JPH03222613A - Gas leakage-monitoring device of gas-insulated electric equipment - Google Patents

Gas leakage-monitoring device of gas-insulated electric equipment

Info

Publication number
JPH03222613A
JPH03222613A JP2016489A JP1648990A JPH03222613A JP H03222613 A JPH03222613 A JP H03222613A JP 2016489 A JP2016489 A JP 2016489A JP 1648990 A JP1648990 A JP 1648990A JP H03222613 A JPH03222613 A JP H03222613A
Authority
JP
Japan
Prior art keywords
gas
gas pressure
temperature
pressure
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016489A
Other languages
Japanese (ja)
Other versions
JPH0667113B2 (en
Inventor
Keiichiro Takada
高田 啓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2016489A priority Critical patent/JPH0667113B2/en
Publication of JPH03222613A publication Critical patent/JPH03222613A/en
Publication of JPH0667113B2 publication Critical patent/JPH0667113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To correctly monitor a gas leakage through automatic measurement by providing a gas pressure sensor, an outside air temperature sensor, a density operating means for computing the rate of change of gas pressure to gas temperature and the gas pressure at 0 deg.C, a natural leakage-monitoring means, a gas pressure reference value-computing means and an emergency leakage-monitoring means. CONSTITUTION:Each gas section of a GIS(gas-insulated switchgear) 2 is provided with pressure sensors 1a, 1b,...1n and with an outside air temperature sensor 3 and also with a microcomputer-monitoring part 4, an input amplifier 5, a multiplexer 6, an A/D converter 7 and a data memory part 8, and a means for periodically computing gas density data is formed by a first operating part 9. the natural leakage monitoring means 11 stores and holds a gas pressure and an emergency leakage determination part 12 performs computing a gas pressure to be used as a criterion for determination per unit time and also comparing and determining a detected pressure and the gas pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ガス絶縁兄閉装置(cis)等の各ガ〔従来
の技術〕 従来、GISにおいては主回路部が機器単位等の単位毎
に金属容器に収納されてガス区画に仕切られ、このガス
区画には絶縁媒体としての六ふっ化硫黄(SF6)ガス
(以下絶縁ガスという)が充填密封されている。 このガスの圧力(ガス圧力)は、経年使用に基づく緩や
かな自然漏れ及び突発的な気密異常に基づく比較的急激
なガス漏れ(緊急漏れ)によって低下する。 ところで、区画内のガス密度が一定であれば、ガス圧力
Pは第6図に示すようにガス温度Tに対して線形に変化
する。 この第6図において、PmaX、P、P=は初充気ガス
圧力(定格ガス圧力〕、一般的な使用ガス圧力。 最低使用ガス圧力(ガス漏れ注意圧力)の特性を示し、
P2GmaX、P2O,P2Qm++はガス温度が基準
温度T(20℃のときの各特性でのガス圧力を示す。 また、ガス圧力PmaX、P顛の特性は、ガス温度Tの
変化に対するガス圧力Pの変化率(ガス密度係数)L、
ガス温度T−0°Cにおけるガス圧力Mを、圧力Pma
Xの直線でl$aX 、Mm aXとし、圧力Pmの直
線で論、Phr=(Lma X)Lxip+、狗aX>
””)とすれば、次の式〔1〕。 式〔2ト寿で表される。 Pmax = Lmax T+%Jmax      
・式〔l〕Pmln=Lmin ・T+Mmin   
       式〔2〕そして、前記のLmaX *M
ffiaX及びL層、Mmの具体的な大きさは、基準温
度C−20°Cにおける定格ガス圧力P2omax 、
ガス漏れ注意圧力p20mがP2 Qma)(、:4C
K4fyd・g)、Pzo萌−3,6CKgfyc#g
〕の1301の区画の場合、次の表1に示すようになる
。 表  1 また、Pzo、、1aX= 5 (Kyf yc# g
 ) 、 Pzo== 4.7CKgf lcrdg〕
の200eの区画の場合、次の表2に示すようになる。 そして、従来のGISOガス漏れ監視は、ガス圧力計(
連成計)、外気計を使用した作業員の計測。 判断に基づき、主に自然漏れを対象として行われている
。 表   2 すなわち、定期的な計測として例えば毎日の作、業員の
勤務時間内(通常は昼間)の定時刻に、ガス圧力計、外
気温計の目盛が読取られる。 そして、外気温度をガス温度とし、第6図の特性グラフ
を用いてガス圧力が20℃の圧力に換算(変換)される
。 さらに、換算されたガス圧力が記録されるとともに、こ
の記録のガス圧変化傾向(リークトレンド)からガス漏
れが検出される。 〔発明が解決しようとする課題〕 前記従来の人手によるガス漏れ監視の場合、計測間隔が
1日等の比較的長い間隔であるため、突発的な緊急漏れ
の発見が遅れ、十分な監視が行えない問題点がある。 〜方、GISの運転中はこのGISを使用する系統の負
荷電流により主回路部が発熱してガス温度が変化し、こ
の変化によってガス圧力が変わる。 さらに、屋外設置等のGISO場合、設置環境の太陽輻
射熱等の気象条件を含む外気の影響によりガス区画の容
器温度が変化し、この変化に追従したガス温度の変化に
よってもガス圧力が変化する。 そして、直射日光の影響を避けるように日陰となる容器
底部の表面温度を外気温度として計測しても、この外気
温度と実際のガス温度(容器内の平均温度)の1日の変
化は、例えば9月と11月とで第7図に示すように大き
く異なり、とくに昼間の温間差が著しい。 この第7図において、・印に基づく実線、X印に基づく
破線は9月の外気温度、ガス温度全示し、Δ印に基づく
実線、ム印に基づく破線は11月の外気温度、ガス温度
を示す。 そのため、系統負荷の変化、外気の影響等に基づき、昼
間に計測を行うと、ガス温度の計測が極めて不正確にな
る。 そして、ガス温度の不正確な測定及び目盛の読取誤差等
に基づき、ガス圧力の計測が極めて大まかにしか行えず
、緩やかな自然漏れであっても正確に監視できない問題
点がある。 その上、目盛の読取等の煩雑な作業を要し、監視の簡素
化が図れない問題点もある。 本発明は、自動計測により自然漏れ及び緊急漏れのいず
れも正確に監視するようにしたガス絶縁式電気設備のガ
ス漏れ監視装置を提供することを目的とする。 〔課題を解決するための手段〕 前記目的を達成するために、本発明のガス漏れ監視装置
の第1の構成においては、ガス区画内のガス圧力を検出
するガス圧力センサと、外気温度を検出する温度センサ
と、 定期的に通電、外気の影響が少ない早朝定時の前記温度
センサの検出温1Taiガス温度として前記早朝定時の
前記ガス圧力センサの検出圧力Paに基づく補間法等に
よる演算によりガス温度に対するガス圧力の変化率La
及び0°Cのときのガス圧力NIaをガス密度データと
して算出決定する密度演算手段と、 前記ガス密度データに基づくPc(a)二LaC十Ma
の換算式により基準温度Cに換算した自然漏れ監視用の
ガス圧力Pc(a)を蓄積保持する自然漏れ監視手段と
、 1分等の単位時間毎の前記温度センサの検出温度Tn、
前記ガス密度データ及び判定しきい値K(K〉0)に基
づくPN=LaTn+Ma−K(7)判定演算式により
前記単位時間毎に判定基準用のガス圧力PNを算出する
基準値算出手段と、 前記単位時間毎の前記ガス圧力センサの検出圧力Pnと
前記ガス圧力PNとを比較し前記検出圧力Pnが所定回
数連続して前記ガス圧力PNより低下したときに突発的
な緊急漏れと判定する緊急漏れ監視手段と全備える。 また、本発明の第2の構成においては、ガス区画内のガ
ス圧力を検出するガス圧力センサと、外気温度全検出す
る温度センサと、 定期的に通電、外気の影響が少ない早朝定時の前記両セ
ンサの検出圧力Pa、検出温度Taとガス温度に対する
ガス圧力の変化率の設定値LOとに基づき前記検出温度
Tagガス温度としてPc(a)=L0・(C−Ta)
+Paの換算式により前記検出圧力Pai基準温度Cに
換算した自然漏れ監視用のガス圧力Pc(a)i蓄積保
持する自然漏れ監視手段と、 1分等の単位時間毎の前記両センサの検出圧力Pn、検
出温度Tnと前記設定値LOとに基づきPc(n)= 
=L0・・(C−Tn)十Pnの換算式から前記検出圧
力Pnを前記基準温度Cのガス圧力Pc(n)に換算す
る常時換算手段と、最新の前記ガス圧力Pc(a)より
判定しきい値K(K〉0)低いガス圧力全判定基準用の
ガス圧力pcrとして前記ガス圧力Pc(n)と前記ガ
ス圧力Pcrとを比較し、前記ガス圧力Pc(n)が所
定回数連続して前記ガス圧力Pcrより低下したときに
突発的な緊急漏れと判定する緊急漏れ監視手段とを備え
る。 〔作用〕 前記のように構成された本発明の監視装置は、第1の構
成の場合、早朝定時9例えば午前5時(a−5)には、
系統負荷等が少なく区画内の通電に基づくガス温間変化
が極めて少なく、シかも、第7図からも明らかなように
外気の影響が極めて少なく外気温度とガス温度とがほぼ
等しくなるため、密度演算手段により第6図の特性直線
PmaX g P 、Pxtimに相当する特性直線の
データ(Ls、Ms)が区画内の真のガス圧力から正確
に求められる。 また、密度演算手段の定期的な算出決定により、データ
(Ma、La)は1日程度の間隔でガス漏れに応じて更
新される。 そして、自然漏れ監視手段によりデータ(Ls。 Ms)が更新される毎に、そのデータに基づく特性直線
から基準温度C9例えば20℃に換算したガス圧力P2
0(りが求められて蓄積保持される。 このとき、ガス圧力P20(5)が通電、外気の影響を
受けることなく、ガス漏れの程度に応じて正確に変化す
るため、自然漏れ監視手段は定期的にガス圧力の正確な
計測結果を蓄積保持し、この保持結果のガス圧力の変化
傾向から自然漏れの高精度の監視が行える。 また、基準値算出手段によりデータ(Ls、Ms)に基
づくガス漏れのないときの特性直線よりしきい値にだけ
低圧にずらした特性直線のガス圧力PNが、短い時間間
隔でそのときの外気温度Tnに応じて更新されながら算
出される。 さらに、緊急漏れ監視手段の比較により外気温度Tn全
ガス温度とし、ガス漏れがなければ検出圧力Pnがガス
圧力PNより少なくともしきい値にだけ高くなることを
利用し、外気温度Tnに応じて判定基準を可変しながら
前記短い時間間隔でガス圧力の低下が常時検出され、緊
急漏れが監視される。 そして、検出圧力Pfiが所定回数連続してガス圧力P
Nより低下し、緊急漏れが確実に検出されたときに緊急
漏れ監視手段が緊急漏れと判定するため、緊急漏れも自
動計測によって迅速、高精度に監視される。 また、第2の構成の場合、ガス密度係数がLOに予め設
定され、この係数=L0・i用いた換算により自然漏れ
監視手段が例えば毎年前5時の検出圧力P5を基準温度
Cとしての20℃のガス圧力P20(5)に換算して蓄
積保持する。 このガス圧力P20(5)は通電、外気の影響を排除し
たガス圧力となり、ガス圧力P20(5)の保持結果に
より第1の構成の自然漏れ監視手段と同様の自然漏れの
高精度の監視が行える。 また、常時換算手段により、係数LOを用いて短い時間
間隔毎の検出圧力Pnが例えば20°COガス圧力P2
区n)に換算される。 そして、緊急漏れ監視手段によりガス圧力P20(5)
よりしきい値にだけ低圧のガス圧力P+orとガス圧力
P2o(n)との比較に基づき、20℃に換算してガス
圧力の低下が常時検出され、ガス圧力P 2 o(n)
が所定回数連続してガス圧力P2orより低下したとき
に緊急漏れと判定される。 そのため、ガス密度係数LOに基づき、判定基準を固定
するとともにガス圧力Pn f 20℃に換算して緊急
漏れが迅速かつ正確に監視される。 〔実施例〕 GISに適用した実施例について、第1図ないし第5図
を参照して説明する。 (1実施例) まず、ガス密度データを算出する実施例につき、れたガ
ス圧力センサ、(3)はG I 5(2)外の温度セン
サであり、極力ガス温度と等しくなるように、母線PT
等の通電の影響が少ないガス区画の金属容器外表面の日
陰部に設置されている。 (4)はマイクロコンピュータ構成の監視部、(5)は
監視部(3)の入力アンプ、(6)はマルチプレクサ、
(7)はA/D変換器、(8)は圧力、温度の計測デー
タ蓄積するガス密度演算手段を形成する。 +101は第2演算部であり、この実施例においては、
ガス密度データに基づくガス圧力を常時算出する。 (11)は自然漏れ監視手段としてのトレンドメモリ部
であり、ガス圧力Pc(a冷蓄官萌率り゛る。 (I2)は基準値算出手段、緊急漏へ監視手段を形成す
る緊急漏れ判定部であり、単位時間毎の判定基準用のガ
ス圧力PNの算出及び検出圧力Pnとガス圧力PNとの
比較2判定を行う。 ・)3)は判定部(1カの判定結果を保持するイベント
メモリ部、(14)はローカル緊急漏れ報知部であり、
ランプ表示、ブサ音出力等によって緊急漏れの発生を報
