JP2020084230A - Sputtering method and sputtering apparatus - Google Patents
Sputtering method and sputtering apparatus Download PDFInfo
- Publication number
- JP2020084230A JP2020084230A JP2018216738A JP2018216738A JP2020084230A JP 2020084230 A JP2020084230 A JP 2020084230A JP 2018216738 A JP2018216738 A JP 2018216738A JP 2018216738 A JP2018216738 A JP 2018216738A JP 2020084230 A JP2020084230 A JP 2020084230A
- Authority
- JP
- Japan
- Prior art keywords
- anode electrode
- anode
- uneven
- discharge space
- concave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、スパッタリングによって成膜を行う装置に関し、特にRF(高周波)スパッタリングによって絶縁膜の成膜を行うスパッタリング装置の技術に関する。 The present invention relates to an apparatus for forming a film by sputtering, and particularly to a technique of a sputtering apparatus for forming an insulating film by RF (radio frequency) sputtering.
近年、高性能化、高機能化によるデバイスの微細化に伴い、デバイスを構成する薄膜の膜厚が益々薄くなっている。そのため、以前にも増して膜厚を制御することが重要になっている。 2. Description of the Related Art In recent years, with the miniaturization of devices due to higher performance and higher functionality, the film thickness of the thin film forming the device has become thinner and thinner. Therefore, it is more important than ever to control the film thickness.
高周波電力を用いるスパッタリング法によって薄膜を形成する場合、成膜速度の制御においてアノード電極の面積は大変重要な役割を果たす。 When a thin film is formed by a sputtering method using high frequency power, the area of the anode electrode plays a very important role in controlling the film formation rate.
特にステージ上の基板に成膜する材料が酸化物や窒化物などの絶縁材料の場合、アノード電極の表面に絶縁膜が堆積することによりアノード電極表面のインピーダンスが増加し、アノード電極として機能しにくくなる。 In particular, when the material to be deposited on the substrate on the stage is an insulating material such as oxide or nitride, the impedance of the anode electrode surface increases due to the deposition of the insulating film on the anode electrode surface, making it difficult to function as an anode electrode. Become.
すなわち、高周波電力を用いるスパッタリング法により長期的に絶縁膜を成膜する場合に、アノード電極の面積が少しずつ小さくなり、成膜速度も少しずつ低下する問題が知られている。 That is, it is known that when an insulating film is formed over a long period of time by a sputtering method using high frequency power, the area of the anode electrode is gradually decreased and the film formation rate is gradually decreased.
この問題を抑制する方法として、従来より、基板を設置したステージの周囲に、ターゲットに対向するアノード電極部を設け、そのターゲットに対向する直径10mm程度の円形の凹部構造(鉛筆立てのような構造)を形成する方法が知られている(例えば特許文献1参照)。 As a method of suppressing this problem, conventionally, an anode electrode portion facing a target is provided around a stage on which a substrate is installed, and a circular concave structure having a diameter of about 10 mm facing the target (a structure such as a pencil stand). ) Is known (see, for example, Patent Document 1).
この構造はアノード電極の面積を広くすると共に、凹部の内部奥側に絶縁膜が堆積しにくいことから、長期的に絶縁膜を成膜する際に成膜速度の変化を抑制する方法として利用されている。 This structure increases the area of the anode electrode, and since it is difficult for the insulating film to deposit inside the recess, it is used as a method of suppressing changes in the film formation rate when forming the insulating film for a long period of time. ing.
しかし、このような手段によって成膜速度の変化を抑制した場合であっても、アノード電極部の表面に絶縁膜が堆積することにより、長期的な成膜を行う場合に成膜サイクルの初期と比べて成膜サイクルの最後付近で成膜速度が僅かに変化(低下)し、これが問題となる場合がある。 However, even when the change in the film formation rate is suppressed by such means, when the insulating film is deposited on the surface of the anode electrode portion, the initial cycle of the film formation cycle is longer than that in the case of long-term film formation. In comparison, the film forming rate slightly changes (decreases) near the end of the film forming cycle, which may cause a problem.
本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、高周波電力を用いるスパッタリングによって酸化物、窒化物等の絶縁膜を長期的に形成する場合に、成膜速度を一定に保つことができる技術を提供することにある。 The present invention has been made in view of the above problems of the conventional technique, and its object is to form an insulating film such as an oxide or a nitride for a long time by sputtering using high frequency power. Another object of the present invention is to provide a technique capable of keeping the film formation rate constant.
