及びこれらに対応するクロスビームの螺刻された貫通孔に合計6本の長ねじボルトを挿通させて固定した。
[Reference example]
A flat plate made of stainless steel having a width of 1070 mm, a length of 1050 mm, and a thickness of 3 mm, which is integrally formed with projections of 35 mm in length and 200 mm in width at the center and both ends of the upper edge of the electrodeposition portion, and the protrusions. A pair of copper cross beams (length 1460 mm, width 35 mm, thickness 10 mm) for sandwiching the parts from the front and back surfaces were prepared. Before sandwiching the above-mentioned protrusions with a cross beam, the arithmetic average roughness (Ra) of each contact surface where these contact each other was determined in accordance with JIS B0601-2001. A stylus roughness measuring instrument (SJ-201) manufactured by Mitutoyo Corporation was used to create a roughness curve for obtaining the arithmetic average roughness (Ra). After the projection is sandwiched by a pair of cross beams, a total of 6 through holes each having an inner diameter of 10 mm provided in the projection and corresponding cross-beam threaded through holes are provided. The long screw bolt was inserted and fixed.

このようにして組み立てた母板50枚及びアノード51枚を交互になるようにして電解槽内に配列し、Cu濃度45〜47g/L、HSO濃度180〜190g/Lの組成を有する電解液で満たして電解温度60℃、陰極電流密度250A/mの並列法の条件で22時間通電して電気銅からなる種板を製造した。なお、通電中は電解槽にビニールシートをかけることで保温及び蒸発防止を行った。この電解を開始してから4時間以上経過した時点で、キーサイト・テクノロジー社製のクランプメータ(keysight U1213A)を使用してクロスビームにおけるカソード電流を測定した。 50 mother plates and 51 anodes assembled in this way are arranged in an alternating manner in an electrolytic cell and have a composition of Cu concentration of 45 to 47 g/L and H 2 SO 4 concentration of 180 to 190 g/L. A seed plate made of electrolytic copper was manufactured by being filled with an electrolytic solution and conducting current for 22 hours under the conditions of the parallel method with an electrolytic temperature of 60° C. and a cathode current density of 250 A/m 2 . During the energization, a vinyl sheet was put on the electrolytic cell to keep the heat and prevent evaporation. Four hours or more after starting this electrolysis, the cathode current in the cross beam was measured using a clamp meter (keysight U1213A) manufactured by Keysight Technology, Inc.

また、平板部とクロスビームとの間の接触抵抗を、上記と同様のクランプメータを用いて測定したカソード電流及び電圧降下より求めた。通電停止後、50枚全ての母板を電解槽から引き上げて種板を剥ぎ取った。これら50枚の母板における電着量のばらつきを評価するため、該50枚の母板の各々の対して剥ぎ取った2枚の種板の質量を測定した。この母板1枚当たり作製される2枚の種板の合計質量である種板単重の算術平均及び標準偏差に基づいて50枚の母板における電着量のばらつきを評価した。 Further, the contact resistance between the flat plate portion and the cross beam was determined from the cathode current and the voltage drop measured using the same clamp meter as above. After stopping the energization, all 50 mother plates were pulled up from the electrolytic cell to peel off the seed plate. In order to evaluate the variation in the electrodeposition amount of these 50 mother plates, the mass of the two seed plates peeled from each of the 50 mother plates was measured. Based on the arithmetic mean and standard deviation of the seed plate unit weight, which is the total mass of the two seed plates produced per one of the mother plates, the variation in the electrodeposition amount of the 50 mother plates was evaluated.

[実施例]
次に上記の参考例で使用した50枚の母板の各々に対して、突起部とクロスビームとの互いの当接面をいずれも#400のサンドペーパーで研磨した後、これらクロスビームと突起部との両当接面の表面粗さを上記の参考例と同様にして測定した。そして、これらを再度組み立てて母板とした後は、上記参考例と同様に電解槽内に装入して電解し、カソード電流及び各接点抵抗値の測定を行った。また、電解後は各母板から剥ぎ取った種板の種板単重を測定した。上記の実施例及び参考例における50枚の母板のカソード電流及び種板単重のばらつきを、前述した式1〜式3で求めた50枚の母板におけるクロスビームと突起部との当接面の表面粗さ(Ra)の総平均値X及び標準偏差Yと共に下記表1に示す。
[Example]
Next, with respect to each of the 50 mother plates used in the above-mentioned reference example, after the contact surfaces of the protrusions and the cross beams were both sanded with #400 sandpaper, the cross beams and the protrusions were polished. The surface roughness of both abutting surfaces with the section was measured in the same manner as in the above reference example. Then, after reassembling these to form a mother plate, they were charged into the electrolytic cell and electrolyzed in the same manner as in the above-mentioned reference example, and the cathode current and each contact resistance value were measured. After electrolysis, the seed plate unit weight of the seed plate peeled off from each mother plate was measured. The contact between the cross beam and the projections of the 50 mother plates obtained by the above-mentioned formulas 1 to 3 was used to find the variations in the cathode current and the seed plate unit weight of the 50 mother plates in the above-mentioned examples and reference examples. The total average value X and the standard deviation Y of the surface roughness (Ra) of the surface are shown in Table 1 below.

