JP2020070661A - Vibration control structure to building having column and beam - Google Patents

Vibration control structure to building having column and beam Download PDF

Info

Publication number
JP2020070661A
JP2020070661A JP2018206825A JP2018206825A JP2020070661A JP 2020070661 A JP2020070661 A JP 2020070661A JP 2018206825 A JP2018206825 A JP 2018206825A JP 2018206825 A JP2018206825 A JP 2018206825A JP 2020070661 A JP2020070661 A JP 2020070661A
Authority
JP
Japan
Prior art keywords
block
hole
blocks
vibration damping
damping structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018206825A
Other languages
Japanese (ja)
Inventor
由佳 古山
Yuka Furuyama
由佳 古山
永元 直樹
Naoki Nagamoto
直樹 永元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2018206825A priority Critical patent/JP2020070661A/en
Publication of JP2020070661A publication Critical patent/JP2020070661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

To provide a vibration control structure to an existing building which facilitates carrying-in of a material, does not need to block an existing opening, and is comparatively low cost.SOLUTION: A vibration control structure 1 includes a column part 5 arranged between a first beam 3 of a lower layer and a second beam 4 of an upper layer, and a tendon 6 which vertically penetrates through the column part 5, the first beam 3 and the second beam 4. The column part 5 has a plurality of blocks 9 made of precast concrete, and a plurality of vibration control members 10 that are vertically and alternately stacked on the plurality of blocks. Shaking at the time of earthquake is attenuated by a friction force or deformation of the vibration control member 10.SELECTED DRAWING: Figure 2

Description

本開示は、柱及び梁を有する建物に対する制振構造に関する。   The present disclosure relates to a vibration control structure for a building having columns and beams.

既存の建物を補強する場合、居住空間を確保しながら施工することが望まれる。また、コンクリートを現場で打設すると、工事用の設備が大掛かりになるとともに現場が汚れるため、乾式で施工することが望まれる。また、新設の建物においても、乾式で補強構造を構築することが望ましい場合がある。   When reinforcing an existing building, it is desirable to construct it while securing a living space. Further, when concrete is poured on site, the construction equipment becomes large-scale and the site becomes dirty. Therefore, it is desirable to carry out dry construction. Even in a new building, it may be desirable to construct a dry reinforcement structure.

特許文献1及び2には、ダンパーを間柱的に設置した構造が記載されている。特許文献3及び4には、コンクリート製のブロックを柱及び梁の間に組積した壁からなる耐震補強構造が記載されている。特許文献5には、鉄鋼製のフレーム及び斜材を有する補強ブロックを柱及び梁の間に組積した壁からなる耐震補強構造が記載されている。特許文献6には、鋼板ブロックを積層して互いにボルトで締結された耐震壁及び耐震間柱が記載されている。   Patent Documents 1 and 2 describe a structure in which dampers are installed in a stud manner. Patent Documents 3 and 4 describe a seismic reinforced structure including a wall in which concrete blocks are laid between columns and beams. Patent Document 5 describes a seismic retrofit structure including a wall made of a steel frame and a reinforcing block having a diagonal member, which is built between columns and beams. Patent Document 6 describes an earthquake-resistant wall and an earthquake-resistant stud that are formed by laminating steel plate blocks and fastened to each other with bolts.

特開2011−42929号公報JP, 2011-42929, A 特開2016−166530号公報JP, 2016-166530, A 特開2009−249865号公報JP, 2009-249865, A 特開2018−35592号公報JP, 2018-35592, A 特開2016−102363号公報JP, 2016-102363, A 特開平9−144374号公報JP, 9-144374, A

特許文献1及び2に記載の構造等に用いられる制振デバイスは、サイズが大きい、重量が重いため施工に手間がかかる、既存躯体への入力応力が大きくなる傾向がある、設置の際に専門技術者による指導が必要である等の問題があった。   The vibration damping device used in the structures and the like described in Patent Documents 1 and 2 is large in size, heavy in weight, which requires time and effort for construction, and tends to increase input stress to the existing structure. There were problems such as the need for technical guidance.

特許文献3〜6に記載の構造は、ブロックを組積して形成されるため、資材の搬入が特許文献1及び2に記載の構造よりも容易であった。しかし、制振構造と建物躯体との接合部の施工が難しい、地震後にひび割れが生じるおそれがある等の問題があった。さらに、特許文献3〜5に記載の構造では、既存の開口を塞ぐ必要あるという問題があり、特許文献6に記載の構造は、積層された鋼板ブロックを互いに固定して構築されるが、所望の耐震性能又は制振性能を得るには壁又は幅の広い柱状となり、既存の開口がある程度塞がれるとともに、材料コストが増大するという問題があった。   Since the structures described in Patent Documents 3 to 6 are formed by stacking blocks, it is easier to carry in the material than the structures described in Patent Documents 1 and 2. However, there are problems that it is difficult to construct the joint between the vibration control structure and the building frame, and that cracks may occur after the earthquake. Further, the structures described in Patent Documents 3 to 5 have a problem that it is necessary to close the existing opening, and the structure described in Patent Document 6 is constructed by fixing the laminated steel plate blocks to each other, but In order to obtain the anti-seismic performance or the vibration damping performance, a wall or a wide column is formed, and there is a problem that the existing opening is blocked to some extent and the material cost is increased.

このような問題に鑑み、本発明は、建物に対する制振構造であって、資材の搬入が容易で、開口を塞ぐ必要がなく、コストが比較的低い制振構造を提供することを目的とする。   In view of such a problem, it is an object of the present invention to provide a vibration damping structure for a building, which is easy to carry in materials, does not need to close an opening, and has a relatively low cost. ..

本発明の少なくともいくつかの実施形態は、柱(2)及び梁(3,4)を有する建物に対する制振構造(1,41)であって、下端及び上端が、それぞれ、下層側に配置された第1梁(3)及び上層側に配置された第2梁(4)に当接するように配置された柱部(5,42)を有し、前記柱部は、複数のブロック(9)と、複数の前記ブロックに対して上下かつ交互に積層された複数の制振部材(10,9a)とを有し、複数の前記ブロック及び複数の前記制振部材は、圧縮部材(6,44)によって上下方向に圧縮力を受けていることを特徴とする。   At least some embodiments of the present invention are a damping structure (1,41) for a building having columns (2) and beams (3,4), the lower end and the upper end of which are respectively arranged on the lower layer side. The first beam (3) and the second beam (4) arranged on the upper layer side, the column part (5, 42) arranged so as to abut, and the column part includes a plurality of blocks (9). And a plurality of damping members (10, 9a) vertically and alternately laminated on the plurality of blocks, and the plurality of blocks and the plurality of damping members are compression members (6, 44). ) Is subjected to a compressive force in the vertical direction.

この構成によれば、柱部が複数のブロック及び複数の制振部材といった比較的小さい部材によって構成されるため、人力で部材を搬入できる。また、圧縮力を導入するため、制振構造が壁状ではなく柱状であっても十分な減衰力を得られ、開口を塞がず、コストを抑制できる。   According to this structure, since the pillar portion is composed of a relatively small member such as a plurality of blocks and a plurality of vibration damping members, the member can be carried in manually. Further, since the compressive force is introduced, a sufficient damping force can be obtained even if the vibration damping structure is column-shaped instead of wall-shaped, the opening is not blocked, and the cost can be suppressed.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成において、前記ブロックは、プレキャストコンクリート部材であることを特徴とする。   The damping structure according to at least some embodiments of the present invention is characterized in that, in the above-mentioned configuration, the block is a precast concrete member.

この構成によれば、ブロックの素材が鋼材に比べて安価なコンクリートであるため、コストを抑制できる。   According to this structure, the cost of the block can be reduced because the material of the block is concrete, which is cheaper than steel.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成において、各々の前記制振部材(10)は、上下に積層されて互いに摺動可能な少なくとも2枚の金属又は樹脂を素材とするプレート(12,13)を有し、前記ブロックに当接する前記プレートは該ブロックに固定され、又は、少なくとも2枚の前記プレート間の静摩擦係数が前記プレート及び前記ブロック間の静摩擦係数よりも小さいことを特徴とする。   In the vibration damping structure according to at least some embodiments of the present invention, in the above structure, each of the vibration damping members (10) is made of at least two metal or resin materials which are vertically stacked and slidable with respect to each other. Having a plate (12, 13) for contacting with the block, the plate is fixed to the block, or the coefficient of static friction between at least two plates is greater than the coefficient of static friction between the plate and the block. Characterized by being small.

