JP2022076112A - Log-likelihood ratio calculation circuit and wireless receiver - Google Patents

Log-likelihood ratio calculation circuit and wireless receiver Download PDF

Info

Publication number
JP2022076112A
JP2022076112A JP2020186372A JP2020186372A JP2022076112A JP 2022076112 A JP2022076112 A JP 2022076112A JP 2020186372 A JP2020186372 A JP 2020186372A JP 2020186372 A JP2020186372 A JP 2020186372A JP 2022076112 A JP2022076112 A JP 2022076112A
Authority
JP
Japan
Prior art keywords
amplitude
likelihood ratio
log
symbol point
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020186372A
Other languages
Japanese (ja)
Inventor
賢晃 加藤
Masaaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2020186372A priority Critical patent/JP2022076112A/en
Publication of JP2022076112A publication Critical patent/JP2022076112A/en
Pending legal-status Critical Current

Links

Images

Abstract

To improve the calculation accuracy of a log-likelihood ratio and improve the error correction capability of low-density parity check.SOLUTION: For bits that are distinguished whether they are 0 or 1 depending on a phase angle φi of an ideal symbol point, a log-likelihood ratio LLRφm is calculated using the phase angle xφ of received signal based on probability density distribution that becomes 0 and probability density distribution that becomes 1 depending on the phase angle. For bits that can be divided into an amplitude distinction symbol point that is distinguished to become 0 or 1 depending on amplitude and a phase distinction symbol point that is distinguished to become 0 or 1 depending on the phase angle, regarding the amplitude distinction symbol point, the log-likelihood ratio LLRφm is calculated using amplitude xR of a received signal based on probability density distribution that becomes 0 and probability density distribution that becomes 1 depending on the amplitude, and regarding the phase distinction symbol point, the log-likelihood ratio LLRφm is calculated using the phase angle xφ of the received signal based on probability density distribution that becomes 0 and probability density distribution that becomes 1 depending on the phase angle.SELECTED DRAWING: Figure 1

Description

この発明は、対数尤度比算出回路および無線受信装置に関し、特に、低密度パリティ検査復号における誤り訂正において使用される対数尤度比を算出する回路および前記回路を含む無線受信装置に関する。 The present invention relates to a log-likelihood ratio calculation circuit and a wireless receiving device, and more particularly to a circuit for calculating a log-likelihood ratio used in error correction in low-density parity check decoding and a wireless receiving device including the circuit.

従来、低密度パリティ検査(LDPC:Low Density Parity Check の略)復号において、受信信号の熱雑音の分布に基づいて算出した対数尤度比(LLR:Log-Likelihood Ratio の略)を使用して誤り訂正を行う手法が知られている(例えば特許文献1参照)。 Conventionally, in low density parity check (LDPC: short for Low Density Parity Check) decoding, an error is made using the log-likelihood ratio (LLR: short for Log-Likelihood Ratio) calculated based on the distribution of thermal noise of the received signal. A method for making corrections is known (see, for example, Patent Document 1).

特開2013-201582号公報Japanese Unexamined Patent Publication No. 2013-201582

ところで、高多値の変調方式では、受信信号の位相雑音やフェージングなど熱雑音以外の影響も大きく、低密度パリティ検査の誤り訂正能力が低減する、という問題がある。具体的には、従来の対数尤度比の算出方法では、受信信号の熱雑音によって理想シンボル点を中心として正規分布/ガウス分布に基づいて受信信号の振幅が変動することを前提としている。しかしながら、この方法では、受信信号の位相雑音やフェージングなどによってシンボルの位相が回転した際の変動を考慮することができない。このため、特に位相雑音が存在する環境下において対数尤度比の算出精度が劣化し、延いては低密度パリティ検査の誤り訂正能力が低減してしまう。 By the way, in the high multi-value modulation method, there is a problem that the influence other than the thermal noise such as the phase noise and fading of the received signal is large, and the error correction ability of the low density parity check is reduced. Specifically, the conventional method for calculating the log-likelihood ratio is based on the premise that the amplitude of the received signal fluctuates based on the normal distribution / Gaussian distribution around the ideal symbol point due to the thermal noise of the received signal. However, in this method, it is not possible to consider the fluctuation when the phase of the symbol is rotated due to the phase noise of the received signal, fading, or the like. For this reason, the accuracy of calculating the log-likelihood ratio deteriorates, especially in an environment where phase noise is present, and the error correction capability of the low-density parity check is reduced.

そこでこの発明は、対数尤度比の算出精度を向上させて低密度パリティ検査の誤り訂正能力を向上させることが可能な、対数尤度比算出回路および前記対数尤度比算出回路を含む無線受信装置を提供することを目的とする。 Therefore, the present invention includes a log-likelihood ratio calculation circuit and a radio reception including the log-likelihood ratio calculation circuit, which can improve the calculation accuracy of the log-likelihood ratio and improve the error correction capability of low-density parity check. The purpose is to provide the device.

上記課題を解決するために、請求項1に記載の発明は、送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitについては、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出し、振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、前記振幅区別シンボル点と前記位相区別シンボル点とのうちのどちらであるかを前記受信信号の振幅に基づいて判断したうえで、前記振幅区別シンボル点について、前記受信信号の振幅を用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出し、前記位相区別シンボル点について、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出する、ことを特徴とする対数尤度比算出回路である。 In order to solve the above problem, the invention according to claim 1 corresponds to the phase angle of the ideal symbol point among the 4-bit received signals modulated by the orthogonal phase amplitude modulation method having a multi-value number of 16 on the transmitting side. For the bit that is distinguished whether it becomes 0 or 1, the phase angle of the received signal is used, and the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle are used. The logarithmic likelihood ratio is calculated, and it is set to 0 or 1 depending on the phase angle and the ideal symbol point (called "amplitude distinction symbol point") that distinguishes between 0 and 1 according to the amplitude. For a bit divided into an ideal symbol point (referred to as a "phase distinction symbol point") in which it is distinguished, which of the amplitude distinction symbol point and the phase distinction symbol point is received. After making a judgment based on the amplitude of the signal, for the amplitude distinction symbol point, using the amplitude of the received signal, the logarithmic probability is based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the amplitude. The degree ratio is calculated, and for the phase distinction symbol point, the logarithmic likelihood ratio is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle, using the phase angle of the received signal. It is a log-amplitude ratio calculation circuit characterized by calculating.

請求項2に記載の発明は、請求項1に記載の対数尤度比算出回路において、所定の数式に従って各bitの対数尤度比を算出する、ことを特徴とする。 The invention according to claim 2 is characterized in that the log-likelihood ratio calculation circuit according to claim 1 calculates the log-likelihood ratio of each bit according to a predetermined mathematical formula.

請求項3に記載の発明は、請求項1または2に記載の対数尤度比算出回路を備える、ことを特徴とする無線受信装置である。 The invention according to claim 3 is a wireless receiving device comprising the log-likelihood ratio calculation circuit according to claim 1 or 2.

請求項1や請求項2に記載の発明によれば、受信信号の位相雑音やフェージングなどによってシンボルの位相が正規分布/ガウス分布に基づいて回転・変動した際の確率分布も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音が支配的な環境下においても対数尤度比の算出精度を向上させることが可能となり、延いては、低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 According to the inventions of claim 1 and claim 2, the log-likelihood also considers the probability distribution when the phase of the symbol rotates / fluctuates based on the normal distribution / Gaussian distribution due to the phase noise or fading of the received signal. Since the degree ratio is calculated, it is possible to improve the calculation accuracy of the log-likelihood ratio even in an environment where the phase noise of the received signal is dominant, and by extension, the error correction of the low-density parity inspection is possible. It becomes possible to improve the ability.

請求項3に記載の発明によれば、対数尤度比を使用して低密度パリティ検査復号における誤り訂正を行う無線受信装置において上記の作用効果を奏することが可能となる。 According to the third aspect of the present invention, it is possible to exert the above-mentioned effects in a wireless receiving device that performs error correction in low density parity check decoding using a log-likelihood ratio.

この発明の実施の形態に係る対数尤度比算出回路としてのLLR算出部を含む、実施の形態における無線受信装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the radio reception device in embodiment which includes the LLR calculation part as the log-likelihood ratio calculation circuit which concerns on embodiment of this invention. 16QAM方式の理想シンボル点の配置および各理想シンボル点に割り当てられているbit列を示す図である。It is a figure which shows the arrangement of the ideal symbol point of a 16QAM system, and the bit string assigned to each ideal symbol point. 対数尤度比の算出に纏わる変数の設定を説明する図である。It is a figure explaining the setting of the variable related to the calculation of the log-likelihood ratio. 1bit目の対数尤度比の算出式の考え方を説明する図であり、特に1bit目が0の領域と1bit目が1の領域とを説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 1st bit, and in particular, it is a figure explaining the region where the 1st bit is 0 and the region where the 1st bit is 1. 1bit目の対数尤度比の算出式の考え方を説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 1st bit. 2bit目の対数尤度比の算出式の考え方を説明する図であり、特に振幅にbit情報をのせているシンボルと位相にbit情報をのせているシンボルとを説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 2nd bit, and in particular, it is a figure explaining a symbol which puts bit information on an amplitude, and a symbol which puts bit information on a phase. 2bit目の対数尤度比の算出式の考え方を説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 2nd bit. 従来の対数尤度比の算出方法の問題点とこの発明に係る対数尤度比算出回路による対策とを説明する図である。It is a figure explaining the problem of the conventional method of calculating the log-likelihood ratio, and the measures by the log-likelihood ratio calculation circuit which concerns on this invention. この発明に係る対数尤度比算出回路の有効性の検証例で用いられた評価系の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the evaluation system used in the verification example of the effectiveness of the log-likelihood ratio calculation circuit which concerns on this invention.

以下、この発明を図示の実施の形態に基づいて説明する。なお、以下では、この発明の特徴的な構成について説明し、無線通信を行う際の従来と同様の仕組みについては説明を省略する。また、各図では、複素信号を構成する実部(I信号;別言すると、同相成分,I信号成分)を伝送する信号線と虚部(Q信号;別言すると、直交成分,Q信号成分)を伝送する信号線とをまとめて1本の信号線で表示している。また、下記の説明における「以上」と「より大きい」とは相互に置き換えられてもよく、さらに、「以下」と「未満」とは相互に置き換えられてもよい。 Hereinafter, the present invention will be described based on the illustrated embodiment. In the following, the characteristic configuration of the present invention will be described, and the description of the conventional mechanism for performing wireless communication will be omitted. Further, in each figure, the signal line and the imaginary part (Q signal; in other words, the orthogonal component and the Q signal component) that transmit the real part (I signal; in other words, the in-phase component and the I signal component) constituting the complex signal are transmitted. ) Is displayed as one signal line together with the signal line to be transmitted. Further, "greater than or equal to" and "greater than or equal to" in the following description may be replaced with each other, and further, "less than or equal to" and "less than or equal to" may be replaced with each other.

図1は、この発明の実施の形態に係る対数尤度比算出回路としてのLLR算出部20を含む、実施の形態における無線受信装置1の概略構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing a schematic configuration of a wireless receiver 1 according to an embodiment, including an LLR calculation unit 20 as a log-likelihood ratio calculation circuit according to an embodiment of the present invention.

アンテナ10は、図示していない無線送信装置から送出された信号波を受信して、前記信号波を受信信号としてチャネルフィルタ11へと転送する。 The antenna 10 receives a signal wave transmitted from a radio transmission device (not shown) and transfers the signal wave as a reception signal to the channel filter 11.

ここで、無線送信装置は、送信対象の無線フレームを、低密度パリティ検査符号化を施すとともに多値数が16の直角位相振幅変調方式(即ち、16QAM方式;QAMは Quadrature Amplitude Modulation の略)で変調したうえでアンテナから送出する。つまり、無線受信装置1は、低密度パリティ検査符号化が施されて多値数が16の直角位相振幅変調方式(16QAM方式)で変調された多値変調信号を受信する。 Here, the wireless transmission device applies low-density parity inspection coding to the wireless frame to be transmitted and uses a quadrature amplitude modulation method (that is, 16QAM method; QAM is an abbreviation for Quadrature Amplitude Modulation) having a multi-value number of 16. It is modulated and then transmitted from the antenna. That is, the wireless receiving device 1 receives a multi-value modulation signal that has been subjected to low-density parity check coding and is modulated by a quadrature-amplitude modulation method (16QAM method) having a multi-value number of 16.

チャネルフィルタ11は、受信帯域を制限するためのフィルタであり、具体的には例えばバンドパスフィルタによって構成され得る。チャネルフィルタ11は、アンテナ10から転送される受信信号の入力を受け、前記受信信号に対して帯域制限処理を施して、前記受信信号から所望の周波数帯域の受信信号を抽出して出力する。 The channel filter 11 is a filter for limiting the reception band, and may be specifically configured by, for example, a bandpass filter. The channel filter 11 receives the input of the received signal transferred from the antenna 10, performs band limiting processing on the received signal, extracts the received signal in a desired frequency band from the received signal, and outputs the received signal.

ミキサ13は、チャネルフィルタ11から出力される受信信号の入力を受けるとともに局部発振器12から出力されるローカル信号の入力を受け、前記受信信号に前記ローカル信号を乗算して、前記受信信号の周波数を変換(具体的には、ダウンコンバート)して出力する。 The mixer 13 receives the input of the received signal output from the channel filter 11 and receives the input of the local signal output from the local oscillator 12, and multiplies the received signal by the local signal to obtain the frequency of the received signal. Convert (specifically, down-convert) and output.

自動利得制御部14は、ミキサ13から出力される受信信号の入力を受け、前記受信信号に対して前記受信信号のレベルが所定のレベルで一定になるように利得調整処理を施して、利得調整処理後(言い換えると、レベル補正後)の受信信号(尚、アナログ信号である)を出力する。 The automatic gain control unit 14 receives the input of the received signal output from the mixer 13 and performs a gain adjusting process on the received signal so that the level of the received signal becomes constant at a predetermined level to adjust the gain. The received signal (which is an analog signal) after processing (in other words, after level correction) is output.

A/D変換器15(Analog-to-Digital converter)は、自動利得制御部14から出力される受信信号の入力を受け、前記受信信号に対してアナログ-デジタル変換処理を施して、アナログ信号からデジタル信号への変換を行う。すなわち、A/D変換器15は、デジタルの受信信号を出力する。 The A / D converter 15 (Analog-to-Digital converter) receives the input of the received signal output from the automatic gain control unit 14, performs analog-digital conversion processing on the received signal, and converts the received signal from the analog signal. Convert to a digital signal. That is, the A / D converter 15 outputs a digital received signal.

デジタル直交検波部16は、A/D変換器15から出力されるデジタルの受信信号の入力を受け、前記受信信号を直交検波によってベースバンド信号に変換する。デジタル直交検波部16は、具体的には、数値制御発振器からcos波が入力されて前記受信信号の同相成分を同期検出する乗算器と、数値制御発振器からsin波が入力されて前記受信信号の直交成分を同期検出する乗算器とを備える。デジタル直交検波部16は、デジタル信号処理による多値変調の直交検波を行い、実部を構成する実数成分(I信号)と虚部を構成する虚数成分(Q信号)とのIQ直交座標で表現される複素信号(別言すると、同相成分および直交成分の検波信号)を生成して出力する。 The digital orthogonal detection unit 16 receives an input of a digital reception signal output from the A / D converter 15 and converts the received signal into a baseband signal by orthogonal detection. Specifically, the digital orthogonal detection unit 16 has a multiplier in which a cos wave is input from a numerically controlled oscillator and synchronously detects in-phase components of the received signal, and a sine wave is input from the numerically controlled oscillator to detect the received signal. It is equipped with a multiplier that synchronously detects orthogonal components. The digital orthogonal detection unit 16 performs orthogonal detection of multi-value modulation by digital signal processing, and is expressed by IQ orthogonal coordinates of the real number component (I signal) constituting the real part and the imaginary number component (Q signal) constituting the imaginary part. Complex signals (in other words, detection signals of in-phase components and orthogonal components) are generated and output.

デジタル直交検波部16の数値制御発振器は、設定値に応じた周波数で発振する発振器であり、位相が90°だけ相互に異なるcos波とsin波とを発生させて2つの乗算器のそれぞれへと供給する。 The numerically controlled oscillator of the digital orthogonal detection unit 16 is an oscillator that oscillates at a frequency corresponding to a set value, and generates cos waves and sine waves whose phases differ from each other by 90 ° to each of the two multipliers. Supply.

ロールオフフィルタ17は、デジタル直交検波部16から出力されるベースバンド信号(別言すると、同相成分および直交成分の検波信号)の入力を受け、前記ベースバンド信号の同相成分と直交成分とのそれぞれに対して符号間干渉を除去するための処理を施して、前記ベースバンド信号のスペクトラム波形を所望のロールオフとなるように整形して出力する。 The roll-off filter 17 receives the input of the baseband signal (in other words, the detection signal of the in-phase component and the orthogonal component) output from the digital orthogonal detection unit 16, and the in-phase component and the orthogonal component of the baseband signal are respectively. The baseband signal is subjected to a process for removing the inter-code interference, and the spectrum waveform of the baseband signal is shaped and output so as to have a desired roll-off.

等化器18は、ロールオフフィルタ17から出力されるベースバンド信号の入力を受け、前記ベースバンド信号の同相成分と直交成分とのそれぞれに対して、周波数選択性フェージングによる符号間干渉を除去するための適応等化処理を施して、適応等化処理後のベースバンド信号(受信信号)を出力する。 The equalizer 18 receives the input of the baseband signal output from the roll-off filter 17, and removes intersymbol interference due to frequency selective fading for each of the in-phase component and the orthogonal component of the baseband signal. The baseband signal (received signal) after the adaptive equalization process is output.

復号部19は、LLR算出部20から出力される対数尤度比(LLR:Log-Likelihood Ratio の略)の入力を受け、前記対数尤度比を使用して例えばsum-product復号法に従って低密度パリティ検査復号処理を行う。 The decoding unit 19 receives the input of the log-likelihood ratio (LLR: an abbreviation of Log-Likelihood Ratio) output from the LLR calculation unit 20, and uses the log-likelihood ratio to reduce the density according to, for example, the sum-product decoding method. Perform parity check / decryption processing.

LLR算出部20は、低密度パリティ検査復号における誤り訂正において使用される対数尤度比を算出する回路であり、無線受信装置1に組み込まれる。 The LLR calculation unit 20 is a circuit for calculating the log-likelihood ratio used in error correction in low-density parity check decoding, and is incorporated in the wireless receiver 1.

実施の形態に係るLLR算出部20は、送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、理想シンボル点の位相角度φiに応じて0になるか1になるかが区別されているbitについては、受信信号の位相角度xφを用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比LLRφmを算出し、振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、振幅区別シンボル点と位相区別シンボル点とのうちのどちらであるかを受信信号の振幅xRに基づいて判断したうえで、振幅区別シンボル点について、受信信号の振幅xRを用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比LLRφmを算出し、位相区別シンボル点について、受信信号の位相角度xφを用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比LLRφmを算出する、ようにしている。 The LLR calculation unit 20 according to the embodiment becomes 0 according to the phase angle φ i of the ideal symbol point among the 4-bit received signals modulated by the orthogonal phase amplitude modulation method having a multi-value number of 16 on the transmitting side. For the bit that distinguishes between 1 and 1, using the phase angle xφ of the received signal, the log-amplitude ratio is based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle. LLR φ m is calculated, and the ideal symbol point (called “amplitude distinction symbol point”) that distinguishes whether it becomes 0 or 1 according to the amplitude and whether it becomes 0 or 1 depending on the phase angle For a bit that is divided into an ideal symbol point (referred to as a "phase-distinguishing symbol point") in which is distinguished, which of the amplitude-distinguishing symbol point and the phase-distinguishing symbol point is the amplitude x R of the received signal. After making a judgment based on Calculate m , and for the phase distinction symbol point, use the phase angle xφ of the received signal to obtain the logarithmic likelihood ratio LLRφ m based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle. I am trying to calculate.