Figure 2020084297
Figure 2020084297

上記表1の結果から、実施例では母板のクロスビームと平板部の突起部との当接面を研磨により平坦にしたため、参考例に比べて、表面粗さ、接触抵抗及びカソード電流のばらつきが低減しており、これにより各母板から剥ぎ取った種板の種板単重のばらつきも参考例に比べて低減していることが分かる。従って、繰り返し使用されるステンレスカソードであってもクロスビームと平板部の突起部との当接面に研磨を施すことで、1つの電解槽から同じ厚みを有する種板群を作製できることが分かる。 From the results of Table 1 above, in the example, the contact surfaces of the cross beam of the mother plate and the protrusions of the flat plate portion were flattened by polishing, so that variations in surface roughness, contact resistance, and cathode current compared to the reference example. It can be seen that the dispersion of the seed plate unit weight of the seed plate peeled off from each mother plate is also reduced as compared with the reference example. Therefore, it can be seen that even with a stainless cathode that is repeatedly used, a seed plate group having the same thickness can be produced from one electrolytic cell by polishing the contact surface between the cross beam and the protrusion of the flat plate portion.

1 陰極板
10 平板部
11 絶縁材
12 突起部
13 貫通孔
20 1対のクロスビーム
21 貫通孔
30 ボルト
31 ナット
DESCRIPTION OF SYMBOLS 1 Cathode plate 10 Flat plate part 11 Insulating material 12 Projection part 13 Through hole 20 A pair of cross beams 21 Through hole 30 Bolt 31 Nut

Claims (4)

電解槽内の電解液に浸漬される略四角形状のステンレス製の平板部と、その上縁部の少なくとも両端において上方に突出する矩形突起部を表裏面から挟持する1対の銅製のクロスビームとからなる電解用陰極板であって、これら平板部とクロスビームとの両当接面の表面粗さ(Ra)の平均値を、1つの電解槽に装入される全ての電解用陰極板について算出して得た複数の平均値の総平均値が5.0μm以下、標準偏差が2.5μm以下であることを特徴とする電解用陰極板。 A substantially rectangular flat plate made of stainless steel, which is immersed in the electrolytic solution in the electrolytic cell, and a pair of copper cross beams that sandwich upwardly protruding rectangular projections from the front and back surfaces at least at both ends of the upper edge of the flat plate. And a mean value of surface roughness (Ra) of both abutting surfaces of the flat plate portion and the cross beam for all electrolysis cathode plates loaded in one electrolysis cell. A cathode plate for electrolysis, wherein a total average value of a plurality of calculated average values is 5.0 μm or less and a standard deviation is 2.5 μm or less. 前記平板部と1対のクロスビームとの前記当接面に電解液が侵入するのを防止するカバーが設けられていることを特徴とする、請求項1に記載の電解用陰極板。 The cathode plate for electrolysis according to claim 1, wherein a cover is provided on the contact surface between the flat plate portion and the pair of cross beams to prevent the electrolytic solution from entering. 前記1つの電解槽に装入される全ての電解用陰極板は、各々、平板部と1対のクロスビームとの互いの当接面の表面粗さ(Ra)の算術平均値が2.5μm以上7.5μm以下であることを特徴とする、1又は2に記載の電解用陰極板。 All of the electrolysis cathode plates loaded in the one electrolysis cell have an arithmetic mean value of surface roughness (Ra) of the contact surfaces of the flat plate portion and the pair of cross beams of 2.5 μm. The cathode plate for electrolysis according to 1 or 2, wherein the thickness is 7.5 μm or less. 請求項1〜3のいずれか1項に記載の電解用陰極板を母板に用いて種板を作製することを特徴とする電解精製方法。 An electrorefining method comprising: producing a seed plate by using the electrolysis cathode plate according to any one of claims 1 to 3 as a mother plate.
JP2018224719A 2018-11-30 2018-11-30 Cathode plate for electrolysis and electrorefining method using the same Active JP7196574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224719A JP7196574B2 (en) 2018-11-30 2018-11-30 Cathode plate for electrolysis and electrorefining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224719A JP7196574B2 (en) 2018-11-30 2018-11-30 Cathode plate for electrolysis and electrorefining method using the same

