JP2020072614A - Gas pressure monitoring device of gas insulation breaker - Google Patents

Gas pressure monitoring device of gas insulation breaker Download PDF

Info

Publication number
JP2020072614A
JP2020072614A JP2018207222A JP2018207222A JP2020072614A JP 2020072614 A JP2020072614 A JP 2020072614A JP 2018207222 A JP2018207222 A JP 2018207222A JP 2018207222 A JP2018207222 A JP 2018207222A JP 2020072614 A JP2020072614 A JP 2020072614A
Authority
JP
Japan
Prior art keywords
gas pressure
gas
circuit breaker
value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018207222A
Other languages
Japanese (ja)
Other versions
JP6674117B1 (en
Inventor
晃 浅井
Akira Asai
晃 浅井
保隆 村川
Yasutaka Murakawa
保隆 村川
英治 西川
Eiji Nishikawa
英治 西川
大橋 善和
Yoshikazu Ohashi
善和 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2018207222A priority Critical patent/JP6674117B1/en
Application granted granted Critical
Publication of JP6674117B1 publication Critical patent/JP6674117B1/en
Publication of JP2020072614A publication Critical patent/JP2020072614A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

To provide a gas pressure monitoring device for a gas breaker that can be easily attached and detached in an operating state, has a function of more accurately correcting pressure changes due to temperature changes, and has a function of estimating a time margin until gas pressure reaches a low level (hereinafter referred to as "alarm level") where arc discharge cannot be suppressed by gas pressure.SOLUTION: An angle of a pointer of a gas pressure meter is detected using a magnetic sensor. Gas pressure at 20°C is calculated from a measured value of a temperature sensor attached to a breaker body. Time margin from a change status of the gas pressure to reaching an alarm level is estimated by a mathematical method.SELECTED DRAWING: Figure 1

Description

本発明は、ガス絶縁遮断器のガス圧力監視装置に関する。   The present invention relates to a gas pressure monitoring device for a gas insulation circuit breaker.

発電所や変電所には故障時に送電路を遮断する遮断器が数多く設置されている。それらの遮断器には遮断時のアーク放電を抑えるため不活性ガスが封入されており、不活性ガスを吹き付けてアークを消弧するため、ガス絶縁遮断器(または単にガス遮断器)と言われている。 There are many circuit breakers installed at power plants and substations that shut off the power transmission line in the event of a failure. These circuit breakers are filled with an inert gas to suppress arc discharge at the time of breaking, and are called gas-insulated circuit breakers (or simply gas circuit breakers) because they blow the inert gas to extinguish the arc. ing.

これらの遮断器において、上記不活性ガスは通常数気圧程度に加圧され、絶縁性能を確保している。しかしながら長年の使用中に容器の隙間のシール材の劣化などのため少しずつリークし、その量を減じてゆく。そのため遮断器毎に封入ガスの圧力計が設置されており、係員が定期的に上記圧力計の指示値を点検し封入ガスのリークの有無を判断している。 In these circuit breakers, the inert gas is usually pressurized to about several atmospheres to ensure insulation performance. However, due to deterioration of the sealing material in the gap between the containers during many years of use, leakage gradually occurs and the amount decreases. Therefore, a pressure gauge for the enclosed gas is installed in each circuit breaker, and a staff member regularly checks the indicated value of the pressure gauge to determine whether or not the enclosed gas leaks.

しかしながら、屋外の直射日光下では遮断器本体の温度変化も著しく、温度が変化すると密閉された遮断器容器内のガスはその膨張または収縮によって圧力が変化するため、測定した圧力値のままではガス漏れがあったか否か判断できない。それ故、上記圧力計の指示値に温度による補正を行って封入ガスのリークの有無を判断している。 However, the temperature of the main body of the circuit breaker changes significantly under direct sunlight outdoors, and when the temperature changes, the gas in the sealed circuit breaker container changes its pressure due to its expansion or contraction. It cannot be determined whether there was a leak. Therefore, the indicated value of the pressure gauge is corrected by the temperature to judge the presence or absence of leakage of the enclosed gas.

そのため、上記点検を人手で行った場合、かなりの手間が掛かっていた。遠隔制御可能な一部の大規模変電所等ではガス圧を専用のセンサーで測定し、ディジタル量に変換して通信回線を経由して係員のいる制御所等にデータ伝送し、上記制御所等のデータ処理装置等で温度による補正を行って記録し、必要に応じてガス圧力低下のアラーム表示をしている。 Therefore, it takes a lot of time and labor to perform the above inspection manually. At some large-scale substations that can be remotely controlled, the gas pressure is measured with a dedicated sensor, converted into a digital amount, and the data is transmitted to the control station, etc. where there is a staff member via a communication line. The data processing device, etc. corrects the temperature and records it, and displays a gas pressure drop alarm if necessary.

しかし、小規模変電所等ではアナログ指針方式のガス圧力メーターが遮断器近傍のキュービクル内に設置されていて点検員による巡回点検を要しているところが多い。 However, in many small substations, etc., an analog pointer type gas pressure meter is installed in the cubicle near the circuit breaker and often requires patrol inspection by an inspector.

大規模変電所では通過電力が大きいため自動監視にコストをかけても十分ペイするが、小規模の変電所では通過電力も小さく監視装置にあまりコストを掛けられないという実情がある。 In large-scale substations, the amount of electricity that passes is large, so even if it costs a lot to pay for automatic monitoring, paying is sufficient, but in small-scale substations, the amount of electricity that passes is small and there is the fact that monitoring devices cannot be expensive.

また遮断器の絶縁ガスの漏洩は設置後かなりの年数を経て劣化が進んでから見られる現象なので遮断器の設置当初からガス圧を自動監視する装置を取り付けて運用するのは無駄が多い上に、監視装置のメンテナンスにコストがかかってしまう。 Also, leakage of insulating gas from the circuit breaker is a phenomenon that can be seen after deterioration has progressed considerably after installation, so it is wasteful to install and operate a device that automatically monitors gas pressure from the beginning of the circuit breaker installation. However, maintenance of the monitoring device is costly.

それでは人手による点検で問題ないかというとそうでもなく、実際、設置後かなりの年数がたって劣化が進んだ遮断器においては、週一回程度の巡回点検ではガスの急激なリーク量の増加があった場合に対応できない上にリーク量の増加を発見してもその一時点のデータのみではガス圧がアーク放電を抑制できない危険なレベルに低下するまでにどの程度の時間的余裕があるかを明確にはできない。 If so, it may be true that there would be no problem in manual inspection.In fact, in circuit breakers that have deteriorated over a considerable number of years after installation, there is a sudden increase in the amount of gas leakage during a weekly inspection. It is not possible to deal with such cases, and even if an increase in the amount of leak is found, it is clarified how much time is left before the gas pressure falls to a dangerous level where arc discharge cannot be suppressed only by the data at that time point. I can't.

引用文献1では請求項1にガス圧を検出する圧力検出部と周囲の外気温を遮断機内部のガス温度として検出する温度検出部を備え、ガス圧を所定の温度におけるガス圧に換算する演算を行い、さらにその演算結果を直線近似などで補正し、その結果からガス圧の異常の有無を判定することが書かれている。   In the cited document 1, the pressure detecting unit for detecting the gas pressure and the temperature detecting unit for detecting the ambient outside temperature as the gas temperature inside the circuit breaker are provided in claim 1, and the calculation for converting the gas pressure into the gas pressure at a predetermined temperature is performed. It is described that the calculation result is corrected by linear approximation and the presence or absence of gas pressure abnormality is determined from the result.