この構成によれば、第1プレートと第2プレートとの摩擦力によって地震時の揺れを減衰させることができる。   According to this configuration, it is possible to reduce the shaking during an earthquake by the frictional force between the first plate and the second plate.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記の第1又は第2の構成において、各々の前記制振部材は、層状のゴム(14)を有することを特徴とする。   The vibration damping structure according to at least some embodiments of the present invention is characterized in that, in the first or second configuration, each of the vibration damping members has a layered rubber (14).

この構成によれば、ゴムの変形によって地震時の揺れを減衰させることができる。   According to this configuration, it is possible to reduce the shaking during an earthquake due to the deformation of the rubber.

本発明の少なくともいくつかの実施形態に係る制振構造(1)は、上記構成の何れかにおいて、前記柱部(5)は、上下に貫通する柱部貫通孔(15)を有し、前記第1梁及び前記第2梁は、それぞれ、上下に貫通して前記柱部貫通孔に連通する第1貫通孔(16)及び第2貫通孔(17)を有し、前記圧縮部材は、前記柱部貫通孔、前記第1貫通孔及び前記第2貫通孔に挿通された緊張材(6)を有することを特徴とする。   In the vibration damping structure (1) according to at least some embodiments of the present invention, in any one of the above configurations, the pillar portion (5) has a pillar portion through hole (15) penetrating vertically, Each of the first beam and the second beam has a first through hole (16) and a second through hole (17) penetrating vertically and communicating with the column portion through hole, and the compression member is the It is characterized by having a tension member (6) inserted into the column portion through hole, the first through hole and the second through hole.

この構成によれば、緊張材によって柱部に圧縮力が導入されるとともに、緊張材が柱部を上下に貫通していることによってブロック及び制振部材の脱落が防止される。   According to this configuration, a compressive force is introduced into the column portion by the tension member, and the block and the vibration damping member are prevented from falling off because the tension member vertically penetrates the column portion.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成において、前記柱部貫通孔は、最上段及び最下段に配置された前記ブロック(9a,9b)において、それぞれ、上方及び下方に向かうに従って拡径していることを特徴とする。   In the vibration damping structure according to at least some embodiments of the present invention, in the above-mentioned configuration, the pillar portion through holes are respectively arranged above and below the blocks (9a, 9b) arranged at the uppermost stage and the lowermost stage. It is characterized in that the diameter increases as it goes to.

この構成によれば、拡径した貫通孔によって、緊張材の切断が抑制される。   According to this structure, cutting of the tendons is suppressed by the enlarged through hole.

本発明の少なくともいくつかの実施形態に係る制振構造は、緊張材を有する上記構成の何れかにおいて、各々の前記ブロックは、前記柱部貫通孔の一部を構成するブロック孔(19)を有するとともに、上下に開口して側面から前記ブロック孔に至る溝(24)を有する本体部(25)と、前記溝に嵌合した楔形部(26)とを有し、前記溝及び前記楔形部は、平面視で、前記側面の側の幅が前記ブロック孔の側の幅よりも短いことを特徴とする。   In the vibration damping structure according to at least some embodiments of the present invention, in any one of the above configurations having a tension member, each of the blocks has a block hole (19) forming a part of the pillar portion through hole. And a wedge-shaped portion (26) fitted in the groove, and a main body portion (25) that has a groove (24) that opens up and down and extends from the side surface to the block hole, and the groove and the wedge-shaped portion. Is characterized in that the width on the side surface side is shorter than the width on the block hole side in plan view.

この構成によれば、緊張材を配置した状態でも、本体部から楔形部を取り外すことにより、ブロックを所定の位置に配置し、また、所定の位置から取り外すことができるため、ブロックの交換が容易となる。   According to this configuration, even when the tension member is arranged, the block can be arranged at the predetermined position and removed from the predetermined position by removing the wedge-shaped portion from the main body, so that the block can be easily replaced. Becomes

本発明の少なくともいくつかの実施形態に係る制振構造(41)は、上記の第1〜第4の構成の何れかにおいて、前記圧縮部材は、前記柱部内に配置されたばね又はジャッキを有することを特徴とする。   In the vibration damping structure (41) according to at least some embodiments of the present invention, in any one of the first to fourth configurations described above, the compression member has a spring or a jack arranged in the column portion. Is characterized by.

この構成によれば、圧縮部材として緊張材を用いる場合よりも施工が容易となる。   According to this structure, the construction is easier than the case where the tension member is used as the compression member.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成の何れかにおいて、各々の前記ブロックは、上面及び下面の一方に設けられた凹部(22)と、互いに隣り合う他の前記ブロックの前記凹部に緩く受容されるべく、上面及び下面の他方に設けられた凸部(23)とを有し、前記凸部の側面が前記凹部の側面に係止されることを特徴とする(図7参照)。   In the vibration damping structure according to at least some embodiments of the present invention, in any one of the above configurations, each of the blocks includes a recess (22) provided on one of an upper surface and a lower surface, and the other adjacent to each other. A convex portion (23) provided on the other of the upper surface and the lower surface so as to be loosely received in the concave portion of the block, and a side surface of the convex portion is locked to a side surface of the concave portion. (See Figure 7).

この構成によれば、凸部が凹部に係止されることによって、ブロックの脱落を防止でき、各々のブロックの変位を平均化できる。   According to this configuration, the protrusions are locked in the recesses, so that the blocks can be prevented from falling off, and the displacement of each block can be averaged.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成に代えて、各々の前記ブロックは、上面及び下面の一方に設けられた凹部(22)と、互いに隣り合う他の前記ブロックの前記凹部に緩く受容されるべく、上面及び下面の他方に設けられた凸部(23)とを有し、前記凹部及び前記凸部は、それぞれ、前記凸部の突出方向に凸な湾曲面を有することを特徴とする(図8参照)。   In the vibration damping structure according to at least some embodiments of the present invention, in place of the above configuration, each of the blocks includes a recess (22) provided on one of an upper surface and a lower surface, and the other blocks adjacent to each other. And a convex portion (23) provided on the other of the upper surface and the lower surface so as to be loosely received in the concave portion, the concave portion and the convex portion each have a curved surface convex in the protruding direction of the convex portion. (See FIG. 8).

この構成によれば、凸部が凹部に摺接することによって、凸部が凹部から平面視で中央に向かう力を受けるため、ブロックに復元力が働く。また、各々のブロックの変位を平均化できる。   According to this configuration, since the convex portion slides into contact with the concave portion, the convex portion receives a force from the concave portion toward the center in a plan view, and thus a restoring force acts on the block. Further, the displacement of each block can be averaged.

本発明の少なくともいくつかの実施形態に係る制振構造は、上記構成の何れかにおいて、前記柱部は、前記上下方向の長さを調整する調整部材(11,43)を有し、前記調整部材は、横方向に延在するボルト軸部(27a)と、前記ボルト軸部における前記横方向の一方の端部に設けられた係止部(27b,45)と、前記ボルト軸部における前記横方向の他方の端部に螺合したナット(28)と、前記横方向の前記他方の面において前記ナットに当接する第1部材(29,46)と、前記ボルト軸部に対して前記横方向の前記一方へ向かう移動が規制されるように前記係止部に係止された第2部材(30,47)とを有し、前記第1部材及び前記第2部材は、前記横方向に対して角度をなすように上下に傾斜して互いに摺接する傾斜面(29a,30a,46a,47a)を有することを特徴とする。   In the vibration damping structure according to at least some embodiments of the present invention, in any one of the above-described configurations, the column portion has an adjusting member (11, 43) for adjusting the length in the vertical direction, and the adjustment is performed. The member includes a bolt shaft portion (27a) extending in the lateral direction, a locking portion (27b, 45) provided at one end of the bolt shaft portion in the lateral direction, and the bolt shaft portion (27a). A nut (28) screwed to the other end in the lateral direction, a first member (29, 46) abutting the nut on the other surface in the lateral direction, and the lateral member with respect to the bolt shaft portion. A second member (30, 47) locked to the locking portion so that the movement of the first direction toward the one side is restricted, and the first member and the second member are arranged in the lateral direction. Inclined surfaces that incline vertically and make sliding contact with each other ( 9a, and having 30a, 46a, and 47a).

この構成によれば、調整部材の上下方向長さを調節できるため、柱部の上端を第2梁に隙間なく当接させることができる。   According to this configuration, since the vertical length of the adjusting member can be adjusted, the upper end of the column portion can be brought into contact with the second beam without a gap.

本発明によれば、既存の建物に対する制振構造であって、資材の搬入が容易で、開口を塞ぐ必要がなく、コストが比較的低い制振構造を提供できる。   According to the present invention, it is possible to provide a vibration damping structure for an existing building, in which it is easy to carry in materials, it is not necessary to close the opening, and the cost is relatively low.

第1実施形態に係る制振構造の正面図(平常時)Front view of the vibration damping structure according to the first embodiment (normal time) 第1実施形態に係る制振構造の正面図(地震時)Front view of the vibration control structure according to the first embodiment (during an earthquake) 第1実施形態に係るブロック及び制振部材を示す斜視図A perspective view showing a block and a damping member according to a first embodiment. 第1実施形態に係るブロック及び制振部材を示す正面図(地震時)Front view of the block and damping member according to the first embodiment (during an earthquake) 第1実施形態の第1変形例に係るブロック及び制振部材を示す正面図(地震時)The front view (at the time of an earthquake) which shows the block and the damping member which concern on the 1st modification of 1st Embodiment. 第1実施形態に係る最上段及び最下段に配置されたブロックを示す縦断面図FIG. 3 is a vertical cross-sectional view showing blocks arranged in the uppermost stage and the lowermost stage according to the first embodiment. 第1実施形態の第2変形例に係るブロックを示す縦断面図A longitudinal section showing a block concerning the 2nd modification of a 1st embodiment. 第1実施形態の第3変形例に係るブロックを示す縦断面図A longitudinal section showing a block concerning the 3rd modification of a 1st embodiment. 第1実施形態の第4変形例に係るブロックを示す斜視図A perspective view showing a block concerning a 4th modification of a 1st embodiment. 第1実施形態の第5変形例に係るブロックの変形例を示す斜視図The perspective view which shows the modification of the block which concerns on the 5th modification of 1st Embodiment. 第1実施形態に係る調整部材を示す正面図The front view which shows the adjustment member which concerns on 1st Embodiment. 第1実施形態に係る調整部材の第1部材及び第2部材を示す斜視図The perspective view which shows the 1st member and 2nd member of the adjustment member which concerns on 1st Embodiment. 第2実施形態に係る制振構造の正面図(平常時)Front view of the vibration damping structure according to the second embodiment (normal time) 第2実施形態に係る調整部材を示す正面図The front view which shows the adjustment member which concerns on 2nd Embodiment. 第2実施形態に係る圧縮部材を示す斜視図The perspective view which shows the compression member which concerns on 2nd Embodiment.

以下、図面を参照して本発明の実施形態について説明する。図1及び図2に示すように、第1実施形態に係る制振構造1は、柱2、第1梁3、及び第1梁3の上層に配置された第2梁4とを有する既存の建物に設置される。制振構造1は、柱部5と、柱部5を圧縮する圧縮部材として機能する2本の緊張材6と、緊張材6の上端及び下端を覆う保護キャップ7とを有する。緊張材6として、PC鋼線又はPC鋼より線等を用いることができる。   Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, the vibration damping structure 1 according to the first embodiment has an existing structure including a pillar 2, a first beam 3, and a second beam 4 arranged in an upper layer of the first beam 3. Installed in the building. The vibration damping structure 1 has a column portion 5, two tension members 6 that function as compression members that compress the column portion 5, and a protective cap 7 that covers the upper end and the lower end of the tension member 6. As the tension member 6, a PC steel wire, a PC steel stranded wire, or the like can be used.

柱部5は、下端において第1梁3の上面に当接し、上端において第2梁4の下面に当接する。柱部5は、第1梁3の上面に載置された台座8と、複数のブロック9と、複数のブロック9に対して上下かつ交互に積層された複数の制振部材10と、柱部5の上端部に配置された調整部材11とを有する。柱部5は、互いに隣り合う2つの柱2の間に設置されるが、2つの柱2間の中央である必要はなく、中間位置であればどこに配置されてもよい。   The column portion 5 contacts the upper surface of the first beam 3 at the lower end and contacts the lower surface of the second beam 4 at the upper end. The pillar portion 5 includes a pedestal 8 placed on the upper surface of the first beam 3, a plurality of blocks 9, a plurality of vibration damping members 10 vertically and alternately stacked on the plurality of blocks 9, and a pillar portion. 5 and the adjusting member 11 arranged at the upper end portion. The pillar portion 5 is installed between two pillars 2 adjacent to each other, but the pillar portion 5 does not have to be at the center between the two pillars 2 and may be arranged at any intermediate position.

台座8は、プレキャストコンクリート製の直方体形状をなす部材である。台座8は、地震時に第1梁3に対して水平方向に変位しないように、下面に目粗し又は楔を有することが好ましい。   The pedestal 8 is a member made of precast concrete and having a rectangular parallelepiped shape. The pedestal 8 preferably has a roughening or a wedge on the lower surface so as not to be displaced in the horizontal direction with respect to the first beam 3 during an earthquake.

図1〜図3に示すように、各々のブロック9は、プレキャストコンクリート製の直方体形状をなす部材であり、平面視における輪郭が台座8の輪郭に一致する。   As shown in FIGS. 1 to 3, each block 9 is a member made of precast concrete and having a rectangular parallelepiped shape, and the contour in plan view matches the contour of the pedestal 8.

図3及び図4に示すように、各々の制振部材10は、ブロック9に載置された金属又は高強度の樹脂を素材とする第1プレート12と、第1プレート12に載置され、かつ他の前記ブロック9が載置された金属又は高強度の樹脂を素材とする第2プレート13とを有する。平面視において、第1プレート12及び第2プレート13の輪郭は、平常時におけるブロック9の輪郭に一致する。第1プレート12及び第2プレート13の素材は、互いに同種であっても異種であってもよい。第1プレート12及び第2プレート13は、緊張材6による圧縮力に耐えられる程度の強度を有する。第1プレート12及び第2プレート13間の静摩擦係数は、第1プレート12及びブロック9間の静摩擦係数、並びに、第2プレート13及びブロック9間の静摩擦係数よりも小さい。従って、柱部5に対して第1プレート12及び第2プレート13間の摩擦力以上のせん断力が加わった時、図4に示すように、第1プレート12及びその下面に当接するブロック9間、並びに、第2プレート13及びその上面に当接するブロック9間にずれが生じる前に、第1プレート12及び第2プレート13間にずれが生じる。   As shown in FIGS. 3 and 4, each damping member 10 is mounted on the first plate 12 and a first plate 12 made of metal or high-strength resin mounted on the block 9. And a second plate 13 made of metal or high-strength resin on which the other block 9 is placed. In a plan view, the contours of the first plate 12 and the second plate 13 match the contour of the block 9 in normal times. The materials of the first plate 12 and the second plate 13 may be the same or different from each other. The first plate 12 and the second plate 13 have such strength that they can withstand the compressive force of the tendons 6. The coefficient of static friction between the first plate 12 and the second plate 13 is smaller than the coefficient of static friction between the first plate 12 and the block 9 and the coefficient of static friction between the second plate 13 and the block 9. Therefore, when a shearing force equal to or greater than the frictional force between the first plate 12 and the second plate 13 is applied to the pillar portion 5, as shown in FIG. , And the deviation occurs between the first plate 12 and the second plate 13 before the deviation occurs between the second plate 13 and the block 9 that contacts the upper surface thereof.

なお、第1プレート12及び第2プレート13の間に1又は複数のプレート(図示せず)が挿入されてもよい。1又は複数のプレートは、平面視で第1プレート12及び第2プレート13と同形であることが好ましい。この場合、互いに上下に積層された第1プレート12、1又は複数のプレート、及び第2プレート13は互いに摺動可能であり、その静摩擦係数は、第1プレート12及びブロック9間の静摩擦係数、並びに、第2プレート13及びブロック9間の静摩擦係数よりも小さい。また、第1プレート12及び第2プレート13は、それぞれ、当接するブロック9に固定されてもよい。例えば、第2プレート13及び第1プレート12を埋め込んでプレキャストコンクリート製のブロック9を製作して、第2プレート13及び第1プレート12をブロック9に固定してもよい。   Note that one or a plurality of plates (not shown) may be inserted between the first plate 12 and the second plate 13. It is preferable that the one or more plates have the same shape as the first plate 12 and the second plate 13 in a plan view. In this case, the first plate 12, one or a plurality of plates that are stacked on top of each other, and the second plate 13 are slidable with respect to each other, and the static friction coefficient thereof is the static friction coefficient between the first plate 12 and the block 9. Also, it is smaller than the coefficient of static friction between the second plate 13 and the block 9. Further, the first plate 12 and the second plate 13 may be fixed to the blocks 9 that are in contact with each other. For example, the second plate 13 and the first plate 12 may be embedded to manufacture the block 9 made of precast concrete, and the second plate 13 and the first plate 12 may be fixed to the block 9.

図5に示すように、各々の制振部材10として、高減衰ゴム14等の層状のゴムを用いてもよい。この場合、高減衰ゴム14が変形することによってせん断力に抵抗する。   As shown in FIG. 5, a layered rubber such as the high damping rubber 14 may be used as each damping member 10. In this case, the high damping rubber 14 is deformed to resist the shearing force.

図1及び図2に示すように、柱部5は、上下に貫通する2つの柱部貫通孔15を有し、第1梁3及び第2梁4は、それぞれ、上下に貫通して柱部貫通孔15に連通する2つの第1貫通孔16及び第2貫通孔17を有する。緊張材6は、柱部貫通孔15、第1貫通孔16及び第2貫通孔17に挿通され、下端部において第1梁3の下面に固定され、上端部において第2梁4の上面に固定されている。また、図1〜図3に示すように、台座8、ブロック9、制振部材10及び調整部材11は、それぞれ、柱部貫通孔15の一部を構成する2つの台座孔18、2つのブロック孔19、2つの制振部材孔20及び2つの調整部材孔21を有する。図6に示すように、最上段に配置されたブロック9a及び最下段に配置されたブロック9bのブロック孔19は、それぞれ、上方及び下方に向かうに従って拡径しており、このため、最上段に配置されたブロック9a及び調整部材11や、最下段に配置されたブロック9b及び台座8が互いに水平方向にずれても、緊張材6は切断され難い。   As shown in FIG. 1 and FIG. 2, the pillar portion 5 has two pillar portion through holes 15 penetrating vertically, and the first beam 3 and the second beam 4 respectively vertically penetrating the pillar portion. It has two first through holes 16 and a second through hole 17 that communicate with the through hole 15. The tension member 6 is inserted through the column portion through hole 15, the first through hole 16 and the second through hole 17, is fixed to the lower surface of the first beam 3 at the lower end portion, and is fixed to the upper surface of the second beam 4 at the upper end portion. Has been done. In addition, as shown in FIGS. 1 to 3, the pedestal 8, the block 9, the vibration damping member 10 and the adjusting member 11 respectively include two pedestal holes 18 and two blocks that form a part of the pillar portion through hole 15. The hole 19, two damping member holes 20, and two adjusting member holes 21 are provided. As shown in FIG. 6, the block holes 19 of the block 9a arranged at the uppermost stage and the block 9b arranged at the lowermost stage are expanded in diameter toward the upper side and the lower side, respectively. Even if the block 9a and the adjusting member 11 that are arranged and the block 9b and the pedestal 8 that are arranged at the lowermost stage are displaced from each other in the horizontal direction, the tension member 6 is difficult to be cut.

図7〜図10は、それぞれ、第1実施形態の第2〜第5変形例を示し、主としてブロック9の形状において上記の例と相違する。図7及び図8に示す第2変形例及び第3変形例に係るブロック9は、上面に設けられた凹部22と、制振部材10を介して下方に隣接する他の前記ブロック9の凹部22に緩く受容されるべく、下面に設けられた凸部23とを有する。凹部22及び凸部23は、それぞれ、平面視でブロック9の中央に位置する。上下2つのブロック9に挟まれた制振部材10は、凸部23によって撓み、又は、平面視で凹部22の輪郭に沿って開口されている。なお、ブロック9の下面に凹部22を設け、上面に凸部23を設けてもよい。   7 to 10 show second to fifth modifications of the first embodiment, respectively, which differ from the above-described example mainly in the shape of the block 9. The block 9 according to the second modified example and the third modified example shown in FIGS. 7 and 8 has a concave portion 22 provided on the upper surface and a concave portion 22 of another block 9 that is adjacent to the lower portion via the vibration damping member 10. And a convex portion 23 provided on the lower surface thereof so as to be loosely received. The concave portion 22 and the convex portion 23 are located at the center of the block 9 in plan view. The vibration damping member 10 sandwiched between the upper and lower blocks 9 is bent by the convex portion 23 or is opened along the contour of the concave portion 22 in a plan view. The concave portion 22 may be provided on the lower surface of the block 9 and the convex portion 23 may be provided on the upper surface.

図7に示す第2変形例では、凸部23は、底面が矩形の角錐台形状又は円錐台形状をなし、凹部22は、平面視で凸部23よりも大きな輪郭を有する角錐台又は円錐台形状をなす。互いに上下に隣接する2つのブロック9が互いに水平方向にずれた時に、凸部23の側面が凹部22の側面に係止されることにより、ブロック9の脱落が防止される。また、第1プレート12及び第2プレート13間の摩擦係数は、複数の制振部材間で完全に一致するわけではないため、摩擦係数の小さいものから順に互いにずれ始めるが、凸部23の側面が凹部22の側面に係止されることにより、各々のブロック9の変位が平均化される。   In the second modification shown in FIG. 7, the convex portion 23 has a truncated pyramid shape or a truncated cone shape with a rectangular bottom surface, and the concave portion 22 has a truncated pyramid shape or a truncated cone shape having a contour larger than that of the convex portion 23 in plan view. Make a shape. When the two blocks 9 vertically adjacent to each other are displaced from each other in the horizontal direction, the side surface of the convex portion 23 is locked to the side surface of the concave portion 22 to prevent the block 9 from falling off. Further, since the friction coefficients between the first plate 12 and the second plate 13 do not completely match between the plurality of vibration damping members, the ones having smaller friction coefficients start to shift in order from each other, but the side surface of the convex portion 23 Is locked to the side surface of the concave portion 22, the displacement of each block 9 is averaged.

図8に示す第3変形例では、凸部23は、平面視で円形をなし表面が下に凸に湾曲した形状、例えば球冠形状をなし、凹部22は、平面視で凸部23よりも大きな円形の輪郭を有し、表面が下に凸に湾曲したお椀形状をなす。局部的に互いに当接し得る凹部22の湾曲面と凸部23の湾曲面とにおいて、その局部における曲率は、凸部23の方が凹部22よりも大きい。互いに上下に隣接する2つのブロック9が互いに水平方向にずれた時に、上下方向の圧縮力受けている凸部23が、凹部22の湾曲した表面から凹部22の最深部である中央に戻るように力を受けるため、ブロック9は復元性能を有する。また、各々のブロック9の変位を平均化できる。   In the third modification shown in FIG. 8, the convex portion 23 has a circular shape in a plan view and the surface has a convexly curved downward shape, for example, a spherical crown shape, and the concave portion 22 has a shape larger than that of the convex portion 23 in a planar view. It has a large circular contour, and the surface of the bowl is curved downward convexly. In the curved surface of the concave portion 22 and the curved surface of the convex portion 23 that can locally come into contact with each other, the convex portion 23 has a larger curvature at the local portion than the concave portion 22. When the two blocks 9 which are vertically adjacent to each other are displaced from each other in the horizontal direction, the convex portion 23 receiving the compressive force in the vertical direction returns from the curved surface of the concave portion 22 to the center which is the deepest portion of the concave portion 22. Due to the force, the block 9 has resilience performance. Further, the displacement of each block 9 can be averaged.

図9に示す第4変形例では、ブロック9は、側面から対応するブロック孔19に至り上下に開口した2つの溝24を有する本体部25と、溝24に嵌合した楔形部26とを有する。2つの溝は互いに平行に配置される。溝24及び楔形部26は、平面視で、ブロック9の側面の側の幅がブロック孔19の側の幅よりも短い。ブロック9が、本体部25及び楔形部26を有することにより、緊張材6を配置した後、溝24に緊張材6が挿し込まれるように横方向から本体部25を所定の位置に移動させ、楔形部26を上方から溝24に挿し込むことによって、ブロック9を所定の位置に配置できる。このため、一部のブロック9が損傷した場合、損傷したブロック9を容易に交換することができる。   In the fourth modified example shown in FIG. 9, the block 9 has a main body portion 25 having two grooves 24 that are vertically opened to reach the corresponding block hole 19 from the side surface, and a wedge-shaped portion 26 that is fitted into the groove 24. .. The two grooves are arranged parallel to each other. The width of the groove 24 and the wedge portion 26 on the side surface side of the block 9 is shorter than the width on the side of the block hole 19 in a plan view. Since the block 9 has the main body portion 25 and the wedge-shaped portion 26, the main body portion 25 is moved from the lateral direction to the predetermined position so that the tension material 6 is inserted into the groove 24 after the tension material 6 is arranged. By inserting the wedge-shaped portion 26 into the groove 24 from above, the block 9 can be arranged at a predetermined position. Therefore, when some blocks 9 are damaged, the damaged blocks 9 can be easily replaced.

図10に示す第5変形例では、ブロック9は金属からなる部材である。ブロック9は、H鋼31と、H鋼31の両端部に配置されて、上縁及び下縁がH鋼31のフランジ31aの内側に当接し、一方の側縁がH鋼31のウェブ31bに当接する矩形の平板状の4枚の第1リブプレート32と、第1リブプレート32よりも、H鋼31の延在方向の内側に配置されて、上縁及び下縁がH鋼31のフランジ31aの内側に当接し、一方の側縁がH鋼31のウェブ31bに当接する矩形の平板状の4枚の第2リブプレート33と、H鋼31の幅方向の両側部に配置されて、上縁及び下縁がH鋼31のフランジ31aの幅方向の端縁に当接し、両側縁が第2リブプレート33の他方の側縁に当接する矩形の平板状の2枚のプレート34とを有する。H鋼31のフランジ31aの両端部近傍には、第1リブプレート32及び第2リブプレートの間に緊張材6を挿通できるように、ブロック孔19が設けられている。なお、同様の形状を有する樹脂部材によってブロック9を構成してもよい。   In the fifth modification shown in FIG. 10, the block 9 is a member made of metal. The blocks 9 are arranged at the H steel 31 and at both ends of the H steel 31, the upper edge and the lower edge contact the inside of the flange 31a of the H steel 31, and one side edge of the web 31b of the H steel 31. Four rectangular flat plate-shaped first rib plates 32 that come into contact with each other, and are arranged inside the first rib plate 32 in the extending direction of the H steel 31, and the upper edge and the lower edge are flanges of the H steel 31. The second flat rib plate 33 has four rectangular flat plates that are in contact with the inside of the steel plate 31a and one side edge of which is in contact with the web 31b of the H steel plate 31, and are arranged on both sides of the H steel plate 31 in the width direction. Two rectangular flat plate-shaped plates 34 whose upper and lower edges are in contact with the widthwise end edges of the flange 31a of the H steel 31, and both side edges are in contact with the other side edge of the second rib plate 33. Have. Block holes 19 are provided in the vicinity of both ends of the flange 31a of the H steel 31 so that the tension member 6 can be inserted between the first rib plate 32 and the second rib plate. The block 9 may be made of a resin member having the same shape.

H鋼31のフランジ31aの表面は、コンクリート表面に比べて摩擦係数にばらつきがないため、H鋼31のフランジ31aを制振部材10とし、H鋼31のウェブ31b、第1リブプレート32、第2リブプレート33及びプレート34からなる部分をブロック9としてもよい。ブロック9を樹脂部材とした場合も同様である。   Since the surface of the flange 31a of the H steel 31 has more uniform coefficient of friction than the surface of the concrete, the flange 31a of the H steel 31 is used as the vibration damping member 10, and the web 31b of the H steel 31, the first rib plate 32, and the The block 9 may be a portion including the two-rib plate 33 and the plate 34. The same applies when the block 9 is a resin member.

図11に示すように、調整部材11は、横方向(水平な所定の方向)に延在するボルト軸部27a及びボルト軸部27aにおける横方向の一方の端部(図11における左側の端部)に設けられて係止部として機能するボルト頭部27bを有するボルト27と、ボルト27における横方向の他方の端部(図11における右側の端部)に螺合したナット28と、横方向の他方(図11における右方)の面においてナット28に当接する第1部材29と、ボルト軸部27aに対して横方向の一方(図11における左方)へ向かう移動が規制されるようにボルト頭部27bに係止された第2部材30とを有する。第1部材29及び第2部材30は、それぞれ、横方向に対して角度をなすように上下に傾斜して互いに摺接する第1傾斜面29a及び第2傾斜面30aを有する。第1部材29及び第2部材30における、ボルト軸部27aが挿通された第1挿通孔29b及び第2挿通孔30bの少なくとも一方は、上下方向に長軸を有する長孔である。第1部材29及び第2部材30は、それぞれ、正面視で、上辺及び下辺が底辺となり、一方の脚が底辺に直角をなす台形状をなす。第2部材30は、地震時に第2梁4に対して水平方向に変位しないように上面に目粗し又は楔を有することが好ましい。   As shown in FIG. 11, the adjusting member 11 includes a bolt shaft portion 27a extending in the horizontal direction (a predetermined horizontal direction) and one end portion in the horizontal direction of the bolt shaft portion 27a (the left end portion in FIG. 11). ) Provided with a bolt head 27b that functions as a locking portion, a nut 28 screwed to the other lateral end of the bolt 27 (the right end in FIG. 11), and a lateral direction. The first member 29 that abuts the nut 28 on the other surface (right side in FIG. 11) and the movement toward one side (left side in FIG. 11) in the lateral direction with respect to the bolt shaft portion 27a are restricted. The second member 30 locked to the bolt head 27b. Each of the first member 29 and the second member 30 has a first inclined surface 29a and a second inclined surface 30a that are vertically inclined so as to form an angle with the lateral direction and are in sliding contact with each other. In the first member 29 and the second member 30, at least one of the first insertion hole 29b and the second insertion hole 30b, through which the bolt shaft portion 27a is inserted, is a long hole having a long axis in the vertical direction. Each of the first member 29 and the second member 30 has a trapezoidal shape in which the upper side and the lower side are the bottom side and one leg is perpendicular to the bottom side in a front view. The second member 30 preferably has a roughening or a wedge on its upper surface so as not to be displaced in the horizontal direction with respect to the second beam 4 during an earthquake.

ナット28を螺進させると、第1部材29及び第2部材30が互いに摺接して、第1部材29が第2部材30に対して図11における斜め下左方に移動する。そのため、調整部材11の上下方向長さが増大する。従って、台座8、複数のブロック9及び複数の制振部材10を積み重ねた後、ナット28を螺退させた状態で調整部材11を最上段のブロック9aと第2梁4との間に挿入し、その後、ナット28を螺進させることにより、調整部材11と第2梁4との隙間をなくすことができる。   When the nut 28 is screwed, the first member 29 and the second member 30 are in sliding contact with each other, and the first member 29 moves diagonally downward leftward in FIG. 11 with respect to the second member 30. Therefore, the vertical length of the adjusting member 11 increases. Therefore, after the pedestal 8, the plurality of blocks 9 and the plurality of damping members 10 are stacked, the adjusting member 11 is inserted between the uppermost block 9a and the second beam 4 with the nut 28 screwed back. Then, by screwing the nut 28 thereafter, the gap between the adjusting member 11 and the second beam 4 can be eliminated.

図12に示すように、調整部材孔21を構成する、第1部材29に設けられた第1孔29c及び第2部材30に設けられた第2孔30cは、第1部材29及び第2部材30が互いに摺動して相対的な位置がずれても連通するように、ブロック孔19及び制振部材孔20(図3参照)よりも横方向の幅が大きくなっている。   As shown in FIG. 12, a first hole 29c provided in the first member 29 and a second hole 30c provided in the second member 30, which form the adjustment member hole 21, are the first member 29 and the second member. The width in the lateral direction is larger than that of the block hole 19 and the vibration damping member hole 20 (see FIG. 3) so that they can communicate with each other even if the relative positions of the members 30 are displaced from each other.

第1実施形態に係る制振構造1の作用効果を説明する。緊張材6を緊張させることにより、柱部5は上下方向に圧縮力を受ける。この圧縮力によって、第1プレート12及び第2プレート13間に摩擦力が生じ、この摩擦力によって地震時の揺れが減衰される。ブロック9同士の摩擦係数、又は、第1プレート12若しくは第2プレート13とブロック9との摩擦係数は、コンクリートがセメント及び骨材の混合物であるため、ばらつきが大きい。これらに比べて、金属又は樹脂からなる第1プレート12及び第2プレート13間の摩擦係数はばらつきが小さいため、各々の制振部材10において地震時にずれが生じやすく、設計しやすい。また、緊張材6の緊張は、復元力に寄与する。また、緊張材6によって圧縮力が加わるため、柱状の制振構造1であっても、十分な減衰力を得られ、既存の建物の開口を塞がない。なお、第1変形例のように、制振部材10として高減衰ゴム14(図5参照)を使用した場合には、高減衰ゴム14の変形によって地震時の揺れが減衰される。   The effects of the vibration damping structure 1 according to the first embodiment will be described. By tensioning the tension member 6, the column portion 5 receives a compressive force in the vertical direction. This compressive force causes a frictional force between the first plate 12 and the second plate 13, and the frictional force damps the shaking during an earthquake. The coefficient of friction between the blocks 9 or the coefficient of friction between the first plate 12 or the second plate 13 and the block 9 varies greatly because concrete is a mixture of cement and aggregate. Compared to these, the friction coefficient between the first plate 12 and the second plate 13 made of metal or resin has a small variation, and therefore each vibration damping member 10 is likely to be displaced during an earthquake and is easy to design. Further, the tension of the tension member 6 contributes to the restoring force. In addition, since the compressive force is applied by the tension member 6, even with the columnar vibration damping structure 1, sufficient damping force can be obtained and the opening of the existing building is not closed. When the high damping rubber 14 (see FIG. 5) is used as the damping member 10 as in the first modification, the deformation of the high damping rubber 14 damps the shaking during an earthquake.

柱部5が、台座8、ブロック9、制振部材10及び調整部材11に分割して設置場所まで運搬できるため、人力でこれらを運搬でき、既存の建物の屋内に容易に搬入することができる。また、個々の部材の重量が軽く、運搬性及び柱部の構築の施工性がよい。また、従来のダンパーによる制振構造に比べて、施工難易度が低い。鋼材に比べて安価なコンクリートをブロック9として使用するため、コストを抑制できる。   Since the pillar portion 5 can be divided into the pedestal 8, the block 9, the damping member 10 and the adjusting member 11 and transported to the installation site, these can be transported manually and can be easily carried into the existing building indoors. .. Moreover, the weight of each member is light, and the transportability and the workability of constructing the pillar portion are good. In addition, the construction difficulty is lower than that of the conventional damping structure using dampers. Since concrete, which is cheaper than steel, is used as the block 9, the cost can be suppressed.

図13〜図15を参照して、第2実施形態に係る制振構造41を説明する。説明に当たって、第1の実施形態と共通する構成は、その説明を省略し同一の符号を付す。第2実施形態に係る制振構造41は、柱部42を圧縮する手段等において第1実施形態と相違する。   A vibration damping structure 41 according to the second embodiment will be described with reference to FIGS. 13 to 15. In the description, the configuration common to the first embodiment will be omitted and the same reference numerals will be given. The vibration damping structure 41 according to the second embodiment differs from that of the first embodiment in the means for compressing the column portion 42 and the like.

図13に示すように、制振構造41は、下端において第1梁3の上面に当接し、上端において第2梁4の下面に当接する柱部42を有する。柱部42は、第1梁3の上面に載置された台座8と、複数のブロック9と、複数のブロック9に対して上下かつ交互に積層された複数の制振部材10と、柱部5の上端部に配置された調整部材43と、最上段に配置されたブロック9a及び調整部材43の間に配置された圧縮部材44とを有する。台座8、ブロック9及び制振部材10は、緊張材6(図1参照)を挿通するための孔が設けられていない点を除いて、第1実施形態と同様の構成を有する。   As shown in FIG. 13, the vibration damping structure 41 has a column portion 42 that abuts the upper surface of the first beam 3 at the lower end and abuts the lower surface of the second beam 4 at the upper end. The column portion 42 includes a pedestal 8 placed on the upper surface of the first beam 3, a plurality of blocks 9, a plurality of vibration damping members 10 vertically and alternately stacked on the plurality of blocks 9, and a column portion. 5 has an adjusting member 43 arranged at the upper end thereof, and a compression member 44 arranged between the block 9a arranged at the uppermost stage and the adjusting member 43. The pedestal 8, the block 9 and the damping member 10 have the same configuration as that of the first embodiment, except that no hole for inserting the tension member 6 (see FIG. 1) is provided.

図14に示すように、調整部材43は、横方向に延在するボルト軸部27a及びボルト軸部27aにおける横方向の一方の端部(図14における左側の端部)に設けられたボルト頭部27bを有するボルト27と、ボルト27における横方向の他方の端部(図14における右側の端部)に螺合したナット28と、ボルト軸部27aが挿通された貫通孔45aを有して、ボルト軸部27aに対して横方向の一方(図14における左方)へ向かう移動が規制されるようにボルト頭部27bに係止された鋼板等の板状の係止部材45と、横方向の他方(図14における右方)の面においてナット28に当接する第1部材46と、ボルト軸部27aよりも上方においてボルト軸部27aに対して横方向の一方(図14における左方)へ向かう移動が規制されるように係止部材45に係止された第2部材47と、ボルト軸部27aよりも下方においてボルト軸部27aに対して横方向の一方(図14における左方)へ向かう移動が規制されるように係止部材45に係止された第3部材48とを有する。   As shown in FIG. 14, the adjusting member 43 includes a bolt shaft portion 27a extending in the lateral direction and a bolt head provided at one lateral end portion (the left end portion in FIG. 14) of the bolt shaft portion 27a. A bolt 27 having a portion 27b, a nut 28 screwed to the other lateral end portion of the bolt 27 (the right end portion in FIG. 14), and a through hole 45a in which the bolt shaft portion 27a is inserted are provided. , A plate-shaped locking member 45 such as a steel plate locked to the bolt head 27b so that movement toward one side in the lateral direction (leftward in FIG. 14) with respect to the bolt shaft portion 27a is restricted; The first member 46 that abuts the nut 28 on the other surface (right side in FIG. 14) of the direction, and one side in the lateral direction (left side in FIG. 14) with respect to the bolt shaft portion 27a above the bolt shaft portion 27a. Move toward The second member 47 locked to the locking member 45 and the movement of the second member 47 laterally below the bolt shaft portion 27a (leftward in FIG. 14) with respect to the bolt shaft portion 27a are restricted. And a third member 48 locked to the locking member 45 as described above.

第1部材46及び第2部材47は、それぞれ、横方向に対して角度をなすように上下に傾斜して互いに摺接する第1上傾斜面46a及び第2傾斜面47aを有する。同様に、第1部材46及び第3部材48は、それぞれ、横方向に対して角度をなすように上下に傾斜して互いに摺接する第1下傾斜面46b及び第3傾斜面48aを有する。第1部材46は、正面視で、台形状をなし、横方向のボルト頭部27b側の辺が短い底辺となり、横方向のナット28側の辺が長い底辺となり、短い底辺と2つの脚がなす角度は鈍角となる。また、第1部材46は、ボルト軸部27aを挿通させる挿通孔46cを有する。第2部材47は、上辺と横方向のボルト頭部27b側の辺が直角をなす直角三角形状をなす。第3部材48は、下辺と横方向のボルト頭部27b側の辺が直角をなす直角三角形状をなす。   Each of the first member 46 and the second member 47 has a first upper inclined surface 46a and a second inclined surface 47a that are vertically inclined so as to form an angle with the lateral direction and are in sliding contact with each other. Similarly, the first member 46 and the third member 48 each have a first lower sloping surface 46b and a third sloping surface 48a that are vertically inclined so as to form an angle with the lateral direction and are in sliding contact with each other. The first member 46 has a trapezoidal shape when viewed from the front, a side on the lateral bolt head 27b side has a short base, a side on the lateral nut 28 side has a long base, and a short base and two legs are provided. The angle formed is obtuse. The first member 46 also has an insertion hole 46c through which the bolt shaft portion 27a is inserted. The second member 47 has a right triangle shape in which the upper side and the side on the side of the bolt head 27b in the lateral direction form a right angle. The third member 48 is in the shape of a right triangle in which the lower side and the side on the bolt head 27b side in the lateral direction form a right angle.

ナット28を螺進させると、第1部材46が図14における左方に移動する。この時、第2部材47及び第3部材48は、係止部材45に係止されているため、第2傾斜面47aが第1上傾斜面46aに摺接し、かつ第3傾斜面48aが第1下傾斜面46bに摺接することにより、上下に離間するように移動する。そのため、調整部材43の上下方向長さが増大する。従って、台座8、複数のブロック9、複数の制振部材10及び圧縮部材44を積み重ねた後、ナット28を螺退させた状態で調整部材43を最上段のブロック9a及び圧縮部材44と第2梁4との間に挿入し、その後、ナット28を螺進させることにより、調整部材43と第2梁4との隙間をなくすことができる。   When the nut 28 is screwed, the first member 46 moves to the left in FIG. At this time, since the second member 47 and the third member 48 are locked by the locking member 45, the second inclined surface 47a is in sliding contact with the first upper inclined surface 46a, and the third inclined surface 48a is the first. 1 By slidingly contacting the lower inclined surface 46b, it moves so as to be vertically separated. Therefore, the vertical length of the adjusting member 43 increases. Therefore, after the pedestal 8, the plurality of blocks 9, the plurality of damping members 10 and the compression member 44 are stacked, the adjusting member 43 is moved to the uppermost block 9a and the compression member 44 with the nut 28 screwed back. The gap between the adjusting member 43 and the second beam 4 can be eliminated by inserting it between the beam 4 and the nut 28 and then threading the nut 28.

図15に示すように、圧縮部材44は、最上段に配置されたブロック9aの上面に設けられた凹部49内に配置される。また、調整部材43の下面にも圧縮部材44を受容する凹部(図示せず)が設けられていることが好ましい。圧縮部材44は、上下方向にばね力が作用する皿ばね等のばね、又は上下に伸縮するフラットジャッキ等のジャッキからなる。調整部材43の高さを調整して、調整部材43と第2梁4との隙間をなくした後、ばね力を解放し、又はジャッキを伸長させ、圧縮部材44をブロック9aの上面及び調整部材43の下面に圧接させることにより、柱部42に圧縮力を導入する。   As shown in FIG. 15, the compression member 44 is arranged in a recess 49 provided in the upper surface of the block 9a arranged in the uppermost stage. Further, it is preferable that a recess (not shown) that receives the compression member 44 is also provided on the lower surface of the adjustment member 43. The compression member 44 includes a spring such as a disc spring that exerts a spring force in the vertical direction, or a jack such as a flat jack that expands and contracts in the vertical direction. After adjusting the height of the adjusting member 43 to eliminate the gap between the adjusting member 43 and the second beam 4, the spring force is released or the jack is extended to move the compression member 44 to the upper surface of the block 9a and the adjusting member. A compressive force is introduced into the column portion 42 by pressing it against the lower surface of 43.

第2実施形態に係る制振構造41も、第1実施形態と同様の作用効果を有する。また、第1実施形態に比べて、緊張材6(図1参照)を緊張させる工程がないため、制振構造41の施工難易度がさらに低い。また、第1実施形態に比べて、柱部42に緊張材が貫通していないため、ブロック9及び制振部材10の交換が容易である。   The vibration damping structure 41 according to the second embodiment also has the same effects as the first embodiment. Further, compared with the first embodiment, since there is no step of tensioning the tension member 6 (see FIG. 1), the construction difficulty of the vibration damping structure 41 is further low. Further, as compared with the first embodiment, since the tension member does not penetrate the column portion 42, the block 9 and the vibration damping member 10 can be easily replaced.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。調整部材を柱部の中間部に配置してもよい。この場合、調整部材の上面及び下面は、ブロック又は台座に当接することが好ましい。第1実施形態において、緊張材は、1本又は3本以上に変更してもよい。第1実施形態の第1変形例の制振部材や、第2変形例又は第3変形例のブロックの形状を第2実施形態に適用してもよい。第1実施形態の第1変形例、第2変形例又は第3変形例、及び第4変形例を互いに組み合わせてもよい。第1実施形態の調整部材を第2実施形態に適用してもよく、第2実施形態の調整部材を第1実施形態に適用してもよい。第1実施形態において、互いに上下に隣り合う層に配置された複数の柱部を共通の緊張材で圧縮してもよい。本発明を新築の建物に適用してもよい。   Although the specific embodiment has been described above, the present invention is not limited to the above embodiment and can be widely modified and implemented. You may arrange | position an adjustment member in the intermediate part of a pillar part. In this case, it is preferable that the upper surface and the lower surface of the adjusting member contact the block or the pedestal. In the first embodiment, the tension material may be changed to one or three or more. The shape of the vibration damping member of the first modification of the first embodiment and the block of the second modification or the third modification may be applied to the second embodiment. The first modified example, the second modified example or the third modified example, and the fourth modified example of the first embodiment may be combined with each other. The adjusting member of the first embodiment may be applied to the second embodiment, and the adjusting member of the second embodiment may be applied to the first embodiment. In the first embodiment, a plurality of pillars arranged in vertically adjacent layers may be compressed by a common tension member. The present invention may be applied to a new building.

1,41:制振構造
2:柱
3:第1梁
4:第2梁
5,42:柱部
6:緊張材(圧縮部材)
9:ブロック
10:制振部材
11,43:調整部材
12:第1プレート
13:第2プレート
14:高減衰ゴム
22:凹部
23:凸部
24:溝
25:本体部
26:楔形部
27:ボルト
27a:ボルト軸部
27b:ボルト頭部(係止部)
28:ナット
29,46:第1部材
29a:第1傾斜面(傾斜面)
46a:第1上傾斜面(傾斜面)
30,47:第2部材
30a,47a:第2傾斜面(傾斜面)
44:圧縮部材
45:係止部材(係止部)
1, 41: Damping structure 2: Column 3: First beam 4: Second beam 5, 42: Column part 6: Tension material (compression member)
9: Block 10: Damping member 11, 43: Adjusting member 12: First plate 13: Second plate 14: High damping rubber 22: Recessed portion 23: Convex portion 24: Groove 25: Main body portion 26: Wedge portion 27: Bolt 27a: bolt shaft portion 27b: bolt head portion (locking portion)
28: Nuts 29, 46: First member 29a: First inclined surface (inclined surface)
46a: First upper inclined surface (inclined surface)
30, 47: Second member 30a, 47a: Second inclined surface (inclined surface)
44: Compression member 45: Locking member (locking part)

Claims (11)

柱及び梁を有する建物に対する制振構造であって、
下端及び上端が、それぞれ、下層側に配置された第1梁及び上層側に配置された第2梁に当接するように配置された柱部を有し、
前記柱部は、複数のブロックと、複数の前記ブロックに対して上下かつ交互に積層された複数の制振部材とを有し、
複数の前記ブロック及び複数の前記制振部材は、圧縮部材によって上下方向に圧縮力を受けていることを特徴とする制振構造。
A damping structure for a building having columns and beams,
The lower end and the upper end respectively have pillar portions arranged so as to abut on the first beam arranged on the lower layer side and the second beam arranged on the upper layer side,
The pillar portion has a plurality of blocks, and a plurality of vibration damping members that are vertically and alternately stacked with respect to the plurality of blocks,
A vibration damping structure, wherein the plurality of blocks and the plurality of vibration damping members receive a compressive force in a vertical direction by a compression member.
前記ブロックは、プレキャストコンクリート部材であることを特徴とする請求項1に記載の制振構造。   The damping structure according to claim 1, wherein the block is a precast concrete member. 各々の前記制振部材は、上下に積層されて互いに摺動可能な少なくとも2枚の金属又は樹脂を素材とするプレートを有し、
前記ブロックに当接する前記プレートは該ブロックに固定され、又は、少なくとも2枚の前記プレート間の静摩擦係数が前記プレート及び前記ブロック間の静摩擦係数よりも小さいことを特徴とする請求項2に記載の制振構造。
Each of the vibration damping members includes at least two metal or resin plates that are vertically stacked and slidable with respect to each other,
The plate contacting the block is fixed to the block, or the coefficient of static friction between at least two plates is smaller than the coefficient of static friction between the plate and the block. Vibration control structure.
各々の前記制振部材は、層状のゴムを有することを特徴とする請求項1又は2に記載の制振構造。   The damping structure according to claim 1 or 2, wherein each of the damping members has a layered rubber. 前記柱部は、上下に貫通する柱部貫通孔を有し、
前記第1梁及び前記第2梁は、それぞれ、上下に貫通して前記柱部貫通孔に連通する第1貫通孔及び第2貫通孔を有し、
前記圧縮部材は、前記柱部貫通孔、前記第1貫通孔及び前記第2貫通孔に挿通された緊張材を有することを特徴とする請求項1〜4の何れか一項に記載の制振構造。
The pillar portion has a pillar portion through hole that vertically penetrates,
The first beam and the second beam each have a first through hole and a second through hole that penetrate vertically and communicate with the pillar through hole,
The vibration damping device according to any one of claims 1 to 4, wherein the compression member includes a tension member that is inserted into the pillar portion through hole, the first through hole, and the second through hole. Construction.
前記柱部貫通孔は、最上段及び最下段に配置された前記ブロックにおいて、それぞれ、上方及び下方に向かうに従って拡径していることを特徴とする請求項5に記載の制振構造。   The vibration damping structure according to claim 5, wherein the pillar-shaped through-holes have diameters that increase in an upward direction and a downward direction in the blocks arranged in the uppermost stage and the lowermost stage, respectively. 各々の前記ブロックは、前記柱部貫通孔の一部を構成するブロック孔を有するとともに、上下に開口して側面から前記ブロック孔に至る溝を有する本体部と、前記溝に嵌合した楔形部とを有し、
前記溝及び前記楔形部は、平面視で、前記側面の側の幅が前記ブロック孔の側の幅よりも短いことを特徴とする請求項5又は6に記載の制振構造。
Each of the blocks has a block hole that constitutes a part of the pillar through hole, a main body portion having a groove that opens vertically and extends from a side surface to the block hole, and a wedge-shaped portion that fits in the groove. Has and
7. The vibration damping structure according to claim 5, wherein the groove and the wedge-shaped portion have a width on the side surface side shorter than a width on the block hole side in plan view.
前記圧縮部材は、前記柱部内に配置されたばね又はジャッキを有することを特徴とする請求項1〜4の何れか一項に記載の制振構造。   The vibration damping structure according to claim 1, wherein the compression member has a spring or a jack arranged in the column portion. 各々の前記ブロックは、上面及び下面の一方に設けられた凹部と、互いに隣り合う他の前記ブロックの前記凹部に緩く受容されるべく、上面及び下面の他方に設けられた凸部とを有し、
前記凸部の側面が前記凹部の側面に係止されることを特徴とする請求項1〜8の何れか一項に記載の制振構造。
Each of the blocks has a concave portion provided on one of the upper surface and the lower surface, and a convex portion provided on the other of the upper surface and the lower surface so as to be loosely received in the concave portions of the other adjacent blocks. ,
9. The vibration damping structure according to claim 1, wherein a side surface of the convex portion is locked to a side surface of the concave portion.
各々の前記ブロックは、上面及び下面の一方に設けられた凹部と、互いに隣り合う他の前記ブロックの前記凹部に緩く受容されるべく、上面及び下面の他方に設けられた凸部とを有し、
前記凹部及び前記凸部は、それぞれ、前記凸部の突出方向に凸な湾曲面を有することを特徴とする請求項1〜8の何れか一項に記載の制振構造。
Each of the blocks has a concave portion provided on one of the upper surface and the lower surface, and a convex portion provided on the other of the upper surface and the lower surface so as to be loosely received in the concave portions of the other adjacent blocks. ,
The damping structure according to claim 1, wherein the concave portion and the convex portion each have a curved surface that is convex in a protruding direction of the convex portion.
前記柱部は、前記上下方向の長さを調整する調整部材を有し、
前記調整部材は、
横方向に延在するボルト軸部と、
前記ボルト軸部における前記横方向の一方の端部に設けられた係止部と、
前記ボルト軸部における前記横方向の他方の端部に螺合したナットと、
前記横方向の前記他方の面において前記ナットに当接する第1部材と、
前記ボルト軸部に対して前記横方向の前記一方へ向かう移動が規制されるように前記係止部に係止された第2部材とを有し、
前記第1部材及び前記第2部材は、前記横方向に対して角度をなすように上下に傾斜して互いに摺接する傾斜面を有することを特徴とする請求項1〜10の何れか一項に記載の制振構造。
The pillar portion has an adjusting member for adjusting the length in the vertical direction,
The adjusting member is
A bolt shank extending in the lateral direction,
An engaging portion provided at one end of the bolt shaft portion in the lateral direction,
A nut screwed to the other end of the bolt shaft portion in the lateral direction,
A first member that abuts the nut on the other surface in the lateral direction;
A second member locked to the locking part so as to restrict movement toward the one side in the lateral direction with respect to the bolt shaft part,
11. The first member and the second member each have an inclined surface that is vertically inclined so as to form an angle with the lateral direction and slidably contact with each other, according to any one of claims 1 to 10. Damping structure described.
JP2018206825A 2018-11-01 2018-11-01 Vibration control structure to building having column and beam Pending JP2020070661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018206825A JP2020070661A (en) 2018-11-01 2018-11-01 Vibration control structure to building having column and beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206825A JP2020070661A (en) 2018-11-01 2018-11-01 Vibration control structure to building having column and beam

Publications (1)

Publication Number Publication Date
JP2020070661A true JP2020070661A (en) 2020-05-07

Family

ID=70547350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206825A Pending JP2020070661A (en) 2018-11-01 2018-11-01 Vibration control structure to building having column and beam

Country Status (1)

Country Link
JP (1) JP2020070661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388931B1 (en) * 2021-10-08 2022-04-21 경기대학교 산학협력단 reinforcement apparatus for preventing falling down of wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388931B1 (en) * 2021-10-08 2022-04-21 경기대학교 산학협력단 reinforcement apparatus for preventing falling down of wall

Similar Documents

Publication Publication Date Title
Hashemi et al. Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints
US7143555B2 (en) Hybrid precast concrete and metal deck floor panel
KR101642420B1 (en) A steel frame structure
KR101152270B1 (en) Precast concrete slab system for building which have long span and require high design load and construction method using this system
US20060272251A1 (en) Composite floor system with fully-embedded studs
JP6920049B2 (en) Seismic isolation building
Hashemi et al. Seismic resistant cross laminated timber structures using an innovative resilient friction damping system
JP2020070661A (en) Vibration control structure to building having column and beam
EP4054794B1 (en) Modular machine support frame
US5660007A (en) Stiffness decoupler for base isolation of structures
KR102382352B1 (en) Composite column and composite column structure
US20210017783A1 (en) Buttress Assembly for Seismic Reinforcing of Building Having Non-Bearing Walls
RU167496U1 (en) THREE-LAYER DESIGN COVERED PLATE FOR NON-KEYBOARD FRAMES
KR20160113778A (en) Module box and assembly stucture using the same
KR101797960B1 (en) Formed steel beam having neutral axis lifting elements and composite beam using the same
JP6414877B2 (en) Reinforcement structure and building
JP2013032690A (en) Column base structure of steel column
JP7457670B2 (en) Pile foundation structure, building
DE10227327B4 (en) floor ceiling
RU2788545C1 (en) Tube-concrete seismic isolation support
Aman et al. Analysis And Design of A Multi Storey Building with Flat Slab (C+ G+ 9) Using ETABS
RU2812360C1 (en) Pipe-concrete seismic isolating support
Kabeyasawa Seismic evaluation and economical strengthening of reinforced concrete buildings
JP6624709B1 (en) Lightweight embankment structure
KR102183688B1 (en) Seismic reinforcing core of building using steel plate