上記目的を達成するためになされた本発明は、真空中でカソード電極とアノード電極間に交番電力を供給して放電空間内で放電させ、ターゲットをスパッタして基板上に絶縁膜の成膜を行うスパッタリング方法であって、スパッタリング時に前記アノード電極と同等の電位になる凹凸構造の凹凸アノード電極部を放電空間内に配置し、前記放電空間に対して前記凹凸アノード電極部の所定の凹部を遮蔽する機能を有するアノード面積調整部材を移動させ、前記放電空間内における前記凹凸アノード電極部の所定の凹部の露出面積を変えて前記アノード電極の面積を変化させることにより、前記交番電力の自己バイアス電圧を調整する工程を有するスパッタリング方法である。
本発明は、前記放電空間内における前記凹凸アノード電極部の所定の凹部の露出面積を増加させるように前記アノード面積調整部材を移動させることにより、前記交番電力の自己バイアス電圧が一定になるように制御するスパッタリング方法である。
本発明は、前記カソード電極と前記アノード電極間に供給する交番電力が高周波電力又はパルス状の直流電力であるスパッタリング方法である。
本発明は、放電空間を有する真空槽と、前記真空槽内においてカソード電極を介してターゲットとアノード電極間に交番電力を供給する交番電源と、前記真空槽内に設けられ、前記放電空間側の部分に凹部を有し、かつ、スパッタリング時に前記アノード電極と同等の電位となる凹凸構造の凹凸アノード電極部と、前記真空槽内の前記凹凸アノード電極部に対して前記放電空間側に設けられ、スパッタリング時に前記アノード電極と同等の電位となるとともに、前記放電空間に対して前記凹凸アノード電極部の凹部を遮蔽する遮蔽部と前記放電空間に対して当該凹部を露出させる露出部とを有し、その移動による前記遮蔽部及び前記露出部と前記凹凸アノード電極部の凹部との位置関係の変化によって前記凹凸アノード電極部の凹部の露出面積を調整するように構成されたアノード面積調整部材と、前記アノード面積調整部材を駆動して所定方向に移動させる駆動部とを備えたスパッタリング装置である。
本発明は、前記凹凸アノード電極部が複数の凹部を有するとともに、前記アノード面積調整部材の露出部として前記凹凸アノード電極部の凹部の形状に対応した形状に形成された複数のアノード面積調整孔を有するスパッタリング装置である。
本発明は、前記凹凸アノード電極部の凹部の開口部と、前記アノード面積調整部材のアノード面積調整孔とが、円形状に形成されているスパッタリング装置である。
本発明は、前記凹凸アノード電極部に複数の凹部が所定の円上に配列されるとともに、前記アノード面積調整部材の複数のアノード面積調整孔が前記凹凸アノード電極部の複数の凹部のそれぞれに対応する位置に設けられ、前記アノード面積調整部材が前記凹凸アノード電極部の複数の凹部が配列された前記円を中心として回転するように構成されているスパッタリング装置である。
本発明は、前記凹凸アノード電極部の凹部として、成膜対象物である基板に近い側に設けられた複数の基板側凹部と、当該基板側凹部の外側に設けられた複数の外側凹部を有し、前記アノード面積調整部材のアノード面積調整孔が、前記凹凸アノード電極部の基板側凹部に対応する位置に設けられているスパッタリング装置である。
The present invention made to achieve the above object is to supply alternating power between a cathode electrode and an anode electrode in a vacuum to cause discharge in a discharge space, and to sputter a target to form an insulating film on a substrate. In the sputtering method, a concavo-convex anode electrode portion having a concavo-convex structure having a potential equal to that of the anode electrode during sputtering is arranged in a discharge space, and a predetermined concave portion of the concavo-convex anode electrode portion is shielded from the discharge space. The self-bias voltage of the alternating power is changed by moving the anode area adjusting member having the function of changing the exposed area of the predetermined concave portion of the uneven anode electrode section in the discharge space to change the area of the anode electrode. Is a sputtering method having a step of adjusting
According to the present invention, the anode self-bias voltage of the alternating electric power is made constant by moving the anode area adjusting member so as to increase the exposed area of a predetermined concave portion of the uneven anode electrode section in the discharge space. This is a controlled sputtering method.
The present invention is the sputtering method, wherein the alternating power supplied between the cathode electrode and the anode electrode is high frequency power or pulsed DC power.
The present invention provides a vacuum chamber having a discharge space, an alternating power source for supplying alternating power between a target and an anode electrode via a cathode electrode in the vacuum chamber, and a vacuum chamber provided in the vacuum chamber, A concave portion in the portion, and the concave and convex anode electrode portion of the concave and convex structure that becomes the same potential as the anode electrode during sputtering, and provided on the discharge space side with respect to the concave and convex anode electrode portion in the vacuum chamber, While having a potential equivalent to that of the anode electrode during sputtering, it has a shield portion that shields the concave portion of the uneven anode electrode portion with respect to the discharge space, and an exposed portion that exposes the concave portion with respect to the discharge space, An anode area adjusting member configured to adjust the exposed area of the concave portion of the concave and convex anode electrode portion by changing the positional relationship between the shielding portion and the exposed portion and the concave portion of the concave and convex anode electrode portion due to the movement; The sputtering apparatus includes a drive unit that drives the anode area adjusting member to move the anode area adjusting member in a predetermined direction.
According to the present invention, the uneven anode electrode portion has a plurality of recesses, and a plurality of anode area adjusting holes formed in a shape corresponding to the shape of the recesses of the uneven anode electrode portion are provided as exposed portions of the anode area adjusting member. It is a sputtering device that has.
The present invention is the sputtering apparatus in which the opening of the concave portion of the uneven anode electrode portion and the anode area adjusting hole of the anode area adjusting member are formed in a circular shape.
According to the present invention, a plurality of concave portions are arranged in a predetermined circle on the uneven anode electrode portion, and a plurality of anode area adjusting holes of the anode area adjusting member correspond to the concave portions of the uneven anode electrode portion, respectively. In the sputtering device, the anode area adjusting member is configured to rotate about the circle in which the plurality of concave and convex portions of the uneven anode electrode portion are arranged.
The present invention has, as the concave portions of the concave-convex anode electrode portion, a plurality of substrate-side concave portions provided on the side closer to the substrate that is the film formation target and a plurality of outer concave portions provided outside the substrate-side concave portions. The anode area adjusting hole of the anode area adjusting member is provided at a position corresponding to the concave portion on the substrate side of the uneven anode electrode portion.
本発明にあっては、スパッタリング時にアノード電極と同等の電位になる凹凸構造の凹凸アノード電極部の凹部を放電空間側に向けて当該放電空間内に配置し、放電空間に対して凹凸アノード電極部の所定の凹部を遮蔽する機能を有するアノード面積調整部材を移動させ、放電空間内における凹凸アノード電極部の所定の凹部の露出面積を変えてアノード電極の面積を変化(例えば増加)させることにより、交番電力の自己バイアス電圧を例えば増加するように調整することによって、高周波電力を用いるスパッタリングにより酸化物、窒化物等の絶縁膜を長期的に形成する際、成膜速度が低下した場合に、交番電力の自己バイアス電圧を成膜初期の状態に戻して成膜速度を一定に保つことができる。 According to the present invention, the concave and convex portions of the concave and convex anode electrode portion having the concave and convex structure having the same potential as the anode electrode during the sputtering are arranged in the discharge space toward the discharge space side, and the concave and convex anode electrode portion is formed with respect to the discharge space. By moving the anode area adjusting member having a function of shielding the predetermined concave portion of, and changing (for example, increasing) the area of the anode electrode by changing the exposed area of the predetermined concave portion of the uneven anode electrode portion in the discharge space, By adjusting the self-bias voltage of the alternating electric power to increase, for example, when forming an insulating film such as an oxide or nitride for a long time by sputtering using high frequency electric power, the alternating electric The self-bias voltage of electric power can be returned to the initial state of film formation to keep the film formation rate constant.
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は、本発明に係るスパッタリング装置の実施の形態の構成を示す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a configuration of an embodiment of a sputtering apparatus according to the present invention.
図2(a)〜(c)は、本発明に用いる凹凸アノード電極部の例を示すもので、図2(a)は平面図、図2(b)は図2(a)のA−A線断面図、図2(c)は図2(a)のB−B線断面図である。 2A to 2C show an example of the uneven anode electrode portion used in the present invention. FIG. 2A is a plan view and FIG. 2B is A-A in FIG. 2A. 2C is a sectional view taken along line BB in FIG. 2A.
図3(a)(b)は、本発明に用いるアノード面積調整部材の例を示すもので、図3(a)は平面図、図3(b)は図3(a)のC−C線断面図ある。 3(a) and 3(b) show an example of the anode area adjusting member used in the present invention. FIG. 3(a) is a plan view and FIG. 3(b) is a line C-C in FIG. 3(a). FIG.
図1に示すように、本実施の形態のスパッタリング装置1は、ステージ2aの載置面2S上に基板20が配置される真空槽2を有している。
As shown in FIG. 1, the
この真空槽2は、図示しない真空排気装置に接続されるとともに、アルゴンガス等のプロセスガスを導入するように構成され、さらに接地されている。したがって、この真空槽2はアノード電極としての役割を果たす。
The
本実施の形態の場合、真空槽2内のステージ2aは真空槽2と電気的に接続されて接地電位にされており、アノード電極としての役割を果たす。なお、ステージ2aは、浮遊電位にされていてもよい。
In the case of the present embodiment, the
この真空槽2内のステージ2aの載置面2Sに対向する部分には、カソード電極としてのバッキングプレート3に保持されたターゲット4が設けられている。
A
そして、真空槽2の外部に設けられた高周波電源5からバッキングプレート3を介してターゲット4に高周波電力を供給するように構成されている。
Then, the high
本実施の形態では、バッキングプレート3を取り囲むように設けられ絶縁性材料からなるフランジ部材6によってバッキングプレート3が真空槽2に対して電気的に絶縁されている。
In the present embodiment, the
バッキングプレート3の背面側の部分には、マグネトロンスパッタリング用の公知の磁石装置7が設けられている。
一方、真空槽2内のステージ2aの近傍には、凹凸アノード電極部8が設けられている。
A known
On the other hand, an uneven
図1及び図2(a)に示すように、本例の凹凸アノード電極部8は、中央部分に貫通孔8Aを有する円筒形状に形成され、この貫通孔8Aの内縁部がステージ2aの周囲に近接してステージ2aを取り囲むように設けられている。
As shown in FIGS. 1 and 2(a), the uneven
本例では、ステージ2aの載置面2S(ターゲット4に対向する側の面)が平面状に形成されるとともに、凹凸アノード電極部8の放電空間側の面(以下、「放電空間側面」という。)8Sも平面状に形成されている。
In this example, the mounting
凹凸アノード電極部8は、例えばアルミニウムからなるもので、真空槽2と電気的に接続されて接地電位にされており、アノード電極としての役割を果たす。
The uneven
そして、凹凸アノード電極部8の放電空間側面8Sがステージ2aの載置面2Sと例えばほぼ面一(つらいち)に設けられ、この放電空間側面8Sに、有底の例えば円柱形状の凹部80が設けられている(図2(b)参照)。
Then, the discharge
ここで、凹凸アノード電極部8の凹部80は、貫通孔8A側即ち基板20を載置するステージ2a側に設けられた基板側凹部8aと、基板側凹部8aの外側に設けられた外側凹部8bとを有している。
Here, the
本例の基板側凹部8a及び外側凹部8bは、それぞれターゲット4に向かう方向、すなわち、例えば凹凸アノード電極部8の放電空間側面8Sに対して垂直に延びる形状に形成されている。
The substrate-side recessed
また、基板側凹部8a及び外側凹部8bは、それぞれ凹凸アノード電極部8の放電空間側の円形の面の中心点Oに対して同心円上に所定の間隔をおいて配置されている。
The substrate-side recessed
本例では、隣接する基板側凹部8aの間隔が、それぞれの開口部の直径より大きくなるように各基板側凹部8aの寸法及び数が設定されている。
In this example, the size and number of the substrate-
図1に示すように、真空槽2内の凹凸アノード電極部8の放電空間側面8Sの近傍には、アノード面積調整部材9が設けられている。
As shown in FIG. 1, an anode
このアノード面積調整部材9は、例えばアルミニウム等の金属材料やセラミックス等の無機材料からなる。そして、アノード面積調整部材9は、凹凸アノード電極部8と電気的に接続されている必要はなく、浮遊電位にされていてもよい。
The anode
本例のアノード面積調整部材9は、ステージ2aの外径より大きい内径の孔部9Aを有し、かつ、凹凸アノード電極部8の放電空間側面8Sの外径より小さい外径のリング状の平板部材から構成されている。
The anode
さらに、本例のアノード面積調整部材9の外径は、凹凸アノード電極部8の各外側凹部8bと重ならないようにその寸法が設定されている(図1及び後述する図4(a)参照)。
Further, the outer diameter of the anode
本例において、アノード面積調整部材9の外径をこのような寸法に設定したのは、凹凸アノード電極部8の放電空間側面8Sに対しては、基板20から離れた領域に比べて基板20に近い領域にスパッタリングによる膜が堆積しやすいことを考慮し、基板20に近い領域のアノード面積を増加させるようにしたものである。
In the present example, the outer diameter of the anode
このアノード面積調整部材9は、凹凸アノード電極部8の放電空間側面8Sと平行で凹凸アノード電極部8と同心状に配置されている。
The anode
図3(a)(b)に示すように、アノード面積調整部材9には、当該リングの中心点即ち凹凸アノード電極部8の放電空間側の円形の面の中心点Oを中心とする円上に円形状の複数のアノード面積調整孔9a(露出部)が設けられている。
As shown in FIGS. 3A and 3B, the anode
また、アノード面積調整部材9のアノード面積調整孔9aが設けられていない部分は、凹凸アノード電極部8の基板側凹部8aを真空槽2内の放電空間に対して遮蔽する機能を有する遮蔽部9Bが設けられている。
Further, a portion of the anode
本例では、アノード面積調整部材9のアノード面積調整孔9aは、凹凸アノード電極部8の基板側凹部8aと同等の直径を有し、かつ、凹凸アノード電極部8の基板側凹部8aと同一の数で同一の間隔で複数のアノード面積調整孔9aが設けられている。
In this example, the anode
本発明の場合、特に限定されることはないが、アノード面積の調整効率を向上させる観点からは、アノード面積調整部材9のアノード面積調整孔9aの面積を凹凸アノード電極部8の基板側凹部8aの面積以上となるようにそれぞれの直径を設定することが好ましい。
In the case of the present invention, although not particularly limited, from the viewpoint of improving the adjustment efficiency of the anode area, the area of the anode
なお、具体的には、凹凸アノード電極部8の基板側凹部8aとアノード面積調整部材9のアノード面積調整孔9aは、直径が5mm程度以下である場合には、プラズマが通過せずアノード電極として機能しなくなるため、それぞれの直径を6mm以上に設定することが必要であり、より好ましい直径は10mm以上である。
Specifically, when the diameter is about 5 mm or less, the substrate-side
アノード面積調整部材9は、真空槽2の外部に設けた駆動源であるモータ30に連結され(図1参照)、上述した凹凸アノード電極部8の放電空間側面8Sの中心点Oを中心として所定の方向に予め設定された角度だけ回転移動するように構成されている。
The anode
図4(a)(b)〜図5(a)(b)は、本実施の形態の動作の例及び本発明の作用を示す平面図である。 4(a)(b) to FIG. 5(a)(b) are plan views showing an example of the operation of the present embodiment and the operation of the present invention.
本実施の形態においてスパッタリングによって絶縁膜の成膜を行う場合、メンテナンス後の成膜工程の初期において、例えば図4(a)に示すように、アノード面積調整部材9のアノード面積調整孔9aが凹凸アノード電極部8の基板側凹部8aと重ならない位置に配置する。
In the case where the insulating film is formed by sputtering in the present embodiment, the anode
これにより凹凸アノード電極部8の基板側凹部8aはアノード面積調整部材9の遮蔽部9Bによって放電空間に対して遮蔽される。
As a result, the substrate-side
一方、アノード面積調整部材9のアノード面積調整孔9aの内部において凹凸アノード電極部8の放電空間側面8Sが露出して放電空間側面8Sがターゲット4の表面と対向する。
On the other hand, the discharge
この状態でしばらくスパッタリングによる成膜を行うと、凹凸アノード電極部8の表面及びアノード面積調整部材9の表面に絶縁膜が堆積してアノード電極全体の面積が減少し、これにより成膜速度が低下する。
When film formation is performed by sputtering for a while in this state, an insulating film is deposited on the surface of the uneven
その場合には、図1に示すモータ30を動作させ、図4(b)に示すように、アノード面積調整部材9を中心点Oを中心として回転移動させてアノード面積調整孔9aが凹凸アノード電極部8の基板側凹部8aの開口部と部分的に重なるようにする。
In that case, the
これにより、凹凸アノード電極部8の各基板側凹部8aの内面がアノード面積調整部材9の各アノード面積調整孔9aを介して部分的に露出し、その結果、凹凸アノード電極部8の面積が増加してアノード電極全体の面積が増加する。
As a result, the inner surface of each substrate-side
この場合、ターゲット4に供給する高周波電力の自己バイアス電位(Vdc)がスパッタリングの初期の値と同等の値となるように凹凸アノード電極部8の各基板側凹部8aの内面を露出させるように制御するとよい。
In this case, control is performed so that the inner surface of each substrate-side
なお、アノード面積調整部材9を回転させる角度は、ターゲット4に供給する高周波電力の自己バイアス電位を測定することによって定めることができる。
The angle at which the anode
また、当該プロセスにおけるターゲット4に供給する高周波電力の自己バイアス電位を予め測定しておき、得られた結果に基づいて所定のタイミングでアノード面積調整部材9を所定の角度だけ回転させるようにすることもできる。
Further, the self-bias potential of the high frequency power supplied to the
その後、スパッタリングによる成膜を継続すると、凹凸アノード電極部8の表面及びアノード面積調整部材9の表面に絶縁膜が堆積してその面積が減少し、成膜速度が低下する。
After that, when film formation by sputtering is continued, an insulating film is deposited on the surface of the uneven
この場合には、再度モータを動作させ、図5(a)に示すように、アノード面積調整部材9を中心点Oを中心として回転移動させてアノード面積調整孔9aと凹凸アノード電極部8の基板側凹部8aの開口部と重なる面積を増やして凹凸アノード電極部8の露出面積を増加させ、上述した方法によってターゲット4に供給する高周波電力の自己バイアス電位がスパッタリングの初期の値と同等の値となるように制御する。
In this case, the motor is operated again, and as shown in FIG. 5A, the anode
なお、図5(b)に示す例は、アノード面積調整部材9のアノード面積調整孔9aが凹凸アノード電極部8の基板側凹部8aの開口部と完全に重なった場合を示すものであり、アノード電極全体の面積が最大となる場合である。
The example shown in FIG. 5B shows a case where the anode
以上述べた本実施の形態では、スパッタリング時にアノード電極と同等の電位になる凹凸構造の凹凸アノード電極部8を放電空間内に配置し、凹凸アノード電極部8の基板側凹部8aを放電空間に対して遮蔽する遮蔽部9Bと放電空間に対して基板側凹部8aを露出させるアノード面積調整孔9aとを有するアノード面積調整部材9を回転移動させ、放電空間内における凹凸アノード電極部8の基板側凹部8aの露出面積を変えてアノード電極の面積を増加させることにより、高周波電力の自己バイアス電圧(Vdc)が増加するように調整することによって、高周波電力を用いるスパッタリングにより酸化物、窒化物等の絶縁膜を長期的に形成する際、成膜速度が低下した場合に、高周波電力の自己バイアス電圧を成膜初期の状態に戻して成膜速度を一定に保つことができる。
In the present embodiment described above, the uneven
なお、本発明は上記実施の形態に限られず、種々の変更を行うことができる。例えば、上記実施の形態では、凹凸アノード電極部8を真空槽2内のステージ2aの周囲に設けるとともに、アノード面積調整部材9を凹凸アノード電極部8の放電空間側の近傍に配置するようにしたが、本発明はこれに限られず、上記実施の形態の凹凸アノード電極部8とアノード面積調整部材9を有する同等の構成のものであれば、放電空間内のターゲット4の近傍に設けることもでき、また、ターゲット4とステージ2aとの間に配置することもできる。
The present invention is not limited to the above embodiment, and various changes can be made. For example, in the above embodiment, the uneven
ここで、凹凸アノード電極部8とアノード面積調整部材9をターゲット4の近傍に設ける場合には、凹凸アノード電極部8の基板側凹部8aを放電空間側に向けるとともに、アノード面積調整部材9を凹凸アノード電極部8に対して放電空間側に配置するとよい。
Here, when the uneven
また、上記実施の形態では、凹凸アノード電極部8に開口部が円形状の凹部80(基板側凹部8a)を設けるとともに、アノード面積調整部材9に露出部として円形状のアノード面積調整孔9aを設けるようにしたが、本発明はこれに限られず、凹凸アノード電極部8の基板側凹部8aの開口部及びアノード面積調整部材9のアノード面積調整孔9aとして、種々の形状(楕円形状、多角形状、長穴形状)のものを採用することもでき、また、これらの数についても適宜変更することができる。
Further, in the above-described embodiment, the concave and convex
また、アノード面積調整部材9に露出部として孔ではなく切り込みを設けることもできる。
Further, the anode
さらに、上記実施の形態では、凹凸アノード電極部8に設けた基板側凹部8aの露出面積を、アノード面積調整部材9に設けたアノード面積調整孔9aの回転移動によって変化させるようにしたが、アノード面積調整部材9を直線的又は曲線的の移動によって凹凸アノード電極部8に設けた基板側凹部8aの露出面積を変化させるように構成することもできる。
Further, in the above-described embodiment, the exposed area of the substrate-side
さらにまた、上記実施の形態では、高周波電力を用いてスパッタリングを行う場合を例にとって説明したが、本発明はこれに限られず、例えば周波数が10kHz以上のパルス状の直流電力を用いてスパッタリングを行う場合にも適用することができる。 Furthermore, although cases have been described with the above embodiment as examples where sputtering is performed using high-frequency power, the present invention is not limited to this, and sputtering is performed using pulsed DC power having a frequency of 10 kHz or higher, for example. It can also be applied in cases.
このようなパルス状の直流電力を用いる場合には、高周波電力を用いる場合に比べて供給する電力の周波数が小さく、アノード電極に堆積する絶縁膜の膜厚に対するインピーダンスの増加割合が大きくなる。 When such pulsed DC power is used, the frequency of the power supplied is smaller than when high frequency power is used, and the increase rate of impedance with respect to the thickness of the insulating film deposited on the anode electrode is large.
