JP2020084267A - Production method of composite sintered body - Google Patents

Production method of composite sintered body Download PDF

Info

Publication number
JP2020084267A
JP2020084267A JP2018220489A JP2018220489A JP2020084267A JP 2020084267 A JP2020084267 A JP 2020084267A JP 2018220489 A JP2018220489 A JP 2018220489A JP 2018220489 A JP2018220489 A JP 2018220489A JP 2020084267 A JP2020084267 A JP 2020084267A
Authority
JP
Japan
Prior art keywords
metal powder
sintering
iron
during sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018220489A
Other languages
Japanese (ja)
Inventor
将大 内村
Masahiro Uchimura
将大 内村
栄介 保科
Eisuke Hoshina
栄介 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018220489A priority Critical patent/JP2020084267A/en
Publication of JP2020084267A publication Critical patent/JP2020084267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a production method of a composite sintered body capable of suppressing occurrence of warpage due to a difference of a shrinkage factor during sintering the respective materials and an interfacial peeling due to the warpage, while suppressing a cost increase and function deterioration, by using a common iron-based powder and a high functional metal powder that are a parent material.SOLUTION: A production method of the present invention includes the steps of: preparing a plurality kinds of metal powders containing a graphite-added iron-based metal powder to which an addition agent for increasing an amount of a liquid phase containing graphite is added at a sintering temperature, and a high function metal powder having a relatively large shrinkage factor during sintering, to an iron-based metal powder having relatively small shrinkage factor during sintering; composite molding the plurality of kinds of the metal powders; and sintering the obtained composite compact. When an addition amount of the addition agent is adjusted relative to the iron-based metal powder, a difference of the shrinkage factor during sintering the graphite added iron-based metal powder and the shrinkage factor during sintering the high function metal powder is made smaller.SELECTED DRAWING: Figure 1

Description

本発明は、複合焼結体の製造方法に関する。 The present invention relates to a method for manufacturing a composite sintered body.

複数種の材料を用いて複合成形体を得、これを焼結することで、複合焼結体を製造することができる。一般的に、複合焼結体の製造では、各材料の焼結時の収縮率の差が大きい場合に、収縮率の大きい方の材料に反りが生じやすい。収縮率の大きい方の材料について着目した場合、収縮率の小さい方の材料と接合した面(接合界面)は収縮率の小さい方の材料に拘束されている一方、収縮率の小さい方の材料と接合していない面には大きな収縮が起こる結果、反りが生じてしまう。このように収縮率の大きい方の材料に反りが生じた場合、接合界面に剥離が生じる恐れがある。 A composite molded body can be manufactured by obtaining a composite molded body using a plurality of types of materials and sintering this. Generally, in the production of a composite sintered body, when there is a large difference in shrinkage rate between the respective materials during the sintering, the material having the larger shrinkage rate tends to warp. When focusing on the material with the higher shrinkage, the surface (bonding interface) joined to the material with the lower shrinkage is constrained by the material with the lower shrinkage, while As a result of the large shrinkage occurring on the unbonded surfaces, warpage occurs. When the material having the higher shrinkage ratio is warped, peeling may occur at the bonding interface.

特許文献1は、第1粉末を主成分とする第1原料粉末を焼結することにより得られた第1部材と、第1粉末よりも焼結開始温度の高い第2粉末を主成分とする第2原料粉末を焼結することにより得られた第2部材とを少なくとも備え、隣り合う部材同士が焼結により一体的に接合された複合焼結体に関する。
特許文献1には、第1原料粉末および有機バインダを含む第1混合物と、第2原料粉末および有機バインダを含む第2混合物とを得る調製工程において、第1混合物および第2混合物のうちの少なくとも第2混合物に、第2部材の要求特性を確保しうる範囲内の配合量で、他方の混合物の主成分をなす粉末を含ませる製造方法が提案されている(請求項4)。
特許文献1に記載の方法では、焼結の初期段階で一方の部材側でのみ一方的に発生する焼結収縮による界面剥離を効果的に抑制することができ、接合強度を向上することができる(段落0024)。
Patent Document 1 has, as a main component, a first member obtained by sintering a first raw material powder containing a first powder as a main component and a second powder having a sintering start temperature higher than that of the first powder. The present invention relates to a composite sintered body including at least a second member obtained by sintering a second raw material powder, and adjoining members being integrally joined by sintering.
In Patent Document 1, in a preparation step of obtaining a first mixture containing a first raw material powder and an organic binder and a second mixture containing a second raw material powder and an organic binder, at least one of the first mixture and the second mixture is used. A manufacturing method has been proposed in which the second mixture contains the powder which is the main component of the other mixture in a compounding amount within a range capable of ensuring the required characteristics of the second member (claim 4).
In the method described in Patent Document 1, it is possible to effectively suppress interfacial peeling due to sintering contraction that occurs unilaterally only on one member side in the initial stage of sintering, and it is possible to improve the bonding strength. (Paragraph 0024).