まず、16QAM方式の理想シンボル点の配置および各理想シンボル点に割り当てられているbit列(言い換えると、16QAMの信号空間ダイヤグラム)を図2に示す。なお、図2において、Aiは理想シンボル点配置の同相成分であり、Biは理想シンボル点配置の直交成分である(但し、i=1,2,3,4)。また、図2に示す理想シンボル点の配置に対して規定される、下記の数式1乃至数式7で用いられる変数の設定を図3に示す。 First, FIG. 2 shows the arrangement of ideal symbol points in the 16QAM system and the bit sequence assigned to each ideal symbol point (in other words, the signal space diagram of 16QAM). In FIG. 2, A i is a homeomorphic component of the ideal symbol point arrangement, and B i is an orthogonal component of the ideal symbol point arrangement (however, i = 1, 2, 3, 4). Further, FIG. 3 shows the setting of the variables used in the following formulas 1 to 7, which are defined for the arrangement of the ideal symbol points shown in FIG.

LLR算出部20は、下記の数式1A,1Bに基づいて、m bit目の対数尤度比LLRφmを算出する。

Figure 2022076112000002
The LLR calculation unit 20 calculates the log-likelihood ratio LLR φ m of the m bit based on the following mathematical formulas 1A and 1B.
Figure 2022076112000002

上記の数式1A,1Bにおける各記号・変数の意味は下記のとおりである。なお、下記のうちの理想シンボル点の位相角度の「φ」は、図面では「Φ」として表示している。
m:ビット番号(但し、m=1,2,3,4)
xφ:受信信号の位相角度
R:受信信号の振幅
φi:理想シンボル点の位相角度(但し、φの添字i=0,1,2,・・・,11)
i:理想シンボル点の振幅(但し、Rの添字i=0,1,2)
σ2:雑音分散
i(m)=1:m番目のbitが1である理想シンボル点(振幅区別シンボル点)の振幅
i(m)=0:m番目のbitが0である理想シンボル点(振幅区別シンボル点)の振幅
φi(m)=1:m番目のbitが1である理想シンボル点(位相区別シンボル点)の位相
φi(m)=0:m番目のbitが0である理想シンボル点(位相区別シンボル点)の位相
The meanings of the symbols and variables in the above formulas 1A and 1B are as follows. The "φ" of the phase angle of the ideal symbol point among the following is displayed as "Φ" in the drawing.
m: Bit number (however, m = 1, 2, 3, 4)
xφ: Phase angle of received signal x R : Amplitude of received signal φ i : Phase angle of ideal symbol point (however, the subscript i of φ i = 0, 1, 2, ..., 11)
R i : Amplitude of ideal symbol point (however, subscript i of R = 0, 1, 2)
σ 2 : Noise dispersion R i (m) = 1: Amplitude of the ideal symbol point (amplitude distinction symbol point) where the mth bit is 1 R i (m) = 0: Ideal symbol where the mth bit is 0 Amplitude of point (amplitude distinction symbol point) φ i (m) = 1: Phase of ideal symbol point (phase distinction symbol point) where mth bit is 1 φ i (m) = 0: mth bit is 0 The phase of the ideal symbol point (phase distinction symbol point) that is

i(m)およびφi(m)について、図3に示すマッピング方式で且つm=2の場合には具体的には、Ri(m)=1はR0であり、Ri(m)=0はR2であり、また、φi(m)=1はφ2,φ3,φ8,およびφ9であり、φi(m)=0はφ0,φ5,φ6,およびφ11である。 For R i (m) and φ i (m), in the mapping method shown in FIG. 3 and specifically, when m = 2, R i (m) = 1 is R 0 , and R i (m). ) = 0 is R 2 , φ i (m) = 1 is φ 2 , φ 3 , φ 8 and φ 9 , and φ i (m) = 0 is φ 0 , φ 5 and φ 6 , And φ11 .

上記の数式1Aは、受信信号の振幅xRが下記の数式2を満たして、対応する理想シンボル点が同位相に複数存在する場合に用いられ、上記の数式1Bは、前記以外の場合に用いられる。16QAM方式の場合で図3に示す例(別言すると、設定)の場合には、下記の数式2におけるRの添字iは1である。

Figure 2022076112000003
The above formula 1A is used when the amplitude x R of the received signal satisfies the following formula 2 and a plurality of corresponding ideal symbol points exist in the same phase, and the above formula 1B is used in cases other than the above. Be done. In the case of the 16QAM method, in the case of the example shown in FIG. 3 (in other words, the setting), the subscript i of R in the following formula 2 is 1.
Figure 2022076112000003

対応する理想シンボル点が同位相に複数存在する場合とは、すなわち、或る理想シンボル点の位相角度φi(図面ではΦi)について理想シンボル点が複数存在する場合のことであり、図3に示すマッピング方式では具体的には例えば、bit列「0000」と「0101」とが存在する理想シンボル点の位相角度Φ1やbit列「1000」と「1101」とが存在する理想シンボル点の位相角度Φ4などのような場合のことである。 The case where a plurality of corresponding ideal symbol points exist in the same phase is a case where a plurality of ideal symbol points exist for a phase angle φ ii in the drawing) of a certain ideal symbol point, and FIG. Specifically, in the mapping method shown in, for example, the phase angle Φ 1 of the ideal symbol point in which the bit columns “0000” and “0101” exist, and the ideal symbol point in which the bit columns “1000” and “1101” exist. This is the case such as when the phase angle is Φ4 .

上記の数式1は、16QAM方式の場合のビット番号m=1,2,3,4のそれぞれについて展開すると、下記の数式3乃至数式6のようになる。数式3乃至数式6における各記号・変数の意味は下記のとおりである。なお、下記のうちの理想シンボル点の位相角度の「φ」は、図面では「Φ」として表示している。
xφ:受信信号の位相角度
R:受信信号の振幅
φi:理想シンボル点の位相角度(但し、φの添字i=0,1,2,・・・,11)
i:理想シンボル点の振幅(但し、Rの添字i=0,1,2)
σ2:雑音分散
thre1:第1の振幅閾値
thre2:第2の振幅閾値
When the above formula 1 is expanded for each of the bit numbers m = 1, 2, 3, 4 in the case of the 16QAM method, it becomes the following formulas 3 to 6. The meanings of the symbols / variables in Formulas 3 to 6 are as follows. The "φ" of the phase angle of the ideal symbol point among the following is displayed as "Φ" in the drawing.
xφ: Phase angle of received signal x R : Amplitude of received signal φ i : Phase angle of ideal symbol point (however, the subscript i of φ i = 0, 1, 2, ..., 11)
R i : Amplitude of ideal symbol point (however, subscript i of R = 0, 1, 2)
σ 2 : Noise variance R thre1 : First amplitude threshold R thre2 : Second amplitude threshold

1bit目の対数尤度比LLRφ1は、下記の数式3に従って算出される。

Figure 2022076112000004
The log-likelihood ratio LLR φ 1 of the first bit is calculated according to the following formula 3.
Figure 2022076112000004

2bit目の対数尤度比LLRφ2は、受信信号の振幅xRが第1の振幅閾値Rthre1以上または第2の振幅閾値Rthre2以下(即ち、xR≧Rthre1 または xR≦Rthre2)の場合に下記の数式4Aに従って算出され、受信信号の振幅xRが第1の振幅閾値Rthre1未満かつ第2の振幅閾値Rthre2より大きい(即ち、Rthre2<xR<Rthre1)の場合に下記の数式4Bに従って算出される。

Figure 2022076112000005
In the second bit log likelihood ratio LLR φ 2 , the amplitude x R of the received signal is equal to or greater than the first amplitude threshold R thre1 or equal to or less than the second amplitude threshold R thre2 (that is, x R ≧ R thre1 or x R ≦ R thre2 ). When the amplitude x R of the received signal is less than the first amplitude threshold value R thre1 and larger than the second amplitude threshold value R thre2 (that is, R thre2 <x R <R thre1 ). Is calculated according to the following formula 4B.
Figure 2022076112000005

3bit目の対数尤度比LLRφ3は、下記の数式5に従って算出される。

Figure 2022076112000006
The log-likelihood ratio LLR φ 3 of the third bit is calculated according to the following formula 5.
Figure 2022076112000006

4bit目の対数尤度比LLRφ4は、受信信号の振幅xRが第1の振幅閾値Rthre1以上または第2の振幅閾値Rthre2以下(即ち、xR≧Rthre1 または xR≦Rthre2)の場合に下記の数式6Aに従って算出され、受信信号の振幅xRが第1の振幅閾値Rthre1未満かつ第2の振幅閾値Rthre2より大きい(即ち、Rthre2<xR<Rthre1)の場合に下記の数式6Bに従って算出される。

Figure 2022076112000007
In the 4th bit log likelihood ratio LLRφ 4 , the amplitude x R of the received signal is equal to or greater than the first amplitude threshold R thre1 or equal to or less than the second amplitude threshold R thre2 (that is, x R ≧ R thre1 or x R ≦ R thre2 ). When the amplitude x R of the received signal is less than the first amplitude threshold value R thre1 and larger than the second amplitude threshold value R thre2 (that is, R thre2 <x R <R thre1 ). Is calculated according to the following formula 6B.
Figure 2022076112000007

上記の数式3乃至数式6は下記の考え方に基づいている(図4乃至図7参照)。 The above formulas 3 to 6 are based on the following ideas (see FIGS. 4 to 7).

1bit目は、位相角度が-90°から+90°(言い換えると、270°から360°/0°を経て90°;即ち、図4において理想シンボル点の位相角度Φ9からΦ11,Φ0を経てΦ2までを含むIQ直交座標系の第4象限および第1象限)のときに0になり、位相角度が+90°から-90°(言い換えると、90°から180°を経て270°;即ち、図4において理想シンボル点の位相角度Φ3からΦ5,Φ6を経てΦ8までを含むIQ直交座標系の第2象限および第3象限)のときに1になる。したがって、受信信号の位相が正規分布/ガウス分布に基づいて揺らぐと考えた場合、1bit目が0になる確率密度は図5Aのように示され、1bit目が1になる確率密度は図5Bのように示される。これに基づいて、これら確率密度分布を各項として考慮することにより、1bit目の対数尤度比LLRφ1を算出する上記の数式3が導出される(図5C参照)。 In the first bit, the phase angle is from −90 ° to + 90 ° (in other words, from 270 ° to 360 ° / 0 ° to 90 °; that is, in FIG. 4, the phase angles Φ 9 to Φ 11 and Φ 0 of the ideal symbol point are set. It becomes 0 in the 4th and 1st quadrants of the IQ orthogonal coordinate system including up to Φ2, and the phase angle is from + 90 ° to -90 ° (in other words, from 90 ° to 180 ° to 270 °; that is. , In FIG. 4, it becomes 1 in the second and third quadrants of the IQ orthogonal coordinate system including the phase angles Φ 3 to Φ 5 and Φ 6 of the ideal symbol point to Φ 8 . Therefore, assuming that the phase of the received signal fluctuates based on the normal distribution / Gaussian distribution, the probability density that the 1st bit becomes 0 is shown as shown in FIG. 5A, and the probability density that the 1st bit becomes 1 is shown in FIG. 5B. Is shown. Based on this, by considering these probability density distributions as each term, the above equation 3 for calculating the log-likelihood ratio LLR φ1 of the first bit is derived (see FIG. 5C).

3bit目も1bit目と同様の考え方に基づいており、すなわち、3bit目は、位相角度が0°から+90°を経て+180°(即ち、図4において理想シンボル点の位相角度Φ0からΦ2,Φ3を経てΦ5までを含むIQ直交座標系の第1象限および第2象限)のときに0になり、位相角度が+180°から+270°を経て0°(即ち、図4において理想シンボル点の位相角度Φ6からΦ8,Φ9を経てΦ11までを含むIQ直交座標系の第3象限および第4象限)のときに1になる。これに基づいて、3bit目が0になる確率密度分布と3bit目が1になる確率密度分布とを各項として考慮することにより、3bit目の対数尤度比LLRφ3を算出する上記の数式5が導出される。 The 3rd bit is based on the same idea as the 1st bit, that is, the 3rd bit has a phase angle of 0 ° to + 90 ° and then + 180 ° (that is, the phase angle of the ideal symbol point in FIG. 4 is Φ 0 to Φ 2 , It becomes 0 in the first and second quadrants of the IQ orthogonal coordinate system including Φ 3 and up to Φ 5 , and the phase angle is 0 ° from + 180 ° to + 270 ° (that is, the ideal symbol point in FIG. 4). It becomes 1 when the phase angle of Φ 6 to Φ 8 and Φ 9 is included in the IQ orthogonal coordinate system (third quadrant and fourth quadrant). Based on this, the above equation 5 for calculating the log-likelihood ratio LLR φ 3 of the 3rd bit by considering the probability density distribution in which the 3rd bit becomes 0 and the probability density distribution in which the 3rd bit becomes 1 as each term. Is derived.

また、2bit目については、IQ直交座標系のすべての象限で同じ考え方ができるため、IQ直交座標系の第1象限を例に挙げて説明する。2bit目は、図6に示すように、0となるか1となるかが振幅によって区別されている理想シンボル点(同図中の「振幅にbit情報をのせているシンボル」;尚、振幅区別シンボル点である)と、0となるか1となるかが位相によって区別されている理想シンボル点(同図中の「位相にbit情報をのせているシンボル」;尚、位相区別シンボル点である)とに分かれる。このため、受信信号の振幅xRを第1の振幅閾値Rthre1および第2の振幅閾値Rthre2と比較することにより、受信した信号/シンボルがbit情報を振幅と位相とのうちのどちらにのせているかを判断して、それぞれで対数尤度比の算出方法を変えるようにしている。振幅にbit情報をのせているシンボルについて2bit目が0になる確率密度分布と2bit目が1になる確率密度分布とはそれぞれ図7Aのように示され、位相にbit情報をのせているシンボルについて2bit目が0になる確率密度分布と2bit目が1になる確率密度分布とはそれぞれ図7Bのように示される。これに基づいて、これら確率密度分布を各項として考慮することにより、2bit目の対数尤度比LLRφ2を算出する上記の数式4が導出される(図7C参照)。 Further, since the same idea can be applied to all the quadrants of the IQ orthogonal coordinate system for the second bit, the first quadrant of the IQ orthogonal coordinate system will be described as an example. As shown in FIG. 6, the second bit is an ideal symbol point in which whether it becomes 0 or 1 is distinguished by the amplitude (“symbol with bit information on the amplitude” in the figure; the amplitude distinction. (It is a symbol point) and an ideal symbol point where 0 or 1 is distinguished by the phase (“symbol with bit information on the phase” in the figure; it is a phase distinction symbol point. ) And. Therefore, by comparing the amplitude x R of the received signal with the first amplitude threshold R thre1 and the second amplitude threshold R thre2 , the received signal / symbol puts the bit information on either the amplitude or the phase. The method of calculating the logarithmic likelihood ratio is changed for each of them. The probability density distribution in which the second bit becomes 0 and the probability density distribution in which the second bit becomes 1 are shown as shown in FIG. 7A for the symbol on which the bit information is placed on the amplitude. The probability density distribution in which the second bit becomes 0 and the probability density distribution in which the second bit becomes 1 are shown as shown in FIG. 7B, respectively. Based on this, by considering these probability density distributions as each term, the above equation 4 for calculating the log-likelihood ratio LLR φ 2 of the second bit is derived (see FIG. 7C).

4bit目も2bit目と同様の考え方に基づいており、振幅にbit情報をのせているシンボルについては2bit目と同様に、また、位相にbit情報をのせているシンボルについては、4bit目が0になるのは理想シンボル点の位相角度がΦ2,Φ3,Φ8,およびΦ9であるとともに1になるのは理想シンボル点の位相角度がΦ0,Φ5,Φ6,およびΦ11であることを踏まえて、振幅にbit情報をのせているシンボルについて4bit目が0になる確率密度分布と4bit目が1になる確率密度分布ならびに位相にbit情報をのせているシンボルについて4bit目が0になる確率密度分布と4bit目が1になる確率密度分布とを各項として考慮することにより、4bit目の対数尤度比LLRφ4を算出する上記の数式6が導出される。 The 4th bit is also based on the same idea as the 2nd bit. For the symbol which puts the bit information on the amplitude, it is the same as the 2nd bit, and for the symbol which puts the bit information on the phase, the 4th bit becomes 0. The phase angles of the ideal symbol points are Φ 2 , Φ 3 , Φ 8 , and Φ 9 , and the phase angles of the ideal symbol points are Φ 0 , Φ 5 , Φ 6 , and Φ 11 . Based on the fact, the probability density distribution that the 4th bit becomes 0 for the symbol that puts the bit information on the amplitude, the probability density distribution that the 4th bit becomes 1, and the 4th bit is 0 for the symbol that puts the bit information on the phase. By considering the probability density distribution in which the 4th bit becomes 1 and the probability density distribution in which the 4th bit becomes 1 as each term, the above equation 6 for calculating the logarithmic likelihood ratio LLRφ 4 of the 4th bit is derived.

第1の振幅閾値Rthre1や第2の振幅閾値Rthre2は、特定の値に限定されるものではなく、例えば第1の振幅閾値Rthre1は理想シンボル点の振幅R1とR2との間に設定されるとともに第2の振幅閾値Rthre2は理想シンボル点の振幅R0とR1との間に設定されたうえで振幅にbit情報をのせているシンボルと位相にbit情報をのせているシンボルとを良好に判別し得る(言い換えると、対応する理想シンボル点が同位相に複数存在する場合を適切に抽出し得る)ことが考慮されるなどしたうえで適当な値に適宜設定される。具体的には例えば、第1の振幅閾値Rthre1は下記の数式7Aのように設定され、第2の振幅閾値Rthre2は下記の数式7Bのように設定されることが考えられる。
(数7A) Rthre1 = R1+(R2-R1)/2
(数7B) Rthre2 = Ro+(R1-R0)/2
The first amplitude threshold R thre1 and the second amplitude threshold R thre2 are not limited to specific values. For example, the first amplitude threshold R thre1 is between the amplitudes R1 and R2 of the ideal symbol point. The second amplitude threshold R thre2 is set between the amplitudes R 0 and R 1 of the ideal symbol point, and then the bit information is put on the amplitude and the bit information is put on the phase. It is appropriately set to an appropriate value after considering that it can be satisfactorily distinguished from a symbol (in other words, a case where a plurality of corresponding ideal symbol points exist in the same phase can be appropriately extracted). Specifically, for example, it is conceivable that the first amplitude threshold value R thre1 is set as in the following formula 7A, and the second amplitude threshold value R thre2 is set as in the following formula 7B.
(Number 7A) R thre1 = R 1 + (R 2 -R 1 ) / 2
(Number 7B) R thre2 = Ro + (R 1 -R 0 ) / 2

LLR算出部20は、等化器18から出力されるベースバンド信号(受信信号)の入力を受け、前記ベースバンド信号から受信信号の位相角度xφおよび受信信号の振幅xRを取得し、前記受信信号の振幅xRと第1の振幅閾値Rthre1や第2の振幅閾値Rthre2との大小関係も考慮したうえで、上記の数式3乃至数式6に従ってm bit目の対数尤度比LLRφmを算出して出力する。 The LLR calculation unit 20 receives the input of the baseband signal (received signal) output from the equalizer 18, acquires the phase angle of the received signal and the amplitude xR of the received signal from the baseband signal, and receives the received signal. Taking into consideration the magnitude relationship between the signal amplitude x R and the first amplitude threshold R thre1 and the second amplitude threshold R thre2 , the log-like likelihood ratio LLRφ m of the m-bit th is determined according to the above equations 3 to 6. Calculate and output.

そして、復号部19が、LLR算出部20から出力される対数尤度比LLRφmの入力を受け、前記対数尤度比LLRφmを使用して例えばsum-product復号法に従って低密度パリティ検査復号処理を行う。 Then, the decoding unit 19 receives the input of the log-likelihood ratio LLR φ m output from the LLR calculation unit 20, and uses the log-likelihood ratio LLR φ m to perform low-density parity check decoding processing according to, for example, the sum-product decoding method. I do.

実施の形態に係る対数尤度比算出回路としてのLLR算出部20によれば、受信信号の位相雑音やフェージングなどによってシンボルの位相が正規分布/ガウス分布に基づいて回転・変動した際の確率分布も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音が支配的な環境下においても対数尤度比の算出精度を向上させることが可能となり、延いては、低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 According to the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment, the probability distribution when the phase of the symbol rotates / fluctuates based on the normal distribution / Gaussian distribution due to the phase noise or fading of the received signal. Since the log-likelihood ratio is calculated in consideration of the above, it is possible to improve the calculation accuracy of the log-likelihood ratio even in an environment where the phase noise of the received signal is dominant, and the log-likelihood ratio is low. It is possible to improve the error correction capability of the density parity check.

具体的には、図8に示すように、従来の対数尤度比の算出方法では、受信信号の熱雑音によって理想シンボル点を中心として正規分布/ガウス分布に基づいて受信信号の振幅が変動することを前提としている(同図中の破線円Cf参照)。このため、受信信号の位相雑音によってシンボルの位相が回転した際の変動(同図中の円弧矢印Fp参照)があると、受信した確率が高いと判断した信号Sfが実際の送信信号Ssとは異なってしまう。これに対して、実施の形態に係る対数尤度比算出回路としてのLLR算出部20では、受信信号の位相雑音による変動の分布を考慮するようにしているので、すなわち、受信信号の位相雑音によってシンボルが包絡線E上で変動する状況も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音によってシンボルの位相が回転した際の変動(同図中の円弧矢印Fp参照)があっても、受信した確率が高いと判断した信号が実際の送信信号Ssと一致して低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 Specifically, as shown in FIG. 8, in the conventional method for calculating the log-likelihood ratio, the amplitude of the received signal fluctuates based on the normal distribution / Gaussian distribution around the ideal symbol point due to the thermal noise of the received signal. (Refer to the broken line circle Cf in the figure). Therefore, if there is a fluctuation when the phase of the symbol is rotated due to the phase noise of the received signal (see the arc arrow Fp in the figure), the signal Sf judged to have a high reception probability is the actual transmission signal Ss. It will be different. On the other hand, in the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment, the distribution of fluctuations due to the phase noise of the received signal is taken into consideration, that is, due to the phase noise of the received signal. Since the log-likelihood ratio is calculated in consideration of the situation where the symbol fluctuates on the envelope E, the fluctuation when the phase of the symbol is rotated by the phase noise of the received signal (arc arrow Fp in the figure). Even if there is (see), it is possible to improve the error correction ability of the low density parity inspection by matching the signal determined to have a high reception probability with the actual transmission signal Ss.

この発明に係る対数尤度比算出回路の有効性の検証例を下記に説明する。 An example of verifying the effectiveness of the log-likelihood ratio calculation circuit according to the present invention will be described below.

この検証例では、位相雑音が存在する環境下において従来の対数尤度比の算出方法とこの発明に係る対数尤度比算出回路との対数尤度比の算出精度を比較することを目的として、図9に示す評価系が用いられた。この検証例の評価系は、所定のサンプル信号を16QAM方式で変調する(同図中の符号31)とともに位相雑音を付加した(符号32)うえで、受信信号の熱雑音の分布に基づいて対数尤度比を算出する従来手法(符号33)と、受信信号の位相雑音も考慮して対数尤度比を算出するこの発明に係る対数尤度比算出回路(符号20)とのそれぞれの対数尤度比の算出精度を比較する系として構成された。 The purpose of this verification example is to compare the calculation accuracy of the log-likelihood ratio between the conventional method for calculating the log-likelihood ratio and the log-likelihood ratio calculation circuit according to the present invention in an environment where phase noise is present. The evaluation system shown in FIG. 9 was used. In the evaluation system of this verification example, a predetermined sample signal is modulated by the 16QAM method (reference numeral 31 in the figure) and phase noise is added (reference numeral 32), and then a logarithm is obtained based on the distribution of thermal noise of the received signal. The log-likelihood of each of the conventional method for calculating the likelihood ratio (reference numeral 33) and the log-likelihood ratio calculation circuit (reference numeral 20) according to the present invention for calculating the log-likelihood ratio in consideration of the phase noise of the received signal. It was configured as a system to compare the calculation accuracy of the degree ratio.

ここで、対数尤度比は、送信bitが0である確率が高いときに正の値をとり、送信bitが1である確率が高いときに負の値をとる。このことを利用し、実際の送信bitと従来手法(図9中の符号33)で算出した対数尤度比の符号とを比較して符号が誤っている回数を計数する(符号34)とともに、実際の送信bitとこの発明に係る対数尤度比算出回路(符号20)で算出した対数尤度比の符号とを比較して符号が誤っている回数を計数した(符号35)。 Here, the log-likelihood ratio takes a positive value when the probability that the transmission bit is 0 is high, and takes a negative value when the probability that the transmission bit is 1 is high. Taking advantage of this, the actual transmission bit is compared with the code of the logarithmic likelihood ratio calculated by the conventional method (reference numeral 33 in FIG. 9) to count the number of times the code is incorrect (reference numeral 34). The actual transmission bit was compared with the code of the logarithmic likelihood ratio calculated by the logarithmic likelihood ratio calculation circuit (reference numeral 20) according to the present invention, and the number of times the code was incorrect was counted (reference numeral 35).

図9に示す評価系による結果として、従来の対数尤度比の算出方法の場合の符号の誤り率は0.829%となり、この発明に係る対数尤度比算出回路の場合の符号の誤り率は0.307%となった。この結果から、この発明に係る対数尤度比算出回路によれば、従来の対数尤度比の算出方法と比べて、符号の誤り率がおよそ3分の1に低減することが確認された。 As a result of the evaluation system shown in FIG. 9, the code error rate in the case of the conventional log-likelihood ratio calculation method is 0.829%, and the code error rate in the case of the log-likelihood ratio calculation circuit according to the present invention. Was 0.307%. From this result, it was confirmed that according to the log-likelihood ratio calculation circuit according to the present invention, the bit error rate of the code is reduced to about one-third as compared with the conventional method for calculating the log-likelihood ratio.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。 Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above-described embodiment, and even if there is a design change or the like within a range that does not deviate from the gist of the present invention. Included in the invention.

具体的には、上記の実施の形態ではこの発明に係る対数尤度比算出回路が図1に概略構成を示す無線受信装置1にLLR算出部20として組み込まれるようにしているが、この発明に係る対数尤度比算出回路が組み込まれ得る無線装置の構成は図1に概略構成を示す無線受信装置1に限定されるものではなく、この発明に係る対数尤度比算出回路が他の構成の無線装置に組み込まれるようにしてもよい。 Specifically, in the above-described embodiment, the log-likelihood ratio calculation circuit according to the present invention is incorporated as the LLR calculation unit 20 in the wireless receiver 1 whose schematic configuration is shown in FIG. The configuration of the wireless device into which the log-likelihood ratio calculation circuit can be incorporated is not limited to the wireless receiver 1 whose schematic configuration is shown in FIG. 1, and the log-likelihood ratio calculation circuit according to the present invention has another configuration. It may be incorporated into a wireless device.

1 無線受信装置
10 アンテナ
11 チャネルフィルタ
12 局部発振器
13 ミキサ
14 自動利得制御部
15 A/D変換器
16 デジタル直交検波部
17 ロールオフフィルタ
18 等化器
19 復号部
20 LLR算出部
1 Wireless receiver 10 Antenna 11 Channel filter 12 Local oscillator 13 Mixer 14 Automatic gain control unit 15 A / D converter 16 Digital orthogonal detector 17 Roll-off filter 18 Equalizer 19 Decoding unit 20 LLR calculation unit

Claims (3)

送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、
理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitについては、
前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出し、
振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、
前記振幅区別シンボル点と前記位相区別シンボル点とのうちのどちらであるかを前記受信信号の振幅に基づいて判断したうえで、
前記振幅区別シンボル点について、前記受信信号の振幅を用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出し、
前記位相区別シンボル点について、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて対数尤度比を算出する、
ことを特徴とする対数尤度比算出回路。
Of the 4-bit received signals modulated by the quadrature amplitude modulation method with a multi-valued number of 16 on the transmitting side
For bits that are distinguished whether they are 0 or 1 depending on the phase angle of the ideal symbol point,
Using the phase angle of the received signal, the log-likelihood ratio is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle.
An ideal symbol point that distinguishes between 0 and 1 depending on the amplitude (called an "amplitude distinction symbol point") and an ideal that distinguishes between 0 and 1 depending on the phase angle. For bits that can be divided into symbol points (called "phase-distinguishing symbol points")
After determining which of the amplitude-distinguishing symbol point and the phase-distinguishing symbol point is based on the amplitude of the received signal,
For the amplitude distinction symbol point, the log-likelihood ratio is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the amplitude, using the amplitude of the received signal.
For the phase distinction symbol point, the log-likelihood ratio is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle, using the phase angle of the received signal.
A log-likelihood ratio calculation circuit characterized by this.
前記理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitである1bit目について下記の数式1に従って対数尤度比を算出するとともに3bit目について下記の数式3に従って対数尤度比を算出し、
前記振幅区別シンボル点と前記位相区別シンボル点とに分けられるbitである2bit目について下記の数式2に従って対数尤度比を算出するとともに4bit目について下記の数式4に従って対数尤度比を算出する(但し、xR≧Rthre1 または xR≦Rthre2 のときに数式2Aおよび数式4Aが用いられ、Rthre2<xR<Rthre1 のときに数式2Bおよび数式4Bが用いられる)、
Figure 2022076112000008
Figure 2022076112000009
Figure 2022076112000010
Figure 2022076112000011
ここに、
xφ:受信信号の位相角度
R:受信信号の振幅
φi:理想シンボル点の位相角度(但し、φの添字i=0,1,2,・・・,11)
i:理想シンボル点の振幅(但し、Rの添字i=0,1,2)
σ2:雑音分散
thre1:第1の振幅閾値
thre2:第2の振幅閾値
ことを特徴とする請求項1に記載の対数尤度比算出回路。
The log-likelihood ratio is calculated according to the following formula 1 for the 1st bit, which is a bit that is distinguished whether it becomes 0 or 1 depending on the phase angle of the ideal symbol point, and according to the following formula 3 for the 3rd bit. Calculate the log-likelihood ratio and
The logarithmic likelihood ratio is calculated according to the following mathematical formula 2 for the second bit, which is the bit divided into the amplitude-distinguishing symbol point and the phase-distinguishing symbol point, and the logarithmic likelihood ratio is calculated according to the following mathematical formula 4 for the fourth bit. However, when x R ≧ R thre1 or x R ≦ R thre2 , the formulas 2A and 4A are used, and when R thre2 <x R <R thre1 , the formulas 2B and 4B are used).
Figure 2022076112000008
Figure 2022076112000009
Figure 2022076112000010
Figure 2022076112000011
Here,
xφ: Phase angle of received signal x R : Amplitude of received signal φ i : Phase angle of ideal symbol point (however, the subscript i of φ i = 0, 1, 2, ..., 11)
R i : Amplitude of ideal symbol point (however, subscript i of R = 0, 1, 2)
σ 2 : Noise dispersion R thre1 : First amplitude threshold value R thre2 : Second amplitude threshold value The log-likelihood ratio calculation circuit according to claim 1.
請求項1または2に記載の対数尤度比算出回路を備える、
ことを特徴とする無線受信装置。
The log-likelihood ratio calculation circuit according to claim 1 or 2.
A wireless receiver characterized by that.
JP2020186372A 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver Pending JP2022076112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186372A JP2022076112A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186372A JP2022076112A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Publications (1)

Publication Number Publication Date
JP2022076112A true JP2022076112A (en) 2022-05-19

Family

ID=81606700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186372A Pending JP2022076112A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Country Status (1)

Country Link
JP (1) JP2022076112A (en)

Similar Documents

Publication Publication Date Title
US9100071B2 (en) Timing pilot generation for highly-spectrally-efficient communications
US9137057B2 (en) Constellation map optimization for highly spectrally efficient communications
US7796708B2 (en) Adaptive receiver loops with weighted decision-directed error
US8351552B2 (en) Decoding of forward error correction codes in the presence of phase noise and thermal noise
US9509352B2 (en) Phase-noise cancellation apparatus and method
WO2015125341A1 (en) Soft decision value generation apparatus and soft decision value generation method
US7940861B2 (en) QAM phase error detector
JP6399505B2 (en) Receiving device, communication system, circuit device, communication method and program (signal compensation in high-speed communication)
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
EP2346223B1 (en) Calculation of log-likelihood ratios in a demodulator
JP2022076112A (en) Log-likelihood ratio calculation circuit and wireless receiver
JP6622810B2 (en) Local oscillator phase noise tracking for single carrier transmission
JP2008277936A (en) Ofdm reception device
JP2022076113A (en) Log-likelihood ratio calculation circuit and wireless receiver
JP2002141963A (en) Adaptive quadrature amplitude modulation decoding system
JP2022176484A (en) Log-Likelihood Ratio Calculation Circuit and Radio Receiver
JP7254411B2 (en) Adaptive equalizer and carrier recovery circuit
JP7102072B2 (en) Adaptive equalizer and carrier regenerative circuit
JP7446678B2 (en) wireless receiving device
JP2861778B2 (en) Demodulator
JP3237866B2 (en) Soft decision decoding method
JP6291433B2 (en) Receiving device, receiving circuit, and receiving method
JP2017188803A (en) Demapping processing circuit, chip, receiving device, and llr calculation method
JP2019220797A (en) Carrier wave reproduction circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231101