つまり、パルス状の直流電力を用いる場合のように供給する電力の周波数が高周波電力を用いる場合より小さい場合には、アノード電極に堆積する絶縁膜が薄い場合であっても、上記絶縁膜の膜厚に対するインピーダンスが相対的に大きくなるため、高周波電力を用いる場合よりアノード電極の面積が小さくなりやすく、その結果、本発明によるアノード電極面積の調整効果がより顕著になる傾向がある。 That is, when the frequency of the power to be supplied is smaller than when high-frequency power is used as in the case of using pulsed DC power, even if the insulating film deposited on the anode electrode is thin, the film of the above-mentioned insulating film is formed. Since the impedance with respect to the thickness is relatively large, the area of the anode electrode is likely to be smaller than when high frequency power is used, and as a result, the effect of adjusting the anode electrode area according to the present invention tends to be more remarkable.
1……スパッタリング装置
2……真空槽(アノード電極)
2a…ステージ(アノード電極)
3……バッキングプレート(カソード電極)
4……ターゲット
5……高周波電源
8……凹凸アノード電極部
8a…基板側凹部
8b…外側凹部
8S…放電空間側の面
9……アノード面積調整部材(遮蔽手段)
9a…アノード面積調整孔(露出部)
9B…遮蔽部
20…基板
30…モータ(駆動部)
1... Sputtering
2a... Stage (anode electrode)
3... Backing plate (cathode electrode)
4...
9a... Anode area adjusting hole (exposed part)
9B...
Claims (8)
スパッタリング時に前記アノード電極と同等の電位になる凹凸構造の凹凸アノード電極部を放電空間内に配置し、
前記放電空間に対して前記凹凸アノード電極部の所定の凹部を遮蔽する機能を有するアノード面積調整部材を移動させ、前記放電空間内における前記凹凸アノード電極部の所定の凹部の露出面積を変えて前記アノード電極の面積を変化させることにより、前記交番電力の自己バイアス電圧を調整する工程を有するスパッタリング方法。 A sputtering method in which alternating electric power is supplied between a cathode electrode and an anode electrode in a vacuum to cause discharge in a discharge space, and a target is sputtered to form an insulating film on a substrate.
An uneven anode electrode portion having an uneven structure having the same potential as the anode electrode during sputtering is arranged in the discharge space,
By moving an anode area adjusting member having a function of shielding a predetermined concave portion of the concave-convex anode electrode portion with respect to the discharge space, and changing an exposed area of the predetermined concave portion of the concave-convex anode electrode portion in the discharge space, A sputtering method comprising the step of adjusting the self-bias voltage of the alternating electric power by changing the area of the anode electrode.
前記真空槽内においてカソード電極を介してターゲットとアノード電極間に交番電力を供給する交番電源と、
前記真空槽内に設けられ、前記放電空間側の部分に凹部を有し、かつ、スパッタリング時に前記アノード電極と同等の電位となる凹凸構造の凹凸アノード電極部と、
前記真空槽内の前記凹凸アノード電極部に対して前記放電空間側に設けられ、スパッタリング時に前記アノード電極と同等の電位となるとともに、前記放電空間に対して前記凹凸アノード電極部の凹部を遮蔽する遮蔽部と前記放電空間に対して当該凹部を露出させる露出部とを有し、その移動による前記遮蔽部及び前記露出部と前記凹凸アノード電極部の凹部との位置関係の変化によって前記凹凸アノード電極部の凹部の露出面積を調整するように構成されたアノード面積調整部材と、
前記アノード面積調整部材を駆動して所定方向に移動させる駆動部とを備えたスパッタリング装置。 A vacuum chamber having a discharge space,
An alternating power source for supplying alternating power between the target and the anode electrode via the cathode electrode in the vacuum chamber,
A concave-convex anode electrode portion provided in the vacuum chamber, having a concave portion on the discharge space side, and having a concave-convex structure having a potential equivalent to that of the anode electrode during sputtering,
It is provided on the discharge space side with respect to the uneven anode electrode portion in the vacuum chamber, has a potential equal to that of the anode electrode during sputtering, and shields the concave portion of the uneven anode electrode portion with respect to the discharge space. The uneven anode electrode has a shield portion and an exposed portion that exposes the concave portion with respect to the discharge space, and the movement of the shield portion and the exposed portion changes the positional relationship between the concave portion and the concave portion of the uneven anode electrode portion. An anode area adjusting member configured to adjust the exposed area of the concave portion of the portion,
A sputtering apparatus comprising: a drive unit that drives the anode area adjustment member to move it in a predetermined direction.