特開2004−292878号公報JP 2004-292878 A

母材となる汎用の鉄系粉末と高強度等の機能を付与することが可能な高機能金属粉末(例えば高速度工具鋼粉末等)とを用いて複合焼結体を得ることで、高価な高機能金属粉末の使用量を抑えつつ、高機能化を図ることができる。
このような場合、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制するために、特許文献1に記載の方法を適用しようとしても、以下の課題がある。母材となる汎用の鉄系粉末側に高機能金属粉末を添加する場合、高価な高機能金属粉末の使用量が増し、コスト増になる。逆に、高機能金属粉末側に汎用の鉄系粉末を添加する場合、高機能金属粉末の使用量が低減する分、強度等の機能が低下する。
It is expensive to obtain a composite sintered body by using a general-purpose iron-based powder as a base material and a high-performance metal powder capable of imparting functions such as high strength (for example, high-speed tool steel powder) It is possible to achieve high functionality while suppressing the amount of high-performance metal powder used.
In such a case, even if an attempt is made to apply the method described in Patent Document 1 in order to suppress warpage due to the difference in shrinkage rate of each material during sintering and interface peeling due to this, the following problems occur. When the high-performance metal powder is added to the side of the general-purpose iron-based powder that is the base material, the amount of expensive high-performance metal powder used increases and the cost increases. On the contrary, when a general-purpose iron-based powder is added to the high-performance metal powder side, the amount of use of the high-performance metal powder is reduced, so that functions such as strength are deteriorated.

本発明は上記事情に鑑みてなされたものであり、母材となる汎用の鉄系粉末と高機能金属粉末とを用い、コスト増と機能低下を抑制しつつ、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制することが可能な複合焼結体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, using a general-purpose iron-based powder as a base material and a high-performance metal powder, while suppressing an increase in cost and functional deterioration, shrinkage during sintering of each material It is an object of the present invention to provide a method for manufacturing a composite sintered body capable of suppressing the occurrence of warpage due to the difference in the ratio and the interfacial peeling caused thereby.

本発明の複合焼結体の製造方法は、
相対的に焼結時の収縮率の小さい鉄系金属粉末に、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加したグラファイト添加鉄系金属粉末と、相対的に焼結時の収縮率の大きい高機能金属粉末とを含む複数種の金属粉末を用意する工程と、
前記複数種の金属粉末を複合成形する工程と、
得られた複合成形体を焼結する工程とを有し、
前記鉄系金属粉末に対する前記添加剤の添加量を調整することで、前記グラファイト添加鉄系金属粉末の焼結時の収縮率と前記高機能金属粉末の焼結時の収縮率との差を小さくするものである。
The manufacturing method of the composite sintered body of the present invention,
Graphite-added iron-based metal powder that contains graphite-containing additive that increases the amount of liquid phase at the sintering temperature, and iron-based metal powder that has a relatively low shrinkage ratio during sintering A step of preparing a plurality of types of metal powder including a high-performance metal powder having a large shrinkage rate,
A step of composite molding the plurality of kinds of metal powders,
And a step of sintering the obtained composite molded body,
By adjusting the addition amount of the additive to the iron-based metal powder, the difference between the shrinkage rate of the graphite-added iron-based metal powder during sintering and the shrinkage rate of the high-performance metal powder during sintering is small. To do.