しかるに、都市部の変電所を除くほとんどの変電所では遮断器は屋外にあり、夏には炎天下に放置された乗用車の中のように60℃〜70℃程度にまで上昇することもあり、高々30℃台の外気温とは大きく剰離するので引用文献1の方法では正しく温度補正されたガス圧を得ることはできない。   However, in most substations except the substations in urban areas, the circuit breakers are outdoors, and in the summer they can rise to about 60 to 70 degrees Celsius, as in a passenger car left in the hot sun. Since the temperature greatly deviates from the outside air temperature in the range of 30 ° C., it is not possible to obtain a temperature-corrected gas pressure by the method of the cited document 1.

また、遮断器の内部は密封された空間であり、そこに大電流が流れているので、温度はさらに高くなることが容易に推測できる。そのため遮断器外の気温の変化を回帰分析等で直線近似して平均的な近似直線を得、そのグラフから得られた平均的な外気温を遮断器内部の絶縁ガスの温度とみなすことには無理がある。   Further, since the inside of the circuit breaker is a sealed space and a large current flows through it, it can be easily inferred that the temperature becomes higher. Therefore, it is not possible to approximate the average outside temperature obtained from the graph by linearly approximating the change in the temperature outside the circuit breaker by regression analysis, etc., and to regard the average outside temperature obtained from the graph as the temperature of the insulating gas inside the circuit breaker. It is impossible.

引用文献2では請求項1に外気温に基づいて遮断器内の絶縁ガスの圧力値を20℃の圧力値に正規化することが書かれており、請求項8および明細書〔0009〕にはその計算式が書かれている。また、請求項3には圧力値の低下率を計算し、それが所定の値以上の場合にはガス圧が非許容値に達するのに要する期間を計算して、その期間満了前に絶縁ガスを自動的に補給することが書かれている。   In the cited document 2, it is stated in claim 1 that the pressure value of the insulating gas in the circuit breaker is normalized to the pressure value of 20 ° C. based on the outside air temperature, and in claim 8 and the specification [0009]. The calculation formula is written. Further, in claim 3, the rate of decrease of the pressure value is calculated, and when it is equal to or higher than a predetermined value, the period required for the gas pressure to reach the non-permissible value is calculated, and the insulating gas is calculated before the period expires. It is written to automatically recharge.

上記引用文献の上記請求項8および明細書〔0009〕に記載されている温度によるガス圧力補正の計算式は以下のとおりである。
MPa=Pa+(t℃−20℃)×0.0025MPa/℃ (1)
但し、MPa:20℃時のガス圧に換算した値
Pa:ガス圧検出 手段により検出したガス圧
t:外気温測定手段により測定した外気温
The calculation formula of the gas pressure correction by temperature described in the claim 8 and the specification [0009] of the cited document is as follows.
MPa = Pa + (t ° C.−20 ° C.) × 0.0025 MPa / ° C. (1)
However, MPa: value converted to gas pressure at 20 ° C.
Pa: Gas pressure detected by gas pressure detection means
t: outside temperature measured by outside temperature measuring means

しかしながら、例えばPaが40℃で測定された値ならば20℃のときより膨張しており、20℃時のガス圧に換算した値MPaはPaより低い値になるはずであるが、上記MPaの計算式ではMPaの方が高くなってしまうという矛盾がある。   However, for example, if Pa is a value measured at 40 ° C., it expands more than at 20 ° C., and the value MPa converted into gas pressure at 20 ° C. should be a value lower than Pa. There is a contradiction that MPa is higher in the calculation formula.

一般に密閉容器内のガスの圧力、温度、体積の間には以下のボイル・シャルルの法則が成り立つので、異なる温度条件下における圧力もこの法則から容易に導くことができる。
P・V/T=n・R(一定) (2)
ただし、P:ガスの圧力[N/m]
(メーターの指示値「ゲージ圧」はこれから大気圧を引いたものである。)
V:ガスの体積[m]、
n:気体のモル数
R:気体定数[Nm/mol・K]、
T:ガスの絶対温度[K]
In general, the following Boyle-Charles law is established among the pressure, temperature, and volume of gas in a closed container, so that pressures under different temperature conditions can be easily derived from this law.
P ・ V / T = n ・ R (constant) (2)
However, P: gas pressure [N / m 2 ]
(The meter reading "gauge pressure" is the atmospheric pressure minus this.)
V: volume of gas [m 3 ],
n: number of moles of gas R: gas constant [Nm / mol · K],
T: Absolute temperature of gas [K]

また、ガスの漏洩が疑われる場合はガス漏れ箇所を調査して劣化したシーリング材を交換または補充するといった対策を施さなければならないが、自動的にガスを補充してしまっては抜本的な対策実施が先送りにされる傾向となり、さらに大きなガス漏れを起こす可能性がある。   Also, if gas leakage is suspected, measures must be taken such as investigating the location of gas leakage and replacing or replenishing deteriorated sealing material, but if gas is automatically replenished, drastic measures will be taken. Implementation tends to be deferred and can lead to even greater gas leaks.

通常ガス圧の低下率は最大1[%/年]程度までは許容されている。遮断器の実力値としては設置時の検査時点で最大0.1[%/年]以下の実力値を持っているものとされている。それ故、アナログ指針方式のガス圧力メーターでガス圧の低下が目に見えてはっきり判るようになるのは遮断器設置の数年後〜十年後以降である。   Normally, the maximum reduction rate of gas pressure is about 1 [% / year]. Regarding the actual value of the circuit breaker, it is said that it has a maximum actual value of 0.1 [% / year] or less at the time of inspection during installation. Therefore, it is only after several decades to 10 years after the circuit breaker is installed that the decrease in gas pressure becomes visibly and clearly visible on the analog pointer type gas pressure meter.

よって、遮断器設置時にガス圧監視装置を設置するのはコスト負担が大きい割に効果が少ないといえる。すなはち、ガス圧監視装置の設置は遮断器設置後シーリング材等が劣化してくる数年後〜十年後頃が効果的であるといえる。   Therefore, it can be said that installing the gas pressure monitoring device at the time of installing the circuit breaker is less effective despite the large cost burden. That is, it can be said that the gas pressure monitoring device is effectively installed several years to ten years after the sealing material is deteriorated after the circuit breaker is installed.

特許第5142783号Patent No. 5142783 特許第5349520号Patent No. 5349520 特願 昭54−113335号Japanese Patent Application No. 54-113335

本願発明はそういった点に鑑みてなされたものであり、本願の課題はガス遮断器が運用状態のまま容易に着脱でき、外気温より遮断器内部温度により近い温度を測定し、温度変化による圧力変化をより正しく補正する機能を有し、かつ、ガス圧がアーク放電を抑制できない低レベルに達するまでの時間的余裕を推定する機能を持った、ガス遮断器のガス圧力監視装置を提供することにある。   The invention of the present application has been made in view of such points, and the object of the present application is to easily attach and detach the gas circuit breaker in the operating state, measure a temperature closer to the internal temperature of the circuit breaker than the outside air temperature, and change the pressure due to temperature change. To provide a gas pressure monitoring device for a gas circuit breaker, which has a function of more accurately correcting the gas pressure and a function of estimating a time margin until the gas pressure reaches a low level at which arc discharge cannot be suppressed. is there.

本願の発明者は変電所内の現在稼働中の遮断器の絶縁ガス圧表示メーターの表示値を読み取り、温度による補正を行った後、上記アーク放電を抑制できない低レベルには無いことを確認した上で、過去のデータとも比較してガスの漏洩がないか、漏洩が認められる場合、上記低レベルに達するまでの時間的余裕は十分にあるか等、人間が行う遮断器絶縁ガス圧力の点検作業をそのまま全て機械に置き換えられないか検討した。   The inventor of the present application reads the display value of the insulation gas pressure display meter of the circuit breaker currently in operation in the substation, corrects it according to the temperature, and then confirms that the above-mentioned arc discharge is not at a low level. In comparison with past data, if there is no gas leakage, or if leakage is confirmed, is there sufficient time to reach the above low level? I examined whether it would be possible to replace all of them with machines.

メーターの指示値読み取りは遮断器のガス圧力計測用メーターが主にアナログ指針式メーターであり、メーターのカバーも容易に開閉できるものなので、上記メーターの指針に幅約1ミリ、長さ約数ミリ程度で長軸方向に磁化された永久磁石片を長軸がメーターの指針に重なるように貼り付け、一方メーターのカバーに磁場の方向を二次元のベクトル量として計測できる磁気センサーを貼り付けて、上記永久磁石片の長軸方向の向き(角度)を計測することとした。 Meter readings for gas pressure of circuit breakers are mainly analog pointer-type meters, and the meter cover can be easily opened and closed, so the meter pointer can be about 1 mm wide and about a few millimeters long. Attach a permanent magnet piece magnetized in the long axis direction so that the long axis overlaps the pointer of the meter, and on the other hand, attach a magnetic sensor that can measure the direction of the magnetic field as a two-dimensional vector quantity to the meter cover, It was decided to measure the direction (angle) in the long axis direction of the permanent magnet piece.

上記のようなメーターの指示値読み取り方法は引用の[特許文献3]に詳しく述べられている。また、回転角読取り専用のセンサーも市販されている。 The method for reading the indicated value of the meter as described above is described in detail in the cited [Patent Document 3]. Also, a sensor for reading the rotation angle is commercially available.

一方、温度計測は遮断器内部のガス温度に最も近い温度を測る必要があるため、遮断器を模擬した金属ケースの内外部に温度計を付けて直射日光下で最も内部温度に近い温度が計測できるかを調査したところ、金属表面でかつ温度センサーに直射日光が直接当たらない位置がベストであることが解ったので、熱電対温度センサーをその位置に取り付けることとした。また、運用中の遮断機本体にセンサーを設置することが困難な場合は遮断器近傍にあって遮断器本体とほぼ同じ日射を浴びる同質に塗装され密封された金属ケース内にセンサーを設置し、金属ケース内の温度を計測しても良い。   On the other hand, for temperature measurement, it is necessary to measure the temperature closest to the gas temperature inside the circuit breaker, so a thermometer is attached inside and outside the metal case simulating the circuit breaker to measure the temperature closest to the internal temperature in direct sunlight. After investigating whether or not it was possible, it was found that the best position was on a metal surface and where the temperature sensor was not exposed to direct sunlight, so it was decided to attach a thermocouple temperature sensor to that position. If it is difficult to install the sensor in the main body of the circuit breaker in operation, install the sensor in a metal case that is near the circuit breaker and is painted and sealed in the same quality as the circuit breaker body is exposed to almost the same amount of sunlight. The temperature inside the metal case may be measured.

また、測定したガス圧値については(2)のボイル・シャルルの法則から、温度が変わっても一定の温度条件下の圧力を得ることができる。 Regarding the measured gas pressure value, it is possible to obtain the pressure under a constant temperature condition even if the temperature changes, from the Boyle-Charles law of (2).

たとえば、20℃における圧力をP20とした場合、20℃以外の温度t℃においては以下の関係が成り立つ。
20・V/(20+273)=P・V/(t+273) (3)
温度が変わっても遮断器の容積は変わらないので、内部の絶縁ガスの体積Vも一定であるから、Vは省略できて、
20=P・293/(t+273) (4)
の様に表現できる。
For example, when the pressure at 20 ° C. is P 20 , the following relationship holds at temperatures t ° C. other than 20 ° C.
P 20 · V / (20 + 273) = P · V / (t + 273) (3)
Since the volume of the circuit breaker does not change even if the temperature changes, the volume V of the insulating gas inside is also constant, so V can be omitted.
P 20 = P · 293 / (t + 273) (4)
Can be expressed like.

ただし、ここでの圧力PおよびP20は物理学上で定義された圧力であり、現場のメーターで表示される圧力(一般にゲージ圧という)は上記PおよびP20から大気圧を差し引いたものである点注意が必要である。 However, the pressures P and P 20 here are the pressures defined in physics, and the pressure (generally called a gauge pressure) displayed on the meter at the site is the above P and P 20 minus the atmospheric pressure. There are some points to note.

ところで、絶縁ガスの密閉容器に穴が開き、ガスが漏れた場合、単位時間当たりのガスの流出量は大気圧Pとの差に比例するので、ガス圧Pの変化量は、(5)式のように、
dP/dt=−α・(P−P) (5)
(ただし、αはガス圧Pの変化率を表す正の定数、Pは大気圧)
表現できる。
By the way, when a hole is opened in the closed container of the insulating gas and the gas leaks, the outflow amount of the gas per unit time is proportional to the difference from the atmospheric pressure P 0. Therefore, the change amount of the gas pressure P is (5) Like the formula,
dP / dt = −α · (P−P 0 ) (5)
(However, α is a positive constant indicating the rate of change of the gas pressure P, P 0 is the atmospheric pressure)
Can be expressed.

上記微分方程式より初期値として時刻tにおけるガス圧をPとした場合、(5)より、
P=(P−P)・exp(−α・(t−t))+P (6)
が、得られる。
ただし、exp{x}は指数関数eを表す。
When the gas pressure at time t 1 is set to P 1 as an initial value from the above differential equation, from (5),
P = (P 1 −P 0 ) · exp (−α · (t−t 1 )) + P 0 (6)
Can be obtained.
However, exp {x} represents the exponential function e x .

また、時刻tにおけるガス圧がPであった場合、
=(P−P)・exp(−α・(t−t))+P (7)
となるので、この場合αは
α=−Ln{(P−P)/(P−P)}/(t−t) (8)
として求められる。
ただし、Ln{x}はxの自然対数を表す。
When the gas pressure at time t 2 is P 2 ,
P 2 = (P 1 −P 0 ) · exp (−α · (t 2 −t 1 )) + P 0 (7)
Therefore, in this case, α is α = −Ln {(P 2 −P 0 ) / (P 1 −P 0 )} / (t 2 −t 1 ) (8)
Is required as.
However, Ln {x} represents the natural logarithm of x.

(8)を(6)に代入すると、
P=(P1−P)・{(P−P)/(P−P)}{(t−t1)/(t2−t1)}+P (9)
が、得られる。
Substituting (8) into (6),
P = (P 1 -P 0) · {(P 2 -P 0) / (P 1 -P 0)} {(t-t1) / (t2-t1)} + P 0 (9)
Can be obtained.

これ以上ガス圧が低下した場合にアークが遮断できないため動作が保証できなくなる最低ガス圧をPALM、その時点の時刻をtALMとすれば、
(tALM−t)=(t−t)・Ln{(PALM−P)/(P−P)}
/Ln{(P−P)/(P−P)} (10)
となる。
If the minimum gas pressure at which the operation cannot be guaranteed because the arc cannot be interrupted when the gas pressure decreases more than this is P ALM and the time at that time is t ALM ,
(t ALM −t 1 ) = (t 2 −t 1 ) · Ln {(P ALM −P 0 ) / (P 1 −P 0 )}
/ Ln {(P 2 -P 0 ) / (P 1 -P 0)} (10)
Becomes

上記(10)式より例えば、最低動作保証ゲージ圧が0.4[MPa]の遮断器の場合、当初ゲージ圧0.6[MPa]であったガス圧が何らかの原因で急に下がり始めて、10日でゲージ圧0.55[MPa]に低下した場合、ガス圧が下がり始めてから最低動作保証ゲージ圧(以後「警報レベルの圧力」ということにする。)になるまでの日数は、以下の(11)の様に算出される。

(tALM−t)=10[日]×Ln{0.4/0.6}/Ln{0.55/0.6}
=46.599・・・[日] (11)
From the above formula (10), for example, in the case of a circuit breaker with a minimum operation guarantee gauge pressure of 0.4 [MPa], the gas pressure that initially had a gauge pressure of 0.6 [MPa] suddenly starts to drop for some reason. When the gauge pressure is reduced to 0.55 [MPa] per day, the number of days from when the gas pressure starts to fall to the minimum operation guarantee gauge pressure (hereinafter referred to as "alarm level pressure") is as follows. It is calculated as in 11).

(t ALM- t 1 ) = 10 [days] × Ln {0.4 / 0.6} / Ln {0.55 / 0.6}
= 46.599 ・ ・ ・ [Sun] (11)

(11)の日数は、ガスを補充して当初のゲージ圧0.6[MPa]に戻してもガス漏れの原因を発見して補修しない限り上記日数で警報レベルの圧力にまでガス圧が低下することを示している。この日数の値は補修スケジュールを立てる上で重要なデータとなる。 As for the number of days of (11), even if the gas pressure is replenished to the original gauge pressure of 0.6 [MPa] and the cause of the gas leak is not found and repaired, the gas pressure drops to the alarm level in the above days. It shows that you do. The value of this number of days is an important data for establishing a repair schedule.

本願装置からの警報発信はガス圧が別途設定した値以下になった場合および、上記警報レベルの圧力になる日よりさらに別途設定する日数前に発信することができる。 The alarm can be issued from the device of the present application when the gas pressure becomes equal to or lower than a value set separately, and before the number of days when the pressure reaches the alarm level is set separately.

ところで、本願の装置は遮断器のシーリング材が劣化してきた10年目〜20年目の遮断器に後付けできるように配慮している。撤去も容易であるので、シーリング材の補修が終わってガス漏れがほぼ皆無となった場合は撤去して他の遮断器の監視に流用することも可能である。   By the way, the device of the present application is designed so that it can be retrofitted to the breaker in the 10th to 20th years when the sealing material of the breaker has deteriorated. Since it is easy to remove, when the sealing material has been repaired and gas leakage has almost disappeared, it is possible to remove it and use it for monitoring other circuit breakers.

また、本願の課題解決の手段として、磁石と磁気センサーを用いてアナログ指針式メーターの指示値を読み取る方法を説明したが、上記以外に、カメラを用いて上記メーターの指針を撮影し、画像解析ソフトウエア等で上記メーターの指示値を読み取る方法を用いても良い。 Further, as a means for solving the problem of the present application, the method of reading the indicated value of the analog pointer type meter by using the magnet and the magnetic sensor has been described, but in addition to the above, the pointer of the meter is photographed by using the camera, and the image analysis is performed. You may use the method of reading the indicated value of the said meter with software etc.

また、本願装置による測定結果は本願装置上に表示しても良いし、有線・無線等の情報通信ネットワーク上に乗せて遠方に表示しても良い。また、センサーのデータをそのまま上記ネットワーク上に乗せて遠方に送り、本願装置のセンサー以外の部分を遠方に配置しても良い。   Further, the measurement result by the device of the present application may be displayed on the device of the present application, or may be displayed on a distant place by being placed on an information communication network such as a wired or wireless network. Further, the data of the sensor may be placed on the network as it is and sent to a distant place, and a portion other than the sensor of the device of the present application may be arranged at a distant place.

以上の点を踏まえて、本願の課題解決の手段として実施した本願の第1の発明は、ガス遮断器またはガス絶縁開閉装置(以後単にガス遮断器と表記)のガス圧を指示する既存の回転指針式アナログメーターの針に永久磁石片を取り付け、上記メーターの針の回転角を上記メーター前面の透明カバー面に張り付けた磁気センサーによって読み取り、ガス圧に換算して監視する、ガス遮断器用ガス圧監視装置であって、マイクロコンピュータまたは同等の演算機能デバイスを内蔵し、また、上記磁気センサーの他に上記ガス遮断器本体ケースに直射日光を避ける位置に取り付けた温度センサーと、上記磁気センサーおよび上記温度センサーの測定値を入力する入力部、上記磁気センサーの測定値をガス圧に換算し、上記ガス圧値から任意の温度におけるガス圧値を演算する演算部、読み取った上記測定値や上記演算結果を記録する記録部、上記読み取った値や上記演算結果が別途設定されたガス圧の正常範囲内にあるか否かを判定する判定部、上記測定値や上記演算結果および上記判定結果を外部に表示または通知する出力部を有し、現在の温度におけるガス圧の他に別途設定された一定の温度(例えば20℃)におけるガス圧を算出して記録し、表示または通知し、また、上記一定の温度におけるガス圧が別途に設定した圧力より低下しているかまたは別途に設定した日数以内に低下すると推定される場合、警報発信することを特徴とする上記ガス遮断器用ガス圧監視装置であり、
第2の発明は、上記第1の発明によるガス遮断器用ガス圧監視装置であって、上記一定の温度におけるガス圧の算出結果の記録からガス漏れの有無、および、上記算出結果から、上記一定の温度における上記ガス圧の将来値を推定し、上記ガス圧の正常範囲を逸脱する日時を推定することを特徴としたガス遮断器用ガス圧監視装置であり、
第3の発明は、上記第1の発明および上記第2の発明によるガス遮断器用ガス圧監視装置であって、磁気センサーの代わりに上記回転指針式アナログメーターの指示値表示画面をカメラで撮影し、画像解析によって上記回転指針式アナログメーターの指示値を認識することを特徴としたガス遮断器用ガス圧監視装置であり、
第4の発明は、上記第1の発明および上記第2の発明並びに上記第3の発明によるガス遮断器用ガス圧監視装置の機能を有する複数の装置から成るシステムであって、上記測定値や上記演算結果および上記判定結果を有線または無線の通信ネットワーク回線に乗せて遠方に送達することを特徴としたガス遮断器用ガス圧監視システムであり、
第5の発明は上記第4の発明のガス遮断器用ガス圧監視システムの機能を有する複数の装置から成るシステムであって、上記演算および上記判定を行う上記演算部および上記判定部を独立した別の装置として上記有線または無線の通信ネットワーク回線を経た遠方に設けたことを特徴としたガス遮断器用ガス圧監視システムである。
Based on the above points, the first invention of the present application implemented as a means for solving the problem of the present application is an existing rotation indicating a gas pressure of a gas circuit breaker or a gas insulated switchgear (hereinafter simply referred to as a gas circuit breaker). A gas pressure for a gas circuit breaker that attaches a permanent magnet piece to the needle of a pointer type analog meter, reads the rotation angle of the meter needle with a magnetic sensor attached to the transparent cover surface on the front of the meter, and converts it into gas pressure for monitoring. A monitoring device, which incorporates a microcomputer or an equivalent arithmetic function device, and in addition to the magnetic sensor, a temperature sensor attached to the gas circuit breaker body case at a position avoiding direct sunlight, the magnetic sensor, and Input unit to input the measured value of the temperature sensor, convert the measured value of the magnetic sensor to gas pressure, and change the gas pressure value to any temperature A calculation unit for calculating the gas pressure value, a recording unit for recording the read measurement value and the calculation result, and whether the read value or the calculation result is within a separately set normal range of the gas pressure. It has a determination unit for determination, an output unit for externally displaying or notifying the measured value, the calculation result, and the determination result, and a constant temperature (for example, 20 ° C.) set separately in addition to the gas pressure at the current temperature. If the gas pressure at the constant temperature is lower than the pressure set separately or is estimated to drop within the number of days set separately, A gas pressure monitoring device for the gas circuit breaker, which is characterized by transmitting an alarm,
A second invention is the gas pressure monitoring device for a gas circuit breaker according to the first invention, wherein the presence or absence of gas leakage is recorded from the record of the calculation result of the gas pressure at the constant temperature, and the constant value is calculated from the calculation result. A gas pressure monitoring device for a gas circuit breaker, which is characterized by estimating a future value of the gas pressure at a temperature of, and estimating a date and time when the gas pressure deviates from a normal range.
A third invention is a gas pressure monitoring device for a gas circuit breaker according to the first invention and the second invention, wherein a camera displays an indication value display screen of the rotary pointer type analog meter instead of the magnetic sensor. A gas pressure monitoring device for a gas circuit breaker characterized by recognizing the indicated value of the rotary pointer type analog meter by image analysis,
A fourth invention is a system including a plurality of devices having the function of the gas pressure monitoring device for a gas circuit breaker according to the first invention, the second invention and the third invention, and the measured value and the A gas pressure monitoring system for a gas circuit breaker, characterized in that the calculation result and the determination result are placed on a wired or wireless communication network line and delivered to a distant place,
A fifth invention is a system comprising a plurality of devices having the function of the gas pressure monitoring system for a gas circuit breaker of the above-mentioned fourth invention, wherein the computing unit for performing the computation and the determination and the determination unit are independent from each other. The gas pressure monitoring system for a gas circuit breaker, characterized in that the device is provided at a distance via the wired or wireless communication network line.

本願発明のガス圧力監視装置により、これまで人が定期的に点検していたガス遮断器の絶縁ガス圧力の自動監視が可能である。本願装置は既存のメーターに容易に着脱可能であり、設置作業時に遮断器を停止させる必要がない。また、通常ガス遮断器の筐体継ぎ目等のシーリング材劣化でガス漏れ量が増加するのは遮断器設置後数年〜十数年目以降であるので常設型の監視装置ではガス漏れがほとんどない設置後十年程度までの間も監視装置のメンテナンスが必要であり無駄が多いが、本願装置では着脱式でありガス圧が低下してきた遮断器に後付けできるため無駄が少なくコストパーフォーマンスが優れている。   With the gas pressure monitoring device of the present invention, it is possible to automatically monitor the insulating gas pressure of the gas circuit breaker, which has been regularly inspected by humans. The device of the present application can be easily attached to and detached from an existing meter, and it is not necessary to stop the circuit breaker during installation work. Also, the amount of gas leakage increases due to deterioration of the sealing material such as the seams of the casing of the gas circuit breaker only after several years to ten and several years after the circuit breaker is installed.Therefore, there is almost no gas leakage in the permanent monitoring device. Maintenance of the monitoring device is necessary for up to about 10 years after installation, which is wasteful, but the device of this application is detachable and can be retrofitted to a circuit breaker whose gas pressure has dropped, so there is little waste and excellent cost performance. There is.

本願発明のガス圧力監視装置では、遮断器内部のガス温度に最も近いポイントの温度を計測し、その温度データを基にある特定温度でのガス圧値に換算してデータ収集しているので、温度変化による誤差が気温を基に補正している場合と比較して極めて少なくなっている。 In the gas pressure monitoring device of the present invention, the temperature of the point closest to the gas temperature inside the circuit breaker is measured, and the data is collected by converting the temperature data into a gas pressure value at a certain temperature. The error due to the temperature change is extremely small compared to the case where the error is corrected based on the temperature.

本願発明のガス圧力監視装置ではガス漏れ量が増加した場合にそれが警報レベルの圧力になるまでの日数が算出できるので、それを基に補修作業のスケジュールを立てることができる。 In the gas pressure monitoring device of the present invention, when the amount of gas leak increases, the number of days until it reaches the alarm level pressure can be calculated, and therefore the repair work schedule can be established based on this.

ブロック図Block Diagram 圧力計に付けられた磁石と磁気センサーの位置関係の図Diagram of the positional relationship between the magnet attached to the pressure gauge and the magnetic sensor 温度センサーの取り付け位置例の図Illustration of mounting position of temperature sensor

以下に本願発明を実施するための形態を詳細に説明する。   Hereinafter, modes for carrying out the present invention will be described in detail.

[図1]は本願の装置全体を示すブロック図である。本願装置ではメーターの指針に取り付けられた微小磁石片によって生成された磁界の向きを1の磁気センサーで読取り、一方、遮断器本体の表面温度を2の温度センサーで測定する。   FIG. 1 is a block diagram showing the entire device of the present application. In the device of the present application, the direction of the magnetic field generated by the minute magnet pieces attached to the pointer of the meter is read by the magnetic sensor 1 while the surface temperature of the circuit breaker main body is measured by the temperature sensor 2.

3の入力部は上記磁気センサーや上記温度センサーの出力値を読み取る。磁気センサーも温度センサーもUSBポートによるディジタル出力方式のものや無線LANを用いたいわゆるWIFI出力方式のものが市販されており、3の入力部はマイコンのUSB入力インターフェースおよび無線LANチップによるいわゆるWIFI入力インターフェースである。   The input section 3 reads the output values of the magnetic sensor and the temperature sensor. The magnetic sensor and the temperature sensor are commercially available in a digital output system using a USB port and a so-called WIFI output system using a wireless LAN. The input section 3 is a USB input interface of a microcomputer and a so-called WIFI input by a wireless LAN chip. Interface.

4の計時部はマイコンとソフトウエアで実現されるが、マイコンの定期的な割込み処理機能によって時間の経過を認識し、データ収録時間間隔を一定に保っている。4の計時部にはマイコンとは別のGPS同期した時計専用モジュールを用い時刻データをマイコン側から読み取れる方式を用いても良い。   The timing unit of 4 is realized by a microcomputer and software, but the periodic interrupt processing function of the microcomputer recognizes the passage of time and keeps the data recording time interval constant. The clock unit of No. 4 may use a GPS-dedicated clock-dedicated module other than the microcomputer to read the time data from the microcomputer.

5の演算部はマイコンとソフトウエアで実現されるが、1の磁気センサーの測定値をガス圧値に換算し、さらに上記温度センサーの測定値を用いて前記ガス圧値から特定の温度(例えば20℃)におけるガス圧値を演算している。また、(5)式によりガス圧の変化率αを求め、(10)式によりガス圧が最低動作保証ゲージ圧を下回るまでの日数を計算する。   The calculation unit 5 is realized by a microcomputer and software, but converts the measurement value of the magnetic sensor 1 into a gas pressure value, and further uses the measurement value of the temperature sensor to determine a specific temperature (for example, from the gas pressure value). The gas pressure value at 20 ° C.) is calculated. Further, the change rate α of the gas pressure is obtained by the equation (5), and the number of days until the gas pressure falls below the minimum operation guaranteed gauge pressure is calculated by the equation (10).

6の記録部もマイコンとソフトウエアおよびマイコン内外のメモリーで実現されるが、読み取った上記測定値や上記演算結果をマイコンのソフトウエアによってメモリー上に転送し記録している。   The recording unit 6 is also realized by a microcomputer, software, and a memory inside and outside the microcomputer. The read measurement value and the calculation result are transferred and recorded on the memory by the software of the microcomputer.

7の判定部もマイコンとソフトウエアで実現されるが、5の演算部で算出された特定の温度(例えば20℃)におけるガス圧値が正常な範囲内にあるか否か、ガス圧の変化率αが別途に設定された許容値超えていないか、超えている場合、ガス圧が最低動作保証ゲージ圧を下回るまでの日数が算出できているかを確認する。   The determination unit 7 is also realized by a microcomputer and software, but whether or not the gas pressure value at the specific temperature (for example, 20 ° C.) calculated by the calculation unit 5 is within the normal range changes the gas pressure. Check whether the rate α does not exceed the allowable value set separately, or if it exceeds, whether the number of days until the gas pressure falls below the minimum operation guaranteed gauge pressure can be calculated.

8の出力部はLANインターフェースもしくはWIFI通信モジュールで実現されるが、5の演算部での計算結果データと7の判定部での判定結果を有線LANネットワークもしくは無線LANネットワークに出力する。また、装置上に設けられた液晶ディスプレーに表示する。   The output unit 8 is realized by a LAN interface or a WIFI communication module, but outputs the calculation result data in the operation unit 5 and the determination result in the determination unit 7 to the wired LAN network or the wireless LAN network. Further, it is displayed on a liquid crystal display provided on the device.

以上が本願装置の基本的な実施形態であるが、昨今変電所でも光ファイバー等の情報通信インフラが整備されており、それらが比較的容易に利用できるようになっているので、磁気センサーと温度センサーのディジタル出力値を光ファイバー等の情報通信インフラを用いて制御所等のデータサーバーに伝送し、サーバー内で演算処理を行って結果をネットワーク上のクライアントパソコンに表示することも可能である。   The above is the basic embodiment of the device of the present application, but recently, in substations, information communication infrastructures such as optical fibers have been prepared, and since they can be used relatively easily, a magnetic sensor and a temperature sensor. It is also possible to transmit the digital output value of 1 to a data server such as a control station by using an information communication infrastructure such as an optical fiber, perform arithmetic processing in the server, and display the result on a client personal computer on the network.

[図2]は圧力計メーターの指針に永久磁石片を貼り付け、またカバーガラスに磁気センサーを取り付けたところの図である。永久磁石片は幅約1mm、長さ数mmで長軸方向に着磁されたものを用いる。磁気センサーは平面内にX軸およびY軸の二軸の磁界成分を個別に測定して結果をディジタルデータで出力するタイプの市販品を用いている。
X軸およびY軸方向成分の値から指針の角度を算出するためマイコン内でアークタンジェント値の算出を行っている。安価なマイコンでは三角関数計算機能が無いので、0〜45°までの1°毎の関数データテーブルを用意し、1°以下の部分は直線補間方式で求めている。また、45°から90°までの区間ではアークコタンジェント値を求め、90°から引き算してアークタンジェント値を求めている。
[FIG. 2] is a view showing a permanent magnet piece attached to the pointer of the pressure gauge meter and a magnetic sensor attached to the cover glass. A permanent magnet piece having a width of about 1 mm and a length of several mm and magnetized in the long axis direction is used. As the magnetic sensor, a commercially available product of the type that individually measures biaxial magnetic field components of the X axis and the Y axis in a plane and outputs the result as digital data is used.
The arctangent value is calculated in the microcomputer in order to calculate the angle of the pointer from the values of the X-axis and Y-axis direction components. Since an inexpensive microcomputer does not have a trigonometric function calculation function, a function data table for every 1 ° from 0 to 45 ° is prepared, and the portion of 1 ° or less is obtained by the linear interpolation method. In addition, the arc tangent value is obtained in the section from 45 ° to 90 ° and is subtracted from 90 ° to obtain the arc tangent value.

また、上記とは異なる実施形態であるが、圧力計メーターをカメラで撮影し、その画像データを上記データサーバーに伝送し、ネットワーク上のクライアントパソコンで画像解析ソフトウエア等を用いて上記メーターの指示値を読み取っても良い。   Although it is an embodiment different from the above, the pressure gauge meter is photographed by a camera, the image data thereof is transmitted to the data server, and an instruction of the meter is given by using an image analysis software or the like on a client personal computer on the network. You can read the value.

[図3]は温度センサーの取り付け位置の例を示した図である。ガスを封入してある遮断器本体のケース温度の測定を目途とし、直射日光によって温度センサーが直接加温されないよう配慮すればよい。   [FIG. 3] is a diagram showing an example of the mounting position of the temperature sensor. The temperature of the case of the main body of the circuit breaker, which is filled with gas, should be measured so that the temperature sensor is not directly heated by direct sunlight.

1.磁気センサー
2.温度センサー
3.入力部
4.計時部
5.演算部
6.記録部
7.判定部
8.出力部
9. 永久磁石片
10.回転指針式アナログメーター
11.磁気センサー
12.センサーのリード線
13.永久磁石片
14.ブッシング
15.キュービクル
16.絶縁ガス圧力計メーター
17.遮断器本体
18.温度センサー
1. Magnetic sensor
2. Temperature sensor
3. Input section
4.Timekeeping section
5. Arithmetic section
6. Recording section
7. Judgment part
8. Output section
9. Permanent magnet pieces
10. Rotating pointer type analog meter
11. Magnetic sensor
12. Sensor leads
13. Permanent magnet piece
14. Bushing
15. Cubicles
16. Insulation gas pressure gauge meter
17. Circuit breaker body
18. Temperature sensor

以上の点を踏まえて、本願の課題解決の手段として、ガス遮断器またはガス絶縁開閉装置(以後単にガス遮断器と表記)のガス圧を指示する既存の回転指針式アナログメーターの針に永久磁石片を取り付け、上記メーターの針の回転角を上記メーター前面の透明カバー面に張り付けた磁気センサーによって読み取り、ガス圧に換算して監視する、ガス遮断器用ガス圧監視装置において、マイクロコンピュータまたは同等の演算機能デバイスを内蔵し、また、上記磁気センサーの他に上記ガス遮断器本体ケースに直射日光を避ける位置に取り付けた温度センサーと、上記磁気センサーおよび上記温度センサーの測定値を入力する入力部、上記磁気センサーの測定値をガス圧に換算し、上記ガス圧値から任意の温度におけるガス圧値を演算する演算部、読み取った上記測定値や上記演算結果を記録する記録部、上記読み取った値や上記演算結果が別途設定されたガス圧の正常範囲内にあるか否かを判定する判定部、上記測定値や上記演算結果および上記判定結果を外部に表示または通知する出力部を有し、現在の温度におけるガス圧の他に別途設定された一定の温度(例えば20℃)におけるガス圧を算出して記録し、表示または通知し、また、上記一定の温度におけるガス圧が別途に設定した圧力より低下しているかまたは別途に設定した日数以内に低下すると推定される場合、警報発信することを特徴とし、
上記一定の温度におけるガス圧の算出結果の記録からガス漏れの有無、および、上記算出結果から、上記一定の温度における上記ガス圧の将来値を推定し、上記ガス圧の正常範囲を逸脱する日時を推定することを特徴としたガス遮断器用ガス圧監視装置を本願第一の発明とし、
上記発明によるガス遮断器用ガス圧監視装置の機能を有する複数の装置から成るシステムであって、上記測定値や上記演算結果および上記判定結果を有線または無線の通信ネットワーク回線に乗せて遠方に送達することを特徴としたガス遮断器用ガス圧監視システムを本願第二の発明とし、
上記第二の発明のガス遮断器用ガス圧監視システムの機能を有する複数の装置から成るシステムであって、上記演算および上記判定を行う上記演算部および上記判定部を独立した別の装置として上記有線または無線の通信ネットワーク回線を経た遠方に設けたことを特徴としたガス遮断器用ガス圧監視システムを本願第三の発明とするものである。

Based on the above points, as a means of the present problem-solving, permanently needle existing rotary pointer type analog meter for indicating a gas pressure of the gas circuit breaker or a gas insulated switchgear (hereinafter simply referred to as gas circuit breaker) attaching a magnet piece, the rotation angle of the needle of the meter reading by the magnetic sensor affixed to the transparent cover surface of the front above the meter monitors in terms of gas pressure in the gas circuit breaker gas pressure monitoring equipment, microcomputer or In addition to the magnetic sensor, a temperature sensor installed in the gas circuit breaker body case in a position that avoids direct sunlight, and an input for inputting the measured values of the magnetic sensor and the temperature sensor in addition to the magnetic sensor. Part, the measured value of the magnetic sensor is converted into gas pressure, and the gas pressure value at an arbitrary temperature is calculated from the gas pressure value. Section, a recording section for recording the read measurement value or the calculation result, a determination section for determining whether or not the read value or the calculation result is within a separately set normal range of gas pressure, the measurement value And an output unit for externally displaying or notifying the calculation result and the determination result, and calculates and records the gas pressure at a predetermined temperature (for example, 20 ° C.) other than the gas pressure at the current temperature. and, display or notify, also when it is estimated to decrease within days set or separately gas pressure in the constant temperature is lower than the pressure set separately, characterized in that an alarm originating ,
The presence or absence of gas leakage from the record of the calculation result of the gas pressure at the constant temperature, and the future value of the gas pressure at the constant temperature is estimated from the calculation result, and the date and time when the gas pressure deviates from the normal range. A gas pressure monitoring device for a gas circuit breaker, which is characterized by estimating
A system comprising a plurality of devices having a function of a gas pressure monitoring device for a gas circuit breaker according to the present invention , wherein the measured value, the calculation result, and the determination result are placed on a wired or wireless communication network line and delivered to a distant place. A gas pressure monitoring system for a gas circuit breaker characterized in that the second invention of the present application,
A system comprising a plurality of devices having the function of a gas pressure monitoring system for a gas circuit breaker according to the second aspect of the present invention, wherein the calculation unit for performing the calculation and the determination and the determination unit as separate devices independent from each other are wired. Alternatively, the third invention of the present application is a gas pressure monitoring system for a gas circuit breaker, which is characterized in that the gas pressure monitoring system is provided at a distance via a wireless communication network line.

Claims (5)

ガス遮断器またはガス絶縁開閉装置(以後単にガス遮断器と表記)のガス圧を指示する既存の回転指針式アナログメーターの針に永久磁石片を取り付け、上記メーターの針の回転角を上記メーター前面の透明カバー面に張り付けた磁気センサーによって読み取り、ガス圧に換算して監視する、ガス遮断器用ガス圧監視装置であって、マイクロコンピュータまたは同等の演算機能デバイスを内蔵し、また、上記磁気センサーの他に上記ガス遮断器本体ケースに直射日光を避ける位置に取り付けた温度センサーと、上記磁気センサーおよび上記温度センサーの測定値を入力する入力部、上記磁気センサーの測定値をガス圧に換算し、上記ガス圧値から任意の温度におけるガス圧値を演算する演算部、読み取った上記測定値や上記演算結果を記録する記録部、上記読み取った値や上記演算結果が別途設定されたガス圧の正常範囲内にあるか否かを判定する判定部、上記測定値や上記演算結果および上記判定結果を外部に表示または通知する出力部を有し、現在の温度におけるガス圧の他に別途設定された一定の温度(例えば20℃)におけるガス圧を算出して記録し、表示または通知し、また、上記一定の温度におけるガス圧が別途に設定した圧力より低下しているかまたは別途に設定した日数以内に低下すると推定される場合、警報発信することを特徴とする上記ガス遮断器用ガス圧監視装置。 Attach a permanent magnet piece to the needle of an existing rotary pointer type analog meter that indicates the gas pressure of a gas circuit breaker or gas insulated switchgear (hereinafter simply referred to as gas circuit breaker), and change the rotation angle of the meter needle to the front of the meter. A gas pressure monitoring device for a gas circuit breaker, which is read by a magnetic sensor attached to a transparent cover surface of, and is converted into a gas pressure for monitoring, and which has a microcomputer or an equivalent arithmetic function device built therein. In addition to the temperature sensor attached to the gas circuit breaker main body case in a position to avoid direct sunlight, the input unit for inputting the measured values of the magnetic sensor and the temperature sensor, the measured value of the magnetic sensor is converted into gas pressure, A calculation unit that calculates a gas pressure value at an arbitrary temperature from the gas pressure value, records the read measurement value and the calculation result. Recording unit, determination unit that determines whether the read value or the calculation result is within a separately set normal range of gas pressure, the measured value, the calculation result, and the determination result are externally displayed or notified. In addition to the gas pressure at the current temperature, a gas pressure at a predetermined temperature (for example, 20 ° C.) that is separately set is calculated and recorded, displayed, or notified, and at the above-mentioned constant temperature. The gas pressure monitoring device for a gas circuit breaker, wherein when the gas pressure is lower than a pressure set separately or is estimated to drop within a number of days set separately, an alarm is issued. 請求項1におけるガス遮断器用ガス圧監視装置であって、上記一定の温度におけるガス圧の算出結果の記録からガス漏れの有無、および、上記算出結果から、上記一定の温度における上記ガス圧の将来値を推定し、上記ガス圧の正常範囲を逸脱する日時を推定することを特徴としたガス遮断器用ガス圧監視装置。 The gas pressure monitoring device for a gas circuit breaker according to claim 1, wherein the presence or absence of gas leakage is recorded from a record of the calculation result of the gas pressure at the constant temperature, and the future of the gas pressure at the constant temperature is determined from the calculation result. A gas pressure monitoring device for a gas circuit breaker, which estimates a value and estimates a date and time when the gas pressure deviates from the normal range. 請求項1または請求項2におけるガス遮断器用ガス圧監視装置であって、磁気センサーの代わりに上記回転指針式アナログメーターの指示値表示画面をカメラで撮影し、画像解析によって上記回転指針式アナログメーターの指示値を認識することを特徴としたガス遮断器用ガス圧監視装置。 The gas pressure monitoring device for a gas circuit breaker according to claim 1 or 2, wherein the camera displays an indication value display screen of the rotating pointer type analog meter instead of the magnetic sensor, and the rotating pointer type analog meter is analyzed by image analysis. A gas pressure monitoring device for a gas circuit breaker characterized by recognizing the indicated value of. 請求項1、請求項2および請求項3に記載のガス遮断器用ガス圧監視装置の機能を有する複数の装置から成るシステムであって、上記測定値や上記演算結果および上記判定結果を有線または無線の通信ネットワーク回線に乗せて遠方に送達することを特徴としたガス遮断器用ガス圧監視システム。 A system comprising a plurality of devices having the function of the gas pressure monitoring device for a gas circuit breaker according to claim 1, claim 2 or claim 3, wherein the measured value, the calculation result and the determination result are wired or wireless. A gas pressure monitoring system for gas circuit breakers, characterized by being delivered to a distant place on a communication network line. 請求項4に記載のガス遮断器用ガス圧監視装置の機能を有する複数の装置から成るシステムであって、上記演算および上記判定を行う上記演算部および上記判定部を独立した別の装置として上記有線または無線の通信ネットワーク回線を経た遠方に設けたことを特徴としたガス遮断器用ガス圧監視システム。 A system comprising a plurality of devices having the function of the gas pressure monitoring device for a gas circuit breaker according to claim 4, wherein the wired unit is a separate device having the calculation unit and the determination unit for performing the calculation and the determination. Alternatively, a gas pressure monitoring system for a gas circuit breaker, which is provided at a distance via a wireless communication network line.
JP2018207222A 2018-11-02 2018-11-02 Gas pressure monitoring device for gas insulated circuit breakers Active JP6674117B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207222A JP6674117B1 (en) 2018-11-02 2018-11-02 Gas pressure monitoring device for gas insulated circuit breakers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207222A JP6674117B1 (en) 2018-11-02 2018-11-02 Gas pressure monitoring device for gas insulated circuit breakers

Publications (2)

Publication Number Publication Date
JP6674117B1 JP6674117B1 (en) 2020-04-01
JP2020072614A true JP2020072614A (en) 2020-05-07

Family

ID=70000941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207222A Active JP6674117B1 (en) 2018-11-02 2018-11-02 Gas pressure monitoring device for gas insulated circuit breakers

Country Status (1)

Country Link
JP (1) JP6674117B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610443A (en) * 2021-09-07 2023-03-08 Eaton Intelligent Power Ltd Lifetime prediction of a gas filling of an electrical switchgear
EP4145650A1 (en) * 2021-09-07 2023-03-08 Eaton Intelligent Power Limited Lifetime prediction of a gas filling of an electrical switchgear
WO2023176494A1 (en) * 2022-03-17 2023-09-21 シャープ株式会社 Failure detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557991B (en) * 2020-11-12 2024-05-28 珠海一多监测科技有限公司 Current transformer fault diagnosis method based on mole number and temperature
CN112924106A (en) * 2021-01-29 2021-06-08 广东电网有限责任公司 Online monitoring method, device and system for SF6 gas insulation equipment of transformer substation and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637511A (en) * 1979-09-04 1981-04-11 Nec Corp Electronic meter
JPH05115111A (en) * 1991-10-18 1993-05-07 Mitsubishi Electric Corp Gas leakage monitor for gas insulated electric apparatus
JP2008022670A (en) * 2006-07-14 2008-01-31 Nissin Electric Co Ltd System for monitoring gas-insulated switchgear state
WO2012046726A1 (en) * 2010-10-05 2012-04-12 新日本製鐵株式会社 Inspection assistance device, inspection assistance system, method of assisting inspection, and inspection assistance program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637511A (en) * 1979-09-04 1981-04-11 Nec Corp Electronic meter
JPH05115111A (en) * 1991-10-18 1993-05-07 Mitsubishi Electric Corp Gas leakage monitor for gas insulated electric apparatus
JP2008022670A (en) * 2006-07-14 2008-01-31 Nissin Electric Co Ltd System for monitoring gas-insulated switchgear state
WO2012046726A1 (en) * 2010-10-05 2012-04-12 新日本製鐵株式会社 Inspection assistance device, inspection assistance system, method of assisting inspection, and inspection assistance program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610443A (en) * 2021-09-07 2023-03-08 Eaton Intelligent Power Ltd Lifetime prediction of a gas filling of an electrical switchgear
EP4145650A1 (en) * 2021-09-07 2023-03-08 Eaton Intelligent Power Limited Lifetime prediction of a gas filling of an electrical switchgear
US11927618B2 (en) 2021-09-07 2024-03-12 Eaton Intelligent Power Limited Lifetime prediction of a gas filling of an electrical switchgear
WO2023176494A1 (en) * 2022-03-17 2023-09-21 シャープ株式会社 Failure detection device

Also Published As

Publication number Publication date
JP6674117B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6674117B1 (en) Gas pressure monitoring device for gas insulated circuit breakers
JP4495103B2 (en) Gas leak detection device and gas leak detection method
US10145754B2 (en) Method and apparatus for detecting gas leakage from radioactive material sealed container
US8344676B2 (en) Seal leakage and seal oil contamination detection in generator
US8564237B2 (en) Seal leakage and seal oil contamination detection in generator
JP2016057135A (en) Gas leak detector and method for inspecting gas leak
JP2017026559A (en) Gas leak detection device and gas leak detection method
US9885646B2 (en) Gas measurement apparatus
CN104697665A (en) Distributed optical fiber-based blast furnace hot blast stove temperature monitoring system and method
CN116202038B (en) Pipe network leakage event early warning method, device, equipment and medium
JP2018151365A (en) Transformer deterioration state display device
WO2013108973A1 (en) Apparatus, system, and method for inspecting gas volume corrector
GB2487281A (en) Detecting generator seal leakage, seal clearance and seal alignment
KR20150104830A (en) An all in one remote metering apparatus having a function of compensating temperature and pressure errors for a gasmeter
JP2013140080A (en) Instrument soundness determination device and method
CN214744098U (en) Thermal power plant instrument pipeline temperature control device
JP2000179800A (en) Engine generating facility
JPH03222613A (en) Gas leakage-monitoring device of gas-insulated electric equipment
CN204807240U (en) A running state monitoring system for gas boiler residual heat from flue gas settlement
KR200396981Y1 (en) Multi-purpose digital pressure measuring and recording apparatus
CN114334197A (en) Primary loop water charge monitoring method and system in low operation mode
CN203672509U (en) Field temperature detector for blast furnace and cross temperature measurement detecting system for blast furnace
JP2011226830A (en) Sodium leakage detecting method and sodium leakage detecting device
KR20140124292A (en) System and method for charging gas rate corrected by temperature and pressure
JPS6226684B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6674117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250