Publications (2)

Publication Number Publication Date
JP2020084297A true JP2020084297A (en) 2020-06-04
JP7196574B2 JP7196574B2 (en) 2022-12-27

Family

ID=70906718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224719A Active JP7196574B2 (en) 2018-11-30 2018-11-30 Cathode plate for electrolysis and electrorefining method using the same

Country Status (1)

Country Link
JP (1) JP7196574B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354486Y2 (en) * 1974-07-26 1978-12-27
JPH06346269A (en) * 1993-06-11 1994-12-20 Sumitomo Metal Mining Co Ltd Stainless mother sheet for electrolyzing copper starting sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284771B2 (en) 1999-08-31 2009-06-24 住友化学株式会社 Α-alumina abrasive for metal polishing and its production method
JP2001131788A (en) 1999-11-05 2001-05-15 Sumitomo Metal Mining Co Ltd Cathode finishing machine and operating method therefor
JP2003048141A (en) 2001-08-07 2003-02-18 Nippon Mining & Metals Co Ltd Device for polishing cathode beam for electrolysis, and cathode manufacturing device
JP2009102723A (en) 2007-10-25 2009-05-14 Sumitomo Metal Mining Co Ltd Non-ferrous electrolytic refining method
JP2011032564A (en) 2009-08-05 2011-02-17 Sumitomo Metal Mining Co Ltd Mother sheet for starting sheet in copper electrolysis, and method for production of starting sheet in copper electrorefining
JP6003788B2 (en) 2013-04-26 2016-10-05 住友金属鉱山株式会社 Stainless steel mother board and method for producing seed plate for copper electrolytic purification
FI125980B (en) 2013-12-18 2016-05-13 Outotec Finland Oy Procedure for maintenance of used cathode plates
JP6740771B2 (en) 2016-07-22 2020-08-19 住友金属鉱山株式会社 Anode vertical adjustment tool for copper electrorefining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354486Y2 (en) * 1974-07-26 1978-12-27
JPH06346269A (en) * 1993-06-11 1994-12-20 Sumitomo Metal Mining Co Ltd Stainless mother sheet for electrolyzing copper starting sheet

Also Published As

Publication number Publication date
JP7196574B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
US8623194B2 (en) Multi-anode system for uniform plating of alloys
JP4904097B2 (en) Insoluble anode for metal wire plating and metal wire plating method using the same
JP7196574B2 (en) Cathode plate for electrolysis and electrorefining method using the same
JP2007100144A (en) Method for electrolytically refining zinc, and supporting holder used in electrolytically refining zinc
JP2019099896A (en) Metal foil manufacturing device and electrode sheet attached body
JP7352865B2 (en) Cathode manufacturing method and cathode finishing machine
JP6996277B2 (en) Electrorefining method for non-ferrous metals
JP2783027B2 (en) Quality control method in electrolytic refining of metals
JP3666250B2 (en) Mother board for seed plate production
JP2022536258A (en) Electrode assembly for electrochemical processes
JP2003328174A (en) Tool for adjusting distance between poles in pilot sheet process
JP2008007832A (en) Insoluble anode for plating metal wire material, and manufacturing method of wire material
KR102532620B1 (en) High Efficiency Plating Device for Coil Steel Plates
JP2023132817A (en) Anode correction device and thickness adjustment member used therefor
KR20070095856A (en) Electroplating plating-form fixation electric current dispersion method
US3017341A (en) Method and apparatus for electrochemical milling
JP6540536B2 (en) Method of manufacturing cathode for electrolytic smelting
JPH0748689A (en) Metal electrolytic operation method
JP2022153778A (en) cathode finishing machine
JP2001192879A (en) Starting sheet molding roll for manufacture of electrolytic copper and starting sheet for manufacturing electrolytic copper using the same as ell as method for manufacturing electrolytic copper by using the starting sheet and electrolytic copper obtained by the method
JP2018012870A (en) Perpendicularity adjustment tool for anode in copper electrolytic refining
US617526A (en) Elisha emerson
JP5977129B2 (en) Anode for electrowinning
JPH0770783A (en) Electrode for mother plate production
JP2017179405A (en) Copper bus bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150