WO2023176494A1 - Failure detection device - Google Patents

Failure detection device Download PDF

Info

Publication number
WO2023176494A1
WO2023176494A1 PCT/JP2023/007946 JP2023007946W WO2023176494A1 WO 2023176494 A1 WO2023176494 A1 WO 2023176494A1 JP 2023007946 W JP2023007946 W JP 2023007946W WO 2023176494 A1 WO2023176494 A1 WO 2023176494A1
Authority
WO
WIPO (PCT)
Prior art keywords
pointer
detection device
failure
failure detection
standard deviation
Prior art date
Application number
PCT/JP2023/007946
Other languages
French (fr)
Japanese (ja)
Inventor
卓海 仁科
昌洋 辻本
智子 植木
哲也 池本
智寿 吉江
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023176494A1 publication Critical patent/WO2023176494A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D13/00Component parts of indicators for measuring arrangements not specially adapted for a specific variable
    • G01D13/22Pointers, e.g. settable pointer

Definitions

  • the present disclosure relates to a failure detection device.
  • This application claims priority to Japanese Patent Application No. 2022-042039 filed in Japan on March 17, 2022, the contents of which are incorporated herein.
  • the state of the system is stabilized by measuring the pressure, temperature, flow rate, etc. of piping and managing the state.
  • a device such as a circular instrument panel or a rectangular display panel, which indicates detected values with an analog pointer, is generally used.
  • the value indicated by the pointer of an analog meter is read and taken out to the outside wirelessly.
  • the device is attached to a meter that has a scale plate with a scale, a pointer, and a transparent cover plate that covers the scale plate and the pointer, and is equipped with an IC chip and an antenna, and can transmit stored information by radio waves in a non-contact manner.
  • a method for calibrating a meter equipped with an IC tag unit and an IC tag unit is disclosed. In this way, according to Patent Document 1, the value indicated by the pointer can be read and taken out wirelessly without impairing the calibration state and visibility of the analog meter by being retrofitted to the analog meter.
  • the present disclosure provides a failure detection device that can detect failures of analog instruments.
  • an analog meter includes a housing, a pointer provided in the housing, a magnet attached to a rotation axis of the pointer, and a sensor unit attached to a front side of the analog meter.
  • the sensor unit is characterized in that a failure is determined based on a change in the magnetic field of the magnet caused by a slight movement of the pointer.
  • FIG. 1 is a front view schematically showing a failure detection device according to the present disclosure.
  • FIG. 2 is a front view of the analog meter.
  • FIG. 3 is an AA cross-sectional view schematically showing the failure detection device according to the present disclosure.
  • FIG. 4 is a front view schematically showing a failure detection device according to the present disclosure.
  • FIG. 5 is an image diagram showing how a magnetic sensor reads the movement of a magnet that rotates with the rotation axis.
  • FIG. 6 is a diagram showing voltage versus angle.
  • FIG. 7 is a flow diagram when an analog meter reads measurements.
  • FIG. 8 is a flow diagram in which the failure detection device according to the present disclosure determines a failure.
  • FIG. 9 is a flow diagram of a modification example in which the failure detection device according to the present disclosure determines a failure.
  • FIG. 1 is a front view schematically showing a failure detection device 100 according to the present disclosure.
  • FIG. 2 is a front view of the analog meter 10.
  • FIG. 3 is an AA cross-sectional view schematically showing the failure detection device 100 according to the present disclosure.
  • FIG. 4 is a front view schematically showing the failure detection device 100 according to the present disclosure.
  • a failure detection device 100 according to the present disclosure includes an analog meter 10 and a sensor unit 20.
  • the analog meter 10 includes a housing 11 of the analog meter 10 and a pointer 12 provided inside the housing 11.
  • Examples of the analog instrument 10 include a pressure gauge, a thermometer, a flow meter, a power meter, a liquid level gauge, and the like.
  • Examples of the analog instrument 10 include a circular instrument panel and a rectangular display panel.
  • the housing 11 accommodates the dial 17 in addition to the pointer 12.
  • the dial 17 is provided within the housing 11 and has numerical values 15 and/or scales 16 written thereon.
  • the pointer 12 points to a numerical value 15 and/or a scale 16.
  • the transparent plate 18 is placed over the housing 11 so as to cover the front side (+Z direction) of the dial 17 and the hands 12.
  • the magnet 14 is attached to the rotation axis 13 of the pointer 12. As the rotation axis 13 rotates in response to the slight movement of the pointer 12, the rotation angle of the pointer 12 is read from changes in the magnetic field of the magnet 14 attached to the rotation axis 13, and the measured value of the analog meter 10 is read. . Further, the angle ⁇ (+ ⁇ , ⁇ ) of the pointer 12 as shown in FIG. 4 is measured to determine a failure. The method for reading measured values and the method for determining failure will be described in detail later.
  • the magnet 14 can also be attached to the pointer 12, or the pointer 12 itself can be the magnet 14. Further, the magnet 14 can be a permanent magnet or an electromagnet.
  • the diameter M of the sensor unit 20 is preferably ⁇ 25 mm to ⁇ 40 mm.
  • the sensor unit 20 has a function of reading the movement of the pointer 12 of the analog meter 10 and outputting the measured value of the analog meter 10 as a digital signal.
  • the sensor unit 20 is installed on a transparent substrate 18 provided above the pointer 12 of the analog meter 10 (at the opening of the housing 11). Before installation, the transparent substrate 18 is removed and the magnet 14 is attached to the rotary cram 13 of the pointer 12 as described above. With this configuration, the magnetic sensor in the sensor unit 20 can read the magnetism of the magnet 14.
  • the magnet 14 attached to the rotating shaft 13 rotates together with the rotation of the rotating shaft 13, as shown in FIG.
  • the magnetic sensor 21 reads the magnetic movement of the magnet 14 and outputs the values of Sin ⁇ and Cos ⁇ with respect to the angle ⁇ as voltages as shown in FIG. Based on this output, the angle ⁇ is calculated. For example, when the output of Sin ⁇ is 0.0 V, if Cos ⁇ is 1.5 V, the angle is 0 degree, and if Cos ⁇ is ⁇ 1.5 V, ⁇ is 180 degrees. Since the angle ⁇ corresponds to the rotation angle of the pointer 12, it becomes possible to read an analog measurement value from ⁇ .
  • a Bourdon tube pressure gauge usually has a Bourdon tube, a scale plate, and a pointer inside the housing, and the slight movement caused by the elastic stress of the Bourdon tube due to fluctuations in the measured fluid pressure is reflected in the pointer through an enlargement mechanism.
  • the system transmits the information and instructs the pointer to rotate on the scale plate.