本発明によれば、母材となる汎用の鉄系粉末と高機能金属粉末とを用い、コスト増と機能低下を抑制しつつ、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制することが可能な複合焼結体の製造方法を提供することができる。 According to the present invention, by using a general-purpose iron-based powder and a high-performance metal powder as a base material, while suppressing an increase in cost and a decrease in function, warpage due to a difference in shrinkage rate during sintering of each material and this It is possible to provide a method for manufacturing a composite sintered body capable of suppressing interfacial peeling due to the above.

本発明に係る一実施形態の複合焼結体の模式断面図である。It is a schematic cross section of the compound sintered compact of one embodiment concerning the present invention. Fe−C系状態図である。It is a Fe-C type|system|group phase diagram. サンプル(a)、(b)の焼結時の収縮率を示すグラフである。It is a graph which shows the shrinkage rate at the time of sintering of samples (a) and (b).

[複合焼結体]
図面を参照して、本発明に係る一実施形態の複合焼結体の構成について、説明する。図1は、模式断面図である。
本実施形態の複合焼結体1は、第1の焼結体11と第2の焼結体12との複合焼結体である。図示例では、第1の焼結体11の両面にそれぞれ第2の焼結体12が接合している。各焼結体の数および配置は、適宜設計変更可能である。
第1の焼結体11は、相対的に焼結時の収縮率の小さい鉄系金属粉末に、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加したグラファイト添加鉄系金属粉末の焼結体である。
第2の焼結体12は、相対的に焼結時の収縮率の大きい高機能金属粉末(例えば高速度工具鋼粉末等)の焼結体である。
[Composite sintered body]
A configuration of a composite sintered body according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view.
The composite sintered body 1 of the present embodiment is a composite sintered body of a first sintered body 11 and a second sintered body 12. In the illustrated example, the second sintered bodies 12 are joined to both surfaces of the first sintered body 11. The design and number of each sintered body can be changed as appropriate.
The first sintered body 11 is a graphite-containing iron-based metal powder in which an additive that increases the amount of liquid phase at a sintering temperature containing graphite is added to iron-based metal powder having a relatively small shrinkage rate during sintering. It is a sintered body of.
The second sintered body 12 is a sintered body of highly functional metal powder (for example, high-speed tool steel powder) having a relatively large shrinkage rate during sintering.

汎用の鉄系金属粉末の焼結時の収縮率は例えば0.2%程度であるのに対して、高速度工具鋼粉末の焼結時の収縮率は例えば10〜15%である。特段の工夫をせずに、汎用の鉄系金属粉末と高速度工具鋼粉末とを複合焼結すれば、収縮率の差が大きく、収縮率の大きい方の材料に反りが生じ、接合界面に剥離が生じる恐れがある。そこで、本発明では、相対的に焼結時の収縮率の小さい鉄系金属粉末に、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加して、焼結時の収縮率を大きくし、収縮率差を小さくする。 The shrinkage ratio of the general-purpose iron-based metal powder during sintering is, for example, about 0.2%, whereas the shrinkage ratio of the high-speed tool steel powder during sintering is, for example, 10 to 15%. If general-purpose iron-based metal powder and high-speed tool steel powder are compound-sintered without any special measures, the difference in shrinkage will be large, and the material with the larger shrinkage will warp and the joint interface Peeling may occur. Therefore, in the present invention, an iron-based metal powder having a relatively small shrinkage rate during sintering is added with an additive that increases the amount of liquid phase at a sintering temperature containing graphite to reduce the shrinkage rate during sintering. Increase and decrease the difference in shrinkage.

本発明の複合焼結体の製造方法は、
相対的に焼結時の収縮率の小さい鉄系金属粉末に、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加したグラファイト添加鉄系金属粉末と、相対的に焼結時の収縮率の大きい高機能金属粉末とを含む複数種の金属粉末を用意する工程と、
上記の複数種の金属粉末を複合成形する工程と、
得られた複合成形体を焼結する工程とを有する。
The manufacturing method of the composite sintered body of the present invention,
Graphite-added iron-based metal powder that contains graphite-containing additive that increases the amount of liquid phase at the sintering temperature, and iron-based metal powder that has a relatively low shrinkage ratio during sintering A step of preparing a plurality of types of metal powder including a high-performance metal powder having a large shrinkage rate,
A step of composite molding a plurality of kinds of metal powders,
And a step of sintering the obtained composite molded body.

複合成形と焼結は、公知方法にて行うことができる。複合成形は、型内に、所望の積層順序で複数種の金属粉末を充填し、加圧することで、行うことができる。次いで、型から複合成形体を取り出し、材料が焼結する温度で加熱することで焼結を行うことができる。 Composite molding and sintering can be performed by known methods. The composite molding can be performed by filling a mold with a plurality of kinds of metal powders in a desired stacking order and applying pressure. Then, the composite molded body is taken out of the mold and can be sintered by heating at a temperature at which the material is sintered.

本発明の複合焼結体の製造方法では、鉄系金属粉末に対する上記添加剤の添加量を調整することで、グラファイト添加鉄系金属粉末の焼結時の収縮率と高機能金属粉末の焼結時の収縮率との差を小さくする。グラファイト添加鉄系金属粉末の焼結時の収縮率と高機能金属粉末の焼結時の収縮率の差は1.0%以下とすることが好ましく、グラファイト添加鉄系金属粉末の焼結時の収縮率と高機能金属粉末の焼結時の収縮率とを一致させることが特に好ましい。 In the method for producing a composite sintered body of the present invention, by adjusting the addition amount of the above additive to the iron-based metal powder, the shrinkage rate at the time of sintering the graphite-added iron-based metal powder and the sintering of the high-performance metal powder The difference with the shrinkage rate is reduced. The difference between the shrinkage rate of the graphite-added iron-based metal powder during sintering and the shrinkage rate of the high-performance metal powder during sintering is preferably 1.0% or less. It is particularly preferable to match the shrinkage rate with the shrinkage rate during sintering of the high-performance metal powder.

一実施例を挙げて、説明する。
図2は、Fe−C系状態図である(引用元:https://em.ten-navi.com/dictionary/85/)。0.8wt%のCを含むFe−C系粉末材料(サンプル(a))と、2.0wt%のCを含むFe−C粉末材料(サンプル(b))についてそれぞれ、適量を秤量し、98.1MPaの加圧条件で、17mmφの円柱状に成形し、得られた成形体を高速度工具鋼粉末の焼結温度として好ましい1260℃で1時間焼結した。
図2に示す状態図によれば、1260℃において、サンプル(a)は液相を含まないのに対し、サンプル(b)は固相液相共存域内にあり、液相を含む。サンプル(a)に対してグラファイトを添加して、サンプル(b)の組成とすれば、焼結時の液相量を増加させることができる。
サンプル(a)、(b)の焼結時の収縮率を図3に示す。サンプル(a)に対してサンプル(b)では焼結時の収縮率が大きくなり、高速度工具鋼粉末の焼結時の収縮率である10〜15%の範囲内に収まるようになった。このことは、サンプル(a)に対してグラファイトを添加して、サンプル(b)の組成とすれば、焼結時の液相量の増加によって焼結時の収縮率が大きくなり、高速度工具鋼粉末の焼結時の収縮率との差を小さくできることを示している。
An example will be described.
FIG. 2 is an Fe-C system phase diagram (cited from: https://em.ten-navi.com/dictionary/85/). An appropriate amount was weighed for each of the Fe-C based powder material containing 0.8 wt% C (sample (a)) and the Fe-C powder material containing 2.0 wt% C (sample (b)), and 98 It was molded into a cylindrical shape of 17 mmφ under a pressure condition of 0.1 MPa, and the obtained molded body was sintered for 1 hour at 1260° C. which is preferable as the sintering temperature of the high speed tool steel powder.
According to the state diagram shown in FIG. 2, at 1260° C., sample (a) does not contain a liquid phase, whereas sample (b) is in the solid phase liquid phase coexistence region and contains a liquid phase. If graphite is added to the sample (a) to obtain the composition of the sample (b), the amount of liquid phase at the time of sintering can be increased.
FIG. 3 shows the shrinkage rates of Samples (a) and (b) during sintering. The sample (b) had a higher shrinkage ratio during sintering than the sample (a), and was within the range of 10 to 15% which is the shrinkage ratio during sintering of the high speed tool steel powder. This means that if graphite is added to the sample (a) to make the composition of the sample (b), the shrinkage rate at the time of sintering becomes large due to the increase of the amount of liquid phase at the time of sintering, and the high speed tool It is shown that the difference from the shrinkage rate of the steel powder during sintering can be reduced.

上記実施例のデータが示すように、Fe−C系粉末材料では、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加することで、焼結時の液相量を増加させ、焼結時の収縮率を増加させ、相対的に焼結時の収縮率の大きい高機能金属粉末との収縮率の差を小さくすることができる。その結果、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制することができる。
[課題を解決するための手段]の項で述べたように、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制するために、特許文献1に記載の方法を適用しようとしても、以下の課題がある。母材となる汎用の鉄系粉末側に高機能金属粉末を添加する場合、高価な高機能金属粉末の使用量が増し、コスト増になる。逆に、高機能金属粉末側に汎用の鉄系粉末を添加する場合、高機能金属粉末の使用量が低減する分、強度等の所望の機能が得られなくなる恐れがある。
本発明の方法では、収縮率差を小さくするために、第1の焼結体に高価な高機能金属粉末を添加する必要がないので、高価な高機能金属粉末の使用量を最小限とすることができる。グラファイトは安価であり、添加しても大きなコスト増とはならない。本発明の方法では、収縮率差を小さくするために、高機能金属粉末側に汎用の鉄系粉末を添加する必要がないので、強度等の所望の機能が安定的に得られる。
As shown in the data of the above examples, in the Fe-C-based powder material, the amount of liquid phase at the time of sintering is increased by adding an additive that increases the amount of liquid phase at the sintering temperature containing graphite. It is possible to increase the shrinkage rate during sintering and reduce the difference in shrinkage rate between the high-performance metal powder and the relatively high shrinkage rate during sintering. As a result, it is possible to suppress the occurrence of warpage due to the difference in shrinkage rate during sintering of each material and the interfacial peeling caused thereby.
As described in the section [Means for Solving the Problems], in order to suppress the occurrence of warpage due to the difference in shrinkage ratio during sintering of each material and the interfacial separation due to the warpage, the method described in Patent Document 1 is adopted. Even if it tries to apply, there are the following problems. When the high-performance metal powder is added to the side of the general-purpose iron-based powder that is the base material, the amount of expensive high-performance metal powder used increases and the cost increases. On the other hand, when a general-purpose iron-based powder is added to the high-performance metal powder side, the amount of the high-performance metal powder used is reduced, so that desired functions such as strength may not be obtained.
In the method of the present invention, since it is not necessary to add expensive high-performance metal powder to the first sintered body in order to reduce the difference in shrinkage, the amount of expensive high-performance metal powder used is minimized. be able to. Graphite is inexpensive, and adding it does not significantly increase the cost. In the method of the present invention, since it is not necessary to add a general-purpose iron-based powder to the high-performance metal powder side in order to reduce the difference in shrinkage ratio, desired functions such as strength can be stably obtained.

以上説明したように、本発明によれば、母材となる汎用の鉄系粉末と高機能金属粉末とを用い、コスト増と機能低下を抑制しつつ、各材料の焼結時の収縮率の差による反り発生およびこれによる界面剥離を抑制することが可能な複合焼結体の製造方法を提供することができる。 As described above, according to the present invention, by using a general-purpose iron-based powder and a high-performance metal powder as a base material, while suppressing an increase in cost and a decrease in function, the shrinkage ratio of each material during sintering can be reduced. It is possible to provide a method for manufacturing a composite sintered body capable of suppressing warpage due to a difference and interfacial peeling caused thereby.

本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above-described embodiment, and appropriate design changes can be made without departing from the spirit of the present invention.

1 複合焼結体
11 第1の焼結体
12 第2の焼結体
1 Composite Sintered Body 11 First Sintered Body 12 Second Sintered Body

Claims (1)

相対的に焼結時の収縮率の小さい鉄系金属粉末に、グラファイトを含む焼結温度で液相量を増加させる添加剤を添加したグラファイト添加鉄系金属粉末と、相対的に焼結時の収縮率の大きい高機能金属粉末とを含む複数種の金属粉末を用意する工程と、
前記複数種の金属粉末を複合成形する工程と、
得られた複合成形体を焼結する工程とを有し、
前記鉄系金属粉末に対する前記添加剤の添加量を調整することで、前記グラファイト添加鉄系金属粉末の焼結時の収縮率と前記高機能金属粉末の焼結時の収縮率との差を小さくする、複合焼結体の製造方法。
Graphite-added iron-based metal powder that contains graphite-containing additive that increases the amount of liquid phase at the sintering temperature, and iron-based metal powder that has a relatively low shrinkage ratio during sintering A step of preparing a plurality of types of metal powder including a high-performance metal powder having a large shrinkage rate,
A step of composite molding the plurality of kinds of metal powders,
And a step of sintering the obtained composite molded body,
By adjusting the addition amount of the additive to the iron-based metal powder, the difference between the shrinkage rate of the graphite-added iron-based metal powder during sintering and the shrinkage rate of the high-performance metal powder during sintering is small. A method for manufacturing a composite sintered body.
JP2018220489A 2018-11-26 2018-11-26 Production method of composite sintered body Pending JP2020084267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220489A JP2020084267A (en) 2018-11-26 2018-11-26 Production method of composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220489A JP2020084267A (en) 2018-11-26 2018-11-26 Production method of composite sintered body

Publications (1)

Publication Number Publication Date
JP2020084267A true JP2020084267A (en) 2020-06-04

Family

ID=70909803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220489A Pending JP2020084267A (en) 2018-11-26 2018-11-26 Production method of composite sintered body

Country Status (1)

Country Link
JP (1) JP2020084267A (en)

Similar Documents

Publication Publication Date Title
CN105694486B (en) Binder for metal powder injection molding and application thereof
JP5311689B2 (en) Titanium sintered porous body and method for producing the same
CN102554234A (en) Processing method and supporting jig for metal injection molding structural parts
JP2017008939A (en) Manufacturing method of valve seat ring
JP2008121095A (en) Method for producing composite sintered machine part, and cylinder block
CN104831145A (en) Submicron SiC particle reinforced Ti (C, N)-based metal ceramic material and preparation method thereof
US8048366B2 (en) Process for making copper tungsten and copper molybdenum composite electronic packaging materials
CN104213030A (en) Injection molding alloyed powder and application of injection molding alloyed powder in automobile transmission sliding sleeve
JP5624593B2 (en) Method for integrally forming composite metal
JP2020084267A (en) Production method of composite sintered body
CN104001922A (en) Method for preparing vacuum pump cross-shaped transmission shaft
CN109482872B (en) Oil-free plane sliding bearing with extremely low friction coefficient and preparation method thereof
JP6722089B2 (en) Method for producing aluminum-graphite-carbide composite
KR102232591B1 (en) Method for manufacturing brassware and brassware manufactured by the method
CN105779816A (en) Ti-Al-Zr ternary alloy target material and preparation method thereof
CN103787685A (en) Method for fabricating silicon carbide whisker-toughened silicon carbide product
JP2009091661A (en) Composite material, manufacturing method of the composite material and slide member using the composite material
JP2009222073A (en) Two layer bearing and its manufacturing method
CN105330297A (en) Binder for injection molding of Sialon ceramics
CN106513688A (en) Preparation method of alloy blank for denture processing
JP2014001427A (en) Method of manufacturing sintered component
JP4206476B2 (en) Method for producing aluminum sintered material
JP5856743B2 (en) Method for producing metal-ceramic composite material
JP2006057138A (en) Composite material and sliding member obtained by using the composite material
JP2729860B2 (en) Method of manufacturing cemented carbide powder for injection molding and sintered cemented carbide