As the recesses of the uneven anode electrode portion, there are a plurality of substrate-side recesses provided on the side close to the substrate that is the film formation target, and a plurality of outer recesses provided outside the substrate-side recesses. 8. The sputtering apparatus according to claim 4, wherein the anode area adjusting hole of the area adjusting member is provided at a position corresponding to the concave portion on the substrate side of the uneven anode electrode portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018216738A JP7102323B2 (en) | 2018-11-19 | 2018-11-19 | Sputtering method and sputtering equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018216738A JP7102323B2 (en) | 2018-11-19 | 2018-11-19 | Sputtering method and sputtering equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020084230A true JP2020084230A (en) | 2020-06-04 |
JP7102323B2 JP7102323B2 (en) | 2022-07-19 |
Family
ID=70906676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018216738A Active JP7102323B2 (en) | 2018-11-19 | 2018-11-19 | Sputtering method and sputtering equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7102323B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038263A (en) * | 2000-07-25 | 2002-02-06 | Ulvac Japan Ltd | Sputtering device |
JP2003342724A (en) * | 2002-05-29 | 2003-12-03 | Kobe Steel Ltd | Reactive film deposition apparatus and reactive film deposition method |
JP2006199989A (en) * | 2005-01-19 | 2006-08-03 | Ulvac Japan Ltd | Film deposition apparatus |
JP2010031343A (en) * | 2008-07-31 | 2010-02-12 | Fujifilm Corp | Film deposition apparatus, film deposition method, and liquid discharger |
JP2011052251A (en) * | 2009-08-31 | 2011-03-17 | Shibaura Mechatronics Corp | Sputtering device and sputtering method |
US20160300700A1 (en) * | 2015-03-18 | 2016-10-13 | Vision Ease, Lp | Anode Shield |
-
2018
- 2018-11-19 JP JP2018216738A patent/JP7102323B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038263A (en) * | 2000-07-25 | 2002-02-06 | Ulvac Japan Ltd | Sputtering device |
JP2003342724A (en) * | 2002-05-29 | 2003-12-03 | Kobe Steel Ltd | Reactive film deposition apparatus and reactive film deposition method |
JP2006199989A (en) * | 2005-01-19 | 2006-08-03 | Ulvac Japan Ltd | Film deposition apparatus |
JP2010031343A (en) * | 2008-07-31 | 2010-02-12 | Fujifilm Corp | Film deposition apparatus, film deposition method, and liquid discharger |
JP2011052251A (en) * | 2009-08-31 | 2011-03-17 | Shibaura Mechatronics Corp | Sputtering device and sputtering method |
US20160300700A1 (en) * | 2015-03-18 | 2016-10-13 | Vision Ease, Lp | Anode Shield |
Also Published As
Publication number | Publication date |
---|---|
JP7102323B2 (en) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5421387B2 (en) | Chamber shield for vacuum physical vapor deposition | |
TWI591752B (en) | Substrate support with radio frequency (rf) return path | |
JP2011524471A (en) | Apparatus and method for uniform deposition | |
JP2019512599A (en) | Method and apparatus for controlling ion fractionation in a physical vapor deposition process | |
KR102020010B1 (en) | Wafer processing deposition shielding components | |
JP2000144399A (en) | Sputtering device | |
KR20070008369A (en) | Improved magnetron sputtering system for large-area substrates | |
KR102042091B1 (en) | Physical vapor deposition chamber with rotating magnet assembly and centrally fed rf power | |
JP4588212B2 (en) | Sputtering apparatus comprising a coil having overlapping ends | |
JP4306958B2 (en) | Vacuum sputtering equipment | |
US20200027708A1 (en) | Sputtering device | |
US20140346037A1 (en) | Sputter device | |
JP2005187830A (en) | Sputtering apparatus | |
US6464841B1 (en) | Cathode having variable magnet configuration | |
JP7102323B2 (en) | Sputtering method and sputtering equipment | |
TWI727477B (en) | Reaction chamber and semiconductor processing equipment | |
US10692706B2 (en) | Methods and apparatus for reducing sputtering of a grounded shield in a process chamber | |
TW202302894A (en) | Methods and apparatus for processing a substrate using improved shield configurations | |
JP7138551B2 (en) | Sputtering method and sputtering apparatus | |
JP3727849B2 (en) | Cathode with variable magnet configuration | |
TW202012668A (en) | Pre-conditioned chamber components | |
US20190378699A1 (en) | Methods and apparatus for magnetron assemblies in semiconductor process chambers | |
JPH07316808A (en) | Sputtering device | |
JPH01116068A (en) | Bias sputtering device | |
US20240290593A1 (en) | Magnetron Design for Improved Bottom Coverage and Uniformity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20200727 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200805 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210907 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210907 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7102323 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |