JP2022076113A - Log-likelihood ratio calculation circuit and wireless receiver - Google Patents

Log-likelihood ratio calculation circuit and wireless receiver Download PDF

Info

Publication number
JP2022076113A
JP2022076113A JP2020186373A JP2020186373A JP2022076113A JP 2022076113 A JP2022076113 A JP 2022076113A JP 2020186373 A JP2020186373 A JP 2020186373A JP 2020186373 A JP2020186373 A JP 2020186373A JP 2022076113 A JP2022076113 A JP 2022076113A
Authority
JP
Japan
Prior art keywords
likelihood ratio
log
bit
phase
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020186373A
Other languages
Japanese (ja)
Inventor
賢晃 加藤
Masaaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2020186373A priority Critical patent/JP2022076113A/en
Publication of JP2022076113A publication Critical patent/JP2022076113A/en
Pending legal-status Critical Current

Links

Images

Abstract

To improve the calculation accuracy of a log-likelihood ratio and improve the error correction capability of low-density parity check.SOLUTION: A log-likelihood ratio LLRN(bit_num) based on thermal noise and a log-likelihood ratio LLRφ(bit_num) based on phase noise are multiplied by weighting coefficients WN and Wφ, respectively, and then added together to calculate a log-likelihood ratio LLRbit_num.SELECTED DRAWING: Figure 1

Description

この発明は、対数尤度比算出回路および無線受信装置に関し、特に、低密度パリティ検査復号における誤り訂正において使用される対数尤度比を算出する回路および前記回路を含む無線受信装置に関する。 The present invention relates to a log-likelihood ratio calculation circuit and a wireless receiving device, and more particularly to a circuit for calculating a log-likelihood ratio used in error correction in low-density parity check decoding and a wireless receiving device including the circuit.

従来、低密度パリティ検査(LDPC:Low Density Parity Check の略)復号において、受信信号の熱雑音の分布に基づいて算出した対数尤度比(LLR:Log-Likelihood Ratio の略)を使用して誤り訂正を行う手法が知られている(例えば特許文献1参照)。 Conventionally, in low density parity check (LDPC: short for Low Density Parity Check) decoding, an error is made using the log-likelihood ratio (LLR: short for Log-Likelihood Ratio) calculated based on the distribution of thermal noise of the received signal. A method for making corrections is known (see, for example, Patent Document 1).

特開2013-201582号公報Japanese Unexamined Patent Publication No. 2013-201582

ところで、高多値の変調方式では、受信信号の位相雑音やフェージングなど熱雑音以外の影響も大きく、低密度パリティ検査の誤り訂正能力が低減する、という問題がある。具体的には、従来の対数尤度比の算出方法では、受信信号の熱雑音によって理想シンボル点を中心として正規分布/ガウス分布に基づいて受信信号の振幅が変動することを前提としている。しかしながら、この方法では、受信信号の位相雑音やフェージングなどによってシンボルの位相が回転した際の変動を考慮することができない。このため、特に位相雑音が存在する環境下において対数尤度比の算出精度が劣化し、延いては低密度パリティ検査の誤り訂正能力が低減してしまう。 By the way, in the high multi-value modulation method, there is a problem that the influence other than the thermal noise such as the phase noise and fading of the received signal is large, and the error correction ability of the low density parity check is reduced. Specifically, the conventional method for calculating the log-likelihood ratio is based on the premise that the amplitude of the received signal fluctuates based on the normal distribution / Gaussian distribution around the ideal symbol point due to the thermal noise of the received signal. However, in this method, it is not possible to consider the fluctuation when the phase of the symbol is rotated due to the phase noise of the received signal, fading, or the like. For this reason, the accuracy of calculating the log-likelihood ratio deteriorates, especially in an environment where phase noise is present, and the error correction capability of the low-density parity check is reduced.

そこでこの発明は、対数尤度比の算出精度を向上させて低密度パリティ検査の誤り訂正能力を向上させることが可能な、対数尤度比算出回路および前記対数尤度比算出回路を含む無線受信装置を提供することを目的とする。 Therefore, the present invention includes a log-likelihood ratio calculation circuit and a radio reception including the log-likelihood ratio calculation circuit, which can improve the calculation accuracy of the log-likelihood ratio and improve the error correction capability of low-density parity check. The purpose is to provide the device.

上記課題を解決するために、請求項1に記載の発明は、熱雑音に基づく対数尤度比と位相雑音に基づく対数尤度比とのそれぞれに重み係数を乗じたうえで加算して対数尤度比を算出する、ことを特徴とする対数尤度比算出回路である。 In order to solve the above problems, the invention according to claim 1 has a log-likelihood ratio based on thermal noise and a log-likelihood ratio based on phase noise, each of which is multiplied by a weighting coefficient and then added to the log-likelihood. It is a log-likelihood ratio calculation circuit characterized by calculating the degree ratio.

請求項2に記載の発明は、請求項1に記載の対数尤度比算出回路において、前記位相雑音に基づく対数尤度比を、送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitについては、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、前記振幅区別シンボル点と前記位相区別シンボル点とのうちのどちらであるかを前記受信信号の振幅に基づいて判断したうえで、前記振幅区別シンボル点について、前記受信信号の振幅を用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、前記位相区別シンボル点について、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出する、ことを特徴とする。 According to the second aspect of the present invention, in the logarithmic likelihood ratio calculation circuit according to the first aspect, the logarithmic likelihood ratio based on the phase noise is modulated by a orthogonal phase amplitude modulation method having a multivalued number of 16 on the transmitting side. Of the 4 bits of the received signal, which is distinguished whether it becomes 0 or 1 according to the phase angle of the ideal symbol point, the phase angle of the received signal is used according to the phase angle. It is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1, and the ideal symbol point that distinguishes whether it becomes 0 or 1 according to the amplitude (called "angle distinction symbol point"). With respect to the bit divided into the ideal symbol point (referred to as "phase distinction symbol point") in which 0 or 1 is distinguished according to the phase angle, the amplitude distinction symbol point and the phase distinction symbol After determining which of the points is based on the amplitude of the received signal, the probability density distribution of the amplitude distinction symbol point becomes 0 according to the amplitude using the amplitude of the received signal. Calculated based on the probability density distribution that becomes 1, and for the phase distinction symbol point, the phase angle of the received signal is used to obtain a probability density distribution that becomes 0 and a probability density distribution that becomes 1 according to the phase angle. It is characterized by being calculated based on.

請求項3に記載の発明は、請求項2に記載の対数尤度比算出回路において、所定の数式に従って各bitの位相雑音に基づく対数尤度比を算出する、ことを特徴とする。 The invention according to claim 3 is characterized in that, in the log-likelihood ratio calculation circuit according to claim 2, the log-likelihood ratio based on the phase noise of each bit is calculated according to a predetermined mathematical formula.

請求項4に記載の発明は、請求項1から3のうちのいずれか1項に記載の対数尤度比算出回路を備える、ことを特徴とする無線受信装置である。 The invention according to claim 4 is a wireless receiving device comprising the log-likelihood ratio calculation circuit according to any one of claims 1 to 3.

請求項1乃至請求項3に記載の発明によれば、熱雑音に基づく対数尤度比と位相雑音に基づく対数尤度比との相互の優先の度合いを考慮したうえで(具体的には、対数尤度比それぞれに重み係数を乗じたうえで)これらを加算して各bitの対数尤度比を算出することにより、対数尤度比の算出に熱雑音の影響に加えて位相雑音やフェージングによる分布変動の要素を考慮するようにしているので、位相雑音を含む外乱に対してロバストな低密度パリティ検査を実現することが可能となる。 According to the inventions of claims 1 to 3, the degree of mutual priority between the log-likelihood ratio based on thermal noise and the log-likelihood ratio based on phase noise is taken into consideration (specifically, according to the invention. By adding these (after multiplying each log-likelihood ratio by a weighting coefficient) and calculating the log-likelihood ratio of each bit, the log-likelihood ratio is calculated by phase noise and fading in addition to the influence of thermal noise. Since the element of the distribution fluctuation due to is taken into consideration, it is possible to realize a low-density parity inspection that is robust against disturbances including phase noise.

請求項1乃至請求項3に記載の発明によれば、また、受信信号の位相雑音やフェージングなどによってシンボルの位相が正規分布/ガウス分布に基づいて回転・変動した際の確率分布も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音が支配的な環境下においても対数尤度比の算出精度を向上させることが可能となり、延いては、低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 According to the inventions of claims 1 to 3, the probability distribution when the phase of the symbol rotates / fluctuates based on the normal distribution / Gaussian distribution due to the phase noise or fading of the received signal is also taken into consideration. Since the log-likelihood ratio is calculated, it is possible to improve the calculation accuracy of the log-likelihood ratio even in an environment where the phase noise of the received signal is dominant. It is possible to improve the error correction ability.

請求項4に記載の発明によれば、対数尤度比を使用して低密度パリティ検査復号における誤り訂正を行う無線受信装置において上記の作用効果を奏することが可能となる。 According to the invention of claim 4, it is possible to exert the above-mentioned effects in a wireless receiving device that performs error correction in low density parity check decoding using a log-likelihood ratio.

この発明の実施の形態に係る対数尤度比算出回路としてのLLR算出部を含む、実施の形態における無線受信装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the radio reception device in embodiment which includes the LLR calculation part as the log-likelihood ratio calculation circuit which concerns on embodiment of this invention. 実施の形態に係る対数尤度比算出回路としてのLLR算出部の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the LLR calculation part as a log-likelihood ratio calculation circuit which concerns on embodiment. 16QAM方式の理想シンボル点の配置および各理想シンボル点に割り当てられているbit列を示す図である。It is a figure which shows the arrangement of the ideal symbol point of a 16QAM system, and the bit string assigned to each ideal symbol point. 対数尤度比の算出に纏わる変数の設定を説明する図である。It is a figure explaining the setting of the variable related to the calculation of the log-likelihood ratio. 1bit目の対数尤度比の算出式の考え方を説明する図であり、特に1bit目が0の領域と1bit目が1の領域とを説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 1st bit, and in particular, it is a figure explaining the region where the 1st bit is 0 and the region where the 1st bit is 1. 1bit目の対数尤度比の算出式の考え方を説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 1st bit. 2bit目の対数尤度比の算出式の考え方を説明する図であり、特に振幅にbit情報をのせているシンボルと位相にbit情報をのせているシンボルとを説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 2nd bit, and in particular, it is a figure explaining a symbol which puts bit information on an amplitude, and a symbol which puts bit information on a phase. 2bit目の対数尤度比の算出式の考え方を説明する図である。It is a figure explaining the concept of the calculation formula of the log-likelihood ratio of the 2nd bit. 対数尤度比の重み係数の考え方を説明する図である。(A)は熱雑音に基づく対数尤度比が優先される場合を説明する図である。(B)は位相雑音に基づく対数尤度比が優先される場合を説明する図である。It is a figure explaining the concept of the weighting coefficient of a log-likelihood ratio. (A) is a figure explaining the case where the log-likelihood ratio based on thermal noise is prioritized. (B) is a figure explaining the case where the log-likelihood ratio based on the phase noise is prioritized. 従来の対数尤度比の算出方法の問題点とこの発明に係る対数尤度比算出回路による対策とを説明する図である。It is a figure explaining the problem of the conventional method of calculating the log-likelihood ratio, and the measures by the log-likelihood ratio calculation circuit which concerns on this invention. この発明に係る対数尤度比算出回路の有効性の検証例で用いられた評価系の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the evaluation system used in the verification example of the effectiveness of the log-likelihood ratio calculation circuit which concerns on this invention. この発明に係る対数尤度比算出回路の有効性の検証例における評価結果としての符号の誤り率を示す図である。It is a figure which shows the error rate of the code as the evaluation result in the verification example of the effectiveness of the log-likelihood ratio calculation circuit which concerns on this invention.

以下、この発明を図示の実施の形態に基づいて説明する。なお、以下では、この発明の特徴的な構成について説明し、無線通信を行う際の従来と同様の仕組みについては説明を省略する。また、各図では、複素信号を構成する実部(I信号;別言すると、同相成分,I信号成分)を伝送する信号線と虚部(Q信号;別言すると、直交成分,Q信号成分)を伝送する信号線とをまとめて1本の信号線で表示している。また、下記の説明における「以上」と「より大きい」とは相互に置き換えられてもよく、さらに、「以下」と「未満」とは相互に置き換えられてもよい。 Hereinafter, the present invention will be described based on the illustrated embodiment. In the following, the characteristic configuration of the present invention will be described, and the description of the conventional mechanism for performing wireless communication will be omitted. Further, in each figure, the signal line and the imaginary part (Q signal; in other words, the orthogonal component and the Q signal component) that transmit the real part (I signal; in other words, the in-phase component and the I signal component) constituting the complex signal are transmitted. ) Is displayed as one signal line together with the signal line to be transmitted. Further, "greater than or equal to" and "greater than or equal to" in the following description may be replaced with each other, and further, "less than or equal to" and "less than or equal to" may be replaced with each other.

図1は、この発明の実施の形態に係る対数尤度比算出回路としてのLLR算出部20を含む、実施の形態における無線受信装置1の概略構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing a schematic configuration of a wireless receiver 1 according to an embodiment, including an LLR calculation unit 20 as a log-likelihood ratio calculation circuit according to an embodiment of the present invention.

アンテナ10は、図示していない無線送信装置から送出された信号波を受信して、前記信号波を受信信号としてチャネルフィルタ11へと転送する。 The antenna 10 receives a signal wave transmitted from a radio transmission device (not shown) and transfers the signal wave as a reception signal to the channel filter 11.

ここで、無線送信装置は、送信対象の無線フレームを、低密度パリティ検査符号化を施すとともに多値数が16の直角位相振幅変調方式(即ち、16QAM方式;QAMは Quadrature Amplitude Modulation の略)で変調したうえでアンテナから送出する。つまり、無線受信装置1は、低密度パリティ検査符号化が施されて多値数が16の直角位相振幅変調方式(16QAM方式)で変調された多値変調信号を受信する。 Here, the wireless transmission device applies low-density parity inspection coding to the wireless frame to be transmitted and uses a quadrature amplitude modulation method (that is, 16QAM method; QAM is an abbreviation for Quadrature Amplitude Modulation) having a multi-value number of 16. It is modulated and then transmitted from the antenna. That is, the wireless receiving device 1 receives a multi-value modulation signal that has been subjected to low-density parity check coding and is modulated by a quadrature-amplitude modulation method (16QAM method) having a multi-value number of 16.

チャネルフィルタ11は、受信帯域を制限するためのフィルタであり、具体的には例えばバンドパスフィルタによって構成され得る。チャネルフィルタ11は、アンテナ10から転送される受信信号の入力を受け、前記受信信号に対して帯域制限処理を施して、前記受信信号から所望の周波数帯域の受信信号を抽出して出力する。 The channel filter 11 is a filter for limiting the reception band, and may be specifically configured by, for example, a bandpass filter. The channel filter 11 receives the input of the received signal transferred from the antenna 10, performs band limiting processing on the received signal, extracts the received signal in a desired frequency band from the received signal, and outputs the received signal.

ミキサ13は、チャネルフィルタ11から出力される受信信号の入力を受けるとともに局部発振器12から出力されるローカル信号の入力を受け、前記受信信号に前記ローカル信号を乗算して、前記受信信号の周波数を変換(具体的には、ダウンコンバート)して出力する。 The mixer 13 receives the input of the received signal output from the channel filter 11 and receives the input of the local signal output from the local oscillator 12, and multiplies the received signal by the local signal to obtain the frequency of the received signal. Convert (specifically, down-convert) and output.

自動利得制御部14は、ミキサ13から出力される受信信号の入力を受け、前記受信信号に対して前記受信信号のレベルが所定のレベルで一定になるように利得調整処理を施して、利得調整処理後(言い換えると、レベル補正後)の受信信号(尚、アナログ信号である)を出力する。 The automatic gain control unit 14 receives the input of the received signal output from the mixer 13 and performs a gain adjusting process on the received signal so that the level of the received signal becomes constant at a predetermined level to adjust the gain. The received signal (which is an analog signal) after processing (in other words, after level correction) is output.

A/D変換器15(Analog-to-Digital converter)は、自動利得制御部14から出力される受信信号の入力を受け、前記受信信号に対してアナログ-デジタル変換処理を施して、アナログ信号からデジタル信号への変換を行う。すなわち、A/D変換器15は、デジタルの受信信号を出力する。 The A / D converter 15 (Analog-to-Digital converter) receives the input of the received signal output from the automatic gain control unit 14, performs analog-digital conversion processing on the received signal, and converts the received signal from the analog signal. Convert to a digital signal. That is, the A / D converter 15 outputs a digital received signal.

デジタル直交検波部16は、A/D変換器15から出力されるデジタルの受信信号の入力を受け、前記受信信号を直交検波によってベースバンド信号に変換する。デジタル直交検波部16は、具体的には、数値制御発振器からcos波が入力されて前記受信信号の同相成分を同期検出する乗算器と、数値制御発振器からsin波が入力されて前記受信信号の直交成分を同期検出する乗算器とを備える。デジタル直交検波部16は、デジタル信号処理による多値変調の直交検波を行い、実部を構成する実数成分(I信号)と虚部を構成する虚数成分(Q信号)とのIQ直交座標で表現される複素信号(別言すると、同相成分および直交成分の検波信号)を生成して出力する。 The digital orthogonal detection unit 16 receives an input of a digital reception signal output from the A / D converter 15 and converts the received signal into a baseband signal by orthogonal detection. Specifically, the digital orthogonal detection unit 16 has a multiplier in which a cos wave is input from a numerically controlled oscillator and synchronously detects in-phase components of the received signal, and a sine wave is input from the numerically controlled oscillator to detect the received signal. It is equipped with a multiplier that synchronously detects orthogonal components. The digital orthogonal detection unit 16 performs orthogonal detection of multi-value modulation by digital signal processing, and is expressed by IQ orthogonal coordinates of the real number component (I signal) constituting the real part and the imaginary number component (Q signal) constituting the imaginary part. Complex signals (in other words, detection signals of in-phase components and orthogonal components) are generated and output.

デジタル直交検波部16の数値制御発振器は、設定値に応じた周波数で発振する発振器であり、位相が90°だけ相互に異なるcos波とsin波とを発生させて2つの乗算器のそれぞれへと供給する。 The numerically controlled oscillator of the digital orthogonal detection unit 16 is an oscillator that oscillates at a frequency corresponding to a set value, and generates cos waves and sine waves whose phases differ from each other by 90 ° to each of the two multipliers. Supply.

ロールオフフィルタ17は、デジタル直交検波部16から出力されるベースバンド信号(別言すると、同相成分および直交成分の検波信号)の入力を受け、前記ベースバンド信号の同相成分と直交成分とのそれぞれに対して符号間干渉を除去するための処理を施して、前記ベースバンド信号のスペクトラム波形を所望のロールオフとなるように整形して出力する。 The roll-off filter 17 receives the input of the baseband signal (in other words, the detection signal of the in-phase component and the orthogonal component) output from the digital orthogonal detection unit 16, and the in-phase component and the orthogonal component of the baseband signal are respectively. The baseband signal is subjected to a process for removing the inter-code interference, and the spectrum waveform of the baseband signal is shaped and output so as to have a desired roll-off.

等化器18は、ロールオフフィルタ17から出力されるベースバンド信号の入力を受け、前記ベースバンド信号の同相成分と直交成分とのそれぞれに対して、周波数選択性フェージングによる符号間干渉を除去するための適応等化処理を施して、適応等化処理後のベースバンド信号(受信信号)を出力する。 The equalizer 18 receives the input of the baseband signal output from the roll-off filter 17, and removes intersymbol interference due to frequency selective fading for each of the in-phase component and the orthogonal component of the baseband signal. The baseband signal (received signal) after the adaptive equalization process is output.

復号部19は、LLR算出部20から出力される対数尤度比(LLR:Log-Likelihood Ratio の略)の入力を受け、前記対数尤度比を使用して例えばsum-product復号法に従って低密度パリティ検査復号処理を行う。 The decoding unit 19 receives the input of the log-likelihood ratio (LLR: an abbreviation of Log-Likelihood Ratio) output from the LLR calculation unit 20, and uses the log-likelihood ratio to reduce the density according to, for example, the sum-product decoding method. Perform parity check / decryption processing.

LLR算出部20は、低密度パリティ検査復号における誤り訂正において使用される対数尤度比を算出する回路であり、無線受信装置1に組み込まれる。 The LLR calculation unit 20 is a circuit for calculating the log-likelihood ratio used in error correction in low-density parity check decoding, and is incorporated in the wireless receiver 1.

図2は、実施の形態に係る対数尤度比算出回路としてのLLR算出部20の概略構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing a schematic configuration of the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment.

実施の形態に係るLLR算出部20は、熱雑音に基づく対数尤度比LLRN(bit_num)と位相雑音に基づく対数尤度比LLRφ(bit_num)とのそれぞれに重み係数WN,Wφを乗じたうえで加算して対数尤度比LLRbit_numを算出する、ようにしている。 The LLR calculation unit 20 according to the embodiment multiplies the log-likelihood ratio LLR N (bit_num) based on thermal noise and the log-likelihood ratio LLR φ (bit_num) based on phase noise by the weighting coefficients W N and W φ, respectively. The log-likelihood ratio LLR bit_num is calculated by adding the above.

実施の形態に係るLLR算出部20は、さらに、位相雑音に基づく対数尤度比LLRφ(bit_num)を送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、理想シンボル点の位相角度φiに応じて0になるか1になるかが区別されているbitについては、受信信号の位相角度xφを用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、振幅区別シンボル点と位相区別シンボル点とのうちのどちらであるかを受信信号の振幅xRに基づいて判断したうえで、振幅区別シンボル点について、受信信号の振幅xRを用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、位相区別シンボル点について、受信信号の位相角度xφを用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出する、ようにしている。 Further, the LLR calculation unit 20 according to the embodiment has a 4-bit received signal in which the logarithmic likelihood ratio LLRφ (bit_num) based on phase noise is modulated by a orthogonal phase amplitude modulation method having a multivalued number of 16 on the transmitting side. For the bit that is distinguished whether it becomes 0 or 1 according to the phase angle φ i of the ideal symbol point, the probability density distribution that becomes 0 according to the phase angle using the phase angle xφ of the received signal. It is calculated based on the probability density distribution that becomes 1 and the ideal symbol point (called "amplitude distinction symbol point") that distinguishes whether it becomes 0 or 1 according to the amplitude, and according to the phase angle. For a bit that is divided into an ideal symbol point (called a "phase distinction symbol point") in which 0 or 1 is distinguished, it is either an amplitude distinction symbol point or a phase distinction symbol point. After determining whether or not the phase is based on the amplitude x R of the received signal, the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the amplitude are used for the amplitude distinction symbol points using the amplitude x R of the received signal. The phase distinction symbol point is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle, using the phase angle xφ of the received signal. There is.

まず、16QAM方式の理想シンボル点の配置および各理想シンボル点に割り当てられているbit列(言い換えると、16QAMの信号空間ダイヤグラム)を図3に示す。なお、図3において、Aiは理想シンボル点配置の同相成分であり、Biは理想シンボル点配置の直交成分である(但し、i=1,2,3,4)。 First, FIG. 3 shows the arrangement of ideal symbol points in the 16QAM system and the bit sequence assigned to each ideal symbol point (in other words, the signal space diagram of 16QAM). In FIG. 3, A i is a homeomorphic component of the ideal symbol point arrangement, and B i is an orthogonal component of the ideal symbol point arrangement (however, i = 1, 2, 3, 4).

LLR算出部20は、下記の数式1に従って、(bit_num)bit目の対数尤度比LLRbit_numを算出する。
(数1) LLRbit_num = WN×LLRN(bit_num)+Wφ×LLRφ(bit_num)
ここに、bit_num:ビット番号(但し、bit_num=1,2,3,4)
LLRN(bit_num):熱雑音に基づく対数尤度比
LLRφ(bit_num):位相雑音に基づく対数尤度比
N:熱雑音に基づく対数尤度比の重み係数
Wφ:位相雑音に基づく対数尤度比の重み係数
The LLR calculation unit 20 calculates the log-likelihood ratio LLR bit_num of the (bit_num) bit according to the following formula 1.
(Number 1) LLR bit_num = W N x LLR N (bit_num) + Wφ x LLRφ (bit_num)
Here, bit_num: bit number (however, bit_num = 1, 2, 3, 4)
LLR N (bit_num) : Log-likelihood ratio based on thermal noise
LLRφ (bit_num) : Log-likelihood ratio based on phase noise
W N : Weighting coefficient of log-likelihood ratio based on thermal noise
Wφ: Weighting coefficient of log-likelihood ratio based on phase noise

(bit_num)bit目の熱雑音に基づく対数尤度比LLRN(bit_num)は、具体的には例えば下記の数式2A乃至数式2Dに従って算出される。

Figure 2022076113000002
The log-likelihood ratio LLR N (bit_num) based on the thermal noise of the (bit_num) bit is specifically calculated according to the following formulas 2A to 2D, for example.
Figure 2022076113000002

上記の数式2A乃至数式2Dにおける各記号・変数の意味は下記のとおりである。
LLRN1:1bit目の熱雑音に基づく対数尤度比
LLRN2:2bit目の熱雑音に基づく対数尤度比
LLRN3:3bit目の熱雑音に基づく対数尤度比
LLRN4:4bit目の熱雑音に基づく対数尤度比
i:受信信号の同相成分
q:受信信号の直交成分
i:理想シンボル点配置の同相成分(但し、i=1,2,3,4)
i:理想シンボル点配置の直交成分(但し、i=1,2,3,4)
σ2:雑音分散
The meanings of the symbols and variables in the above formulas 2A to 2D are as follows.
LLR N1 : Log-like likelihood ratio based on 1-bit thermal noise LLR N2 : Log-like likelihood ratio based on 2-bit thermal noise LLR N3 : Log-like likelihood ratio based on 3-bit thermal noise LLR N4 : 4-bit thermal noise Logarithmic likelihood ratio based on x i : In-phase component of received signal x q : Orthogonal component of received signal A i : In-phase component of ideal symbol point arrangement (however, i = 1, 2, 3, 4)
B i : Orthogonal component of ideal symbol point arrangement (however, i = 1, 2, 3, 4)
σ 2 : Noise dispersion

(bit_num)bit目の位相雑音に基づく対数尤度比LLRφ(bit_num)は、具体的には例えば下記の数式3乃至数式6に従って算出される。ここで、図3に示す理想シンボル点の配置に対して規定される、下記の数式3乃至数式6で用いられる変数の設定を図4に示す。 The log-likelihood ratio LLRφ (bit_num) based on the phase noise of the (bit_num) bit is specifically calculated according to, for example, the following formulas 3 to 6. Here, FIG. 4 shows the setting of the variables used in the following formulas 3 to 6, which are defined for the arrangement of the ideal symbol points shown in FIG.

下記の数式3乃至数式7における各記号・変数の意味は下記のとおりである。なお、下記のうちの理想シンボル点の位相角度の「φ」は、図面では「Φ」として表示している。
xφ:受信信号の位相角度
R:受信信号の振幅
φi:理想シンボル点の位相角度(但し、φの添字i=0,1,2,・・・,11)
i:理想シンボル点の振幅(但し、Rの添字i=0,1,2)
σ2:雑音分散
thre1:第1の振幅閾値
thre2:第2の振幅閾値
The meanings of the symbols / variables in the following formulas 3 to 7 are as follows. The "φ" of the phase angle of the ideal symbol point among the following is displayed as "Φ" in the drawing.
xφ: Phase angle of received signal x R : Amplitude of received signal φ i : Phase angle of ideal symbol point (however, the subscript i of φ i = 0, 1, 2, ..., 11)
R i : Amplitude of ideal symbol point (however, subscript i of R = 0, 1, 2)
σ 2 : Noise variance R thre1 : First amplitude threshold R thre2 : Second amplitude threshold

1bit目の位相雑音に基づく対数尤度比LLRφ1は、下記の数式3に従って算出される。

Figure 2022076113000003
The log-likelihood ratio LLRφ 1 based on the phase noise of the first bit is calculated according to the following mathematical formula 3.
Figure 2022076113000003

2bit目の位相雑音に基づく対数尤度比LLRφ2は、受信信号の振幅xRが第1の振幅閾値Rthre1以上または第2の振幅閾値Rthre2以下(即ち、xR≧Rthre1 または xR≦Rthre2)の場合に下記の数式4Aに従って算出され、受信信号の振幅xRが第1の振幅閾値Rthre1未満かつ第2の振幅閾値Rthre2より大きい(即ち、Rthre2<xR<Rthre1)の場合に下記の数式4Bに従って算出される。

Figure 2022076113000004
The log likelihood ratio LLR φ 2 based on the second bit phase noise is such that the amplitude x R of the received signal is equal to or greater than the first amplitude threshold R thre 1 or equal to or less than the second amplitude threshold R thre 2 (that is, x R ≧ R thre 1 or x R ). When ≤R thre2 ), it is calculated according to the following formula 4A, and the amplitude x R of the received signal is less than the first amplitude threshold R thre1 and larger than the second amplitude threshold R thre2 (that is, R thre2 <x R <R). In the case of thre1 ), it is calculated according to the following formula 4B.
Figure 2022076113000004

3bit目の位相雑音に基づく対数尤度比LLRφ3は、下記の数式5に従って算出される。

Figure 2022076113000005
The log-likelihood ratio LLRφ 3 based on the phase noise of the third bit is calculated according to the following mathematical formula 5.
Figure 2022076113000005

4bit目の位相雑音に基づく対数尤度比LLRφ4は、受信信号の振幅xRが第1の振幅閾値Rthre1以上または第2の振幅閾値Rthre2以下(即ち、xR≧Rthre1 または xR≦Rthre2)の場合に下記の数式6Aに従って算出され、受信信号の振幅xRが第1の振幅閾値Rthre1未満かつ第2の振幅閾値Rthre2より大きい(即ち、Rthre2<xR<Rthre1)の場合に下記の数式6Bに従って算出される。

Figure 2022076113000006
The log likelihood ratio LLR φ4 based on the phase noise of the 4th bit is such that the amplitude x R of the received signal is equal to or greater than the first amplitude threshold R thre1 or equal to or less than the second amplitude threshold R thre2 (that is, x R ≧ R thre1 or x R ). ≤R thre2 ), calculated according to the following formula 6A, the amplitude x R of the received signal is less than the first amplitude threshold R thre1 and larger than the second amplitude threshold R thre2 (that is, R thre2 <x R <R). In the case of thre1 ), it is calculated according to the following formula 6B.
Figure 2022076113000006

上記の数式3乃至数式6は下記の考え方に基づいている(図5乃至図8参照)。 The above formulas 3 to 6 are based on the following ideas (see FIGS. 5 to 8).

1bit目は、位相角度が-90°から+90°(言い換えると、270°から360°/0°を経て90°;即ち、図5において理想シンボル点の位相角度Φ9からΦ11,Φ0を経てΦ2までを含むIQ直交座標系の第4象限および第1象限)のときに0になり、位相角度が+90°から-90°(言い換えると、90°から180°を経て270°;即ち、図5において理想シンボル点の位相角度Φ3からΦ5,Φ6を経てΦ8までを含むIQ直交座標系の第2象限および第3象限)のときに1になる。したがって、受信信号の位相が正規分布/ガウス分布に基づいて揺らぐと考えた場合、1bit目が0になる確率密度は図6Aのように示され、1bit目が1になる確率密度は図6Bのように示される。これに基づいて、これら確率密度分布を各項として考慮することにより、1bit目の位相雑音に基づく対数尤度比LLRφ1を算出する上記の数式3が導出される(図6C参照)。 In the first bit, the phase angle is from −90 ° to + 90 ° (in other words, from 270 ° to 360 ° / 0 ° to 90 °; that is, in FIG. 5, the phase angles Φ 9 to Φ 11 and Φ 0 of the ideal symbol point are set. It becomes 0 in the 4th and 1st quadrants of the IQ orthogonal coordinate system including up to Φ2, and the phase angle is from + 90 ° to -90 ° (in other words, from 90 ° to 180 ° to 270 °; that is. , In FIG. 5, it becomes 1 in the second and third quadrants of the IQ orthogonal coordinate system including the phase angles Φ 3 to Φ 5 and Φ 6 of the ideal symbol point to Φ 8 . Therefore, assuming that the phase of the received signal fluctuates based on the normal distribution / Gaussian distribution, the probability density that the 1st bit becomes 0 is shown as shown in FIG. 6A, and the probability density that the 1st bit becomes 1 is shown in FIG. 6B. Is shown. Based on this, by considering these probability density distributions as each term, the above equation 3 for calculating the log-likelihood ratio LLRφ 1 based on the phase noise of the first bit is derived (see FIG. 6C).

3bit目も1bit目と同様の考え方に基づいており、すなわち、3bit目は、位相角度が0°から+90°を経て+180°(即ち、図5において理想シンボル点の位相角度Φ0からΦ2,Φ3を経てΦ5までを含むIQ直交座標系の第1象限および第2象限)のときに0になり、位相角度が+180°から+270°を経て0°(即ち、図5において理想シンボル点の位相角度Φ6からΦ8,Φ9を経てΦ11までを含むIQ直交座標系の第3象限および第4象限)のときに1になる。これに基づいて、3bit目が0になる確率密度分布と3bit目が1になる確率密度分布とを各項として考慮することにより、3bit目の位相雑音に基づく対数尤度比LLRφ3を算出する上記の数式5が導出される。 The 3rd bit is based on the same idea as the 1st bit, that is, the 3rd bit has a phase angle of 0 ° to + 90 ° and then + 180 ° (that is, the phase angle of the ideal symbol point in FIG. 5 is Φ 0 to Φ 2 , It becomes 0 in the first and second quadrants of the IQ orthogonal coordinate system including Φ 3 and up to Φ 5 , and the phase angle is 0 ° from + 180 ° to + 270 ° (that is, the ideal symbol point in FIG. 5). It becomes 1 when the phase angle of Φ 6 to Φ 8 and Φ 9 is included in the IQ orthogonal coordinate system (third quadrant and fourth quadrant). Based on this, the log-likelihood ratio LLRφ 3 based on the phase noise of the 3rd bit is calculated by considering the probability density distribution in which the 3rd bit becomes 0 and the probability density distribution in which the 3rd bit becomes 1 as each term. The above equation 5 is derived.

また、2bit目については、IQ直交座標系のすべての象限で同じ考え方ができるため、IQ直交座標系の第1象限を例に挙げて説明する。2bit目は、図7に示すように、0となるか1となるかが振幅によって区別されている理想シンボル点(同図中の「振幅にbit情報をのせているシンボル」;尚、振幅区別シンボル点である)と、0となるか1となるかが位相によって区別されている理想シンボル点(同図中の「位相にbit情報をのせているシンボル」;尚、位相区別シンボル点である)とに分かれる。このため、受信信号の振幅xRを第1の振幅閾値Rthre1および第2の振幅閾値Rthre2と比較することにより、受信した信号/シンボルがbit情報を振幅と位相とのうちのどちらにのせているかを判断して、それぞれで対数尤度比の算出方法を変えるようにしている。振幅にbit情報をのせているシンボルについて2bit目が0になる確率密度分布と2bit目が1になる確率密度分布とはそれぞれ図8Aのように示され、位相にbit情報をのせているシンボルについて2bit目が0になる確率密度分布と2bit目が1になる確率密度分布とはそれぞれ図8Bのように示される。これに基づいて、これら確率密度分布を各項として考慮することにより、2bit目の位相雑音に基づく対数尤度比LLRφ2を算出する上記の数式4が導出される(図8C参照)。 Further, since the same idea can be applied to all the quadrants of the IQ orthogonal coordinate system for the second bit, the first quadrant of the IQ orthogonal coordinate system will be described as an example. As shown in FIG. 7, the second bit is an ideal symbol point in which whether it becomes 0 or 1 is distinguished by the amplitude (“symbol with bit information on the amplitude” in the figure; the amplitude distinction. An ideal symbol point (a symbol point) and whether it becomes 0 or 1 is distinguished by the phase (“symbol with bit information on the phase” in the figure; the phase distinction symbol point. ) And. Therefore, by comparing the amplitude x R of the received signal with the first amplitude threshold R thre1 and the second amplitude threshold R thre2 , the received signal / symbol puts the bit information on either the amplitude or the phase. The method of calculating the logarithmic likelihood ratio is changed for each of them. The probability density distribution in which the second bit becomes 0 and the probability density distribution in which the second bit becomes 1 are shown as shown in FIG. 8A for the symbol on which the bit information is placed on the amplitude. The probability density distribution in which the second bit becomes 0 and the probability density distribution in which the second bit becomes 1 are shown as shown in FIG. 8B, respectively. Based on this, by considering these probability density distributions as each term, the above equation 4 for calculating the log-likelihood ratio LLRφ 2 based on the phase noise of the second bit is derived (see FIG. 8C).

4bit目も2bit目と同様の考え方に基づいており、振幅にbit情報をのせているシンボルについては2bit目と同様に、また、位相にbit情報をのせているシンボルについては、4bit目が0になるのは理想シンボル点の位相角度がΦ2,Φ3,Φ8,およびΦ9であるとともに1になるのは理想シンボル点の位相角度がΦ0,Φ5,Φ6,およびΦ11であることを踏まえて、振幅にbit情報をのせているシンボルについて4bit目が0になる確率密度分布と4bit目が1になる確率密度分布ならびに位相にbit情報をのせているシンボルについて4bit目が0になる確率密度分布と4bit目が1になる確率密度分布とを各項として考慮することにより、4bit目の位相雑音に基づく対数尤度比LLRφ4を算出する上記の数式6が導出される。 The 4th bit is also based on the same idea as the 2nd bit. For the symbol which puts the bit information on the amplitude, it is the same as the 2nd bit, and for the symbol which puts the bit information on the phase, the 4th bit becomes 0. The phase angles of the ideal symbol points are Φ 2 , Φ 3 , Φ 8 , and Φ 9 , and the phase angles of the ideal symbol points are Φ 0 , Φ 5 , Φ 6 , and Φ 11 . Based on the fact that there is, the probability density distribution where the 4th bit becomes 0 for the symbol which puts the bit information on the amplitude, the probability density distribution where the 4th bit becomes 1, and the 4th bit is 0 for the symbol which puts the bit information on the phase. By considering the probability density distribution in which the 4th bit becomes 1 and the probability density distribution in which the 4th bit becomes 1 as each term, the above equation 6 for calculating the logarithmic likelihood ratio LLRφ 4 based on the phase noise of the 4th bit is derived.

第1の振幅閾値Rthre1や第2の振幅閾値Rthre2は、特定の値に限定されるものではなく、例えば第1の振幅閾値Rthre1は理想シンボル点の振幅R1とR2との間に設定されるとともに第2の振幅閾値Rthre2は理想シンボル点の振幅R0とR1との間に設定されたうえで振幅にbit情報をのせているシンボルと位相にbit情報をのせているシンボルとを良好に判別し得ることが考慮されるなどしたうえで適当な値に適宜設定される。具体的には例えば、第1の振幅閾値Rthre1は下記の数式7Aのように設定され、第2の振幅閾値Rthre2は下記の数式7Bのように設定されることが考えられる。
(数7A) Rthre1 = R1+(R2-R1)/2
(数7B) Rthre2 = Ro+(R1-R0)/2
The first amplitude threshold R thre1 and the second amplitude threshold R thre2 are not limited to specific values. For example, the first amplitude threshold R thre1 is between the amplitudes R1 and R2 of the ideal symbol point. The second amplitude threshold R thre2 is set between the amplitudes R 0 and R 1 of the ideal symbol point, and then the bit information is put on the amplitude and the bit information is put on the phase. It is appropriately set to an appropriate value after considering that it can be satisfactorily distinguished from the symbol. Specifically, for example, it is conceivable that the first amplitude threshold value R thre1 is set as in the following formula 7A, and the second amplitude threshold value R thre2 is set as in the following formula 7B.
(Number 7A) R thre1 = R 1 + (R 2 -R 1 ) / 2
(Number 7B) R thre2 = Ro + (R 1 -R 0 ) / 2

そして、上記の数式1に従って算出される対数尤度比を使用して低密度パリティ検査復号処理を行うことにより、熱雑音の分布に基づく対数尤度比LLRNに、位相雑音の分布に基づく対数尤度比LLRφが加えられるので、位相雑音へのロバスト性が向上する。また、位相雑音は熱雑音の大きさやシンボルの位置によって影響の大きさが異なるので、各対数尤度比の重み係数WN,Wφにより、熱雑音と位相雑音とのうちのどちらに基づく対数尤度比を優先するかが制御される。 Then, by performing the low density parity check decoding process using the log-likelihood ratio calculated according to the above equation 1, the log-likelihood ratio LLR N based on the thermal noise distribution and the logarithm based on the phase noise distribution are obtained. Since the likelihood ratio LLRφ is added, the robustness to phase noise is improved. Further, since the magnitude of the influence of the phase noise differs depending on the magnitude of the thermal noise and the position of the symbol, the log-likelihood based on either the thermal noise or the phase noise is determined by the weighting coefficients WN and of each log-likelihood ratio. Whether to prioritize the degree ratio is controlled.

各対数尤度比の重み係数WN,Wφは、それぞれ、特定の値に限定されるものではなく、位相雑音は熱雑音の大きさやシンボルの位置によって影響の大きさが異なることを踏まえて熱雑音と位相雑音とのうちのどちらに基づく対数尤度比をどの程度優先するかが考慮されるなどしたうえで適当な値に適宜設定される。 The weighting coefficients W N and W φ of each log-likelihood ratio are not limited to specific values, respectively, and the phase noise is affected by the magnitude of the thermal noise and the position of the symbol. It is appropriately set to an appropriate value after considering how much priority is given to the log-likelihood ratio based on which of noise and phase noise.

各対数尤度比の重み係数WN,Wφは、各々所定の算出式によって算出されるようにしてもよく、具体的には例えば下記の数式8Aに従って熱雑音に基づく対数尤度比の重み係数WNが算出されるとともに下記の数式8Bに従って位相雑音に基づく対数尤度比の重み係数WNが算出されるようにしてもよい。

Figure 2022076113000007
The weighting coefficients WN and of each logarithmic likelihood ratio may be calculated by predetermined formulas, and specifically, for example, the weighting coefficient of the logarithmic likelihood ratio based on thermal noise according to the following equation 8A. W N may be calculated and the weighting coefficient W N of the logarithmic likelihood ratio based on the phase noise may be calculated according to the following equation 8B.
Figure 2022076113000007

上記の数式8A,8Bにおける各記号・変数の意味は下記のとおりである。
N:熱雑音の分散(即ち、√Nは熱雑音の平均振幅に相当する)
d:QAM方式のシンボル間間隔
α:優先調整係数
β:同等調整係数
The meanings of the symbols and variables in the above formulas 8A and 8B are as follows.
N: Dispersion of thermal noise (that is, √N corresponds to the average amplitude of thermal noise)
S d : QAM method inter-symbol spacing α: Priority adjustment coefficient β: Equivalent adjustment coefficient

優先調整係数αは、熱雑音による振幅変動の平均値(即ち、√N)がQAM方式のシンボル間隔Sdの何%以下のときに位相雑音に基づく対数尤度比LLRφを優先するかを決定づけるための係数である。 The priority adjustment coefficient α determines when the average value (that is, √N) of the amplitude fluctuation due to thermal noise is less than or equal to what percentage of the symbol spacing Sd of the QAM method, the logarithmic likelihood ratio LLRφ based on the phase noise is prioritized. It is a coefficient for.

優先調整係数αは、特定の値に限定されるものではなく、熱雑音と位相雑音との相互の優先の度合いが考慮されるなどしたうえで、適当な値に適宜設定される。優先調整係数αは、具体的には例えば、あくまで一例として挙げると、0.1~0.5程度の範囲のうちのいずれかの値に設定されることが考えられる。 The priority adjustment coefficient α is not limited to a specific value, and is appropriately set to an appropriate value after considering the degree of mutual priority between thermal noise and phase noise. Specifically, for example, the priority adjustment coefficient α may be set to any value in the range of about 0.1 to 0.5, to give just one example.

