JP2020071121A - Hydrogen isotope ratio measurement method and device - Google Patents

Hydrogen isotope ratio measurement method and device Download PDF

Info

Publication number
JP2020071121A
JP2020071121A JP2018204930A JP2018204930A JP2020071121A JP 2020071121 A JP2020071121 A JP 2020071121A JP 2018204930 A JP2018204930 A JP 2018204930A JP 2018204930 A JP2018204930 A JP 2018204930A JP 2020071121 A JP2020071121 A JP 2020071121A
Authority
JP
Japan
Prior art keywords
measuring
hydrogen isotope
pretreatment
isotope ratio
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018204930A
Other languages
Japanese (ja)
Other versions
JP7189730B2 (en
Inventor
智 高柳
Satoshi Takayanagi
智 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2018204930A priority Critical patent/JP7189730B2/en
Publication of JP2020071121A publication Critical patent/JP2020071121A/en
Application granted granted Critical
Publication of JP7189730B2 publication Critical patent/JP7189730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a hydrogen isotope ratio measuring method and a hydrogen isotope ratio measuring device capable of easily measuring the hydrogen isotope ratio in a deuterated compound having a high deuteration ratio largely deviating from a natural abundance ratio by an inexpensive device.SOLUTION: Disclosed is a method for measuring a hydrogen isotope ratio, in which a deuterated compound is pre-treated and the hydrogen isotope ratio in the deuterated compound is measured by measuring the hydrogen isotope of gas generated in the pre-treatment. A pretreatment step of pretreating the deuterated compound and a gas component measuring step of measuring a residual deuterated compound after the pretreatment step and a gas component generated in the pretreatment step are continuously carried out while circulation in a circulation path.SELECTED DRAWING: Figure 1

Description

本発明は、水素同位体比測定方法及び装置に関し、詳しくは、重水素化化合物の水素同位体比を測定する方法及び装置に関する。   The present invention relates to a method and apparatus for measuring hydrogen isotope ratio, and more particularly to a method and apparatus for measuring hydrogen isotope ratio of deuterated compound.

様々な化合物にて重水素化した化合物の有効性が確認されている。例えばアンモニアの構成元素である水素を重水素化した重水素化アンモニアを、半導体製膜工程などに使用することで半導体製品の性能向上に寄与することが知られている(特許文献1参照。)。このため、前記重水素化アンモニアなどの重水素化化合物の品質を評価するため、重水素化化合物における水素同位体比を測定することが行われており、安定同位体比質量分析計(IRMS)を用いることで高精度に測定することが可能となっている。さらに、測定時の前処理として、重水素化化合物を燃焼させ、発生したガス中の水素同位体比を測定する手法が知られている(例えば、特許文献2参照。)。また、天然存在比付近の水素同位体比を高精度かつ簡便に測定できるキャビティーリングダウン分光法(CRDS)も知られている(例えば、非特許文献1参照。)。   The effectiveness of deuterated compounds in various compounds has been confirmed. For example, it is known that deuterated ammonia obtained by deuterating hydrogen, which is a constituent element of ammonia, is used in a semiconductor film forming process or the like to contribute to the performance improvement of a semiconductor product (see Patent Document 1). .. Therefore, in order to evaluate the quality of the deuterated compound such as the deuterated ammonia, the hydrogen isotope ratio in the deuterated compound is measured, and a stable isotope ratio mass spectrometer (IRMS) is used. By using, it is possible to measure with high accuracy. Furthermore, as a pretreatment at the time of measurement, a method of burning a deuterated compound and measuring the hydrogen isotope ratio in the generated gas is known (for example, refer to Patent Document 2). Cavity ring-down spectroscopy (CRDS) is also known, which can measure hydrogen isotope ratios near the natural abundance with high accuracy and simplicity (see, for example, Non-Patent Document 1).

特開平11−87712号公報Japanese Patent Laid-Open No. 11-87712 特開2017−219428号公報JP, 2017-219428, A

Picarro社、B2221−iデーターシート、米国、2013年5月7日Picarro, B2221-i Datasheet, USA, May 7, 2013

しかし、前記IRMSは、高精度に水素同位体比を測定可能であるが、装置が大型かつ高価であることが課題となっている。また、従来の前処理方法は、密閉容器内にて重水素化化合物を燃焼させ、燃焼によって発生したガスを測定する方法であることから、燃焼できていない残留物があると、その後の水素同位体比測定の誤差に直結するという問題がある。残留物を確認するには、重水素化化合物及び発生ガスを測定する必要があり、一般には、測定で重水素化化合物及び発生ガスを消費するため、前処理が不十分であると判断した場合、最初の工程から、前処理及び測定をやり直す必要がある。一方、前記CRDSは、天然存在比付近の水素同位体比を測定する仕様であり、天然存在比付近から大きく逸脱する化合物の同位体比測定には適していない。   However, although the IRMS can measure the hydrogen isotope ratio with high accuracy, there is a problem that the apparatus is large and expensive. Further, the conventional pretreatment method is a method of burning the deuterated compound in a closed container and measuring the gas generated by the combustion. There is a problem that it is directly connected to the error of body ratio measurement. In order to confirm the residue, it is necessary to measure the deuterated compound and the evolved gas, and in general, the deuterated compound and the evolved gas are consumed in the measurement, so when the pretreatment is judged to be insufficient. , It is necessary to repeat the pretreatment and measurement from the first step. On the other hand, the CRDS is a specification for measuring the hydrogen isotope ratio near the natural abundance ratio, and is not suitable for the isotope ratio measurement of a compound that deviates largely from the natural abundance ratio.

そこで本発明は、天然存在比より大きく逸脱する高い重水素化率の重水素化化合物であっても、重水素化化合物における水素同位体比を安価な装置で簡便に測定できる水素同位体比測定方法及び装置を提供することを目的としている。   Therefore, the present invention provides a hydrogen isotope ratio measurement capable of easily measuring the hydrogen isotope ratio of a deuterated compound even with a deuterated compound having a high deuteration rate that deviates greatly from the natural abundance ratio with an inexpensive device. It is an object to provide a method and a device.

上記目的を達成するため、本発明の水素同位体比測定方法は、重水素化化合物を前処理し、前処理で発生したガスの水素同位体を測定することで前記重水素化化合物における水素同位体比を測定する水素同位体比測定方法であって、前記重水素化化合物を前処理する前処理工程と、該前処理工程を行った後の残留重水素化化合物の量を測定する残留量測定工程と、重水素化化合物の残留量があらかじめ設定された量未満になったときに、前記前処理工程で発生したガス成分を測定して水素同位体比を算出するガス成分測定工程とを循環経路内で循環させながら連続して行うことを特徴としている。   In order to achieve the above object, the method for measuring a hydrogen isotope ratio of the present invention comprises pretreating a deuterated compound and measuring the hydrogen isotope of a gas generated in the pretreatment to measure the hydrogen isotope in the deuterated compound. A method for measuring a hydrogen isotope ratio for measuring a body ratio, comprising a pretreatment step for pretreating the deuterated compound, and a residual amount for measuring an amount of a deuterated compound remaining after the pretreatment step. A measurement step and a gas component measurement step of calculating a hydrogen isotope ratio by measuring the gas component generated in the pretreatment step when the residual amount of the deuterated compound becomes less than a preset amount. The feature is that it is continuously performed while circulating in the circulation path.

また、本発明の水素同位体比測定方法では、前記重水素化化合物は、窒素元素及び炭素元素の少なくともいずれか一方と、水素元素及び水素元素の同位体とからなる化合物であること、前記ガス成分測定工程は、前記前処理工程で発生した水蒸気における水素同位体比(H/D)を測定することで水素同位体比を測定することを特徴としている。   Further, in the hydrogen isotope ratio measurement method of the present invention, the deuterated compound is a compound comprising at least one of a nitrogen element and a carbon element, and a hydrogen element and an isotope of the hydrogen element, the gas The component measuring step is characterized in that the hydrogen isotope ratio is measured by measuring the hydrogen isotope ratio (H / D) in the steam generated in the pretreatment step.

さらに、前記ガス成分測定工程は、フーリエ変換赤外分光光度計(FTIR)又は非分散型赤外分光計(NDIR)で行うこと、前記循環経路は、該循環経路内のガスを循環させるためのダイヤフラムポンプ又はスクロールポンプを備えていることを特徴とし、前記循環経路は、該循環経路内に前記重水素化化合物を導入する導入経路を備えるとともに、該導入経路は、前記前記重水素化化合物に含まれる水分を除去する水分除去手段を備えていることを特徴としている。また、前記循環経路は、該循環経路内に、前記前処理工程で使用する酸素又はオゾンを添加する酸素添加手段を備えていること、前記前処理工程は、該前処理における反応を促進する光照射手段又は触媒を有していることを特徴としている。   Further, the gas component measuring step is performed by a Fourier transform infrared spectrophotometer (FTIR) or a non-dispersive infrared spectrometer (NDIR), and the circulation path is for circulating gas in the circulation path. It is characterized by comprising a diaphragm pump or a scroll pump, the circulation path comprises an introduction path for introducing the deuterated compound into the circulation path, the introduction path, to the deuterated compound It is characterized in that it is provided with a water removing means for removing contained water. Further, the circulation path is provided with an oxygen adding means for adding oxygen or ozone used in the pretreatment step in the circulation path, and the pretreatment step is a light promoting reaction in the pretreatment. It is characterized by having irradiation means or a catalyst.

本発明の水素同位体比測定装置は、重水素化化合物を前処理し、前処理で発生したガスの水素同位体を測定することで前記重水素化化合物における水素同位体比を測定する水素同位体比測定方法であって、前記重水素化化合物を前処理する前処理手段と、該前処理手段で前処理を行った後の残留重水素化化合物の量を測定するとともに、前記前処理手段での前処理で発生したガス成分を測定して水素同位体比を算出するガス成分測定手段と、ガスを循環させるガス循環手段とを有する循環経路を備えていることを特徴としている。   The hydrogen isotope ratio measuring device of the present invention is a hydrogen isotope for measuring a hydrogen isotope ratio in a deuterated compound by pretreating a deuterated compound and measuring a hydrogen isotope of a gas generated in the pretreatment. A body ratio measuring method, comprising: pretreatment means for pretreating the deuterated compound; measuring the amount of residual deuterated compound after pretreatment by the pretreatment means; It is characterized in that it is provided with a circulation path having a gas component measuring means for measuring a gas component generated in the pretreatment in step 1 to calculate a hydrogen isotope ratio and a gas circulating means for circulating the gas.

さらに、本発明の水素同位体比測定装置は、前記重水素化化合物は、窒素元素及び炭素元素の少なくともいずれか一方と、水素元素及び水素元素の同位体とからなる化合物であることを特徴とし、前記ガス成分測定手段は、前記前処理手段での前処理で発生した水蒸気における水素同位体比(H/D)を測定することで水素同位体比を測定すること、前記ガス成分測定手段は、フーリエ変換赤外分光光度計(FTIR)又は非分散型赤外分光計(NDIR)であることを特徴としている。   Further, the hydrogen isotope ratio measuring device of the present invention is characterized in that the deuterated compound is a compound comprising at least one of a nitrogen element and a carbon element, and a hydrogen element and an isotope of the hydrogen element. The gas component measuring means measures the hydrogen isotope ratio by measuring the hydrogen isotope ratio (H / D) in the steam generated in the pretreatment by the pretreatment means, and the gas component measuring means is , A Fourier transform infrared spectrophotometer (FTIR) or a non-dispersive infrared spectrometer (NDIR).

また、前記ガス循環手段は、ダイヤフラムポンプ又はスクロールポンプであること、前記循環経路は、該循環経路内に前記重水素化化合物を導入する導入経路を備えるとともに、該導入経路は、前記前記重水素化化合物に含まれる水分を除去する水分除去手段を備えていること、前記循環経路は、該循環経路内に、前記前処理手段で使用する酸素又はオゾンを添加する酸素添加手段を備えていること、前記前処理手段は、該前処理手段での反応を促進する光照射手段又は触媒を有していることを特徴としている。   The gas circulation means is a diaphragm pump or a scroll pump, the circulation path includes an introduction path for introducing the deuterated compound into the circulation path, and the introduction path is the deuterium. A water removing means for removing water contained in the chemical compound, and the circulation path includes an oxygen adding means for adding oxygen or ozone used in the pretreatment means in the circulation path. The pretreatment means has a light irradiation means or a catalyst for promoting the reaction in the pretreatment means.

本発明によれば、重水素化化合物を循環経路で循環させながら測定を行うので、前処理及び測定を同時かつ連続的に実施できる。このため、前処理、前処理完了確認、水素同位体比測定を同時に実施可能な簡便な測定法であり、かつ比較的安価な装置にてこれを実現できる。   According to the present invention, since the measurement is carried out while circulating the deuterated compound in the circulation path, the pretreatment and the measurement can be carried out simultaneously and continuously. Therefore, it is a simple measurement method capable of simultaneously performing pretreatment, confirmation of pretreatment completion, and hydrogen isotope ratio measurement, and this can be realized by a relatively inexpensive device.

本発明の水素同位体比測定方法を実施可能な本発明の水素同位体比測定装置の一形態例を示す系統図である。1 is a system diagram showing an example of an embodiment of a hydrogen isotope ratio measuring device of the present invention capable of implementing the hydrogen isotope ratio measuring method of the present invention.

図1は、本発明の水素同位体比測定装置の一形態例を示す系統図であって、本形態例に示す水素同位体比測定装置は、測定対象となる試料である重水素化化合物を循環させるための循環経路11を有している。この循環経路11は、前記重水素化化合物を前処理し、前処理で発生したガスの水素同位体を測定することで前記重水素化化合物における水素同位体比を測定するためのものであって、前記重水素化化合物を前処理する前処理手段12と、該前処理手段12で前処理を行った後の残留重水素化化合物及び前記前処理手段12で発生したガス成分を測定するガス成分測定手段13と、循環経路11内でガスを循環させるためのガス循環手段14とを備えている。   FIG. 1 is a system diagram showing an example of an embodiment of the hydrogen isotope ratio measuring device of the present invention, in which the hydrogen isotope ratio measuring device shown in the present embodiment includes a deuterated compound which is a sample to be measured. It has a circulation path 11 for circulation. This circulation path 11 is for pretreating the deuterated compound and measuring the hydrogen isotope of the gas generated in the pretreatment to measure the hydrogen isotope ratio in the deuterated compound. A pretreatment means 12 for pretreating the deuterated compound, and a gas component for measuring a residual deuterated compound after pretreatment by the pretreatment means 12 and a gas component generated in the pretreatment means 12 The measuring means 13 and the gas circulating means 14 for circulating the gas in the circulation path 11 are provided.

さらに、循環経路11には、該循環経路11に測定対象となる試料ガスを、試料ガス源15から循環経路11内に導入するための試料ガス導入経路16が設けられるとともに、測定済みのガスを循環経路11からパージするためのパージガスをパージガス源17から導入するためのパージガス導入経路18及びパージガスの導入に伴って循環経路11内のガスを外部に排出するための排気経路19が設けられている。さらに、循環経路11内を真空排気するための真空ポンプ20を備えた真空排気経路21が設けられている。また、試料ガス導入経路16とパージガス導入経路18とが合流した合流導入経路22には、試料ガスやパージガスに含まれていて測定に悪影響を与える成分、例えば水分を除去する水分除去手段23が設けられている。   Further, the circulation path 11 is provided with a sample gas introduction path 16 for introducing the sample gas to be measured into the circulation path 11 from the sample gas source 15 into the circulation path 11, and the measured gas is supplied. A purge gas introduction path 18 for introducing the purge gas for purging from the circulation path 11 from the purge gas source 17 and an exhaust path 19 for discharging the gas in the circulation path 11 to the outside with the introduction of the purge gas are provided. .. Further, a vacuum evacuation path 21 provided with a vacuum pump 20 for evacuating the inside of the circulation path 11 is provided. In addition, the confluent introduction path 22 where the sample gas introduction path 16 and the purge gas introduction path 18 join together is provided with a water removing means 23 for removing a component contained in the sample gas or the purge gas and adversely affecting the measurement, for example, water. Has been.

また、循環経路11における前処理手段12のガス流れ方向の上流側には、前処理を行う際に使用するガスとして、酸素又はオゾンを添加する酸素添加手段24が設けられている。さらに、循環経路11には、該循環経路11内のガス量を検出するための圧力計25が設けられている。   Further, on the upstream side of the pretreatment means 12 in the gas flow direction in the circulation path 11, an oxygen addition means 24 for adding oxygen or ozone as a gas used when performing the pretreatment is provided. Further, the circulation path 11 is provided with a pressure gauge 25 for detecting the amount of gas in the circulation path 11.

本発明での測定対象となる前記重水素化化合物は、窒素元素及び炭素元素の少なくともいずれか一方と、水素元素及び水素元素の同位体とからなる化合物であって、例えば、NH、N、N、(CH)NH、(CHNH、CH-NH-NHであり、これらの化合物の水素の一部又は全部が水素の同位体である重水素(D)となっている化合物である。 The deuterated compound to be measured in the present invention is a compound composed of at least one of a nitrogen element and a carbon element, and a hydrogen element and an isotope of the hydrogen element, for example, NH 3 , N 2 H 2, N 2 H 4, (CH 3) NH 2, (CH 3) 2 NH, a CH 3 -NH-NH 2, heavy part or all of the hydrogen in these compounds is an isotope of hydrogen It is a compound that is hydrogen (D).

前記ガス成分測定手段13は、前記前処理手段12で発生したガス成分、通常は、水蒸気における水素同位体比(H/D)を測定するもので、例えば、フーリエ変換赤外分光光度計(FTIR)や非分散型赤外分光計(NDIR)を好適に用いることができる。また、ガス成分測定手段13では、前処理手段12で未反応の残留重水素化化合物も同時に測定し、残留重水素化化合物が測定されなくなったときに、重水素化化合物の全量が前処理手段12で反応したと判断する。   The gas component measuring means 13 measures a gas component generated in the pretreatment means 12, usually a hydrogen isotope ratio (H / D) in water vapor, and is, for example, a Fourier transform infrared spectrophotometer (FTIR). ) Or a non-dispersive infrared spectrometer (NDIR) can be preferably used. Further, the gas component measuring means 13 simultaneously measures the unreacted residual deuterated compound in the pretreatment means 12, and when the residual deuterated compound is no longer measured, the total amount of the deuterated compound is measured in the pretreatment means. It is judged that it reacted at 12.

また、前記ガス循環手段14は、前記重水素化化合物や前記前処理手段12で発生したガス成分との反応性がない材料を使用したものが選択され、通常は、ダイヤフラムポンプやスクロールポンプを使用することが好ましい。   The gas circulation means 14 is selected from materials that do not react with the deuterated compound or the gas component generated in the pretreatment means 12, and normally a diaphragm pump or a scroll pump is used. Preferably.

次に、前記構成の水素同位体比測定装置を使用して重水素化化合物における水素同位体比を測定する手順の一例を説明する。なお、各弁についての開閉操作、切替操作についての詳細な説明は省略する。   Next, an example of a procedure for measuring the hydrogen isotope ratio in the deuterated compound using the hydrogen isotope ratio measuring device having the above-described configuration will be described. Detailed description of the opening / closing operation and switching operation of each valve will be omitted.

まず、第1の段階として、測定誤差の要因となる不要成分を循環経路11から排除する。例えば、パージガス導入経路18からパージガス、通常は窒素を導入して排気経路19から排出する流通パージや、真空ポンプ20によって循環経路11のガスを吸引排気する真空パージを行う。そして、循環経路11内に試料ガスを導入するため、循環経路11内のガスを、例えば圧力が100Pa未満になるまで排出する。   First, as a first step, unnecessary components that cause a measurement error are removed from the circulation path 11. For example, a flow purge in which a purge gas, usually nitrogen, is introduced from the purge gas introduction path 18 and discharged from the exhaust path 19 or a vacuum purge in which the gas in the circulation path 11 is sucked and exhausted by the vacuum pump 20 is performed. Then, in order to introduce the sample gas into the circulation path 11, the gas in the circulation path 11 is discharged until the pressure becomes less than 100 Pa, for example.

次に、第2段階として、循環経路11に試料ガスを導入する。このとき、合流導入経路22に設けた水分除去手段23、例えば、モレキュラーシーブスなどの吸着剤やフロン冷媒などの低温を利用した水分捕集部などの水分除去手段23により、測定誤差が発生する要因となる水分を除去し、水分除去後の試料ガスを循環経路11に導入する。また、試料ガスの導入量は、圧力計25によって測定する。   Next, as a second step, the sample gas is introduced into the circulation path 11. At this time, the measurement error is caused by the water removing means 23 provided in the confluent introduction path 22, for example, the water removing means 23 such as an adsorbent such as molecular sieves or a water collecting section using low temperature such as CFC refrigerant. Then, the sample gas from which the water has been removed is introduced into the circulation path 11. The amount of sample gas introduced is measured by the pressure gauge 25.

第3の段階では、ガス成分測定手段13、例えばFTIRによって試料ガスである重水素化化合物の赤外吸収スペクトルを取得する。   In the third step, the infrared absorption spectrum of the deuterated compound that is the sample gas is acquired by the gas component measuring means 13, for example, FTIR.

第4の段階では、酸素添加手段24から一定量の酸素を導入する。酸素又はオゾンの導入量は、試料ガスの種類や導入量などの条件に応じてあらかじめ設定しておく。   In the fourth stage, a fixed amount of oxygen is introduced from the oxygen adding means 24. The introduction amount of oxygen or ozone is set in advance according to the conditions such as the type and introduction amount of the sample gas.

第5の段階で、ガス循環手段14を起動し、循環経路11内のガスを循環させる。同時に、前処理手段12で重水素化化合物と酸素とを反応(酸化反応)させて重水素化化合物中の水素と酸素とによって水を生成させる(本願発明方法の前処理工程)。重水素化化合物中の他の成分は、通常、二酸化炭素や二酸化窒素になる。また、特定の波長の光を照射したり、触媒を加熱することによって酸化反応を促進させる。   In the fifth stage, the gas circulation means 14 is activated to circulate the gas in the circulation path 11. At the same time, the pretreatment means 12 reacts (oxidizes) the deuterated compound with oxygen to generate water by the hydrogen and oxygen in the deuterated compound (pretreatment step of the method of the present invention). Other components in deuterated compounds are usually carbon dioxide and nitrogen dioxide. In addition, the oxidation reaction is promoted by irradiating light of a specific wavelength or heating the catalyst.

第6の段階では、前処理手段12での酸化反応と同時に重水素化化合物の赤外吸収スペクトルを取得し、第3の段階で取得した赤外吸収スペクトルと比較して酸化反応処理率、残留重水素化化合物の量を確認する(本願発明方法の残留量測定工程)。   In the sixth step, the infrared absorption spectrum of the deuterated compound was acquired at the same time as the oxidation reaction in the pretreatment means 12, and compared with the infrared absorption spectrum acquired in the third step, the oxidation reaction treatment rate and residual The amount of deuterated compound is confirmed (residual amount measuring step of the method of the present invention).

重水素化化合物の残留量があらかじめ設定された量未満になった第7の段階で、第5の段階での酸化処理で発生したガスの赤外吸収スペクトルをFTIRにて連続的に取得し、発生したガス、通常は水分(水蒸気)におけるH/Dを算出し、重水素化化合物の水素同位体比を測定する(本願発明方法のガス成分測定工程)。測定終了後は、前記第1の段階に戻って次の測定に対する準備を行う。   In the seventh step in which the residual amount of the deuterated compound was less than a preset amount, the infrared absorption spectrum of the gas generated in the oxidation treatment in the fifth step was continuously acquired by FTIR, The H / D of the generated gas, usually water (steam), is calculated, and the hydrogen isotope ratio of the deuterated compound is measured (the gas component measuring step of the method of the present invention). After the measurement is completed, the procedure returns to the first step to prepare for the next measurement.

このように、循環経路11を使用することにより、重水素化化合物の前処理と、前処理の際に残留する重水素化化合物の測定と、前処理によって発生したガスにおけるH/Dの測定とを同時かつ連続的に実施できることから、重水素化化合物中の水素同位体の比率、すなわち、水素同位体比を容易かつ確実に測定することができる。また、簡単な装置構成で実施できることから、水素同位体比の測定を低コストで実施することができる。   As described above, by using the circulation path 11, the pretreatment of the deuterated compound, the measurement of the deuterated compound remaining in the pretreatment, and the measurement of H / D in the gas generated by the pretreatment are performed. Since it can be carried out simultaneously and continuously, the ratio of hydrogen isotopes in the deuterated compound, that is, the hydrogen isotope ratio can be measured easily and reliably. Moreover, since the measurement can be performed with a simple device configuration, the hydrogen isotope ratio can be measured at low cost.

なお、各種構成要素は、同種の機器を任意に選択して使用することができ、循環経路における各機器の順番も特に限定されるものではない。   It should be noted that various components can be used by arbitrarily selecting the same type of device and the order of each device in the circulation path is not particularly limited.

11…循環経路、12…前処理手段、13…ガス成分測定手段、14…ガス循環手段、15…試料ガス源、16…試料ガス導入経路、17…パージガス源、18…パージガス導入経路、19…排気経路、20…真空ポンプ、21…真空排気経路、22…合流導入経路、23…水分除去手段、24…酸素添加手段、25…圧力計   11 ... Circulation path, 12 ... Pretreatment means, 13 ... Gas component measuring means, 14 ... Gas circulation means, 15 ... Sample gas source, 16 ... Sample gas introduction path, 17 ... Purge gas source, 18 ... Purge gas introduction path, 19 ... Exhaust path, 20 ... Vacuum pump, 21 ... Vacuum exhaust path, 22 ... Combined introduction path, 23 ... Moisture removing means, 24 ... Oxygen adding means, 25 ... Pressure gauge

Claims (16)

重水素化化合物を前処理し、前処理で発生したガスの水素同位体を測定することで前記重水素化化合物における水素同位体比を測定する水素同位体比測定方法であって、前記重水素化化合物を前処理する前処理工程と、該前処理工程を行った後の残留重水素化化合物の量を測定する残留量測定工程と、重水素化化合物の残留量があらかじめ設定された量未満になったときに、前記前処理工程で発生したガス成分を測定して水素同位体比を算出するガス成分測定工程とを循環経路内で循環させながら連続して行うことを特徴とする水素同位体比測定方法。   A hydrogen isotope ratio measuring method for measuring a hydrogen isotope ratio in a deuterated compound by pretreating a deuterated compound and measuring a hydrogen isotope of a gas generated in the pretreatment, A pretreatment step of pretreating the hydride compound, a residual amount measuring step of measuring the amount of residual deuterated compound after performing the pretreatment step, and a residual amount of the deuterated compound less than a preset amount In this case, the gas component measuring step of measuring the gas component generated in the pretreatment step and calculating the hydrogen isotope ratio is continuously performed while circulating the gas component in the circulation path. Body ratio measuring method. 前記重水素化化合物は、窒素元素及び炭素元素の少なくともいずれか一方と、水素元素及び水素元素の同位体とからなる化合物であることを特徴とする請求項1記載の水素同位体比測定方法。   The method for measuring hydrogen isotope ratio according to claim 1, wherein the deuterated compound is a compound including at least one of nitrogen element and carbon element, and hydrogen element and isotope of hydrogen element. 前記ガス成分測定工程は、前記前処理工程で発生した水蒸気における水素同位体比(H/D)を測定することで水素同位体比を測定することを特徴とする請求項1又は2記載の水素同位体比測定方法。   3. The hydrogen according to claim 1, wherein the gas component measuring step measures a hydrogen isotope ratio by measuring a hydrogen isotope ratio (H / D) in the steam generated in the pretreatment step. Isotope ratio measurement method. 前記ガス成分測定工程は、フーリエ変換赤外分光光度計(FTIR)又は非分散型赤外分光計(NDIR)で行うことを特徴とする請求項1乃至3のいずれか1項記載の水素同位体比測定方法。   4. The hydrogen isotope according to claim 1, wherein the gas component measuring step is performed by a Fourier transform infrared spectrophotometer (FTIR) or a non-dispersive infrared spectrometer (NDIR). Ratio measurement method. 前記循環経路は、該循環経路内のガスを循環させるためのダイヤフラムポンプ又はスクロールポンプを備えていることを特徴とする請求項1乃至4のいずれか1項記載の水素同位体比測定方法。   The hydrogen isotope ratio measuring method according to claim 1, wherein the circulation path includes a diaphragm pump or a scroll pump for circulating the gas in the circulation path. 前記循環経路は、該循環経路内に前記重水素化化合物を導入する導入経路を備えるとともに、該導入経路は、前記前記重水素化化合物に含まれる水分を除去する水分除去手段を備えていることを特徴とする請求項1乃至5のいずれか1項記載の水素同位体比測定方法。   The circulation path includes an introduction path for introducing the deuterated compound into the circulation path, and the introduction path includes a water removing unit for removing water contained in the deuterated compound. The method for measuring hydrogen isotope ratio according to any one of claims 1 to 5, characterized in that. 前記循環経路は、該循環経路内に、前記前処理工程で使用する酸素又はオゾンを添加する酸素添加手段を備えていることを特徴とする請求項1乃至6のいずれか1項記載の水素同位体比測定方法。   7. The hydrogen isotope according to any one of claims 1 to 6, wherein the circulation path is provided with oxygen addition means for adding oxygen or ozone used in the pretreatment step in the circulation path. Body ratio measuring method. 前記前処理工程は、該前処理における反応を促進する光照射手段又は触媒を有していることを特徴とする請求項1乃至7のいずれか1項記載の水素同位体比測定方法。   8. The hydrogen isotope ratio measuring method according to claim 1, wherein the pretreatment step has a light irradiation unit or a catalyst that promotes a reaction in the pretreatment. 重水素化化合物を前処理し、前処理で発生したガスの水素同位体を測定することで前記重水素化化合物における水素同位体比を測定する水素同位体比測定方法であって、前記重水素化化合物を前処理する前処理手段と、該前処理手段で前処理を行った後の残留重水素化化合物の量を測定するとともに、前記前処理手段での前処理で発生したガス成分を測定して水素同位体比を算出するガス成分測定手段と、ガスを循環させるガス循環手段とを有する循環経路を備えていることを特徴とする水素同位体比測定装置。   A hydrogen isotope ratio measuring method for measuring a hydrogen isotope ratio in a deuterated compound by pretreating a deuterated compound and measuring a hydrogen isotope of a gas generated in the pretreatment, Pretreatment means for pretreating the phosphatized compound, and measuring the amount of residual deuterated compound after pretreatment by the pretreatment means, and measuring the gas component generated in the pretreatment by the pretreatment means A hydrogen isotope ratio measuring device comprising: a gas component measuring means for calculating a hydrogen isotope ratio and a gas circulating means for circulating a gas. 前記重水素化化合物は、窒素元素及び炭素元素の少なくともいずれか一方と、水素元素及び水素元素の同位体とからなる化合物であることを特徴とする請求項9記載の水素同位体比測定装置。   10. The hydrogen isotope ratio measuring device according to claim 9, wherein the deuterated compound is a compound including at least one of a nitrogen element and a carbon element, and a hydrogen element and an isotope of the hydrogen element. 前記ガス成分測定手段は、前記前処理手段での前処理で発生した水蒸気における水素同位体比(H/D)を測定することで水素同位体比を測定することを特徴とする請求項9又は10記載の水素同位体比測定装置。   10. The gas component measuring means measures the hydrogen isotope ratio by measuring the hydrogen isotope ratio (H / D) in the water vapor generated in the pretreatment by the pretreatment means. 10. The hydrogen isotope ratio measuring device according to 10. 前記ガス成分測定手段は、フーリエ変換赤外分光光度計(FTIR)又は非分散型赤外分光計(NDIR)であることを特徴とする請求項9乃至11のいずれか1項記載の水素同位体比測定装置。   12. The hydrogen isotope according to claim 9, wherein the gas component measuring means is a Fourier transform infrared spectrophotometer (FTIR) or a non-dispersive infrared spectrometer (NDIR). Ratio measuring device. 前記ガス循環手段は、ダイヤフラムポンプ又はスクロールポンプであることを特徴とする請求項9乃至12のいずれか1項記載の水素同位体比測定装置。   13. The hydrogen isotope ratio measuring device according to claim 9, wherein the gas circulating means is a diaphragm pump or a scroll pump. 前記循環経路は、該循環経路内に前記重水素化化合物を導入する導入経路を備えるとともに、該導入経路は、前記前記重水素化化合物に含まれる水分を除去する水分除去手段を備えていることを特徴とする請求項9乃至13のいずれか1項記載の水素同位体比測定装置。   The circulation path includes an introduction path for introducing the deuterated compound into the circulation path, and the introduction path includes a water removing unit for removing water contained in the deuterated compound. The hydrogen isotope ratio measuring device according to any one of claims 9 to 13, characterized in that. 前記循環経路は、該循環経路内に、前記前処理手段で使用する酸素又はオゾンを添加する酸素添加手段を備えていることを特徴とする請求項9乃至14のいずれか1項記載の水素同位体比測定装置。   15. The hydrogen isotope according to any one of claims 9 to 14, wherein the circulation path is provided with oxygen addition means for adding oxygen or ozone used in the pretreatment means in the circulation path. Body ratio measuring device. 前記前処理手段は、該前処理手段での反応を促進する光照射手段又は触媒を有していることを特徴とする請求項9乃至15のいずれか1項記載の水素同位体比測定装置。   The hydrogen isotope ratio measuring device according to any one of claims 9 to 15, wherein the pretreatment means has a light irradiation means or a catalyst for promoting the reaction in the pretreatment means.
JP2018204930A 2018-10-31 2018-10-31 Hydrogen isotope ratio measurement method and apparatus Active JP7189730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204930A JP7189730B2 (en) 2018-10-31 2018-10-31 Hydrogen isotope ratio measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204930A JP7189730B2 (en) 2018-10-31 2018-10-31 Hydrogen isotope ratio measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2020071121A true JP2020071121A (en) 2020-05-07
JP7189730B2 JP7189730B2 (en) 2022-12-14

Family

ID=70547682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204930A Active JP7189730B2 (en) 2018-10-31 2018-10-31 Hydrogen isotope ratio measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP7189730B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113352A (en) * 1981-01-05 1982-07-14 Toshiba Corp Analyzer for isotope composition
JPS57113353A (en) * 1981-01-06 1982-07-14 Toshiba Corp Analyzer for isotope composition
JPH05506509A (en) * 1990-11-13 1993-09-22 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド diesel exhaust gas particulate monitor
JPH1088180A (en) * 1996-09-09 1998-04-07 Nippon Sanso Kk Labeled perfume, aromatic product and distinction of aromatic product
JP2002039939A (en) * 2000-07-19 2002-02-06 Komyo Rikagaku Kogyo Kk Apparatus and method for measurement of gas
JP2007064709A (en) * 2005-08-30 2007-03-15 Suminoe Textile Co Ltd Deodorization testing machine
JP2016024156A (en) * 2014-07-24 2016-02-08 大陽日酸株式会社 Oxygen isotope concentration analyzer and oxygen isotope concentration analysis method
JP2017020929A (en) * 2015-07-13 2017-01-26 大陽日酸株式会社 Isotope concentration calculation method
JP2017219428A (en) * 2016-06-08 2017-12-14 日本電信電話株式会社 Laser spectroscopic stable isotope ratio analysis method, apparatus, and multipoint stable isotope ratio analysis system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113352A (en) * 1981-01-05 1982-07-14 Toshiba Corp Analyzer for isotope composition
JPS57113353A (en) * 1981-01-06 1982-07-14 Toshiba Corp Analyzer for isotope composition
JPH05506509A (en) * 1990-11-13 1993-09-22 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド diesel exhaust gas particulate monitor
JPH1088180A (en) * 1996-09-09 1998-04-07 Nippon Sanso Kk Labeled perfume, aromatic product and distinction of aromatic product
JP2002039939A (en) * 2000-07-19 2002-02-06 Komyo Rikagaku Kogyo Kk Apparatus and method for measurement of gas
JP2007064709A (en) * 2005-08-30 2007-03-15 Suminoe Textile Co Ltd Deodorization testing machine
JP2016024156A (en) * 2014-07-24 2016-02-08 大陽日酸株式会社 Oxygen isotope concentration analyzer and oxygen isotope concentration analysis method
JP2017020929A (en) * 2015-07-13 2017-01-26 大陽日酸株式会社 Isotope concentration calculation method
JP2017219428A (en) * 2016-06-08 2017-12-14 日本電信電話株式会社 Laser spectroscopic stable isotope ratio analysis method, apparatus, and multipoint stable isotope ratio analysis system

Also Published As

Publication number Publication date
JP7189730B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
Gordiets et al. Kinetic model of a low-pressure N/sub 2/-O/sub 2/flowing glow discharge
Yaala et al. Plasma-assisted catalytic formation of ammonia in N 2–H 2 plasma on a tungsten surface
Röckmann et al. Isotopic enrichment of nitrous oxide (15N14NO, 14N15NO, 14N14N18O) in the stratosphere and in the laboratory
Sellevåg et al. A study of the IR and UV-Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF 3 CHO and CF 3 CH 2 CHO
JP2006064416A (en) Method and apparatus for measuring gas barrier property of plastic molded body
Stickel et al. Mechanistic studies of the hydroxyl-initiated oxidation of carbon disulfide in the presence of oxygen
WO2016125338A1 (en) Gas analyzing method and gas analyzing device
Kokkonen et al. Upgrade of the SPECIES beamline at the MAX IV Laboratory
Kokoric et al. Infrared spectroscopy via substrate-integrated hollow waveguides: a powerful tool in catalysis research
KR101030405B1 (en) Analytical sensitivity enhancement by catalytic transformation
Markert et al. UV spectra and kinetics of radicals produced in the gas phase reactions of Cl, F and OH with toluene
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP7189730B2 (en) Hydrogen isotope ratio measurement method and apparatus
Nielsen et al. Ultraviolet absorption spectra and kinetics of the self-reaction of bromomethyl and peroxybromomethyl radicals in the gas phase at 298 K
Lehnert Performance of SIFT-MS and PTR-MS in the measurement of volatile organic compounds at different humidities
JP5221881B2 (en) Gas analyzer
Watschinger et al. Operando Fourier-transform infrared–mass spectrometry reactor cell setup for heterogeneous catalysis with glovebox transfer process to surface-chemical characterization
US11754494B2 (en) Device and method for simultaneously measuring mercury, cadmium, zinc and lead
JP7225672B2 (en) Analysis method and analysis system for gaseous composition
Tripa et al. Kinetics measurements of CO photo‐oxidation on Pt (111)
Argüello et al. Properties of fluoroformyl hypofluorite, FC (O) OF, revisited
US8557023B2 (en) Device for preparing a gas flow for introduction thereof into a mass spectrometer
Salazar Gomez et al. Determination of trace compounds and artifacts in nitrogen background measurements by proton transfer reaction time‐of‐flight mass spectrometry under dry and humid conditions
Bell et al. Preparation of simulation chambers for experiments
Chen et al. A mechanistic study of the high-temperature oxidation of organic matter in a carbon analyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150