  • the Bourdon tube pressure gauge detects subtle changes in the Bourdon tube, so it is easily affected by, for example, pulsation of the measuring fluid, vibrations of the pressure gauge attached, the tube body, etc., and it is difficult to see with the naked eye. Even if the pointer appears to be stationary, it is always moving slightly.
  • FIG. 7 shows the flow when reading the measured values of the analog meter 10.
  • reading the angle of the pointer 12 of the analog meter 10 with the magnetic sensor 21 of the magnet 14 is expressed as angle measurement. After starting the measurement and performing the measurement a specified number of times, averaging processing is performed.
  • the device shown above has a high reading resolution, and when it is used to read the movement of the pointer, the measured value is unstable because it reads the minute movement mentioned above. Therefore, it is necessary to take measurements repeatedly and average them.
  • the failure detection device 100 outputs the display of the pointer 12 of the analog measuring instrument 10 as a digital value as described above, but also has a function of detecting that the analog measuring instrument 10 has failed. Have it together. The reason why a failure detection function is necessary and the detection means are described below.
  • a bourdon tube measures deformation based on pressure and displays it with a mechanical pointer, so failures may occur due to metal fatigue or deformation of the bourdon tube or due to sticking of the pointer.
  • the failure detection device 100 makes it possible to easily detect failures in analog instruments. Under normal conditions, the pointer of an analog meter pulsates and makes slight movements, so the failure detection device 100 according to the present disclosure detects a failure by the change in the magnetic field of the magnet that occurs when the pointer shakes (rotates) due to the slight movement of the pointer. do.
  • FIG. 8 is a flow diagram in which the failure detection device 100 according to the present disclosure determines a failure.
  • the failure detection device 100 can use a small analog meter 10 or the like.
  • the diameter N of the analog meter 10 is 60 mm or less and 50 mm or less.
  • the pulsation of the pointer 12 of a small analog instrument 10 such as these diameters is very small and has a small amplitude due to the small size of the pointer 12, so it is impossible to judge the presence or absence of pulsation with the naked eye. be.
  • the failure detection device 100 according to the present disclosure can detect failures even in small analog instruments 10.
  • the sensor unit 20 reads the change in the magnetic field of the magnet 14 attached to the pointer 12, measures the relative angle of the pointer 12 a specified number of times from the initial value, and stores the data. For example, repeat this every second or faster, at 2 milliseconds. By measuring in 2 milliseconds, data can be obtained 500 times in 1 second.
  • the measurement interval can be set arbitrarily. If the interval is too short, the power consumption of the measurement system will increase, and if it is too long, it will be too late to notice changes in measured values. Set the time taking into consideration the needs of the measurement system.
  • the standard deviation of the relative angle is calculated using the stored data.
  • the standard deviation can be calculated based on data obtained by calculating the above-mentioned average value in order to stabilize the measured value, or can be calculated from data obtained by measuring a specified number of times.
  • the standard deviation is approximately 1.16°.
  • the measured standard deviation is larger than the threshold value, it is determined to be normal. On the other hand, if the measured standard deviation is smaller than the threshold, it is determined that there is a failure. If the standard deviation is large, it means that the variation in the measured values is large. This shows that the pointer 12 is operating normally by following the random micro-movements of the object to be measured. On the other hand, when the standard deviation is small, it means that the variation in measured values is small. In this case, it is considered that the pointer 12 is stuck and unable to follow the random micro-movement of the object to be measured, and it can be determined that the pointer 12 is malfunctioning.
  • the purpose of setting the threshold value is that the swing amplitude of the pointer 12 due to pulsation varies depending on the location where the analog meter 10 is installed and the degree of vibration etc. Therefore, in setting the threshold value, it is necessary to measure the angle of the analog instrument 10 at the installation location, obtain the standard deviation, and set the threshold value in consideration of temperature fluctuations, vibration changes, and the like.
  • the threshold value can be determined by obtaining the standard deviation during normal operation when the device is installed and using that as the threshold value.
  • the threshold value can also be in a range greater than 0° and less than or equal to 0.5°.
  • the length from the center of the pointer 12 to the scale 16 of the ⁇ 50 analog meter 10 is approximately 20 mm.
  • the moving distance of the tip is approximately ⁇ 0.085 mm.
  • the minimum distance that humans can judge with the naked eye is said to be 0.1 mm, so the above range is preferable. Therefore, failure can be determined with high accuracy.
  • FIG. 9 is a flow diagram of a modification example in which the failure detection device 100 according to the present disclosure determines a failure. As shown in FIG. 9, parameters and dead zones are used to determine failure.
  • the angle measurement and standard deviation are performed in the same manner as in the embodiment shown in FIG. In the embodiment shown in FIG. 8, a standard deviation is set to determine a failure, but in this modification, a failure is determined based on parameters acquired during calibration.
  • the parameter is the standard deviation of the analog instrument 10 when it is not operating. Further, a dead zone is set by the user, and the determination is made by comparing the parameter ⁇ dead zone with the standard deviation obtained by frequently measuring angles.
  • the standard deviation is larger than the sum of the parameter and the dead zone, it is determined to be normal. On the other hand, if the standard deviation is smaller than the sum of the parameter and the dead zone, it is determined that there is a failure.
  • the dead zone is preferably in the range of -0.5° to 0.5°.
  • the fixed period can be set every half day or every day.
  • the failure detection device 100 As described above, according to the failure detection device 100 according to the present disclosure, it is possible to detect a failure of the analog meter 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The present disclosure provides a failure detection device capable of detecting a failure of an analog instrument. A failure detection device according to the present disclosure is characterized by comprising: an analog instrument including a housing, an indicator provided in the housing, and a magnet attached to the rotary axial center of the indicator; and a sensor unit attached to a front side of the analog instrument, wherein the sensor unit determines a failure from a change in the magnetic field of the magnet occurring due to the micro-motion of the indicator.

Description

故障検知装置Failure detection device
 本開示は、故障検知装置に関する。本出願は、2022年3月17日に日本に出願された特願2022-042039号に優先権を主張し、その内容をここに援用する。 The present disclosure relates to a failure detection device. This application claims priority to Japanese Patent Application No. 2022-042039 filed in Japan on March 17, 2022, the contents of which are incorporated herein.
 工場等において、配管の圧力、温度、流量等を測定して状態を管理することにより、システムの状態を安定させている。圧力、温度、流量等の検出値を表示するのには、円形計器盤や、矩形表示盤等、アナログの指針で検出値を示す装置が一般に使用されている。 In factories, etc., the state of the system is stabilized by measuring the pressure, temperature, flow rate, etc. of piping and managing the state. To display detected values such as pressure, temperature, flow rate, etc., a device such as a circular instrument panel or a rectangular display panel, which indicates detected values with an analog pointer, is generally used.
 また、アナログ計器の指針の示す値を読み取って無線で外部に取り出すことが行われている。 Additionally, the value indicated by the pointer of an analog meter is read and taken out to the outside wirelessly.
 例えば、特許文献1では、目盛を備える目盛板及び指針とこれら目盛板及び指針を覆う透明覆板とを有する計器に取り付けられ、ICチップとアンテナを備えると共に非接触で電波により記憶情報を伝達可能なICタグと、計器に前記ICタグを取り付ける取付媒体とを有し、前記ICタグと無線通信を行う無線読取機と共に用いられる計器用ICタグユニット、計器用ICタグシステム、ICタグユニットを備えた計器及びICタグユニットを備えた計器の校正方法が開示されている。このように、特許文献1によれば、アナログ計器に後付けできて同計器の校正状態及び視認性を損なわず、指針の示す値を読み取って無線で外部に取り出すことができる。 For example, in Patent Document 1, the device is attached to a meter that has a scale plate with a scale, a pointer, and a transparent cover plate that covers the scale plate and the pointer, and is equipped with an IC chip and an antenna, and can transmit stored information by radio waves in a non-contact manner. an IC tag unit for an instrument, an IC tag system for an instrument, and an IC tag unit, which has an IC tag and a mounting medium for attaching the IC tag to an instrument, and is used with a wireless reader that performs wireless communication with the IC tag. A method for calibrating a meter equipped with an IC tag unit and an IC tag unit is disclosed. In this way, according to Patent Document 1, the value indicated by the pointer can be read and taken out wirelessly without impairing the calibration state and visibility of the analog meter by being retrofitted to the analog meter.
特開2017-203775号公報Japanese Patent Application Publication No. 2017-203775
 しかしながら、アナログ計器が故障したとき、多くの場合はアナログ計器の指針がある数値を示しながら固着して動かなくなる。係る場合、アナログ計器の指針がある数値を示しているので、故障に気づかない場合がある。 However, when an analog meter breaks down, in many cases, the pointer of the analog meter becomes stuck and does not move, indicating a certain value. In such cases, the failure may not be noticed because the pointer of the analog meter indicates a certain value.
 そこで、本開示は上記問題に鑑み、アナログ計器の故障を検知することが可能な故障検知装置を提供する。 Therefore, in view of the above problems, the present disclosure provides a failure detection device that can detect failures of analog instruments.
 本開示の一態様では、筐体と、前記筐体内に備える指針と、前記指針の回転軸芯に取り付けられた磁石とを備えるアナログ計器と、前記アナログ計器の正面側に取り付けられたセンサユニットと、を備え、前記センサユニットは、前記指針の微動によって生じる前記磁石の磁場の変化から故障判断することを特徴とする。 In one aspect of the present disclosure, an analog meter includes a housing, a pointer provided in the housing, a magnet attached to a rotation axis of the pointer, and a sensor unit attached to a front side of the analog meter. The sensor unit is characterized in that a failure is determined based on a change in the magnetic field of the magnet caused by a slight movement of the pointer.
 以上説明したように本開示によれば、アナログ計器の故障を検知することが可能な故障検知装置を提供することができる。 As described above, according to the present disclosure, it is possible to provide a failure detection device that can detect failures in analog instruments.
図1は、本開示に係る故障検知装置を模式的に示した正面図である。FIG. 1 is a front view schematically showing a failure detection device according to the present disclosure. 図2は、アナログ計器の正面図である。FIG. 2 is a front view of the analog meter. 図3は、本開示に係る故障検知装置を模式的に示したA-A断面図である。FIG. 3 is an AA cross-sectional view schematically showing the failure detection device according to the present disclosure. 図4は、本開示に係る故障検知装置を模式的に示した正面図である。FIG. 4 is a front view schematically showing a failure detection device according to the present disclosure. 図5は、回転軸と共に回転した磁石の動きを磁気センサが読み取る様子を示すイメージ図である。FIG. 5 is an image diagram showing how a magnetic sensor reads the movement of a magnet that rotates with the rotation axis. 図6は、角度に対する電圧を示す図である。FIG. 6 is a diagram showing voltage versus angle. 図7は、アナログ計器が測定値を読み取るときのフロー図である。FIG. 7 is a flow diagram when an analog meter reads measurements. 図8は、本開示に係る故障検知装置が故障を判断するフロー図である。FIG. 8 is a flow diagram in which the failure detection device according to the present disclosure determines a failure. 図9は、本開示に係る故障検知装置が故障を判断する変形例のフロー図である。FIG. 9 is a flow diagram of a modification example in which the failure detection device according to the present disclosure determines a failure.
 以下、図面を参照して、本開示の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本開示の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. Note that this embodiment described below does not unduly limit the content of the present disclosure described in the claims, and all of the configurations described in this embodiment are essential as a solution to the present disclosure. Not necessarily.
 図1から図4は本願が対象とする故障検出装置の一例を示すものである。図1は、本開示に係る故障検知装置100を模式的に示した正面図である。図2は、アナログ計器10の正面図である。図3は、本開示に係る故障検知装置100を模式的に示したA-A断面図である。図4は、本開示に係る故障検知装置100を模式的に示した正面図である。図1、図2、図3及び図4に示すように、本開示に係る故障検知装置100は、アナログ計器10と、センサユニット20とを備える。 1 to 4 show an example of a failure detection device that is the subject of this application. FIG. 1 is a front view schematically showing a failure detection device 100 according to the present disclosure. FIG. 2 is a front view of the analog meter 10. FIG. 3 is an AA cross-sectional view schematically showing the failure detection device 100 according to the present disclosure. FIG. 4 is a front view schematically showing the failure detection device 100 according to the present disclosure. As shown in FIGS. 1, 2, 3, and 4, a failure detection device 100 according to the present disclosure includes an analog meter 10 and a sensor unit 20.
 アナログ計器10は、アナログ計器10の筐体11と、筐体11内に備える指針12とを備える。アナログ計器10は、圧力計、温度計、流量計、電力計、液面計等が挙げられる。アナログ計器10は、円形計器盤や、矩形表示盤等が挙げられる。 The analog meter 10 includes a housing 11 of the analog meter 10 and a pointer 12 provided inside the housing 11. Examples of the analog instrument 10 include a pressure gauge, a thermometer, a flow meter, a power meter, a liquid level gauge, and the like. Examples of the analog instrument 10 include a circular instrument panel and a rectangular display panel.
 筐体11は、指針12の他、文字板17を収容する。文字板17は、筐体11内に設けられ数値15及び/又は目盛り16を記載している。指針12は、数値15及び/又は目盛り16を指し示す。透明板18は、文字板17及び指針12の正面側(+Z方向)を覆うように、筐体11に被せられる。 The housing 11 accommodates the dial 17 in addition to the pointer 12. The dial 17 is provided within the housing 11 and has numerical values 15 and/or scales 16 written thereon. The pointer 12 points to a numerical value 15 and/or a scale 16. The transparent plate 18 is placed over the housing 11 so as to cover the front side (+Z direction) of the dial 17 and the hands 12.
 磁石14は、指針12の回転軸芯13上に取り付けられる。指針12が微動することに応じ、回転軸芯13が回転するので、回転軸芯13に取り付けられた磁石14の磁場の変化から、指針12の回転角度を読み取り、アナログ計器10の測定値を読み取る。また、図4に示すような指針12の角度θ(+θ、-θ)を測定し、故障判断する。測定値の読み取り方法および、故障判断方法については、後ほど詳述する。 The magnet 14 is attached to the rotation axis 13 of the pointer 12. As the rotation axis 13 rotates in response to the slight movement of the pointer 12, the rotation angle of the pointer 12 is read from changes in the magnetic field of the magnet 14 attached to the rotation axis 13, and the measured value of the analog meter 10 is read. . Further, the angle θ (+θ, −θ) of the pointer 12 as shown in FIG. 4 is measured to determine a failure. The method for reading measured values and the method for determining failure will be described in detail later.
 なお、磁石14は、指針12に取り付けることもでき、指針12自体を磁石14とすることができる。また、磁石14は、永久磁石や電磁石とすることができる。 Note that the magnet 14 can also be attached to the pointer 12, or the pointer 12 itself can be the magnet 14. Further, the magnet 14 can be a permanent magnet or an electromagnet.
 センサユニット20の径Mは、φ25mm~φ40mmが好ましい。 The diameter M of the sensor unit 20 is preferably φ25 mm to φ40 mm.
 センサユニット20は、アナログ計器10の指針12の動きを読み取り、アナログ計器10の測定値をデジタル信号として出力する機能を備える。 The sensor unit 20 has a function of reading the movement of the pointer 12 of the analog meter 10 and outputting the measured value of the analog meter 10 as a digital signal.
 図1、図3に示すように、センサユニット20はアナログ計器10の指針12の上方(筐体11開口部)に備えられる透明基板18に設置される。設置の前に透明基板18を外して、上記の様に、磁石14を指針12の回転塾13に取り付けておく。この構成により、磁石14の磁気をセンサユニット20内の磁気センサが読み取る構成とすることができる。 As shown in FIGS. 1 and 3, the sensor unit 20 is installed on a transparent substrate 18 provided above the pointer 12 of the analog meter 10 (at the opening of the housing 11). Before installation, the transparent substrate 18 is removed and the magnet 14 is attached to the rotary cram 13 of the pointer 12 as described above. With this configuration, the magnetic sensor in the sensor unit 20 can read the magnetism of the magnet 14.
 磁気センサが指針の回転角度を読み取ることについて説明する。 We will explain how the magnetic sensor reads the rotation angle of the pointer.
 回転軸13に取り付けられる磁石14は、図5に示すように回転軸13の回転と共に回転する。磁気センサ21は、磁石14の磁気の動きを読み取り図6の様に角度θに対するSinθとCosθの値を電圧で出力する。この出力により、角度θを算出する。例えばSinθの出力が0.0Vの時、Cosθが1.5Vであれば角度は0degreeであり、Cosθが-1.5Vであればθは180degreeであるとわかる。角度θは、指針12の回転角度に相当するため、θからアナログ測定値を読み取ることが可能になる。 The magnet 14 attached to the rotating shaft 13 rotates together with the rotation of the rotating shaft 13, as shown in FIG. The magnetic sensor 21 reads the magnetic movement of the magnet 14 and outputs the values of Sin θ and Cos θ with respect to the angle θ as voltages as shown in FIG. Based on this output, the angle θ is calculated. For example, when the output of Sin θ is 0.0 V, if Cos θ is 1.5 V, the angle is 0 degree, and if Cos θ is −1.5 V, θ is 180 degrees. Since the angle θ corresponds to the rotation angle of the pointer 12, it becomes possible to read an analog measurement value from θ.
 工場等において、アナログの指針で検出値を示す装置が一般に使用されている。アナログ計であるので測定値を管理するには、目視で検針を行う必要があるが、上記文献等によって、自動で測定値を読み取る事を可能にしている。 Devices that indicate detected values using analog pointers are commonly used in factories and the like. Since it is an analog meter, it is necessary to visually read the meter to manage the measured values, but the above-mentioned literature makes it possible to read the measured values automatically.
 また、例えば、ブルドン管圧力計は、通常、筐体内にブルドン管、目盛板および指針を設け、測定流体圧の変動に伴うブルドン管の弾性応力によるわずかな動きを、拡大機構を介して指針に伝達し、指針を目盛板上に回転指示させるようにしたものである。 For example, a Bourdon tube pressure gauge usually has a Bourdon tube, a scale plate, and a pointer inside the housing, and the slight movement caused by the elastic stress of the Bourdon tube due to fluctuations in the measured fluid pressure is reflected in the pointer through an enlargement mechanism. The system transmits the information and instructs the pointer to rotate on the scale plate.
 上記のように、ブルドン管圧力計は、ブルドン管の微妙な変移を検出しているため、例えば、測定流体の脈動や、圧力計を取り付ける、管体等の振動による影響を受け易く、肉眼では指針が止まっているように見えても、指針は常に微動している。 As mentioned above, the Bourdon tube pressure gauge detects subtle changes in the Bourdon tube, so it is easily affected by, for example, pulsation of the measuring fluid, vibrations of the pressure gauge attached, the tube body, etc., and it is difficult to see with the naked eye. Even if the pointer appears to be stationary, it is always moving slightly.
 図7にアナログ計器10の測定値を読み取るときのフローを記載する。図7のフローでは、磁石14の磁気センサ21とでアナログ計器10の指針12の角度を読み取ることを測角と表現している。測定開始後、規定回数測定を行った後、平均化処理を行う。 FIG. 7 shows the flow when reading the measured values of the analog meter 10. In the flow of FIG. 7, reading the angle of the pointer 12 of the analog meter 10 with the magnetic sensor 21 of the magnet 14 is expressed as angle measurement. After starting the measurement and performing the measurement a specified number of times, averaging processing is performed.
 上記に示すような装置は読み取りの分解能が高く、使用して、指針の動作を読み取った場合、上記の微動を読み取るため、測定値が安定しない。このため測定を繰り返し行い、平均する等の手段が必要である。 The device shown above has a high reading resolution, and when it is used to read the movement of the pointer, the measured value is unstable because it reads the minute movement mentioned above. Therefore, it is necessary to take measurements repeatedly and average them.
 次に、平均処理したデータを測定結果として出力を行う。 Next, the averaged data is output as the measurement result.
 本開示に係る故障検知装置100は、上記のようにアナログ計測器10の指針12の表示をデジタル値として出力することを行うが、加えて、アナログ計測器10が故障した事を検知する機能を合わせて持つ。故障検出機能が必要な理由と検出手段を以下に記載する。 The failure detection device 100 according to the present disclosure outputs the display of the pointer 12 of the analog measuring instrument 10 as a digital value as described above, but also has a function of detecting that the analog measuring instrument 10 has failed. Have it together. The reason why a failure detection function is necessary and the detection means are described below.
 上記アナログ計器10は一般に機械的手段により測定が行われているため、故障が起こる事がある。例えば、圧力計は、ブルドン管が、圧力により変形を測定し機械式の指針で表示を行うため、ブルゾン管の金属疲労や変形による故障や、指針の固着等による故障が発生する場合がある。 Since the analog meter 10 generally performs measurements by mechanical means, failures may occur. For example, in a pressure gauge, a bourdon tube measures deformation based on pressure and displays it with a mechanical pointer, so failures may occur due to metal fatigue or deformation of the bourdon tube or due to sticking of the pointer.
 このような故障は、熟練の作業者が、検出値が変動する時の指針の動作をみて、通常と異なる事を検知して異常を発見する事が稀にあるが、指針がゼロから動かなくなる等、完全に動作しなくなるまで故障がわからない課題がある。 In rare cases, a skilled worker will detect an abnormality by observing the movement of the pointer when the detected value fluctuates and detect something different from normal, but this may occur if the pointer does not move from zero. There are problems in which failures are not known until they have completely stopped working.
 そこで、本開示に係る故障検知装置100は、アナログ計器の故障を容易に検知することを可能とする。正常時においては、アナログ計器の指針は脈動し微動しているので、本開示に係る故障検知装置100は、指針の微動によって指針が振れ(回転し)、生じる磁石の磁場の変化によって故障を検知する。 Therefore, the failure detection device 100 according to the present disclosure makes it possible to easily detect failures in analog instruments. Under normal conditions, the pointer of an analog meter pulsates and makes slight movements, so the failure detection device 100 according to the present disclosure detects a failure by the change in the magnetic field of the magnet that occurs when the pointer shakes (rotates) due to the slight movement of the pointer. do.
 故障判断方法について説明する。図8は、本開示に係る故障検知装置100が故障を判断するフロー図である。 The failure determination method will be explained. FIG. 8 is a flow diagram in which the failure detection device 100 according to the present disclosure determines a failure.
 本開示に係る故障検知装置100は、小型のアナログ計器10等を用いることができる。具体的には、アナログ計器10の径Nは、φ60mm以下、φ50mm以下である。これらの径のような小型のアナログ計器10の指針12の脈動は、指針12も小型のために非常に小さく微動で振れ幅が小いため、特に肉眼で脈動の有無を判断することは不可能である。本開示に係る故障検知装置100は、小型のアナログ計器10でも故障検出可能とする。 The failure detection device 100 according to the present disclosure can use a small analog meter 10 or the like. Specifically, the diameter N of the analog meter 10 is 60 mm or less and 50 mm or less. The pulsation of the pointer 12 of a small analog instrument 10 such as these diameters is very small and has a small amplitude due to the small size of the pointer 12, so it is impossible to judge the presence or absence of pulsation with the naked eye. be. The failure detection device 100 according to the present disclosure can detect failures even in small analog instruments 10.
 まず、センサユニット20によって、指針12に取り付けた磁石14の磁場の変化を読み取り、初期値からの指針12の規定回数相対角度を測角し、データ格納する。例えばこれを1秒毎又はより高速の2ミリ秒で繰り返す。2ミリ秒で測定することにより、1秒で500回のデータを得る事ができる。 First, the sensor unit 20 reads the change in the magnetic field of the magnet 14 attached to the pointer 12, measures the relative angle of the pointer 12 a specified number of times from the initial value, and stores the data. For example, repeat this every second or faster, at 2 milliseconds. By measuring in 2 milliseconds, data can be obtained 500 times in 1 second.
 測定間隔は任意に設定できる。間隔を短くしすぎると、測定系の消費電力があがるし、長すぎると測定値が変動した時に、変動に気付くのが遅れてしますので。測定系での必要性を考慮して時間を設定する。 The measurement interval can be set arbitrarily. If the interval is too short, the power consumption of the measurement system will increase, and if it is too long, it will be too late to notice changes in measured values. Set the time taking into consideration the needs of the measurement system.
 そして、格納したデータで相対角度の標準偏差を算出する。標準偏差は、測定値を安定化させるために行った、上記平均値を算出したデータに基づき算出することもできるし、規定回数測定したデータで求めることもできる。 Then, the standard deviation of the relative angle is calculated using the stored data. The standard deviation can be calculated based on data obtained by calculating the above-mentioned average value in order to stabilize the measured value, or can be calculated from data obtained by measuring a specified number of times.
 標準偏差の算出方法としては、図4において、例えば測定した角度がθ=1°、-θ=-1°、θ=0.8°、θ=-1°、θ=-0.9°、θ=1.5°の場合、データとして、1°、-1°、0.8°、-1°、-0.9°、1.5°として計算し、平均値約0.07°、標準偏差約1.16°となる。 The standard deviation calculation method is as shown in FIG. 4, for example, if the measured angles are θ=1°, -θ=-1°, θ=0.8°, θ=-1°, θ=-0.9°, When θ=1.5°, the data is calculated as 1°, -1°, 0.8°, -1°, -0.9°, 1.5°, and the average value is approximately 0.07°. The standard deviation is approximately 1.16°.
 測定した標準偏差が閾値よりも大きい場合に正常と判断する。一方で、測定した標準偏差が閾値よりも小さい場合に故障と判断する。標準偏差が大きい場合、測定値のバラツキが大きいという事である。この事は、指針12が測定対象のランダムな微動に追従して正常に動作を行っていることを示す。一方、標準偏差が小さい場合、測定値のバラツキが小さいという事である。この場合、指針12が固着等により、測定対象のランダムな微動に追従できなくなっていると考えられ、故障と判断できる。 If the measured standard deviation is larger than the threshold value, it is determined to be normal. On the other hand, if the measured standard deviation is smaller than the threshold, it is determined that there is a failure. If the standard deviation is large, it means that the variation in the measured values is large. This shows that the pointer 12 is operating normally by following the random micro-movements of the object to be measured. On the other hand, when the standard deviation is small, it means that the variation in measured values is small. In this case, it is considered that the pointer 12 is stuck and unable to follow the random micro-movement of the object to be measured, and it can be determined that the pointer 12 is malfunctioning.
 ここで、閾値を設定する目的としては、アナログ計器10を設置する場所によって、振動等の程度により、脈動による指針12の振れ幅が異なる。よって、閾値の設定は、設置場所でアナログ計器10の測角を行い、標準偏差を求め、温度変動や振動変化等を考慮して閾値を設定することが必要となる。 Here, the purpose of setting the threshold value is that the swing amplitude of the pointer 12 due to pulsation varies depending on the location where the analog meter 10 is installed and the degree of vibration etc. Therefore, in setting the threshold value, it is necessary to measure the angle of the analog instrument 10 at the installation location, obtain the standard deviation, and set the threshold value in consideration of temperature fluctuations, vibration changes, and the like.
 閾値は、定常動作する機器に取り付ける場合、装置を取り付ける際の正常動作時の標準偏差を取得し、それを閾値とすることができる。閾値は、0°より大きく0.5°以下の範囲とすることもできる。例えば、φ50のアナログ計器10の指針12の中心から、目盛り16までの長さは、約20mmである。このとき、半径20mmにおいてθ=0.25°、-θ=-0.25°(中心角0.5度、±0.25°)の弦の長さは、約0.17mm、すなわち指針12先端の移動距離は約±0.085mmである。人間が肉眼で判断できる最小距離は0.1mmと言われているので、上記の範囲が好ましい。よって、精度よく故障を判断することができる。 When installing the device on a device that operates normally, the threshold value can be determined by obtaining the standard deviation during normal operation when the device is installed and using that as the threshold value. The threshold value can also be in a range greater than 0° and less than or equal to 0.5°. For example, the length from the center of the pointer 12 to the scale 16 of the φ50 analog meter 10 is approximately 20 mm. At this time, the length of the string of θ=0.25° and -θ=-0.25° (center angle 0.5°, ±0.25°) at a radius of 20 mm is approximately 0.17 mm, that is, the pointer 12 The moving distance of the tip is approximately ±0.085 mm. The minimum distance that humans can judge with the naked eye is said to be 0.1 mm, so the above range is preferable. Therefore, failure can be determined with high accuracy.
 図9は、本開示に係る故障検知装置100が故障を判断する変形例のフロー図である。図9に示すように、故障の判断をするために、パラメータ、不感帯を用いる。 FIG. 9 is a flow diagram of a modification example in which the failure detection device 100 according to the present disclosure determines a failure. As shown in FIG. 9, parameters and dead zones are used to determine failure.
 磁気センサの性質上、初期にキャリブレーションが必要である。この際に、正常時の標準偏差を取得し、内部のパラメータとして保管し、故障判断のパラメータとして使用する。 Due to the nature of magnetic sensors, initial calibration is required. At this time, the standard deviation during normal operation is obtained, stored as an internal parameter, and used as a parameter for failure determination.
 測角や標準偏差を行う部分は、図8における実施形態と同様に行う。図8における実施形態では、標準偏差を設定して故障判断を行っていたが、この変形例では、キャリブレーション時に取得したパラメータをもとに故障判断を行う。 The angle measurement and standard deviation are performed in the same manner as in the embodiment shown in FIG. In the embodiment shown in FIG. 8, a standard deviation is set to determine a failure, but in this modification, a failure is determined based on parameters acquired during calibration.
 パラメータは、アナログ計器10の非動作時の標準偏差とする。また、不感帯をユーザが設定し、パラメータ±不感帯と、高頻度で測角し求めた標準偏差と比較し判断する。 The parameter is the standard deviation of the analog instrument 10 when it is not operating. Further, a dead zone is set by the user, and the determination is made by comparing the parameter ± dead zone with the standard deviation obtained by frequently measuring angles.
 このとき、標準偏差がパラメータと不感帯との加算値より大きい場合に正常と判断する。一方、標準偏差がパラメータと不感帯との加算値より小さい場合に故障と判断する。 At this time, if the standard deviation is larger than the sum of the parameter and the dead zone, it is determined to be normal. On the other hand, if the standard deviation is smaller than the sum of the parameter and the dead zone, it is determined that there is a failure.
 また、不感帯は、-0.5°~0.5°の範囲とすることが好ましい。 Furthermore, the dead zone is preferably in the range of -0.5° to 0.5°.
 また、図8及び図9に示す実施形態について、一定期間ごとに自動で測定し、故障判断することが好ましい。一定期間は、半日ごと、1日ごととすることができる。 Furthermore, in the embodiments shown in FIGS. 8 and 9, it is preferable to automatically measure at regular intervals and determine a failure. The fixed period can be set every half day or every day.
 以上より、本開示に係る故障検知装置100によれば、アナログ計器10の故障を検知することが可能となる。 As described above, according to the failure detection device 100 according to the present disclosure, it is possible to detect a failure of the analog meter 10.
 なお、上記のように本開示の各実施形態及び各実施例について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本開示の範囲に含まれるものとする。 Although each embodiment and each example of the present disclosure has been described in detail as above, those skilled in the art will appreciate that many modifications can be made without substantially departing from the novelty and effects of the present disclosure. , it will be easy to understand. Therefore, all such modifications are included within the scope of the present disclosure.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、故障検知装置の構成、動作も本開示の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term that is described at least once in the specification or drawings together with a different term with a broader or synonymous meaning can be replaced by that different term anywhere in the specification or drawings. Further, the configuration and operation of the failure detection device are not limited to those described in each embodiment and each example of the present disclosure, and various modifications are possible.

Claims (8)

  1.  筐体と、前記筐体内に備える指針と、前記指針の回転軸芯に取り付けられた磁石とを備えるアナログ計器と、
     前記アナログ計器の正面側に取り付けられたセンサユニットと、
    を備え、
     前記センサユニットは、前記指針の微動によって生じる前記磁石の磁場の変化から故障判断することを特徴とする故障検知装置。
    An analog instrument comprising a housing, a pointer provided in the housing, and a magnet attached to a rotation axis of the pointer;
    a sensor unit attached to the front side of the analog instrument;
    Equipped with
    The failure detection device is characterized in that the sensor unit determines failure based on a change in the magnetic field of the magnet caused by slight movement of the pointer.
  2.  前記センサユニットは、前記アナログ計器の故障判定中における前記指針の微動によって生じる前記磁石の磁場の変化から前記指針が回転する相対角度の標準偏差を測定し、
     前記標準偏差が、前記アナログ計器の固有の閾値より小さいときに故障と判断することを特徴とする請求項1に記載の故障検知装置。
    The sensor unit measures a standard deviation of a relative angle at which the pointer rotates from a change in the magnetic field of the magnet caused by a slight movement of the pointer during failure determination of the analog meter;
    The failure detection device according to claim 1, wherein a failure is determined when the standard deviation is smaller than a threshold value specific to the analog meter.
  3.  前記閾値は、0°より大きく0.5°以下の範囲であることを特徴とする請求項2に記載の故障検知装置。 The failure detection device according to claim 2, wherein the threshold value is in a range of greater than 0° and less than or equal to 0.5°.
  4.  前記センサユニットは、前記アナログ計器の故障判定中における前記指針の微動によって生じる前記磁石の磁場の変化から前記指針が回転する相対角度の標準偏差を測定し、
     前記標準偏差が、前記アナログ計器の平常時における前記指針の微動によって生じる前記磁石の磁場の変化から前記指針が回転する相対角度の標準偏差であるパラメータより小さいときに故障と判断することを特徴とする請求項1に記載の故障検知装置。
    The sensor unit measures a standard deviation of a relative angle at which the pointer rotates from a change in the magnetic field of the magnet caused by a slight movement of the pointer during failure determination of the analog meter;
    A failure is determined when the standard deviation is smaller than a parameter that is a standard deviation of the relative angle at which the pointer rotates from a change in the magnetic field of the magnet caused by slight movement of the pointer during normal operation of the analog meter. The failure detection device according to claim 1.
  5.  前記標準偏差が、前記パラメータと不感帯との加算値より小さいときに故障と判断することを特徴とする請求項4に記載の故障検知装置。 The failure detection device according to claim 4, wherein a failure is determined when the standard deviation is smaller than the sum of the parameter and the dead zone.
  6.  前記不感帯は、-0.5°~0.5°の範囲であることを特徴とする請求項5に記載の故障検知装置。 The failure detection device according to claim 5, wherein the dead zone is in a range of -0.5° to 0.5°.
  7.  一定期間ごとに自動で故障判断することを特徴とする請求項1~6のいずれか1項に記載の故障検知装置。 The failure detection device according to any one of claims 1 to 6, wherein the failure detection device automatically determines failure at regular intervals.
  8.  前記アナログ計器は、φ60mm以下であることを特徴とする請求項1~7のいずれか1項に記載の故障検知装置。 The failure detection device according to any one of claims 1 to 7, wherein the analog meter has a diameter of 60 mm or less.
PCT/JP2023/007946 2022-03-17 2023-03-03 Failure detection device WO2023176494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-042039 2022-03-17
JP2022042039 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176494A1 true WO2023176494A1 (en) 2023-09-21

Family

ID=88023626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007946 WO2023176494A1 (en) 2022-03-17 2023-03-03 Failure detection device

Country Status (1)

Country Link
WO (1) WO2023176494A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325155A (en) * 2003-04-23 2004-11-18 Calsonic Kansei Corp Method, apparatus, and program for inspecting vehicle instrument
JP2005207947A (en) * 2004-01-23 2005-08-04 Toshiba Corp Operation controller for synchro device
JP2005338054A (en) * 2004-04-28 2005-12-08 Nissan Motor Co Ltd Automatic evaluation device of vehicle-mounted display gauge
JP3161399U (en) * 2010-05-18 2010-07-29 長野計器株式会社 Pointer reader
JP2020072614A (en) * 2018-11-02 2020-05-07 株式会社近計システム Gas pressure monitoring device of gas insulation breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325155A (en) * 2003-04-23 2004-11-18 Calsonic Kansei Corp Method, apparatus, and program for inspecting vehicle instrument
JP2005207947A (en) * 2004-01-23 2005-08-04 Toshiba Corp Operation controller for synchro device
JP2005338054A (en) * 2004-04-28 2005-12-08 Nissan Motor Co Ltd Automatic evaluation device of vehicle-mounted display gauge
JP3161399U (en) * 2010-05-18 2010-07-29 長野計器株式会社 Pointer reader
JP2020072614A (en) * 2018-11-02 2020-05-07 株式会社近計システム Gas pressure monitoring device of gas insulation breaker

Similar Documents

Publication Publication Date Title
EP2205932B1 (en) System and method for measuring installation dimensions for flow measurement system
US7996161B2 (en) Process fluid pressure transmitter with pressure transient detection
US8087825B2 (en) Mechanical and electronic temperature reading system with built-in failure and inaccuracy detection
US6499353B1 (en) Method and apparatus for remote measurement of physical properties inside a sealed container
EP3101401B1 (en) Pressure gauge
EP2133665B1 (en) System and method for objective self-diagnosis of measurement device calibration condition
WO2023176494A1 (en) Failure detection device
EP3314211B1 (en) Process variable measurement and local display with multiple ranges
US8915134B2 (en) Instrument fault indication apparatus
JP2006518041A (en) Pressure measurement
JPS6259249B2 (en)
JP2008033398A (en) Apparatus and method for reading rotary meter
JP2000186774A (en) Vessel with monitoring mechanical seal
JP2007248363A (en) Electronic water meter
CN216012103U (en) Large-scale rotating equipment inclined plane differential expansion monitoring devices
Morris et al. Measurement and Instrumentation
KR20130094517A (en) Suck back measuring apparatus by using a electronic sensor for dental hand piece
JP2000213742A (en) Gas safety device
EP3940344A1 (en) A detector for reading a gauge
JP3133073U (en) Thermometer
JP2006133238A (en) Flow rate measuring means
JP2000097787A (en) Earth pressure meter
EP2029977B1 (en) Liquid level detector with magnetic coupling to the indicator dial
JP2003021550A (en) Temperature compensation device of torque tube type meter
KR20110073076A (en) Measurement apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770452

Country of ref document: EP

Kind code of ref document: A1