JP2020071924A - Positive electrode material for nickel hydrogen battery - Google Patents

Positive electrode material for nickel hydrogen battery Download PDF

Info

Publication number
JP2020071924A
JP2020071924A JP2018203122A JP2018203122A JP2020071924A JP 2020071924 A JP2020071924 A JP 2020071924A JP 2018203122 A JP2018203122 A JP 2018203122A JP 2018203122 A JP2018203122 A JP 2018203122A JP 2020071924 A JP2020071924 A JP 2020071924A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
hydrogen battery
battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018203122A
Other languages
Japanese (ja)
Inventor
伸 後田
Shin Nochida
伸 後田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018203122A priority Critical patent/JP2020071924A/en
Publication of JP2020071924A publication Critical patent/JP2020071924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode material for nickel hydrogen batteries, capable of improving capacity.SOLUTION: A positive electrode material for nickel hydrogen batteries contains a positive electrode active material and a conductive assistant, the conductive assistant being CoCO.SELECTED DRAWING: None

Description

本願はニッケル水素電池用正極材料を開示するものである。   The present application discloses a positive electrode material for a nickel hydrogen battery.

非特許文献1には正極に導電助材としてCoを用いたニッケル水素電池が開示されており、Coを用いることにより電池の電気化学的性能が向上したと記載されている。   Non-Patent Document 1 discloses a nickel-hydrogen battery that uses Co as a conductive additive for the positive electrode, and describes that the use of Co improves the electrochemical performance of the battery.

M.G.Ortiz et. al, International journal of hydrogen energy, 39, 2014, 8661-8666.M.G.Ortiz et.al, International journal of hydrogen energy, 39, 2014, 8661-8666.

しかしながら、Coは電解液中に溶出し難いという性質を有するため、正極活物質間に十分な量の導電パスが形成できていないと考えられる。十分な量の導電パスが形成されないと、電池の容量が小さくなる。そのため、ニッケル水素電池の正極に用いる導電助材については、まだまだ改善の余地があった。   However, since Co has a property of being difficult to elute in the electrolytic solution, it is considered that a sufficient amount of conductive paths cannot be formed between the positive electrode active materials. If a sufficient amount of conductive paths are not formed, the capacity of the battery becomes small. Therefore, there is still room for improvement in the conductive auxiliary material used for the positive electrode of the nickel hydrogen battery.

そこで、本願は容量を向上させることができるニッケル水素電池用正極材料を提供することを課題とする。   Then, this application makes it a subject to provide the positive electrode material for nickel hydrogen batteries which can improve capacity.

本発明者は、鋭意検討した結果、導電助材にCoCOを用いることで、電池容量が向上することを見出した。 As a result of earnest studies, the present inventor has found that the battery capacity is improved by using CoCO 3 as the conductive auxiliary material.

よって、本願は上記知見に基づいて、上記課題を解決する1つの手段として、正極活物質と導電助材とを含み、導電助材がCoCOである、ニッケル水素電池用正極材料を開示する。 Therefore, the present application discloses a positive electrode material for a nickel-hydrogen battery, which contains a positive electrode active material and a conductive auxiliary material, and the conductive auxiliary material is CoCO 3 , as one means for solving the above problems based on the above findings.

本願が開示するニッケル水素電池用正極材料によれば、電池の容量を向上させることができる。   According to the positive electrode material for a nickel-hydrogen battery disclosed by the present application, the capacity of the battery can be improved.

導電助材としてCoを用いた場合における、導電パス形成の推定メカニズムを説明する図である。It is a figure explaining the presumed mechanism of conductive path formation when Co is used as a conductive auxiliary material. 導電助材としてCoCOを用いた場合における、導電パス形成の推定メカニズムを説明する図である。In the case of using a CoCO 3 as a conductive auxiliary material is a diagram for explaining the estimation mechanism of conductive paths formed. 実施例に用いた導電助材のXRD結果である。It is an XRD result of the conductive auxiliary material used in the Example. 比較例に用いた導電助材のXRD結果である。It is an XRD result of the conductive auxiliary material used for the comparative example. 実施例の充放電曲線である。It is a charging / discharging curve of an Example. 比較例の充放電曲線である。It is a charge-discharge curve of a comparative example. 実施例のインピーダンス測定の結果である。It is a result of impedance measurement of an example. 比較例のインピーダンス測定の結果である。It is a result of impedance measurement of a comparative example.

以下において、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。   In the following, regarding the numerical values A and B, the notation “A to B” means “above A and below B”. In this notation, when a unit is attached only to the numerical value B, the unit is also applied to the numerical value A.

<ニッケル水素電池用正極材料>
本開示のニッケル水素電池用正極材料は正極活物質と導電助材を含み、導電助材がCoCOであることを特徴としている。これにより、電池の容量を向上させることができる。
<Cathode material for nickel-hydrogen battery>
The positive electrode material for a nickel-hydrogen battery of the present disclosure includes a positive electrode active material and a conductive auxiliary material, and the conductive auxiliary material is CoCO 3 . Thereby, the capacity of the battery can be improved.

正極活物質としては、ニッケル水素電池に使用される正極活物質であれば特に限定されず、水酸化ニッケル等のニッケル化合物又は該ニッケル化合物の水和物を用いることができる。正極材料における正極活物質の含有量は、特に限定されないが、80.0質量%以上99.8質量%以下であることが好ましい。   The positive electrode active material is not particularly limited as long as it is a positive electrode active material used in a nickel hydrogen battery, and a nickel compound such as nickel hydroxide or a hydrate of the nickel compound can be used. The content of the positive electrode active material in the positive electrode material is not particularly limited, but is preferably 80.0 mass% or more and 99.8 mass% or less.

導電助材としては、上述のとおりCoCOを用いる。正極材料における導電助材の含有量は、特に限定されないが、0.1質量%以上10質量%以下であることが好ましい。ただし、正極材料にCoCO以外の導電助材を用いることを妨げるものではない。 As the conductive material, CoCO 3 is used as described above. The content of the conductive additive in the positive electrode material is not particularly limited, but is preferably 0.1% by mass or more and 10% by mass or less. However, it does not prevent the use of a conductive auxiliary material other than CoCO 3 for the positive electrode material.

また、本開示のニッケル水素電池用正極材料は、上記の正極活物質及び導電助材の他に、公知のバインダーを含むことができる。例えば、SBR(スチレンブタジエンゴム)やCMC(カルボキシメチルセルロース)を挙げることができる。バインダーは単独で用いても良く、複数組み合わせて使用しても良い。正極材料におけるバインダーの含有量は、特に限定されないが、0.1質量%以上10質量%以下であることが好ましい。   In addition, the positive electrode material for a nickel-hydrogen battery of the present disclosure can include a known binder in addition to the positive electrode active material and the conductive auxiliary material. For example, SBR (styrene butadiene rubber) and CMC (carboxymethyl cellulose) can be mentioned. The binder may be used alone or in combination of two or more. The content of the binder in the positive electrode material is not particularly limited, but is preferably 0.1% by mass or more and 10% by mass or less.

ここで、本開示のニッケル水素電池用正極材料を用いることにより電池容量が向上する推定メカニズムについて説明する。   Here, an estimation mechanism by which the battery capacity is improved by using the positive electrode material for a nickel-hydrogen battery according to the present disclosure will be described.

まず、導電助材にCoを用いた従来の正極材料を電池に用いた場合について、図1を用いて説明する。図1に示したように、Coは電解液中のOHと反応して、Co(OH) 2−となり電解液中に溶出する。そして、Co(OH) 2−はさらに酸化されてCoOOHとなり、これにより正極活物質間に導電パスが形成される。
しかしながら、図1に示した通り、一般的にCoはニッケル水素電池に用いられる電解液に溶出し難く、そのためCoOOHの生成量が少なくなり易い。そのため、正極活物質間に十分な導電パスが形成されず、反応抵抗が高くなり易く、容量が小さくなり易い。
First, a case where a conventional positive electrode material using Co as a conductive additive is used in a battery will be described with reference to FIG. As shown in FIG. 1, Co reacts with OH in the electrolytic solution to become Co (OH) 4 2− and is eluted into the electrolytic solution. Then, Co (OH) 4 2− is further oxidized to CoOOH, which forms a conductive path between the positive electrode active materials.
However, as shown in FIG. 1, generally, Co is difficult to be eluted in the electrolytic solution used in the nickel-hydrogen battery, so that the amount of CoOOH produced tends to be small. Therefore, a sufficient conductive path is not formed between the positive electrode active materials, reaction resistance tends to increase, and capacity tends to decrease.

一方で、本開示の正極材料では導電助材にCoCOを用いている。CoCOはCoよりも電解液中に溶出し易いため、図2に示したように、正極活物質間に十分な量の導電パス(CoOOH)を形成することができる。よって、本開示のニッケル水素電池用正極材料を電池に用いることにより、導電パスの形成が促進するため、反応抵抗を低減させることができ、容量を向上させることができる。 On the other hand, in the positive electrode material of the present disclosure, CoCO 3 is used as a conductive auxiliary material. Since CoCO 3 is more easily eluted into the electrolytic solution than Co, a sufficient amount of conductive paths (CoOOH) can be formed between the positive electrode active materials, as shown in FIG. Therefore, by using the positive electrode material for a nickel-hydrogen battery of the present disclosure in a battery, formation of a conductive path is promoted, so that the reaction resistance can be reduced and the capacity can be improved.

本開示のニッケル水素電池用正極材料を用いて、正極を製造する方法は、特に限定されず、公知の方法を採用することができる。例えば、本開示のニッケル水素電池用正極材料を混合して圧延する方法や、本開示のニッケル水素電池用正極材料と溶媒とを含むスラリーを塗布する方法が挙げられる。   The method for producing a positive electrode using the positive electrode material for a nickel-hydrogen battery of the present disclosure is not particularly limited, and a known method can be adopted. For example, a method of mixing and rolling the positive electrode material for nickel hydrogen battery of the present disclosure and a method of applying a slurry containing the positive electrode material for nickel hydrogen battery of the present disclosure and a solvent can be mentioned.

また、上記の正極を用いて構成されたニッケル水素電池も特に限定されず、公知の構成を採用することができる。例えば、正極と、負極と、正極及び負極の間に備えられた電解質層とを有するニッケル水素電池とすることができる。なお、正極及び負極には集電体が配置されていることが好ましい。   Moreover, the nickel-hydrogen battery configured using the above positive electrode is not particularly limited, and a known configuration can be adopted. For example, the nickel-hydrogen battery can have a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode. In addition, it is preferable that current collectors are arranged on the positive electrode and the negative electrode.

ここで、負極には、ニッケル水素電池に用いられる公知の負極活物質を含む負極を用いることができる。例えば、負極活物質としてニッケル水素電池に用いられる水素吸蔵合金を挙げることができる。また、負極には導電助材やバインダーが含まれていても良い。
電解質層には、ニッケル水素電池に用いられる公知の電解質(液体電解質等)を含む電解質層を用いることができる。ただし、電解質に液体電解質(電解液)を用いる場合は、正極と負極との間に絶縁性多孔質体であるセパレータを配置し、正極と負極との絶縁性を確保する必要がある。液体電解質としては、例えば水酸カリウム水溶液や水酸化ナトリウム水溶液、水酸化リチウム水溶液等の公知のものを挙げることができる。これらの液体電解質は単独で用いても良く、複数用いてもよい。液体電解質の濃度は、特に限定されないが、4mol/kg〜8mol/kgが好ましい。
集電体には、ニッケル等の公知の集電体を用いることができる。
Here, as the negative electrode, a negative electrode containing a known negative electrode active material used in nickel-hydrogen batteries can be used. For example, the negative electrode active material may be a hydrogen storage alloy used in nickel-hydrogen batteries. Further, the negative electrode may contain a conductive auxiliary material or a binder.
As the electrolyte layer, an electrolyte layer containing a known electrolyte (liquid electrolyte or the like) used in nickel hydrogen batteries can be used. However, when a liquid electrolyte (electrolyte solution) is used as the electrolyte, it is necessary to dispose a separator, which is an insulating porous body, between the positive electrode and the negative electrode to ensure insulation between the positive electrode and the negative electrode. Examples of the liquid electrolyte include known ones such as potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, and lithium hydroxide aqueous solution. These liquid electrolytes may be used alone or in combination. The concentration of the liquid electrolyte is not particularly limited, but is preferably 4 mol / kg to 8 mol / kg.
A known collector such as nickel can be used as the collector.

上記のニッケル水素電池の製造方法は、特に限定されず、ニッケル水素電池の構成に応じて適宜最適な方法を採用することができる。   The method for manufacturing the above nickel hydrogen battery is not particularly limited, and an optimal method can be adopted as appropriate according to the configuration of the nickel hydrogen battery.

本開示のニッケル水素電池用正極材料について、実施例及び比較例を用いて詳しく説明する。   The positive electrode material for a nickel-hydrogen battery of the present disclosure will be described in detail with reference to Examples and Comparative Examples.

[導電助材の同定]
実施例及び比較例に用いる導電助材について、それぞれXRD測定を行った。結果を図3、4に示した。図3より、実施例に用いる導電助材はCoCOであることが確認できた。図4より、比較例に用いる導電助材はCoであることが確認できた。
[Identification of conduction aid]
XRD measurement was performed for each of the conductive auxiliary materials used in Examples and Comparative Examples. The results are shown in FIGS. From FIG. 3, it was confirmed that the conductive auxiliary material used in the examples was CoCO 3 . From FIG. 4, it was confirmed that the conductive additive used in the comparative example was Co.

ここで、上記で行ったXRD測定の条件を示す。なお、XRD測定はリガク製のXRD測定装置を用いた。条件はCuKα線にて2θ=20度〜80度とした。   Here, the conditions of the XRD measurement performed above are shown. In addition, the XRD measurement used the Rigaku XRD measuring device. The condition was 2θ = 20 ° to 80 ° with CuKα ray.

[実施例に係る電池の作製]
<正極の作製>
正極活物質(β−Ni(OH))と、導電助材(CoCO)と、SBRと、CMCとを質量比で95:3:1:1の配合で混合し、さらに溶媒(NMP)を加えて混合してスラリーとした。そして、得られたスラリーを集電体(ニッケル)に塗布し、乾燥させることで正極を作製した。
[Production of Battery According to Example]
<Production of positive electrode>
A positive electrode active material (β-Ni (OH) 2 ), a conductive auxiliary material (CoCO 3 ), SBR, and CMC were mixed in a mass ratio of 95: 3: 1: 1, and further mixed with a solvent (NMP). Was added and mixed to form a slurry. Then, the obtained slurry was applied to a current collector (nickel) and dried to prepare a positive electrode.

<負極の作製>
水素吸蔵合金と、SBRと、CMCとを質量比で98:1:1の配合で混合し、さらに溶媒(NMP)を加えて混合してスラリーとした。そして、得られたスラリーを集電体(ニッケル)に塗布し、乾燥させることで負極を作製した。
なお、水素吸蔵合金としては、LaNiを用いた。
<Production of negative electrode>
Hydrogen storage alloy, SBR, and CMC were mixed in a mass ratio of 98: 1: 1, and a solvent (NMP) was further added and mixed to obtain a slurry. Then, the obtained slurry was applied to a current collector (nickel) and dried to prepare a negative electrode.
LaNi 5 was used as the hydrogen storage alloy.

<ニッケル水素電池の作製>
上記で作製した正極と負極との間にセパレータ(ポリエチレン・ポリプロピレン製不織布)を挟み、さらに、両面からアクリル板で圧迫して固定した。そして、6mol/kgの水酸化カリウム水溶液を電解液に用いて、評価用のニッケル水素電池を作製した。参照電極としては酸化水銀電極(Hg/HgO)を用いた。
<Production of nickel-hydrogen battery>
A separator (a non-woven fabric made of polyethylene / polypropylene) was sandwiched between the positive electrode and the negative electrode produced as described above, and further, pressed by an acrylic plate from both sides and fixed. Then, a 6 mol / kg potassium hydroxide aqueous solution was used as an electrolytic solution to prepare a nickel hydrogen battery for evaluation. A mercury oxide electrode (Hg / HgO) was used as a reference electrode.

[比較例に係る電池の作製]
実施例の導電助材をCoに替えて、ニッケル水素電池を作製した。
[Preparation of Battery According to Comparative Example]
A nickel-metal hydride battery was manufactured by replacing Co in the conductive auxiliary material of the example.

[評価]
実施例および比較例に係るニッケル水素電池について、放電容量及び反応抵抗について評価した。
まず、ニッケル水素電池を充放電装置に接続し、25℃の温度で充電、放電を行った。そして、25℃の温度で10サイクルの充放電を繰り返した。そのときの充放電容量の結果を図5、6に示した。また、充放電は電流値0.2mA/cmで行い、下限電圧を1.0Vとした。その後、インピーダンス測定を実施した。この結果を図7、8に示した。また、得られた結果を表1にまとめた。
[Evaluation]
The nickel-metal hydride batteries according to Examples and Comparative Examples were evaluated for discharge capacity and reaction resistance.
First, a nickel hydrogen battery was connected to a charging / discharging device, and charging / discharging was performed at a temperature of 25 ° C. Then, 10 cycles of charging and discharging were repeated at a temperature of 25 ° C. The results of the charge / discharge capacity at that time are shown in FIGS. The charge / discharge was performed at a current value of 0.2 mA / cm 2 , and the lower limit voltage was 1.0V. Then, impedance measurement was performed. The results are shown in FIGS. The obtained results are summarized in Table 1.

表1より、正極の導電助材としてCoCOを用いた実施例の電池は、Coを用いた電池よりも反応抵抗が減少し、かつ、放電容量が増加した。これは、CoCOがCoに比べて電解質中に溶出し易く、CoOOHの生成量が増加(正極活物質間の導電パスが増加)したためと考えられる。 From Table 1, the batteries of Examples using CoCO 3 as a conductive additive for the positive electrode had a lower reaction resistance and a higher discharge capacity than the batteries using Co. It is considered that this is because CoCO 3 is more likely to be eluted into the electrolyte than Co and the amount of CoOOH produced is increased (the conductive path between the positive electrode active materials is increased).

Claims (1)

正極活物質と導電助材とを含み、前記導電助材がCoCOである、ニッケル水素電池用正極材料。 A positive electrode material for a nickel-hydrogen battery, comprising a positive electrode active material and a conductive auxiliary material, wherein the conductive auxiliary material is CoCO 3 .
JP2018203122A 2018-10-29 2018-10-29 Positive electrode material for nickel hydrogen battery Pending JP2020071924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203122A JP2020071924A (en) 2018-10-29 2018-10-29 Positive electrode material for nickel hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203122A JP2020071924A (en) 2018-10-29 2018-10-29 Positive electrode material for nickel hydrogen battery

Publications (1)

Publication Number Publication Date
JP2020071924A true JP2020071924A (en) 2020-05-07

Family

ID=70547946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203122A Pending JP2020071924A (en) 2018-10-29 2018-10-29 Positive electrode material for nickel hydrogen battery

Country Status (1)

Country Link
JP (1) JP2020071924A (en)

Similar Documents

Publication Publication Date Title
WO2013069597A1 (en) Anode active material for sodium battery, anode, and sodium battery
WO2011079482A1 (en) Battery
WO2017020860A1 (en) Battery, battery set and uninterruptable power source
JP2014029881A (en) Secondary battery improved in lithium ion mobility and battery capacity
WO2014032594A1 (en) Battery
JP2019029077A (en) Aqueous rechargeable dual-ion battery
JP6004275B2 (en) Alkali metal-sulfur secondary battery
WO2019080689A1 (en) Hybrid supercapacitor
JP2016091984A (en) Power storage element
CN109449379A (en) A kind of SnFe that nitrogen-doped carbon is compound2O4Lithium ion battery negative material and the preparation method and application thereof
CN108682901B (en) High-capacity double-bag type iron-nickel battery
WO2014170979A1 (en) Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
JP2008071759A (en) Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
WO2013132818A1 (en) Positive electrode for alkaline storage battery and alkaline storage battery using same
JP6047086B2 (en) Sodium secondary battery
CN113314770B (en) Alkaline secondary battery and preparation method thereof
JP2019186266A (en) Electricity storage device
KR20140070258A (en) Cathode active material composition, and cathode and lithium secondary battery comprising the same
JP2014067683A (en) Nickel-hydrogen storage battery
WO2016202276A1 (en) Anode material and battery
JP2000138074A (en) Secondary power supply
JP7290229B2 (en) Primary or secondary battery electrode with controlled local cell reaction and primary or secondary battery using the electrode
JP5557385B2 (en) Energy storage device with proton as insertion species
JP2005327489A (en) Positive electrode for power storage element
JP2020071924A (en) Positive electrode material for nickel hydrogen battery