知する。(15)は演算部19! e [lOiの条件
設定、テタ出力制御等に行う演算制御部である。 そして、各区画のガス圧力に比例したガス圧力センサ(
la)(In)のアナログ出力及び外気温度に比例した
温度センサ(3)のアナログ出力が入力アンプ5)ヲ介
してマルチプレクサ(6)に並列供給され、このマルチ
プレクサ(6)の出力切換えにより各アナログ出力が順
次にくり返しA/D変換器(7)に供給される。 このとき、マルチプレクサ(6)の出力切換周期は、緊
急漏れの検出精度等を考慰して例えば1分に設定され、
各区画のガス圧力及び外気温度が1分毎に計測される。 さらに、A/D ’fJ換器(7)はマルチプレクサ(
6)の出力をサンプリングしてデジタルデータに変換し
、各区画の検出圧力及び外気の検出温度のデータを形成
してデータメモリ部(8)に供給する。 このメモリ部(8)は各区画の検出圧力及び外気温度の
データをそれぞれ蓄積保持する。 そして、データメモリ部(8)のデータに基づき、演算
部”” e flo+が各区画のガス密度データ演算、
ガス圧力換算を実行する。 つぎに、演算部(9)のガス密度データ演算について説
明する。 各区画において、ガス温度をT ’Cとしたときのガス
圧力k PT[Kgf /c++L g ]とすれば、
そのガス温度に対するガス圧力の特性直線は、前記式〔
1〕9式〔2〕と同様、次の式〔3〕で示される。 PT二LT−T+MT              ・
式〔3〕そして、式〔3〕のガス密度係数LT 、ガス
圧力MTは、前記式〔1〕2式〔2〕と区画の容量に応
じた前記表19表2等の条件とに基づく次の式[4a)
 、式〔4b〕の補間法演算により、ガス温度が正確で
あれば、近似的ではあるがほとんど誤差なく求まる。 LT = (LmaX −Lmi+) −(p’r −
P maX)/ (P maX−P膨)+Lmax式〔
4a〕 〜IT=(〜1max−M+=)  (pT−Pmax
)/(Pmax−P、、、) +Mmax式〔4b〕 そして、第7図からも明らかなように、午前5時項には
通電、外気の影響が極めて少なくなり、外気温度とガス
温度とがほぼ等しくなる。 すなわち、午前5時のガス圧力センサ(la、)(in
)の検出圧力2 Pa=Psとし、この時刻の温度セン
サ(31の検出温度2 Ta=Tsすると、T5がガス
温度となり、P5はこの温度T5の通電等の影響を排除
したガス圧力となる。 そこで、演算部(9]は定期的、すなわち毎日、検出圧
力P5に基づきPT=Ps 、 LT=L5 、MT議
sとして式[4a〕。 〔4b〕の演算全実行し、ガス温度がT5のときにガス
圧力がP5になるとして、ガス密度係数L5,0°Cの
ガス圧力Msiその日のガス密度データとして区画毎に
算出決定する。 この算出決定されたガス密度データは、演算部110i
 、 トレンドメモリ部(11)等に供給される。 そして、トレンドメモリ部(11,はガス密度データに
基づく次の式〔5〕の換算により、ガス密度に基づく毎
年前5時のガス圧力を基準温度C=20℃の自然漏れ監
視用のガス圧力P 2 G (5) (蒐P c(a)
 )に換算して蓄積保持する。 P2O(5):L5・20+Ms        式〔
5〕このガス圧力P20(5)はガス漏れによって低下
し、その低下傾向から自然漏れの状態を通電、外気の影
響を排除して把握することができる。 そのため、トレンドメモリ部(11)の蓄積結果に基づ
き、従来は人手で行われていた自然漏れに対する計測、
記録が、自動的にしかも正確に行われる。 そして、トレンドメモリ部(11)の蓄積結果に基づき
、このメモリ部(川あるいは演算制御部(15)等での
低下傾向の自動判別又は手動判別により、自然漏れが検
出、監視される。 つぎに、演算部(10)のガス圧力換算について説明す
る。 各区画において、ガス密度データの算出決定後からの1
日間にガス漏れがなければ、ガス密度が変動しないとし
て時刻n(n−・・・、n−1,n、・・・)の検出温
度Tniガス温度とした場合、ガス密度データに基づく
次の式〔6〕のガス圧力(以下換算圧力という)Pn′
と、その時刻nの検出圧力Pnとは等しくなる。 Pa= L s −Tn+MS        ”式〔
6〕このガス圧力pn’t、を第2図、第3図の特性直
線Pで示される。 そして、演算部(lO)は緊急漏れの検出速度等に基づ
いて設定された単位時間2例えば1分毎の検出温度’r
nに基づき、各区画について、式〔6〕から1分毎の換
算圧力Pn′ヲ算出する。 そして、検出圧力Pn、換算圧力pnが判定部(12)
に供給され、この判定部(12)により1分間隔で各区
画の緊急漏れが判定される。 つぎに、判定部(12)の判定処理を説明する。 例えば容量1301のガス区画において、緊急漏れに基
づく標準的な10−1[CC/g!c)のガス漏れが発
生すると、この漏れに基づく1日間のガス圧力の低下量
は次の式〔7〕で示される。 この式〔7〕の漏れによって定格ガス圧力P20maX
からガス漏れ注意圧力P20m++xまで低下するのに
要する時間は、単純計算すると、(4−3,6)10.
1 = 4日となる。 そのため、トレンドメモリ部(9:の比較的長期間毎の
定期的な蓄積結果だけでは、4日も経過しなければガス
漏れが発見できない。 そのため、判定部(12)はガス密度データに基づく判
定基準値と毎時刻nの検出圧力Pnとを比較し、1分間
隔で緊急漏れを検出する。 このとき、外気温度が例えば第3図の実線tに示すよう
に変化し、通電、外気の影響によってガス温度が変化し
、この変化に追従してガス圧力が変動するため、この変
動に応じて判定基準値を可変する必要がある。 そして、毎時刻nの検出温度Tn fガス温度とみなす
ことにより、ガス漏れがなければ毎時刻nのガス圧力P
nは式〔6〕の換算圧力Pn′より大きくなる。 したがって、判定部(12)は1301の区画の場合、
判定しきい値Ki実用的な01とし、換算圧力Pn′よ
り01低王、すなわち次の式〔8〕のガス圧力PNi毎
時刻nの判定基準用のガス圧力として算出設定する。 PN =Ls −Tn−1−Ms −Q、l     
  ・式〔8〕さらに、判定部(12)は毎時刻nの検
出圧力Pnとガス圧力PNとを比較し、検出圧力Pnが
ガス圧力PNより2回連続して低下し、ガス漏れが確実
に検出される例えば第3図の時刻nに、緊急漏れと判定
して緊急漏れ警報を発生する。 ところで、毎時刻nの検出温度Tn (外気温度)と実
際のガス温度Tn′との差△Tn[deg](=Tn’
−Tn )に基づき、判定時のガス圧力PN及び午前5
時のガス圧力P 20 (5)からの判定基準値の低下
量は、1301の区画で実際に生じるTn、八Tnの範
囲において、はぼ表3に示すようになる。 この表3において、P2ONは20°Cに換算したガス
圧力PNを示し、P2 o (s) −P2 oNは低
下量を示す。 また、前記差□QTnに基づきガス圧力P2G(5)に
対してガス圧力P2ONは第2図に示すようになる。 そして、表3からも明らかなように、差△Tnが大きく
なる程検出感度は鈍くなるが、実際のガス漏れにおいて
は、ガス圧力の低下率が時間とともに減少するため、判
定部;12)によりガス圧力が使用限度ガス圧力(13
01の場合は3.O[Kg/cfIgl )に低下する
以前に、かなりの時間的余裕をもって緊急漏れが検出さ
れる。 表      3 さらに、判定部、12ノの緊急漏れ警報がイベントメモ
リ部、+3. 、報知部(14)及び監視部(4)の外
部装置に供給され、緊急漏れの発生が報知される。 そのため、従来は行えなかった緊急漏れの検出。 監視が自動的に正確かつ迅速に行え、緊急漏れの発生が
比較的初期の段階で発見される。 そして、ガス密度データの演算条件、しきい値に等は各
区画の容量等に応じて設定すればよい。 (他の実施例) つぎに、ガス密度係数を予め設定する実施例につき、第
1図及び第4図、第5図を参照して説明する。 この実施例の装置が1実施例の装置と異なる点は、第1
図の演算部(9)ヲ毎午前5時のガス圧力換算部とし、
演算部f9+、l−レンドメモリ部(11jにより自然
漏れ監視手段を形成し、かつ、演算部(10)により常
時換算手段を形成した点である。 そして、演算部(9)でガス密度データの演算を行う代
わりに、各区画の容量に応じた前記表12表2のLma
X、Lm++の算術平均値=L0・iガス密度係数とし
て予め設定する。 (15)によって演算部fil 、 jlo)に設定さ
れる。 そして、演算部(9(は毎年前5時の検出圧力Ps。 検出温度T5とLOとに基づき、次の式
[Industrial Field of Application] The present invention is applicable to each gas insulating system (CIS), etc. [Prior Art] Conventionally, in GIS, the main circuit section is housed in a metal container for each unit such as a unit of equipment. It is divided into gas compartments, and the gas compartments are filled and sealed with sulfur hexafluoride (SF6) gas (hereinafter referred to as insulating gas) as an insulating medium. The pressure of this gas (gas pressure) decreases due to gradual natural leakage due to long-term use and relatively rapid gas leakage (emergency leakage) due to sudden airtight abnormality. By the way, if the gas density within the compartment is constant, the gas pressure P varies linearly with the gas temperature T, as shown in FIG. In this Fig. 6, PmaX, P, P= are the initial filling gas pressure (rated gas pressure), the general gas pressure used, and the characteristics of the minimum gas pressure used (gas leakage caution pressure).
P2 Gma rate (gas density coefficient) L,
The gas pressure M at the gas temperature T-0°C is expressed as the pressure Pma
Let the straight line of X be l$aX, Mm aX, and the straight line of pressure Pm be, Phr=(Lma
”), then the following formula [1]. Expression [2 Toju. Pmax = Lmax T+%Jmax
・Formula [l] Pmln=Lmin ・T+Mmin
Formula [2] And the above LmaX *M
The specific sizes of the ffiaX and L layers and Mm are the rated gas pressure P2omax at the reference temperature C-20°C,
Gas leak caution pressure p20m is P2 Qma) (,:4C
K4fyd・g), Pzo Moe-3,6CKgfyc#g
In the case of section 1301 of ], the result is as shown in Table 1 below. Table 1 Also, Pzo,, 1aX= 5 (Kyf yc# g
), Pzo== 4.7CKgf lcrdg]
In the case of the section 200e, the result is as shown in Table 2 below. Conventional GISO gas leak monitoring requires a gas pressure gauge (
Measurement of workers using a compound air meter) and an outside air meter. Based on judgment, this is mainly done to target natural leakage. Table 2 That is, as a periodic measurement, for example, the scales of the gas pressure gauge and the outside temperature gauge are read at a fixed time during the employee's working hours (usually during the day). Then, using the outside air temperature as the gas temperature, the gas pressure is converted into a pressure at 20° C. using the characteristic graph shown in FIG. Further, the converted gas pressure is recorded, and a gas leak is detected from the gas pressure change trend (leak trend) of this record. [Problems to be Solved by the Invention] In the case of the conventional manual gas leak monitoring, the measurement interval is relatively long, such as one day, so the discovery of sudden emergency leaks is delayed and sufficient monitoring cannot be performed. There are some problems. On the other hand, while the GIS is in operation, the main circuit section generates heat due to the load current of the system using this GIS, and the gas temperature changes, and this change changes the gas pressure. Furthermore, in the case of a GISO installed outdoors, the container temperature of the gas compartment changes due to the influence of outside air including weather conditions such as solar radiant heat in the installation environment, and the gas pressure also changes due to the change in gas temperature that follows this change. Even if the surface temperature of the bottom of the container, which is shaded to avoid the influence of direct sunlight, is measured as the outside air temperature, the daily change between this outside air temperature and the actual gas temperature (average temperature inside the container) is, for example, As shown in Figure 7, there is a large difference in temperature between September and November, and the difference in temperature during the daytime is especially significant. In this Figure 7, the solid line based on the * mark and the dashed line based on the X mark indicate the outside air temperature and gas temperature in September. show. Therefore, if measurements are taken during the daytime based on changes in system load, the influence of outside air, etc., gas temperature measurements will be extremely inaccurate. Furthermore, there is a problem in that gas pressure can only be measured very roughly due to inaccurate measurement of gas temperature, reading error of scale, etc., and even gradual natural leakage cannot be accurately monitored. Moreover, it requires complicated work such as reading the scale, and there is also the problem that monitoring cannot be simplified. SUMMARY OF THE INVENTION An object of the present invention is to provide a gas leak monitoring device for gas-insulated electrical equipment that accurately monitors both natural leaks and emergency leaks through automatic measurement. [Means for Solving the Problems] In order to achieve the above object, the first configuration of the gas leak monitoring device of the present invention includes a gas pressure sensor that detects the gas pressure in the gas compartment, and a gas pressure sensor that detects the outside air temperature. The gas temperature is calculated by an interpolation method or the like based on the detected pressure Pa of the gas pressure sensor during the early morning hours as the gas temperature detected by the temperature sensor during the early morning hours when electricity is regularly energized and the influence of outside air is small. Rate of change of gas pressure La
and a density calculation means for calculating and determining the gas pressure NIa at 0°C as gas density data, and Pc(a)2LaC0Ma based on the gas density data
a natural leakage monitoring means for accumulating and holding gas pressure Pc(a) for natural leakage monitoring converted to a reference temperature C using a conversion formula; a temperature Tn detected by the temperature sensor for each unit time such as one minute;
a reference value calculating means for calculating a gas pressure PN for the judgment standard for each unit time according to the judgment calculation formula PN=LaTn+Ma−K (7) based on the gas density data and the judgment threshold K (K>0); An emergency operation in which the detected pressure Pn of the gas pressure sensor for each unit time is compared with the gas pressure PN, and when the detected pressure Pn falls below the gas pressure PN for a predetermined number of consecutive times, it is determined that there is a sudden emergency leak. Fully equipped with leak monitoring means. Further, in the second configuration of the present invention, a gas pressure sensor that detects the gas pressure in the gas compartment, a temperature sensor that detects the entire outside temperature, and both of the above-mentioned sensors are periodically energized and set in the early morning when the influence of the outside air is small. Based on the detected pressure Pa of the sensor, the detected temperature Ta, and the set value LO of the rate of change of gas pressure with respect to the gas temperature, the detected temperature Tag is the gas temperature Pc (a) = L0 · (C - Ta)
A natural leak monitoring means for accumulating and holding gas pressure Pc(a)i for natural leak monitoring converted into the detected pressure Pa and reference temperature C by a conversion formula of +Pa, and the detected pressure of both sensors for each unit time such as 1 minute. Pn, Pc(n)=based on the detected temperature Tn and the set value LO
=L0...(C-Tn) Determined from the constant conversion means for converting the detected pressure Pn into the gas pressure Pc(n) at the reference temperature C from the conversion formula of ten Pn and the latest gas pressure Pc(a). The gas pressure Pc(n) is compared with the gas pressure Pcr as the gas pressure pcr for the threshold K(K>0) low gas pressure total judgment criterion, and the gas pressure Pc(n) is continuously maintained a predetermined number of times. and emergency leak monitoring means for determining a sudden emergency leak when the gas pressure falls below the gas pressure Pcr. [Operation] In the case of the first configuration, the monitoring device of the present invention configured as described above, at the early morning scheduled time 9, for example, 5 a.m. (a-5),
There is little system load, etc., and gas temperature changes due to energization in the compartment are extremely small. Data (Ls, Ms) of characteristic lines corresponding to the characteristic lines PmaX g P and Pxtim shown in FIG. 6 are accurately determined by the calculation means from the true gas pressure in the compartment. Furthermore, the data (Ma, La) is updated at intervals of about one day in accordance with gas leakage due to the periodic calculation decisions of the density calculation means. Then, each time the data (Ls. Ms) is updated by the natural leakage monitoring means, the gas pressure P2 converted to the reference temperature C9, for example, 20°C, is determined from the characteristic line based on the data.
At this time, the gas pressure P20 (5) changes accurately according to the degree of gas leakage without being affected by electricity or outside air, so the natural leakage monitoring means is Accurate measurement results of gas pressure are periodically accumulated and held, and natural leakage can be monitored with high precision from the change trend of gas pressure based on the held results.In addition, the standard value calculation means is used to monitor data (Ls, Ms) based on the data (Ls, Ms). The gas pressure PN of a characteristic straight line that is shifted to a lower pressure by a threshold value than the characteristic straight line when there is no gas leak is calculated while being updated at short time intervals according to the outside air temperature Tn at that time. By comparing the monitoring means, the outside air temperature Tn is set as the total gas temperature, and by utilizing the fact that if there is no gas leakage, the detected pressure Pn is higher than the gas pressure PN by at least a threshold value, the judgment criterion is varied according to the outside air temperature Tn. However, a decrease in gas pressure is constantly detected at the short time interval, and emergency leakage is monitored.
Since the emergency leak monitoring means determines that there is an emergency leak when the leakage value decreases below N and an emergency leak is reliably detected, the emergency leak can also be monitored quickly and with high precision by automatic measurement. In addition, in the case of the second configuration, the gas density coefficient is preset to LO, and by conversion using this coefficient = L0 · i, the natural leakage monitoring means is set at It is converted into gas pressure P20(5) in °C and stored and held. This gas pressure P20(5) is a gas pressure that excludes the influence of electricity and outside air, and the result of holding the gas pressure P20(5) enables highly accurate monitoring of natural leakage similar to the natural leakage monitoring means of the first configuration. I can do it. Further, the constant conversion means uses the coefficient LO to calculate the detected pressure Pn at each short time interval by, for example, 20°CO gas pressure P2.
ward n). Then, the gas pressure P20 (5) is determined by the emergency leakage monitoring means.
Based on the comparison between the gas pressure P+or, which is low only at the threshold value, and the gas pressure P2o(n), a decrease in the gas pressure is constantly detected in terms of 20°C, and the gas pressure P2o(n)
It is determined that there is an emergency leak when the gas pressure decreases below the gas pressure P2or for a predetermined number of consecutive times. Therefore, based on the gas density coefficient LO, the criterion is fixed and the emergency leakage is quickly and accurately monitored by converting the gas pressure Pn f to 20°C. [Example] An example applied to GIS will be described with reference to FIGS. 1 to 5. (1 Example) First, regarding the example of calculating gas density data, the gas pressure sensor (3) is a temperature sensor outside G I 5 (2), and the bus line is adjusted so that it is as equal to the gas temperature as possible. P.T.
It is installed in a shaded area on the outer surface of the metal container in the gas compartment where it is less affected by energization. (4) is a microcomputer-configured monitoring section, (5) is an input amplifier for the monitoring section (3), (6) is a multiplexer,
(7) forms an A/D converter, and (8) forms a gas density calculation means for accumulating measurement data of pressure and temperature. +101 is the second calculation unit, and in this example,
Constantly calculates gas pressure based on gas density data. (11) is a trend memory section as a natural leak monitoring means, gas pressure Pc (a cold storage function is increased). (I2) is a reference value calculation means, and an emergency leak judgment forming a means for monitoring emergency leaks.・)3) is the judgment part (an event that holds the judgment results of 1 The memory section (14) is a local emergency leak alarm section,
Notifies the occurrence of an emergency leak by displaying a lamp, outputting a buzzing sound, etc. (15) is the calculation unit 19! e This is an arithmetic control unit that performs condition setting of lOi, output control, etc. Then, a gas pressure sensor (
The analog output of la) (In) and the analog output of the temperature sensor (3) proportional to the outside temperature are supplied in parallel to the multiplexer (6) via the input amplifier 5), and by switching the output of this multiplexer (6), each analog The outputs are sequentially and repeatedly supplied to the A/D converter (7). At this time, the output switching cycle of the multiplexer (6) is set to, for example, 1 minute, taking into consideration the accuracy of emergency leakage detection, etc.
Gas pressure and outside temperature in each compartment are measured every minute. Furthermore, the A/D 'fJ converter (7) is a multiplexer (
The output of step 6) is sampled and converted into digital data to form data on the detected pressure of each section and the detected temperature of the outside air, and the data is supplied to the data memory section (8). This memory section (8) accumulates and holds data on the detected pressure and outside temperature of each section. Then, based on the data in the data memory section (8), the calculation section ""e flo+ calculates the gas density data of each section,
Perform gas pressure conversion. Next, gas density data calculation by the calculation section (9) will be explained. In each section, if the gas pressure is k PT [Kgf /c++L g ] when the gas temperature is T'C, then
The characteristic line of gas pressure with respect to gas temperature is expressed by the above formula [
1]9 Similar to equation [2], it is expressed by the following equation [3]. PT2LT-T+MT ・
Equation [3] And the gas density coefficient LT and gas pressure MT in Equation [3] are calculated as follows based on Equation [1] 2 Equation [2] and the conditions shown in Table 19 and Table 2 above according to the capacity of the compartment. Formula [4a)
, if the gas temperature is accurate, it can be determined with almost no error, although it is approximate. LT = (LmaX −Lmi+) −(p'r −
P max) / (P max - P expansion) + Lmax formula [
4a] ~IT=(~1max-M+=) (pT-Pmax
)/(Pmax-P,,,) +Mmax formula [4b] As is clear from Figure 7, at 5 a.m., the influence of the energization and outside air is extremely small, and the outside air temperature and gas temperature are almost equal. That is, the gas pressure sensor (la,) (in
), and the detected temperature 2 Ta of the temperature sensor (31) at this time is Ts, then T5 becomes the gas temperature, and P5 becomes the gas pressure excluding the influence of energization etc. on this temperature T5. Therefore, the calculation unit (9) periodically, that is, every day, executes all the calculations of equations [4a] and [4b] as PT=Ps, LT=L5, and MT s based on the detected pressure P5, and the gas temperature reaches T5. Assuming that the gas pressure becomes P5 at some time, the gas density coefficient L5, the gas pressure Msi at 0°C, is calculated and determined for each section as the gas density data for that day.This calculated and determined gas density data is
, is supplied to the trend memory section (11), etc. The trend memory section (11) calculates the gas pressure at 5 o'clock every year based on the gas density by converting it into the following equation [5] based on the gas density data. P 2 G (5) (蒐P c(a)
) and accumulate and hold it. P2O(5):L5・20+Ms formula [
5] This gas pressure P20(5) decreases due to gas leakage, and from its decreasing tendency, the state of natural leakage can be ascertained by applying electricity and excluding the influence of outside air. Therefore, based on the accumulated results of the trend memory section (11), measurements for natural leakage, which were conventionally performed manually, can be performed.
Recording is done automatically and accurately. Then, based on the accumulated results of the trend memory section (11), natural leakage is detected and monitored by automatic or manual discrimination of the downward trend in this memory section (river or arithmetic control section (15), etc.). , gas pressure conversion by the calculation unit (10) will be explained.
If there is no gas leak for a day and the gas density does not change, and the detected temperature Tni gas temperature at time n (n-..., n-1, n,...) is the following based on the gas density data: Gas pressure (hereinafter referred to as converted pressure) Pn' in formula [6]
and the detected pressure Pn at that time n are equal. Pa=Ls−Tn+MS” formula [
6] This gas pressure pn't is shown by the characteristic line P in FIGS. 2 and 3. Then, the calculation unit (lO) calculates the detected temperature 'r for a unit time 2, for example, every minute, which is set based on the emergency leakage detection speed, etc.
Based on n, the converted pressure Pn' per minute is calculated from equation [6] for each section. Then, the detected pressure Pn and the converted pressure pn are determined by the determination unit (12).
The determination unit (12) determines whether there is an emergency leak in each section at one-minute intervals. Next, the determination processing of the determination unit (12) will be explained. For example, in a gas compartment with a capacity of 1301, the standard 10-1 [CC/g!] based on an emergency leak! When the gas leak c) occurs, the amount of decrease in gas pressure for one day based on this leak is expressed by the following equation [7]. Due to the leakage of this formula [7], the rated gas pressure P20maX
A simple calculation shows that the time required for the gas leak warning pressure to drop from P20m++x to (4-3, 6)10.
1 = 4 days. Therefore, a gas leak cannot be detected until four days have passed using only the periodic accumulation results for a relatively long period of time in the trend memory section (9). The reference value is compared with the detected pressure Pn at every time n, and an emergency leak is detected at 1 minute intervals. At this time, the outside temperature changes, for example, as shown by the solid line t in Figure 3, and the influence of energization and outside air changes. Since the gas temperature changes and the gas pressure changes to follow this change, it is necessary to change the judgment reference value according to this change.Then, the detected temperature at every time n is regarded as the gas temperature. Therefore, if there is no gas leak, the gas pressure P at every time n
n becomes larger than the converted pressure Pn' of equation [6]. Therefore, in the case of section 1301, the determination unit (12)
The determination threshold value Ki is set to a practical value of 01, and is calculated and set as the gas pressure 01 lower than the converted pressure Pn', that is, the gas pressure for the determination criterion at every time n of the gas pressure PNi of the following equation [8]. PN=Ls-Tn-1-Ms-Q,l
・Formula [8] Furthermore, the determination unit (12) compares the detected pressure Pn and the gas pressure PN at every time n, and detects that the detected pressure Pn is lower than the gas pressure PN twice in a row, and gas leakage is definitely detected. When detected, for example at time n in FIG. 3, it is determined that there is an emergency leak and an emergency leak alarm is generated. By the way, the difference ΔTn [deg] (=Tn') between the detected temperature Tn (outside air temperature) at every time n and the actual gas temperature Tn'
-Tn), gas pressure PN at the time of judgment and 5 am
The amount of decrease in the determination reference value from the gas pressure P 20 (5) at the time is as shown in Table 3 in the range of Tn, 8 Tn, which actually occurs in the section 1301. In this Table 3, P2ON indicates the gas pressure PN converted to 20°C, and P2 o (s) - P2 oN indicates the amount of decrease. Further, based on the difference □QTn, the gas pressure P2ON becomes as shown in FIG. 2 with respect to the gas pressure P2G(5). As is clear from Table 3, the detection sensitivity decreases as the difference ΔTn increases; however, in an actual gas leak, the rate of decrease in gas pressure decreases over time, so the determination unit; The gas pressure is the maximum usable gas pressure (13
3 for 01. An emergency leak is detected with a considerable margin of time before the pressure drops to O[Kg/cfIgl). Table 3 Furthermore, the emergency leak alarm of 12 in the judgment part is stored in the event memory part, +3. , is supplied to external devices of the notification section (14) and the monitoring section (4), and is notified of the occurrence of an emergency leak. Therefore, it is possible to detect emergency leaks, which was not possible in the past. Monitoring can be performed automatically, accurately and quickly, and emergency leaks can be detected at a relatively early stage. Calculation conditions for gas density data, threshold values, etc. may be set according to the capacity of each section. (Other Examples) Next, an example in which the gas density coefficient is set in advance will be described with reference to FIGS. 1, 4, and 5. The difference between the device of this embodiment and the device of the first embodiment is that
The calculation section (9) in the figure is the gas pressure conversion section at 5 am every morning,
The calculating section f9+, l-lend memory section (11j) forms a natural leak monitoring means, and the calculating section (10) forms a constant conversion means.The calculating section (9) calculates the gas density data. Instead of performing Lma of Table 12 and Table 2 according to the capacity of each section,
The arithmetic mean value of X and Lm++ is set in advance as L0·i gas density coefficient. (15) is set in the calculation unit fil, jlo). Then, the calculation part (9) is the detected pressure Ps at 5 o'clock every year. Based on the detected temperature T5 and LO, the following formula is calculated.

〔9〕から検出
圧力P5を例えばC=20@Cの圧力P20(5)に変
換する。 P2O(S)=Ps十0.0023・(20−T5) 
     式
From [9], the detected pressure P5 is converted into a pressure P20(5) where C=20@C, for example. P2O(S)=Ps10.0023・(20-T5)
formula

〔9〕この圧力P20(5)は検出温度T
5がガス温度にほぼ等しくなるため、通電、外気の影響
を排除したガス圧力の換算値となる。 そして、ガス圧力P20(5)がトレンドメモリ部(I
I)に蓄積保持され、その保持結果に基づき、l実施例
と同様の自然漏れの検出、監視が行われる。 また、演算部(10jは毎時刻nの検出圧力Pn、検出
温度Tn及びLOに基づき、次の式〔10〕によって検
出圧力PnをC−20°Cのガス圧力P 20 (n)
に換算する。 P2 o(n)=P n十CD’: OI3−・(20
−Tn )       式〔10〕そして、ガス圧力
P20(5)及びガス圧力Pzo(n)が判定部(I2
)に供給される。 このとき、判定部<+2Hは1実施例の場合と異なり、
ガス圧力P20(5)−にのガス圧力を判定基準用のガ
ス圧力P2or(二Pcr)とし、このガス圧力Pzo
rと毎時刻nのガス圧力P 20 (n)とを比較する
。 なお、2001のガス区画においては、緊急漏れに基づ
く標準的なガス漏れ量が3×l0−1〔CC/seC〕
になり、この漏れに基づくガス圧力の1日間の低下量は
次の式〔11〕で示される。 3xlO−’x60X6°”4≦Q、15  CKqf
ictii:]  −式l:11)%式% そのため、しきい値には0.15に設定される。 また、毎時刻Tnの検出温度Tn(外気温度)と実際の
ガス温度Tn′との差△Tnに基づき、ガス圧力P20
(5)に対してガス圧力P 20 (n)は第4図に示
すようになる。 そして、判定部、12)はガス圧力P20(ロ)が2回
連続してガス圧力pcrより低下する第5図の時刻nに
、緊急漏れと判定して緊急漏れ警報を発生する。 なお、第5図において、実線【は検出温度Tn (外気
温度)を示し、実線pは検出圧力Pnを示す。 また、200Eのガス区画で実際に生じるTn ATn
の範囲)こおいて、緊急漏れと判定したときのガス圧力
の換算に基づく低下量と真の低下量とは、次の表4に示
すようになる。 表     4 なお、表4においてPzo(n)米、(P2O(5)−
Pzo(n))米は20℃換算の真のガス圧力、低下量
を示す。 なるが、200eの使用限度ガス圧力4.OCKgf/
cd ・g )に低下する以前に、かなりの時間的余裕
全もって緊急漏れが検出される。 より演算の簡単な構成で自然漏れ及び緊急漏れが検出、
監視される。 そして、設定値LO,シきい値に等は各区画の容量等に
応じて設定すればよい。 また、前記両実施例では毎年前5時を定期的な早朝定時
としたが、毎日でなく数日おき等でもよく、午前5時の
前、後の適当な時刻でもよい。 〔発明の効果〕 本発明は、以北説明したように構成されているため、以
下に記載する効果を奏する。 まず、請求項■の構成においては、早朝定時の外気温度
がガス温度にほぼ等しくなること全利用してガス密度デ
ータを定期的に算出決定し、このガス密度データに基づ
き定期的に早朝定時のガス圧力を基準温度の圧力に換算
して蓄積保持したため、この保持結果から自然漏れの高
精度の監視がえる。 さらに、前記ガス密度データに基づき単位時間毎の検出
温度に応じた判定基準用のガス圧力を算出し、このガス
圧力と検出圧力との単位時間毎の比較によって緊急漏れ
を検出したため、緊急漏れの迅速、正確な監視が行える
。 したがって、定期的に算出決定されたガス密度データに
基づき、自然漏れ及び緊急漏れの精度の高い監視を行う
ことができる。 つぎに、請求項■の構成においては、ガス圧力のガス温
度に対する変化率を予め設定し、この変化率に基づき定
期的に早朝定時のガス圧力を基準温度の圧力に換算して
蓄積保持したため、簡単な演算で自然漏れの高精度の監
視が行える。 さらに、前記変化率に基づき単位時間毎の検出圧力を基
準温度のガス圧力に換算するとともに、このガス圧力と
前記早朝定時の換算されたガス圧力に基づく判定基準用
のガス圧力との単位時間毎の比較によって緊急漏れを検
出したため、簡単な演算で緊急漏れの迅速、正確な監視
が行える。 したがって、予め設定したガス圧力の変化率に基づき、
ガス密度データを算出決定する場合より簡単な演算で自
然漏れ及び緊急漏れの精度の高し1監視を行うことがで
きる。
[9] This pressure P20 (5) is the detected temperature T
Since 5 is almost equal to the gas temperature, it is a converted value of gas pressure excluding the influence of electricity and outside air. Then, the gas pressure P20 (5) is determined by the trend memory section (I
I), and based on the retention results, natural leak detection and monitoring are performed in the same way as in the I embodiment. In addition, the calculation unit (10j calculates the detected pressure Pn by the following equation [10] based on the detected pressure Pn, detected temperature Tn, and LO at each time n) as the gas pressure P 20 (n) at C-20°C.
Convert to . P2 o(n)=P n0CD': OI3-・(20
-Tn) Equation [10] Then, the gas pressure P20(5) and the gas pressure Pzo(n) are determined by the determination unit (I2
). At this time, the determination unit <+2H is different from the case of the first embodiment,
The gas pressure P20(5)- is set as the gas pressure P2or (2 Pcr) for the judgment standard, and this gas pressure Pzo
Compare r with the gas pressure P 20 (n) at every time n. In addition, in the 2001 gas compartment, the standard gas leakage amount based on emergency leakage is 3 x l0-1 [CC/seC]
The amount of decrease in gas pressure over one day due to this leakage is expressed by the following equation [11]. 3xlO-'x60X6°"4≦Q, 15 CKqf
ictii:] -Formula l:11)%Formula% Therefore, the threshold value is set to 0.15. Also, based on the difference ΔTn between the detected temperature Tn (outside air temperature) at each time Tn and the actual gas temperature Tn', the gas pressure P20
For (5), the gas pressure P 20 (n) is as shown in FIG. Then, the determination unit 12) determines that there is an emergency leak and issues an emergency leak alarm at time n in FIG. 5 when the gas pressure P20 (b) falls below the gas pressure pcr twice in a row. In FIG. 5, the solid line [ represents the detected temperature Tn (outside air temperature), and the solid line p represents the detected pressure Pn. In addition, Tn ATn actually generated in the gas compartment of 200E
(range) Here, the amount of reduction based on conversion of gas pressure when an emergency leak is determined and the true amount of reduction are shown in Table 4 below. Table 4 In addition, in Table 4, Pzo(n) rice, (P2O(5)-
Pzo(n)) indicates the true gas pressure and the amount of decrease in 20°C. However, the usage limit gas pressure of 200e is 4. OCKgf/
An emergency leak is detected with a considerable margin of time before the temperature drops to cd ·g). Natural leaks and emergency leaks can be detected with a simpler calculation configuration.
be monitored. The set value LO, threshold value, etc. may be set according to the capacity of each section. Further, in both of the above embodiments, the regular early morning time was set at 5:00 a.m. every year, but it may be set every few days instead of every day, or at an appropriate time before or after 5:00 a.m. [Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below. First, in the structure of claim (2), gas density data is periodically calculated and determined by fully utilizing the fact that the outside air temperature during the early morning hours is almost equal to the gas temperature, and based on this gas density data, the outside air temperature during the early morning hours is determined to be approximately equal to the gas temperature. Since the gas pressure was converted to the pressure at the reference temperature and stored and held, this holding result allows for highly accurate monitoring of natural leakage. Furthermore, based on the gas density data, a gas pressure for judgment criteria is calculated according to the detected temperature for each unit time, and an emergency leak is detected by comparing this gas pressure and the detected pressure for each unit time. Allows for quick and accurate monitoring. Therefore, natural leaks and emergency leaks can be monitored with high accuracy based on the gas density data that is calculated and determined on a regular basis. Next, in the configuration of claim (2), the rate of change of the gas pressure with respect to the gas temperature is set in advance, and based on this rate of change, the gas pressure at a fixed time in the early morning is periodically converted to the pressure at the reference temperature and stored and held. Highly accurate monitoring of natural leakage is possible with simple calculations. Furthermore, the detected pressure for each unit time is converted into a gas pressure at a reference temperature based on the rate of change, and this gas pressure is converted for each unit time to a judgment standard gas pressure based on the converted gas pressure at the early morning time. Since emergency leaks are detected by comparing the values, emergency leaks can be monitored quickly and accurately with simple calculations. Therefore, based on the preset rate of change in gas pressure,
Natural leakage and emergency leakage can be monitored with high precision using simpler calculations than when calculating and determining gas density data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明のガス漏れ監視装置の実施
例を示し、第1図はブロック図・%2図9第3図は1実
施例の緊急漏れ判定のガス圧カー温度特性図、動作説明
図、第4図、第5図は他の実施例の緊急漏れ判定のガス
圧カー温度特性図、動作説明図、第6図、第7図はGI
Sのガス圧カー温度特性図、ガス圧力と外気温度の特性
図である。 (1a)〜(1n)・・・ガス圧力センサ、(3)・・
・温度センサ、4)・・監視部1.9:・書%/ U:
演算部、(□+01−・−4考演算部、・、11・・ト
レンドメモリ部1.12.緊急漏れ判定部。
Figures 1 to 4 show an embodiment of the gas leak monitoring device of the present invention, Figure 1 is a block diagram, Figure 3 is a gas pressure car temperature characteristic diagram for emergency leak detection in one embodiment. , an operation explanatory diagram, FIGS. 4 and 5 are gas pressure car temperature characteristic diagrams and operation explanatory diagrams for emergency leak detection of other embodiments, and FIGS. 6 and 7 are GI
They are a gas pressure and temperature characteristic diagram of S, and a characteristic diagram of gas pressure and outside air temperature. (1a)-(1n)...Gas pressure sensor, (3)...
・Temperature sensor, 4)・・Monitoring section 1.9:・Written%/U:
Arithmetic unit, (□+01-・-4 consideration arithmetic unit, 11...Trend memory unit 1.12. Emergency leakage determination unit.

Claims (2)

【特許請求の範囲】[Claims] (1)ガス区画内のガス圧力を検出するガス圧力センサ
と、 外気温度を検出する温度センサと、 定期的に通電、外気の影響が少ない早朝定時の前記温度
センサの検出温度T_aをガス温度として前記早朝定時
の前記ガス圧力センサの検出圧力P_aに基づく補間法
等による演算によりガス温度に対するガス圧力の変化率
L_a及び0℃のときのガス圧力M_aをガス密度デー
タとして算出決定する密度演算手段と、 前記ガス密度データに基づくP_c_(_a_)=L_
a・C+M_aの換算式により基準温度Cに換算した自
然漏れ監視用のガス圧力P_c_(_a_)を蓄積保持
する自然漏れ監視手段と、1分等の単位時間毎の前記温
度センサの検出温度T_n、前記ガス密度データ及び判
定しきい値K(K>0)に基づくP_N=L_a・T_
n+M_a−Kの判定演算式により前記単位時間毎に判
定基準用のガス圧力P_Nを算出する基準値算出手段と
、 前記単位時間毎の前記ガス圧力センサの検出圧力P_n
と前記ガス圧力P_Nとを比較し前記検出圧力P_nが
所定回数連続して前記ガス圧力P_Nより低下したとき
に突発的な緊急漏れと判定する緊急漏れ監視手段と を備えたことを特徴とするガス絶縁式電気設備のガス漏
れ監視装置。
(1) A gas pressure sensor that detects the gas pressure in the gas compartment, a temperature sensor that detects the outside air temperature, and the detected temperature T_a of the temperature sensor, which is periodically energized and set in the early morning when there is little influence from the outside air, is taken as the gas temperature. density calculation means for calculating and determining the rate of change L_a of the gas pressure with respect to the gas temperature and the gas pressure M_a at 0° C. as gas density data by calculation using an interpolation method or the like based on the detected pressure P_a of the gas pressure sensor at the early morning fixed time; , P_c_(_a_)=L_ based on the gas density data
a natural leakage monitoring means for accumulating and holding gas pressure P_c_(_a_) for natural leakage monitoring converted to a reference temperature C using a conversion formula of a・C+M_a; a temperature T_n detected by the temperature sensor for each unit time such as one minute; P_N=L_a・T_ based on the gas density data and determination threshold value K (K>0)
a reference value calculation means that calculates a gas pressure P_N for the judgment standard for each unit time using a judgment calculation formula of n+M_a-K; and a detection pressure P_n of the gas pressure sensor for each unit time.
and the gas pressure P_N, and determines a sudden emergency leak when the detected pressure P_n falls below the gas pressure P_N a predetermined number of times in succession. Gas leak monitoring device for insulated electrical equipment.
(2)ガス区画内のガス圧力を検出するガス圧力センサ
と、 外気温度を検出する温度センサと、 定期的に通電、外気の影響が少ない早朝定時の前記両セ
ンサの検出圧力P_a、検出温度T_aとガス温度に対
するガス圧力の変化率の設定値L_0とに基づき前記検
出温度T_aをガス温度としてP_c(a)=L_0・
(C−T_a)+P_aの換算式により前記検出圧力P
_aを基準温度Cに換算した自然漏れ監視用のガス圧力
P_c_(_a_)を蓄積保持する自然漏れ監視手段と
、 1分等の単位時間毎の前記両センサの検出圧力P_n、
検出温度T_nと前記設定値L_0とに基づきP_c_
(_n_)=L_0・(C−T_n)+P_nの換算式
から前記検出圧力P_nを前記基準温度Cのガス圧力P
_c_(_n_)に換算する常時換算手段と、 最新の前記ガス圧力P_c_(a)より判定しきい値K
(K>0)低いガス圧力を判定基準用のガス圧力P_c
_rとして前記ガス圧力P_c_(_n_)と前記ガス
圧力P_c_rとを比較し、前記ガス圧力P_c_(_
n_)が所定回数連続して前記ガス圧力P_c_rより
低下したときに突発的な緊急漏れと判定する緊急漏れ監
視手段と を備えたことを特徴とするガス絶縁式電気設備のガス漏
れ監視装置。
(2) A gas pressure sensor that detects the gas pressure in the gas compartment, a temperature sensor that detects the outside air temperature, and the detected pressure P_a and detected temperature T_a of both sensors, which are regularly energized and set in the early morning when there is little influence from the outside air. Based on the set value L_0 of the rate of change of gas pressure with respect to the gas temperature and the detected temperature T_a as the gas temperature, P_c(a)=L_0・
The detected pressure P is determined by the conversion formula (C-T_a)+P_a.
natural leakage monitoring means for accumulating and holding gas pressure P_c_(_a_) for natural leakage monitoring, which is obtained by converting _a into a reference temperature C; pressures P_n detected by the two sensors for each unit time such as one minute;
P_c_ based on the detected temperature T_n and the set value L_0
From the conversion formula (_n_)=L_0・(C-T_n)+P_n, the detected pressure P_n is converted to the gas pressure P at the reference temperature C.
A constant conversion means for converting into _c_(_n_), and a determination threshold value K based on the latest gas pressure P_c_(a).
(K>0) Gas pressure P_c for judgment criterion low gas pressure
The gas pressure P_c_(_n_) and the gas pressure P_c_r are compared as _r, and the gas pressure P_c_(_
A gas leak monitoring device for gas-insulated electrical equipment, characterized in that the device comprises an emergency leak monitoring means for determining a sudden emergency leak when the gas pressure P_c_r (n_) falls below the gas pressure P_c_r a predetermined number of times in succession.
JP2016489A 1990-01-26 1990-01-26 Gas leak monitoring device for gas-insulated electrical equipment Expired - Fee Related JPH0667113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016489A JPH0667113B2 (en) 1990-01-26 1990-01-26 Gas leak monitoring device for gas-insulated electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016489A JPH0667113B2 (en) 1990-01-26 1990-01-26 Gas leak monitoring device for gas-insulated electrical equipment

Publications (2)

Publication Number Publication Date
JPH03222613A true JPH03222613A (en) 1991-10-01
JPH0667113B2 JPH0667113B2 (en) 1994-08-24

Family

ID=11917703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016489A Expired - Fee Related JPH0667113B2 (en) 1990-01-26 1990-01-26 Gas leak monitoring device for gas-insulated electrical equipment

Country Status (1)

Country Link
JP (1) JPH0667113B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115111A (en) * 1991-10-18 1993-05-07 Mitsubishi Electric Corp Gas leakage monitor for gas insulated electric apparatus
JPH1049788A (en) * 1996-07-08 1998-02-20 Samsung Electron Co Ltd Gas pressure and gas leakage sensing system
US6125692A (en) * 1997-10-23 2000-10-03 Gec Alsthom T & D Sa Density sensor for monitoring the rate of leakage from a switchgear case with improved reliability
US6467466B1 (en) * 1999-07-30 2002-10-22 Fujitsu Ten Limited Gas leakage detection and fail-safe control method for gas-fueled internal combustion engine and apparatus for implementing the same
JP2008153008A (en) * 2006-12-15 2008-07-03 Chugoku Electric Power Co Inc:The Gas leakage surveillance system of gas-blast circuit breaker
CN102104236A (en) * 2009-12-17 2011-06-22 三菱电机株式会社 Gas pressure monitoring system and gas-insulated electric apparatus
CN105509976A (en) * 2014-10-16 2016-04-20 大陆汽车电子(长春)有限公司 Leakage test method and device of engine control unit
WO2023044819A1 (en) * 2021-09-24 2023-03-30 Abb Schweiz Ag Method and apparatus for gas leak detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115111A (en) * 1991-10-18 1993-05-07 Mitsubishi Electric Corp Gas leakage monitor for gas insulated electric apparatus
JPH1049788A (en) * 1996-07-08 1998-02-20 Samsung Electron Co Ltd Gas pressure and gas leakage sensing system
US6125692A (en) * 1997-10-23 2000-10-03 Gec Alsthom T & D Sa Density sensor for monitoring the rate of leakage from a switchgear case with improved reliability
US6467466B1 (en) * 1999-07-30 2002-10-22 Fujitsu Ten Limited Gas leakage detection and fail-safe control method for gas-fueled internal combustion engine and apparatus for implementing the same
JP2008153008A (en) * 2006-12-15 2008-07-03 Chugoku Electric Power Co Inc:The Gas leakage surveillance system of gas-blast circuit breaker
CN102104236A (en) * 2009-12-17 2011-06-22 三菱电机株式会社 Gas pressure monitoring system and gas-insulated electric apparatus
CN105509976A (en) * 2014-10-16 2016-04-20 大陆汽车电子(长春)有限公司 Leakage test method and device of engine control unit
WO2023044819A1 (en) * 2021-09-24 2023-03-30 Abb Schweiz Ag Method and apparatus for gas leak detection

Also Published As

Publication number Publication date
JPH0667113B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JP4495103B2 (en) Gas leak detection device and gas leak detection method
US10527704B2 (en) Detection of deteriorated electrical connections in a meter using adjusted temperature sensing
CN102104236A (en) Gas pressure monitoring system and gas-insulated electric apparatus
US10393791B2 (en) Detection of deteriorated electrical connections in a meter using temperature sensing and time-variable thresholds
JP2012010508A (en) Power generation amount prediction device, power generation amount prediction system, power generation amount prediction method, and power generation amount prediction program
JPH03222613A (en) Gas leakage-monitoring device of gas-insulated electric equipment
JP5294704B2 (en) Power monitoring device
CN108695569A (en) A kind of current sensor caliberating device
CN1199857A (en) Method of monitoring leakage rate from the envelope of high voltage electrical apparatus
US11067639B2 (en) Trending functions for predicting the health of electric power assets
US7941393B2 (en) Method for predictive determination of a process variable based on an assignment of a discrete measured value
JP3272874B2 (en) Battery capacity / remaining time display
CN111999608A (en) Monitoring method and monitoring system of distribution transformer and intelligent terminal
JPWO2021117127A1 (en) Power generation amount prediction device
JP6202988B2 (en) Power measurement system, power measurement method, and program
JP6208799B2 (en) Data measuring device and data measuring method in HVDC system
JP2018125937A (en) Power monitoring device and power monitoring system
US20190012846A1 (en) Method for determining a mean time to failure of an electrical device
JPH09211091A (en) Method and device for predicting service life of battery
JPH0476799A (en) Device for deciding and forecasting service life of thermocouple temperature sensor
JP4032870B2 (en) Control effect estimation apparatus and control effect estimation method
JP2876142B2 (en) Oil leakage monitoring method for OF cable line
JPH0862082A (en) Inspection device for pressure sensor
JPH0736039U (en) Abnormal overheat detector for gas insulated switchgear
CN116659732A (en) Differential pressure dynamic compensation filtering algorithm of double absolute pressure sensors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees