JP2020068504A - Adaptive equalizer and carrier recovery circuit - Google Patents

Adaptive equalizer and carrier recovery circuit Download PDF

Info

Publication number
JP2020068504A
JP2020068504A JP2018201866A JP2018201866A JP2020068504A JP 2020068504 A JP2020068504 A JP 2020068504A JP 2018201866 A JP2018201866 A JP 2018201866A JP 2018201866 A JP2018201866 A JP 2018201866A JP 2020068504 A JP2020068504 A JP 2020068504A
Authority
JP
Japan
Prior art keywords
phase
signal
adaptive equalizer
input signal
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018201866A
Other languages
Japanese (ja)
Other versions
JP7254411B2 (en
Inventor
賢晃 加藤
Masaaki Kato
賢晃 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2018201866A priority Critical patent/JP7254411B2/en
Publication of JP2020068504A publication Critical patent/JP2020068504A/en
Application granted granted Critical
Publication of JP7254411B2 publication Critical patent/JP7254411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an adaptive equalizer capable of realizing stable high demodulation performance even at a high multi-value.SOLUTION: An adaptive equalizer includes an adaptive equalization unit 31 that compensates a frequency characteristic of an input signal, and a tap update unit 32 that updates a tap coefficient for the adaptive equalization unit 31 by an algorithm based on a difference between a plurality of ideal points arranged on a complex plane and an output signal of the adaptive equalization unit 31, and the tap update unit 32 does not update the tap coefficient when the input signal or the output signal of the adaptive equalization unit 31 is located outside a determination area provided within the outer edges of the plurality of ideal points on the complex plane.SELECTED DRAWING: Figure 3

Description

本発明は、デジタル無線伝送において搬送波・受信波を再生するのに使用される適応等化器および、この適応等化器を備えた搬送波再生回路に関する。   The present invention relates to an adaptive equalizer used for reproducing a carrier wave and a received wave in digital wireless transmission, and a carrier wave recovery circuit including the adaptive equalizer.

近年、無線トラフィックが増々増加しており、周波数利用の高効率化の観点からデジタル無線伝送においては、高多値QAM(Quadrature Amplitude Modulation、直角位相振幅変調)方式による高速伝送の要求が高まっている。この高多値QAM方式では、送信装置や受信装置において生じる搬送波の位相ノイズ(位相誤差)などによって、復調性能が劣化する場合がある。このため、位相ノイズと熱雑音の影響度に基づいて復調性能(ビット誤り率)を向上させる、という搬送波再生回路が知られている(例えば、特許文献1参照。)。   In recent years, wireless traffic has been increasing more and more, and from the viewpoint of high efficiency of frequency use, in digital wireless transmission, there is an increasing demand for high-speed transmission by a high multilevel QAM (Quadrature Amplitude Modulation) method. . In this high multi-level QAM system, demodulation performance may be deteriorated due to phase noise (phase error) of the carrier generated in the transmitter and the receiver. Therefore, there is known a carrier recovery circuit that improves demodulation performance (bit error rate) based on the degree of influence of phase noise and thermal noise (see, for example, Patent Document 1).

この搬送波再生回路は、位相誤差検出器が検出する位相誤差と振幅誤差検出器が検出する振幅誤差とに基づいて、ループフィルタ制御部がループフィルタの帯域幅を制御することで、位相ノイズや熱雑音に応じた適切な帯域幅に設定し、復調性能を向上させる、というものである。   In this carrier recovery circuit, the loop filter control unit controls the bandwidth of the loop filter based on the phase error detected by the phase error detector and the amplitude error detected by the amplitude error detector, whereby phase noise and thermal The bandwidth is set appropriately according to the noise, and the demodulation performance is improved.

特開2011−101177号公報JP, 2011-101177, A

ところで、高多値化変調においては、搬送波・キャリア再生の位相誤差検出範囲が著しく狭くなる。すなわち、低多値の場合には、隣接する理想点間の距離が大きいため位相誤差検出範囲が広いが、高多値の場合には、隣接する理想点間の距離が小さいため位相誤差検出範囲が狭くなる。そして、位相誤差検出範囲が著しく狭くなるため、位相ノイズ環境下で位相ジッタ(位相の揺らぎ)が増加する状況になると、搬送波再生の同期外れに至る可能性がある。   By the way, in the multi-level modulation, the phase error detection range of carrier wave / carrier reproduction becomes extremely narrow. That is, in the case of low multi-value, the phase error detection range is wide because the distance between adjacent ideal points is large, but in the case of high multi-value, the phase error detection range is small because the distance between adjacent ideal points is small. Becomes narrower. Since the phase error detection range is significantly narrowed, when the phase jitter (phase fluctuation) increases under the phase noise environment, the carrier recovery may be out of synchronization.

この結果、従来の判定指向アルゴリズムによって、出力信号(または受信信号)を値が最も近い理想点に近づけるようにタップ係数を更新した場合に、意図しない信号点配置に収束してしまう事象が生じてしまう。例えば、図13に示すように、等間隔な格子状に出力信号と理想点とが重なって配置された理想的な状態から、図14に示すように、出力信号(図中黒丸)が位相回転して理想点の枠F1からはみ出でて、理想点の電力が出力信号の電力よりも小さくなるケースが増えたとする。この場合、図15に示すように、はみ出た部分P1の出力信号がこの枠F1に入るようにタップ係数が更新され、この結果、図16に示すように、出力信号群が小さく収束して等化器出力における信号の平均電力が低減する。そして、このようなタップ係数の更新を繰り返すことで、例えば図17に示すように、理想点を中心にして4つの出力信号が集約するように収束してしまう(信号点配置サイズが小さい状態で最適状態に陥る)事象が生じる。   As a result, when the tap coefficient is updated by the conventional decision-directed algorithm so that the output signal (or the received signal) approaches the ideal point with the closest value, an event occurs in which the signal point arrangement is unintentionally converged. I will end up. For example, as shown in FIG. 13, the output signal (black circles in the figure) is phase-rotated as shown in FIG. Then, it is assumed that the number of cases where the power of the ideal point is smaller than the power of the output signal outside the ideal point frame F1 is increased. In this case, as shown in FIG. 15, the tap coefficient is updated so that the output signal of the protruding portion P1 falls within this frame F1, and as a result, the output signal group converges small as shown in FIG. The average power of the signal at the digitizer output is reduced. Then, by repeating such updating of the tap coefficient, as shown in FIG. 17, for example, the four output signals converge so as to be concentrated around the ideal point (in the state where the signal point arrangement size is small, An event occurs that falls into the optimum state.

一方、特許文献1に記載の搬送波再生回路では、熱雑音の軽減を優先するか、位相ノイズの軽減を優先するかによって、高多値時の搬送波再生ループの諸元を切り替えるものであり、高多値化に伴う位相誤差検出範囲の低下による不安定動作については考慮されていないため、低C/N環境における復調器の安定動作を実現することが困難であった。   On the other hand, in the carrier recovery circuit described in Patent Document 1, the specifications of the carrier recovery loop at the time of high multi-value are switched depending on whether thermal noise reduction or phase noise reduction is prioritized. Since the unstable operation due to the decrease of the phase error detection range due to the multi-valued conversion is not considered, it is difficult to realize the stable operation of the demodulator in the low C / N environment.

そこで本発明は、高多値においても安定した高い復調性能を実現可能にする、適応等化器およびこれを備えた搬送波再生回路を提供することを目的とする。   Therefore, an object of the present invention is to provide an adaptive equalizer and a carrier recovery circuit including the adaptive equalizer, which can realize stable high demodulation performance even at high multivalues.

上記課題を解決するために、請求項1に記載の発明は、入力信号の周波数特性を補償する適応等化部と、複素平面上に配置された複数の理想点と前記適応等化部の出力信号との誤差に基づくアルゴリズムで、前記適応等化部に対するタップ係数を更新するタップ更新部と、を備え、前記タップ更新部は、前記入力信号または前記適応等化部の出力信号が、前記複素平面上で前記複数の理想点の外縁以内に設けられた判定エリアの外側に位置する場合には、前記タップ係数の更新を行わない、ことを特徴とする適応等化器である。   In order to solve the above-mentioned problems, the invention according to claim 1 provides an adaptive equalizer for compensating the frequency characteristic of an input signal, a plurality of ideal points arranged on a complex plane, and an output of the adaptive equalizer. An algorithm based on an error from a signal, and a tap updating unit that updates the tap coefficient for the adaptive equalization unit, wherein the tap updating unit is the input signal or the output signal of the adaptive equalization unit is the complex The adaptive equalizer is characterized in that the tap coefficient is not updated when it is located outside a determination area provided within the outer edges of the plurality of ideal points on a plane.

請求項2に記載の発明は、請求項1に記載の適応等化器において、前記適応等化部の出力信号の平均電力を算出する電力算出部を備え、前記タップ更新部は、前記入力信号または前記適応等化部の出力信号が前記判定エリアの外縁近傍に位置する場合において、前記電力算出部で算出した平均電力に基づいてタップ係数の更新を行うか否かを判定する、ことを特徴とする。   The invention according to claim 2 is the adaptive equalizer according to claim 1, further comprising: a power calculation unit that calculates an average power of an output signal of the adaptive equalization unit, and the tap update unit includes the input signal. Alternatively, when the output signal of the adaptive equalization unit is located near the outer edge of the determination area, it is determined whether to update the tap coefficient based on the average power calculated by the power calculation unit. And

請求項3に記載の発明は、入力信号の位相を回転する第1の位相回転器と、前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する、請求項1または2に記載の適応等化器と、前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、ことを特徴とする搬送波再生回路である。   According to a third aspect of the present invention, the first phase rotator that rotates the phase of the input signal and the frequency characteristic of the phase rotation signal that is the input signal whose phase is rotated by the first phase rotator are compensated. 3. The adaptive equalizer according to claim 1, a phase error detector for detecting a phase error included in the phase rotation signal compensated by the adaptive equalizer, and a phase rotation control based on the phase error. A rotation signal generation unit that generates a signal, and a second phase rotator that rotates the phase of the input signal based on the phase rotation control signal, wherein the first phase rotator is the phase rotation control. It is a carrier recovery circuit characterized in that the phase of the input signal is rotated based on the signal.

請求項1に記載の発明によれば、入力信号または適応等化部の出力信号が、複数の理想点の外縁よりも小さい判定エリアの外側に位置する場合には、タップ係数の更新を行わない。すなわち、適応等化部の入力信号または出力信号の電力が理想点群の電力よりも大きい(理想点群の電力が入力信号または出力信号の電力よりも小さい)可能性がある場合には、タップ係数の更新を行わないため、適応等化部の出力信号の平均電力が低減・減衰するのを防止する(平均電力を維持する)ことが可能となる。この結果、適応等化器から安定した出力を得ることが可能となり、高多値においても高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。   According to the invention described in claim 1, when the input signal or the output signal of the adaptive equalization unit is located outside the determination area smaller than the outer edges of the plurality of ideal points, the tap coefficient is not updated. . That is, if there is a possibility that the power of the input signal or the output signal of the adaptive equalizer is larger than the power of the ideal point group (the power of the ideal point group is smaller than the power of the input signal or the output signal), tap Since the coefficient is not updated, it is possible to prevent the average power of the output signal of the adaptive equalization unit from being reduced or attenuated (maintaining the average power). As a result, it is possible to obtain a stable output from the adaptive equalizer, and it is possible to realize highly accurate and stable demodulation performance and carrier recovery even in a high multi-value.

請求項2に記載の発明によれば、判定エリアの外縁近傍に位置する入力信号または適応等化部の出力信号に対しては、出力信号の平均電力に基づいてタップ係数の更新が行われたり行われなかったりする。このため、平均電力が小さい場合に判定エリアの外縁近傍に対するタップ係数の更新を行わないことで、平均電力を増加させたり、平均電力が大きい場合に判定エリアの外縁近傍に対するタップ係数の更新を行うことで、平均電力を減衰させたりして、平均電力をより維持することが可能となる。   According to the second aspect of the invention, for the input signal located near the outer edge of the determination area or the output signal of the adaptive equalization unit, the tap coefficient is updated based on the average power of the output signal. It is not done. Therefore, by not updating the tap coefficient near the outer edge of the determination area when the average power is small, the average power is increased, or when the average power is high, the tap coefficient near the outer edge of the determination area is updated. As a result, the average power can be further maintained by attenuating the average power.

請求項3に記載の発明によれば、適応等化器で周波数特性が補償された位相回転信号の位相誤差に基づいて、位相回転制御信号が生成され入力信号の位相が回転されるため、フェージングによる波形歪がある場合でも、搬送波の位相ノイズを高精度に推定して高い復調性能・搬送波再生を実現することが可能となる。しかも、上記のように、安定した適応等化器出力が得られるため、より高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。さらに、適応等化器で位相回転信号の周波数特性が補償されるため、熱雑音の影響も軽減することが可能となる。   According to the third aspect of the invention, the phase rotation control signal is generated and the phase of the input signal is rotated based on the phase error of the phase rotation signal whose frequency characteristic is compensated by the adaptive equalizer. Even if there is waveform distortion due to, it is possible to accurately estimate the phase noise of the carrier wave and realize high demodulation performance and carrier wave reproduction. Moreover, as described above, since a stable adaptive equalizer output can be obtained, it is possible to realize more accurate and stable demodulation performance and carrier recovery. Furthermore, since the frequency characteristic of the phase rotation signal is compensated by the adaptive equalizer, the influence of thermal noise can be reduced.

この発明の実施の形態1に係る搬送波再生回路を示す概略構成ブロック図である。It is a schematic block diagram which shows the carrier recovery circuit which concerns on Embodiment 1 of this invention. 図1の搬送波再生回路を備えるマイクロ波無線システムを示す概略構成図である。It is a schematic block diagram which shows the microwave radio system provided with the carrier recovery circuit of FIG. 図1の搬送波再生回路の適応等化器を示す概略構成ブロック図である。2 is a schematic block diagram showing an adaptive equalizer of the carrier recovery circuit of FIG. 1. FIG. 図3の適応等化器における理想点と判定エリアとの関係を示す図である。It is a figure which shows the relationship between the ideal point and the determination area in the adaptive equalizer of FIG. 図3の適応等化器において、受信信号が位相回転した状態を示す図である。FIG. 4 is a diagram showing a state in which a received signal is phase-rotated in the adaptive equalizer of FIG. 3. 図5に示す位相回転状態において、受信信号と判定エリアとの関係を示す図である。It is a figure which shows the relationship between a received signal and a determination area in the phase rotation state shown in FIG. 図5に示す位相回転後の適応等化器出力を示す図である。6 is a diagram showing an output of the adaptive equalizer after the phase rotation shown in FIG. 5. FIG. この発明の実施の形態2に係る適応等化器を示す概略構成ブロック図である。It is a schematic block diagram which shows the adaptive equalizer which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る適応等化器を示す概略構成ブロック図である。It is a schematic block diagram which shows the adaptive equalizer which concerns on Embodiment 3 of this invention. この発明において、C/Nが高い場合の受信信号の誤差状況(a)と、C/Nが低い場合の受信信号の誤差状況(b)とを示す図である。In the present invention, it is a diagram showing an error situation (a) of a received signal when C / N is high and an error situation (b) of a received signal when C / N is low. 図9の適応等化器において、電力減衰状態に変更する処理を示す説明図(a)と、電力増加状態に変更する処理を示す説明図(b)である。9A and 9B are explanatory diagrams showing a process of changing to a power attenuation state and a process of changing to a power increasing state in the adaptive equalizer of FIG. 図9の適応等化器において、中央部の信号処理を示す説明図である。FIG. 10 is an explanatory diagram showing signal processing of a central portion in the adaptive equalizer of FIG. 9. 従来の適応等化器における受信信号と理想点の関係を示す図である。It is a figure which shows the received signal in the conventional adaptive equalizer, and the relationship of an ideal point. 従来の適応等化器において、受信信号が位相回転した状態を示す図である。It is a figure which shows the state which the received signal rotated the phase in the conventional adaptive equalizer. 図14に示す位相回転状態において、タップ係数の更新方法を説明する図である。It is a figure explaining the update method of a tap coefficient in the phase rotation state shown in FIG. 図15に続く信号状態を示す概念図である。It is a conceptual diagram which shows the signal state following FIG. 図16に続く信号状態を示す概念図である。It is a conceptual diagram which shows the signal state following FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

(実施の形態1)
図1〜図7は、この実施の形態を示し、図3は、この実施の形態に係る適応等化器3を示す概略構成ブロック図であり、図1は、この適応等化器3を備える搬送波再生回路1を示す概略構成ブロック図である。この搬送波再生回路1は、デジタル無線伝送において搬送波を再生する回路であり、図2に示すマイクロ波無線システムの受信装置102に設けられている。ここで、マイクロ波無線システムについてまず簡単に説明すると、送信装置101においてマッピングおよび変調された送信信号がアナログ変換され、搬送波W1で乗算されてアンテナから送信される。そして、マルチパスフェージング環境を経て受信装置102のアンテナで受信されると、搬送波W2で乗算されてデジタル変換され、搬送波再生回路1で復調されてデマッピングされるものである。
(Embodiment 1)
1 to 7 show this embodiment, FIG. 3 is a schematic block diagram showing an adaptive equalizer 3 according to this embodiment, and FIG. 1 includes this adaptive equalizer 3. FIG. 3 is a schematic block diagram showing a carrier recovery circuit 1. The carrier wave reproducing circuit 1 is a circuit for reproducing a carrier wave in digital wireless transmission, and is provided in the receiving device 102 of the microwave wireless system shown in FIG. Here, the microwave wireless system will be briefly described first. The transmission signal mapped and modulated in the transmission device 101 is converted into an analog signal, multiplied by the carrier wave W1, and transmitted from the antenna. When it is received by the antenna of the receiving apparatus 102 through the multipath fading environment, it is multiplied by the carrier wave W2 to be digitally converted, demodulated by the carrier wave reproducing circuit 1 and demapped.

搬送波再生回路1は、主として、第1の位相回転器2と、適応等化器3と、位相誤差検出器4と、LPF5と、NCO(回転信号生成部)6と、第2の位相回転器7と、等化器8と、を備える。   The carrier wave regenerating circuit 1 mainly includes a first phase rotator 2, an adaptive equalizer 3, a phase error detector 4, an LPF 5, an NCO (rotation signal generator) 6, and a second phase rotator. 7 and an equalizer 8.

第1の位相回転器2は、入力信号の位相を回転する回転器・乗算器であり、後述するNCO6の位相回転制御信号に基づいて入力信号の位相を回転する。具体的には、デジタル信号に変換されたIチャネルのベースバンド信号およびQチャネルのベースバンド信号の各々に対して、NCO6の位相回転制御信号の正弦波および余弦波に基づいて位相回転を行うものである。   The first phase rotator 2 is a rotator / multiplier that rotates the phase of the input signal, and rotates the phase of the input signal based on a phase rotation control signal of the NCO 6 described later. Specifically, phase rotation is performed on each of the I-channel baseband signal and the Q-channel baseband signal converted into digital signals, based on the sine wave and cosine wave of the phase rotation control signal of the NCO 6. Is.

適応等化器3は、第1の位相回転器2によって位相が回転された入力信号である位相回転信号の周波数特性を補償する、つまり、位相回転信号の波形歪やデータ誤りを解消する等化器である。ここで、適応等化器3は、判定帰還型等化器(DFE:Decision Feedback Equalizer)や線形等化器で構成され、後述するようにして、タップ係数を更新するようになっている。   The adaptive equalizer 3 compensates the frequency characteristic of the phase rotation signal which is the input signal whose phase is rotated by the first phase rotator 2, that is, equalization for eliminating waveform distortion and data error of the phase rotation signal. It is a vessel. Here, the adaptive equalizer 3 is composed of a decision feedback equalizer (DFE: Decision Feedback Equalizer) or a linear equalizer, and updates the tap coefficient as described later.

位相誤差検出器4は、適応等化器3によって補償された位相回転信号に含まれる位相誤差を検出する検出器である。具体的な検出方法は周知の技術であり、例えば、送受信装置101、102間で用いられる変調方式の信号点配列のなかから、出力信号に応じた信号点を選択し、選択した信号点の座標と入力信号点の座標とを比較して、位相誤差値を算出する。   The phase error detector 4 is a detector that detects a phase error included in the phase rotation signal compensated by the adaptive equalizer 3. A specific detection method is a well-known technique. For example, a signal point corresponding to an output signal is selected from the signal point array of the modulation method used between the transmission / reception devices 101 and 102, and the coordinates of the selected signal point are selected. And the coordinates of the input signal point are compared to calculate the phase error value.

LPF5は、位相誤差検出器4で検出された位相誤差の高周波成分を、所定の帯域幅に応じて除去するフィルタであり、ローパスフィルタ(Low Pass Filter)で構成されている。   The LPF 5 is a filter that removes a high frequency component of the phase error detected by the phase error detector 4 according to a predetermined bandwidth, and is composed of a low pass filter.

NCO6は、LPF5で高周波成分が除去された位相誤差に基づいて、位相回転制御信号を生成する生成部であり、NCO(Numerically Controlled Oscillator、数値制御発振器)で構成されている。具体的には、LPF5からの位相誤差に基づいて逆位相の正弦波および余弦波を生成し、第1の位相回転器2に出力することで、第1の位相回転器2による位相回転を制御するものである。さらに、生成した位相回転制御信号を第2の位相回転器7に出力する。   The NCO 6 is a generation unit that generates a phase rotation control signal based on the phase error from which the high-frequency component has been removed by the LPF 5, and is composed of an NCO (Numerically Controlled Oscillator). Specifically, the sine wave and the cosine wave having opposite phases are generated based on the phase error from the LPF 5 and output to the first phase rotator 2 to control the phase rotation by the first phase rotator 2. To do. Further, the generated phase rotation control signal is output to the second phase rotator 7.

第2の位相回転器7は、入力信号の位相を回転する回転器・乗算器であり、NCO6からの位相回転制御信号に基づいて入力信号の位相を回転して、周波数特性を補償する等化器8に出力する。すなわち、適応等化器3によって周波数特性補償(波形歪等が解消)されて検出された位相誤差に基づくNCO6からの正弦波および余弦波に基づいて、入力信号の位相を回転する。このように、搬送波再生ループ(第1の位相回転器2、位相誤差検出器4、LPF5およびNCO6のループ)のなかに適応等化器3が実装されており、これにより、周波数特性を補償した後に推定した位相誤差値に基づいて、入力信号の位相ノイズをキャンセルする。   The second phase rotator 7 is a rotator / multiplier that rotates the phase of the input signal. The second phase rotator 7 rotates the phase of the input signal based on the phase rotation control signal from the NCO 6 to equalize frequency characteristics. Output to the container 8. That is, the phase of the input signal is rotated based on the sine wave and the cosine wave from the NCO 6 based on the phase error detected by the adaptive equalizer 3 after frequency characteristic compensation (waveform distortion is eliminated). Thus, the adaptive equalizer 3 is mounted in the carrier recovery loop (the loop of the first phase rotator 2, the phase error detector 4, the LPF 5 and the NCO 6), and the frequency characteristic is compensated by this. The phase noise of the input signal is canceled based on the phase error value estimated later.

次に、適応等化器3におけるタップ係数の更新方法について説明する。適応等化器3は、図3に示すように、入力信号の周波数特性を補償する適応等化部(等化器本体、フィルタ)31と、適応等化部31に対するタップ係数を更新するタップ更新部32と、を備える。   Next, a method of updating the tap coefficient in the adaptive equalizer 3 will be described. As shown in FIG. 3, the adaptive equalizer 3 includes an adaptive equalizer (equalizer body, filter) 31 for compensating the frequency characteristic of the input signal, and a tap update for updating the tap coefficient for the adaptive equalizer 31. And a part 32.

タップ更新部32は、複素平面上に配置された複数の理想点(基準信号)Rと適応等化部31の出力信号との誤差に基づくアルゴリズム(判定指向アルゴリズム)で、適応等化部31に対するタップ係数を更新する(先のタップ係数を更新する)更新部である。すなわち、所定の等間隔で格子状に複数の理想点Rが配置され、最小平均二乗誤差(MMSE:Minimum Mean Square Error)を規範とする判定指向アルゴリズムを利用して、出力信号と理想点Rとの誤差電力が最小になるように(出力信号を値が最も近い理想点Rに近づけるように)タップ係数を算出、更新するものであり、判定指向アルゴリズムとして、LMS(Least Mean Square)アルゴリズムやRLS(Recursive Least Square)アルゴリズムが採用される。   The tap updating unit 32 is an algorithm (decision-oriented algorithm) based on the error between the plurality of ideal points (reference signals) R arranged on the complex plane and the output signal of the adaptive equalization unit 31. This is an updating unit that updates the tap coefficient (updates the previous tap coefficient). That is, a plurality of ideal points R are arranged in a grid pattern at predetermined equal intervals, and an output signal and an ideal point R are obtained by using a decision-oriented algorithm based on a minimum mean square error (MMSE: Minimum Mean Square Error). The tap coefficient is calculated and updated so as to minimize the error power of (to bring the output signal closer to the ideal point R having the closest value). As a decision-oriented algorithm, an LMS (Least Mean Square) algorithm or an RLS algorithm is used. (Recursive Least Square) algorithm is adopted.

このタップ更新部32は、受信信号(入力信号)Sが複素平面上に設けられた判定エリアCの内側に位置する場合に、タップ係数の更新を行い、受信信号Sが判定エリアCの外側に位置する場合には、タップ係数の更新を行わない。ここで、判定エリアCは、複素平面上で複数の理想点Rの外縁(外枠F1)以内に設けられたエリアであり、この実施の形態では、図4に示すように、複素平面上の原点を中心とする正四角形の領域内に所定の等間隔で格子状に複数の理想点Rが配置されている。なお、図4では、受信信号Sが理想点Rに重なった理想的な状態を示す。   The tap updating unit 32 updates the tap coefficient when the received signal (input signal) S is located inside the determination area C provided on the complex plane, and the received signal S is located outside the determination area C. If it is located, the tap coefficient is not updated. Here, the determination area C is an area provided within the outer edge (outer frame F1) of the plurality of ideal points R on the complex plane, and in this embodiment, as shown in FIG. 4, on the complex plane. A plurality of ideal points R are arranged in a grid pattern in a regular square area centered on the origin at predetermined equal intervals. Note that FIG. 4 shows an ideal state in which the received signal S overlaps the ideal point R.

この理想点R群の外縁つまり正四角形の外枠F1の領域内に、複素平面上の原点を中心とする円状の判定エリアCが設けられ、この判定エリアCの直径は、理想点R群の正四角形の一辺と略同寸法に設定されている。すなわち、できるだけ多くの理想点Rを包囲できるように大きな円状の判定エリアCが設けられ、これにより、コンスタレーション(複素平面上の信号点配置図、信号空間ダイヤグラム)を保って電力の大きさを維持できるとともに、できるだけ多くの受信信号S(出力信号)に対してタップ係数の更新を行えるようになっている。   A circular judgment area C centered on the origin on the complex plane is provided at the outer edge of the ideal point R group, that is, in the area of the outer frame F1 of a square shape, and the diameter of the judgment area C is equal to the ideal point R group. The size is set to be approximately the same as one side of the regular square. That is, a large circular judgment area C is provided so as to enclose as many ideal points R as possible, whereby the constellation (signal point arrangement diagram on the complex plane, signal space diagram) is maintained and the amount of power is increased. And the tap coefficient can be updated for as many received signals S (output signals) as possible.

そして、更新制御部321は、受信信号Sが判定エリアCの内側に位置するか外側に位置するかを判定し、内側に位置する場合には、「更新可」をLMS更新部322に伝送し、外側に位置する場合には、「更新不可」をLMS更新部322に伝送する。次に、LMS更新部322は、「更新可」を受けた場合は、理想点Rと適応等化部31の出力信号とのタップ更新用誤差に基づいて判定指向アルゴリズムでタップ係数を算出、更新して、適応等化部31に入力する。一方、LMS更新部322は、「更新不可」を受けた場合には、この受信信号S(出力信号)に基づくタップ係数の算出、更新を行わない。   Then, the update control unit 321 determines whether the received signal S is located inside or outside the determination area C, and when it is located inside, transmits “updatable” to the LMS updating unit 322. If it is located on the outer side, “update not possible” is transmitted to the LMS updating unit 322. Next, when the LMS update unit 322 receives “updatable”, the LMS update unit 322 calculates and updates the tap coefficient by the decision-oriented algorithm based on the tap update error between the ideal point R and the output signal of the adaptive equalization unit 31. And inputs it to the adaptive equalizer 31. On the other hand, when the LMS updating unit 322 receives “unupdateable”, the LMS updating unit 322 does not calculate or update the tap coefficient based on the received signal S (output signal).

これにより、図5に示すように、受信信号S群が位相回転した場合、判定エリアCの内側に位置する受信信号Sに対してタップ係数の更新を行い、判定エリアCの外側つまり図6のはみ出た部分P2に位置する受信信号Sに対してはタップ係数の更新を行わない。このため、はみ出た部分P2の受信信号Sが理想点R群の外枠F1内に入るようにタップ更新されることがなく、図7に示すように、等化器出力における信号の平均電力が低減することがない。   As a result, as shown in FIG. 5, when the phase of the received signal S group is rotated, the tap coefficient is updated for the received signal S located inside the judgment area C, and the outside of the judgment area C, that is, in FIG. The tap coefficient is not updated for the received signal S located in the protruding portion P2. Therefore, the received signal S of the protruding portion P2 is not tap-updated so as to be within the outer frame F1 of the ideal point R group, and as shown in FIG. 7, the average power of the signal at the equalizer output is There is no reduction.

以上のように、この適応等化器3によれば、理想点R群の外縁よりも小さい判定エリアCの外側に受信信号(入力信号)Sが位置する場合には、タップ係数の更新を行わない。すなわち、受信信号Sの電力が判定エリアC内の理想点Rの電力よりも大きい(判定エリアC内の理想点Rの電力が受信信号Sの電力よりも小さい)場合には、タップ係数の更新を行わないため、適応等化部31の出力信号の平均電力が低減・減衰するのを防止する(平均電力を維持する)ことが可能となる。この結果、適応等化器3から安定した出力を得ることが可能となり、高多値においても高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。   As described above, according to the adaptive equalizer 3, the tap coefficient is updated when the received signal (input signal) S is located outside the determination area C that is smaller than the outer edge of the ideal point R group. Absent. That is, when the power of the reception signal S is larger than the power of the ideal point R in the determination area C (the power of the ideal point R in the determination area C is smaller than the power of the reception signal S), the tap coefficient is updated. Therefore, it is possible to prevent the average power of the output signal of the adaptive equalization unit 31 from being reduced or attenuated (maintaining the average power). As a result, it is possible to obtain a stable output from the adaptive equalizer 3, and it is possible to realize highly accurate and stable demodulation performance and carrier recovery even in a high multi-value.

また、この搬送波再生回路1によれば、適応等化器3で周波数特性が補償(波形歪等が解消)された位相回転信号の位相誤差に基づいて、位相回転制御信号が生成され入力信号の位相が回転されるため、フェージングによる波形歪がある場合でも、搬送波の位相ノイズを高精度に推定(位相誤差検出器4で検出)して高い復調性能・搬送波再生を実現することが可能となる。しかも、上記のように、安定した適応等化器出力が得られるため、より高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。さらに、適応等化器3で位相回転信号の周波数特性が補償されるため、熱雑音の影響も軽減することが可能となる。   Further, according to the carrier wave regenerating circuit 1, the phase rotation control signal is generated based on the phase error of the phase rotation signal whose frequency characteristic is compensated (waveform distortion is eliminated) by the adaptive equalizer 3 to generate the input signal. Since the phase is rotated, even if there is waveform distortion due to fading, it is possible to accurately estimate the carrier phase noise (detected by the phase error detector 4) and achieve high demodulation performance and carrier recovery. . Moreover, as described above, since a stable adaptive equalizer output can be obtained, it is possible to realize more accurate and stable demodulation performance and carrier recovery. Further, since the frequency characteristic of the phase rotation signal is compensated by the adaptive equalizer 3, the influence of thermal noise can be reduced.

(実施の形態2)
図8は、この実施の形態に係る適応等化器3を示す概略構成ブロック図である。この実施の形態では、適応等化部31の出力信号が、判定エリアCの内側に位置する場合にタップ係数の更新を行い、判定エリアCの外側に位置する場合にはタップ係数の更新を行わない点で、実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することで、その説明を省略する。
(Embodiment 2)
FIG. 8 is a schematic block diagram showing the adaptive equalizer 3 according to this embodiment. In this embodiment, when the output signal of the adaptive equalization unit 31 is located inside the determination area C, the tap coefficient is updated, and when it is located outside the determination area C, the tap coefficient is updated. The configuration is different from that of the first embodiment in that there is no point, and the same configurations as those of the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.

すなわち、更新制御部321は、適応等化部31の出力信号が判定エリアCの内側に位置するか外側に位置するかを判定し、内側に位置する場合には、「更新可」をLMS更新部322に伝送し、外側に位置する場合には、「更新不可」をLMS更新部322に伝送する。そして、LMS更新部322は、「更新可」を受けた場合は、理想点Rと適応等化部31の出力信号とのタップ更新用誤差に基づいてタップ係数を算出、更新して、適応等化部31に入力する。一方、LMS更新部322は、「更新不可」を受けた場合には、この出力信号に基づくタップ係数の算出、更新を行わない。   That is, the update control unit 321 determines whether the output signal of the adaptive equalization unit 31 is located inside or outside the determination area C, and if it is located inside, the “updatable” is LMS updated. When it is located outside, the “update not possible” is transmitted to the LMS update unit 322. When the LMS updating unit 322 receives “updatable”, the LMS updating unit 322 calculates and updates the tap coefficient based on the tap updating error between the ideal point R and the output signal of the adaptive equalization unit 31, and the adaptation and the like. Input to the conversion unit 31. On the other hand, when the LMS update unit 322 receives “update disabled”, the LMS update unit 322 does not calculate or update the tap coefficient based on this output signal.

このように、この実施の形態によれば、適応等化部31の出力信号が、理想点R群の外縁よりも小さい判定エリアCの外側に位置する場合には、タップ係数の更新を行わないため、実施の形態1と同様に、適応等化部31の出力信号の平均電力が低減・減衰するのを防止することが可能となる。この結果、適応等化器3から安定した出力を得ることが可能となり、高多値においても高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。しかも、適応等化部31の出力信号の位置つまり電力に基づいて、タップ係数の更新を行うか否かを判定するため、適応等化部31の出力信号の平均電力が低減・減衰するのをより適正に防止することが可能となる。   As described above, according to this embodiment, when the output signal of the adaptive equalization unit 31 is located outside the determination area C smaller than the outer edge of the ideal point R group, the tap coefficient is not updated. Therefore, similarly to the first embodiment, it is possible to prevent the average power of the output signal of the adaptive equalization unit 31 from being reduced or attenuated. As a result, it is possible to obtain a stable output from the adaptive equalizer 3, and it is possible to realize highly accurate and stable demodulation performance and carrier recovery even in a high multi-value. Moreover, since it is determined whether or not to update the tap coefficient based on the position of the output signal of the adaptive equalization unit 31, that is, the power, the average power of the output signal of the adaptive equalization unit 31 is reduced or attenuated. It becomes possible to prevent more appropriately.

(実施の形態3)
図9〜図12は、この実施の形態を示し、図9は、この実施の形態に係る適応等化器3を示す概略構成ブロック図である。この実施の形態では、受信信号(入力信号)または適応等化部31の出力信号が判定エリアCの外縁近傍(縁の近くの外側)に位置する場合において、適応等化部31の出力信号の平均電力に基づいてタップ係数の更新を行うか否かを判定する点で、実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することで、その説明を省略する。
(Embodiment 3)
9 to 12 show this embodiment, and FIG. 9 is a schematic block diagram showing the adaptive equalizer 3 according to this embodiment. In this embodiment, when the received signal (input signal) or the output signal of the adaptive equalization unit 31 is located near the outer edge of the determination area C (outer side near the edge), the output signal of the adaptive equalization unit 31 The configuration is different from that of the first embodiment in that it is determined whether or not the tap coefficient is updated based on the average power, and the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Is omitted.

この実施の形態では、図10に示すように、判定エリアCが理想点Rの外縁(外枠F1)と同じであり、受信信号(図中○は理想点R)の位置に基づいてタップ更新の要否を判定する場合について説明する。まず、熱雑音の影響について説明すると、C/Nが高い場合には図10(a)に示すように、熱雑音による振幅範囲Eが小さく全受信信号が外枠F1(判定エリアC)内に位置し、硬判定結果と受信信号の誤差の平均はゼロになり、電力は維持される。一方、C/Nが低い場合には図10(b)に示すように、熱雑音による振幅範囲Eが大きく外枠F1の外側F2に受信信号が位置し、硬判定結果と受信信号の誤差の平均はゼロ以上になり、その結果、適応等化部31が電力を減衰させるようにタップ係数を更新する。   In this embodiment, as shown in FIG. 10, the determination area C is the same as the outer edge (outer frame F1) of the ideal point R, and tap update is performed based on the position of the received signal (the circle in the figure is the ideal point R). The case of determining whether or not is described. First, the effect of thermal noise will be described. When C / N is high, as shown in FIG. 10A, the amplitude range E due to thermal noise is small and all received signals are within the outer frame F1 (determination area C). Positioned, the average of the error between the hard decision result and the received signal becomes zero, and the power is maintained. On the other hand, when C / N is low, as shown in FIG. 10B, the amplitude range E due to thermal noise is large and the received signal is located outside F2 of the outer frame F1, and the error between the hard decision result and the received signal is The average becomes 0 or more, and as a result, the adaptive equalization unit 31 updates the tap coefficient so as to attenuate the power.

これに対してこの実施の形態では、まず、適応等化部31の出力信号の平均電力を算出する電力算出部323を備える。また、更新制御部321は、受信信号が外枠F1の外縁近傍に位置する場合において、電力算出部323で算出した平均電力に基づいて電力減衰状態と電力増加状態とを切り替える。   On the other hand, in this embodiment, first, a power calculation unit 323 that calculates the average power of the output signal of the adaptive equalization unit 31 is provided. Further, when the received signal is located near the outer edge of the outer frame F1, the update control unit 321 switches between the power attenuation state and the power increase state based on the average power calculated by the power calculation unit 323.

具体的には、図11(a)に示すように、外枠F1の外縁(外側)近傍E2に位置する受信信号に対して、タップ係数の更新を行う状態を電力減衰状態とする。この状態では、隣接範囲E1の受信信号(小さい矢印)に比べて、外縁近傍E2の受信信号(大きい矢印)が大きく縮小方向にタップ更新されるため、電力が減衰する。一方、図11(b)に示すように、外枠F1の外縁近傍に位置する受信信号に対して、タップ係数の更新を行わない状態を電力増加状態とする。この状態では、外枠F1の内縁近傍(縁の近くの内側)の理想点Rに対しては隣接範囲E1の受信信号のみに対して、拡大方向にタップ更新されるため、電力が増加する。なお、外枠F1の中央部においては、図12に示すように、互いに隣接する隣接範囲E1の受信信号の理想点Rに対する更新距離(矢印)が同等である(電力変動が均衡している)と考えられるため、通常通りタップ更新する。   Specifically, as shown in FIG. 11A, the state in which the tap coefficient is updated with respect to the received signal located near the outer edge (outer side) E2 of the outer frame F1 is the power attenuation state. In this state, compared with the received signal in the adjacent range E1 (small arrow), the received signal in the vicinity of the outer edge E2 (large arrow) is largely tap-updated in the reduction direction, so that the power is attenuated. On the other hand, as shown in FIG. 11B, the state in which the tap coefficient is not updated for the received signal located near the outer edge of the outer frame F1 is the power increase state. In this state, for the ideal point R in the vicinity of the inner edge of the outer frame F1 (inside the vicinity of the edge), only the received signal in the adjacent range E1 is tap-updated in the expansion direction, so that the power increases. Note that, in the central portion of the outer frame F1, as shown in FIG. 12, the update distances (arrows) of the received signals of the adjacent ranges E1 adjacent to each other with respect to the ideal point R are equal (the power fluctuations are balanced). Because it is thought that, tap update as usual.

そして、電力算出部323で算出した平均電力が第1の閾値を超える場合には、更新制御部321は電力減衰状態に切り替え、外枠F1の外縁近傍に位置する受信信号のタップ更新を行うように、「更新可」をLMS更新部322に伝送する。また、電力算出部323で算出した平均電力が第2の閾値(<第1の閾値)よりも小さい場合には、更新制御部321は電力増加状態に切り替え、外枠F1の外縁近傍に位置する受信信号のタップ更新を行わないように、「更新不可」をLMS更新部322に伝送する。   Then, when the average power calculated by the power calculation unit 323 exceeds the first threshold value, the update control unit 321 switches to the power attenuation state and performs the tap update of the reception signal located near the outer edge of the outer frame F1. Then, “updatable” is transmitted to the LMS updating unit 322. When the average power calculated by the power calculation unit 323 is smaller than the second threshold value (<first threshold value), the update control unit 321 switches to the power increase state and is located near the outer edge of the outer frame F1. “Unable to update” is transmitted to the LMS updating unit 322 so that the tap update of the received signal is not performed.

この実施の形態によれば、判定エリアC(外枠F1)の外縁近傍に位置する入力信号または適応等化部31の出力信号に対しては、出力信号の平均電力に基づいてタップ係数の更新が行われたり行われなかったりする。このため、平均電力が小さい場合に判定エリアCの外縁近傍に対するタップ係数の更新を行わないことで、平均電力を増加させたり、平均電力が大きい場合に判定エリアCの外縁近傍に対するタップ係数の更新を行うことで、平均電力を減衰させたりして、平均電力をより維持することが可能となる。   According to this embodiment, for the input signal located near the outer edge of the determination area C (outer frame F1) or the output signal of the adaptive equalization unit 31, the tap coefficient is updated based on the average power of the output signal. May or may not take place. Therefore, when the average power is small, the tap coefficient is not updated in the vicinity of the outer edge of the determination area C to increase the average power, or when the average power is high, the update of the tap coefficient in the vicinity of the outer edge of the determination area C is performed. By performing the above, it becomes possible to further maintain the average power by attenuating the average power.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、円状の判定エリアCを設けているが、その他の形状の判定エリアCを設けてもよい。例えば、理想点R群の外縁・外枠F1の形状(正四角形)と略同じ形状であってもよいし、図7に示すように、受信信号S群が45°位相回転した場合に、理想点R群と受信信号S群とが重なる略正八角形状の形状であってもよい。   Although the embodiments of the present invention have been described above, the specific configuration is not limited to the above-mentioned embodiments, and even if there is a design change or the like within a range not departing from the gist of the present invention, Included in the invention. For example, although the circular determination area C is provided in the above embodiment, the determination areas C having other shapes may be provided. For example, the shape may be substantially the same as the shape of the outer edge / outer frame F1 of the ideal point R group (regular quadrangle), or as shown in FIG. The point R group and the received signal S group may have a substantially regular octagonal shape.

1 搬送波再生回路
2 第1の位相回転器
3 適応等化器
31 適応等化部
32 タップ更新部
321 更新制御部
322 LMS更新部
323 電力算出部
4 位相誤差検出器
5 LPF
6 NCO(回転信号生成部)
7 第2の位相回転器
8 等化器
S 受信信号(出力信号)
R 理想点
1 Carrier wave reproduction circuit 2 1st phase rotator 3 Adaptive equalizer 31 Adaptive equalization part 32 Tap update part 321 Update control part 322 LMS update part 323 Power calculation part 4 Phase error detector 5 LPF
6 NCO (rotation signal generator)
7 Second phase rotator 8 Equalizer S Received signal (output signal)
R ideal point

Claims (3)

入力信号の周波数特性を補償する適応等化部と、
複素平面上に配置された複数の理想点と前記適応等化部の出力信号との誤差に基づくアルゴリズムで、前記適応等化部に対するタップ係数を更新するタップ更新部と、
を備え、前記タップ更新部は、前記入力信号または前記適応等化部の出力信号が、前記複素平面上で前記複数の理想点の外縁以内に設けられた判定エリアの外側に位置する場合には、前記タップ係数の更新を行わない、
ことを特徴とする適応等化器。
An adaptive equalization unit that compensates for the frequency characteristics of the input signal,
An algorithm based on the error between a plurality of ideal points arranged on a complex plane and the output signal of the adaptive equalization unit, a tap update unit that updates the tap coefficient for the adaptive equalization unit,
Where the input signal or the output signal of the adaptive equalization unit is located outside the determination area provided within the outer edges of the plurality of ideal points on the complex plane. , Do not update the tap coefficient,
An adaptive equalizer characterized by the above.
前記適応等化部の出力信号の平均電力を算出する電力算出部を備え、
前記タップ更新部は、前記入力信号または前記適応等化部の出力信号が前記判定エリアの外縁近傍に位置する場合において、前記電力算出部で算出した平均電力に基づいてタップ係数の更新を行うか否かを判定する、
ことを特徴とする請求項1に記載の適応等化器。
A power calculator for calculating the average power of the output signal of the adaptive equalizer,
Whether the tap update unit updates the tap coefficient based on the average power calculated by the power calculation unit when the input signal or the output signal of the adaptive equalization unit is located near the outer edge of the determination area. Determine whether or not
The adaptive equalizer according to claim 1, wherein:
入力信号の位相を回転する第1の位相回転器と、
前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する、請求項1または2に記載の適応等化器と、
前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、
前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、
前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、
を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、
ことを特徴とする搬送波再生回路。
A first phase rotator that rotates the phase of the input signal;
The adaptive equalizer according to claim 1 or 2, which compensates a frequency characteristic of a phase rotation signal which is an input signal whose phase is rotated by the first phase rotator.
A phase error detector for detecting a phase error included in the phase rotation signal compensated by the adaptive equalizer,
A rotation signal generation unit that generates a phase rotation control signal based on the phase error,
A second phase rotator that rotates the phase of the input signal based on the phase rotation control signal;
And the first phase rotator rotates the phase of the input signal based on the phase rotation control signal,
A carrier wave regenerating circuit characterized in that
JP2018201866A 2018-10-26 2018-10-26 Adaptive equalizer and carrier recovery circuit Active JP7254411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201866A JP7254411B2 (en) 2018-10-26 2018-10-26 Adaptive equalizer and carrier recovery circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201866A JP7254411B2 (en) 2018-10-26 2018-10-26 Adaptive equalizer and carrier recovery circuit

Publications (2)

Publication Number Publication Date
JP2020068504A true JP2020068504A (en) 2020-04-30
JP7254411B2 JP7254411B2 (en) 2023-04-10

Family

ID=70388708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201866A Active JP7254411B2 (en) 2018-10-26 2018-10-26 Adaptive equalizer and carrier recovery circuit

Country Status (1)

Country Link
JP (1) JP7254411B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334210A (en) * 1991-05-10 1992-11-20 Nec Corp Digital demodulation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334210A (en) * 1991-05-10 1992-11-20 Nec Corp Digital demodulation device

Also Published As

Publication number Publication date
JP7254411B2 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
US7796708B2 (en) Adaptive receiver loops with weighted decision-directed error
US9130627B2 (en) Multi-mode receiver for highly-spectrally-efficient communications
US8675778B2 (en) Carrier recovery circuit and demodulation circuit under quasi-coherent detection method
JP6399505B2 (en) Receiving device, communication system, circuit device, communication method and program (signal compensation in high-speed communication)
WO2011048713A1 (en) Receiver and transmitting/receiving system
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
JP7433737B2 (en) Carrier regeneration circuit
US7139343B2 (en) Digital radio receiver
JP7254411B2 (en) Adaptive equalizer and carrier recovery circuit
JP4553663B2 (en) Pull-in method and blind adaptive equalizer in blind adaptive equalizer
JP7102072B2 (en) Adaptive equalizer and carrier regenerative circuit
JP7080566B2 (en) Carrier regenerative circuit
Li et al. Design of signal constellations in the presence of phase noise
JP4841601B2 (en) Radio transmission apparatus, transmission power control method, and transmission power control program
JP7023583B2 (en) Carrier regenerative circuit
JP4177879B1 (en) Reception device, transmission device, and wireless communication system
JP4985535B2 (en) Demodulator circuit
JP4485297B2 (en) Demodulated circuit integrated semiconductor integrated circuit, demodulating method and receiver
JP7446678B2 (en) wireless receiving device
JP7451030B2 (en) wireless receiving device
JP6082125B2 (en) Receiver for multi-carrier modulated signals
JP2022076112A (en) Log-likelihood ratio calculation circuit and wireless receiver
JP2022040440A (en) Carrier wave regeneration circuit
JP2022076113A (en) Log-likelihood ratio calculation circuit and wireless receiver
Nakano et al. 60-GHz single-carrier coherent detection system with robust 16-QAM signal recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230328

R150 Certificate of patent or registration of utility model

Ref document number: 7254411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150