同等調整係数βは、熱雑音による対数尤度比と位相雑音による対数尤度比との優先度が同等であるときに各対数尤度比の大きさを等しくするための係数である。 The equivalence adjustment coefficient β is a coefficient for equalizing the magnitude of each log-likelihood ratio when the priority of the log-likelihood ratio due to thermal noise and the log-likelihood ratio due to phase noise are the same.

同等調整係数βは、特定の値に限定されるものではなく、優先調整係数αの値を前提として、熱雑音による対数尤度比と位相雑音による対数尤度比との優先度が同等であるときに各対数尤度比の大きさを等しくするような値に適宜設定される。 The equivalence adjustment coefficient β is not limited to a specific value, and the priority of the log-likelihood ratio due to thermal noise and the log-likelihood ratio due to phase noise are the same on the premise of the value of the priority adjustment coefficient α. Sometimes it is set to a value that makes the magnitude of each log-likelihood ratio equal.

優先調整係数αおよび同等調整係数βは、LLR算出部20の重み係数制御部24に対して予め設定される。 The priority adjustment coefficient α and the equivalent adjustment coefficient β are set in advance for the weighting coefficient control unit 24 of the LLR calculation unit 20.

各対数尤度比の重み係数WN,Wφが上記の数式8Aおよび数式8Bに従って算出されるようにすることにより、図9Aに示すように、熱雑音の平均振幅√NがQAM方式のシンボル間間隔Sdのα×100[%]よりも大きい場合に、熱雑音に基づく対数尤度比に対する重み係数WNが大きくなり(具体的には、1より大きくなり)、逆に、位相雑音に基づく対数尤度比に対する重み係数Wφは小さくなり(具体的には、1より小さくなり)、つまり熱雑音に基づく対数尤度比が優先されて最終的な対数尤度比LLRbit_numが算出されることになる。なお、図9では、あくまでも一例として、α=0.5に設定されている。 By making the weighting coefficients WN and of each log-likelihood ratio calculated according to the above equations 8A and 8B, as shown in FIG. 9A, the average amplitude √N of the thermal noise is between the symbols of the QAM method. When the interval S d is larger than α × 100 [%], the weighting coefficient W N for the log-likelihood ratio based on thermal noise becomes large (specifically, it becomes larger than 1), and conversely, it becomes phase noise. The weighting coefficient Wφ with respect to the log-likelihood ratio based on is smaller (specifically, smaller than 1), that is, the log-likelihood ratio based on thermal noise is prioritized and the final log-likelihood ratio LLR bit_num is calculated. It will be. In FIG. 9, α = 0.5 is set as an example only.

一方、図9Bに示すように、熱雑音の平均振幅√NがQAM方式のシンボル間間隔Sdのα×100[%]以下の場合に、位相雑音に基づく対数尤度比に対する重み係数Wφが大きくなり(具体的には、1以上になり)、逆に、熱雑音に基づく対数尤度比に対する重み係数WNは小さくなり(具体的には、1以下になり)、つまり位相雑音に基づく対数尤度比が優先されて最終的な対数尤度比LLRbit_numが算出されることになる。 On the other hand, as shown in FIG. 9B, when the average amplitude √N of the thermal noise is α × 100 [%] or less of the inter-symbol spacing Sd of the QAM method, the weighting coefficient Wφ with respect to the logarithmic likelihood ratio based on the phase noise is It becomes larger (specifically, it becomes 1 or more), and conversely, the weighting coefficient W N for the logarithmic likelihood ratio based on thermal noise becomes smaller (specifically, it becomes 1 or less), that is, it is based on phase noise. The logarithmic likelihood ratio is prioritized and the final logarithmic likelihood ratio LLR bit_num is calculated.

なお、数式8は熱雑音の大きさに基づいて(言い換えると、熱雑音を変数として)熱雑音に基づく対数尤度比に対する重み係数WNおよび位相雑音に基づく対数尤度比に対する重み係数Wφが算出されるようにしているが、位相雑音の大きさに基づいて(言い換えると、位相雑音を変数として)熱雑音に基づく対数尤度比に対する重み係数WNおよび位相雑音に基づく対数尤度比に対する重み係数Wφが算出されるようにしてもよい。 In Equation 8, the weighting coefficient WN for the logarithmic likelihood ratio based on thermal noise and the weighting coefficient for the logarithmic likelihood ratio based on phase noise are based on the magnitude of thermal noise (in other words, with thermal noise as a variable). It is designed to be calculated, but based on the magnitude of the phase noise (in other words, with the phase noise as a variable), the weighting factor W N for the log-possibility ratio based on the thermal noise and the log-probability ratio based on the phase noise. The weighting coefficient Wφ may be calculated.

LLR算出部20の熱雑音LLR算出部21は、等化器18から出力されるベースバンド信号(受信信号)の入力を受け、前記ベースバンド信号から受信信号の同相成分xiおよび受信信号の直交成分xqを取得し、上記の数式2A乃至数式2Dに従って(bit_num)bit目の熱雑音に基づく対数尤度比LLRN(bit_num)を算出して出力する。 The thermal noise LLR calculation unit 21 of the LLR calculation unit 20 receives the input of the baseband signal (received signal) output from the equalizer 18, and the in-phase component x i of the received signal from the baseband signal and the orthogonality of the received signal. The component x q is acquired, and the logarithmic likelihood ratio LLR N (bit_num) based on the thermal noise of the (bit_num) bit th is calculated and output according to the above equations 2A to 2D.

位相雑音LLR算出部22は、等化器18から出力されるベースバンド信号(受信信号)の入力を受け、前記ベースバンド信号から受信信号の位相角度xφおよび受信信号の振幅xRを取得し、前記受信信号の振幅xRと第1の振幅閾値Rthre1や第2の振幅閾値Rthre2との大小関係も考慮したうえで、上記の数式3乃至数式6に従って(bit_num)bit目の位相雑音に基づく対数尤度比LLRφ(bit_num)を算出して出力する。 The phase noise LLR calculation unit 22 receives the input of the baseband signal (received signal) output from the equalizer 18, acquires the phase angle of the received signal and the amplitude xR of the received signal from the baseband signal. Considering the magnitude relationship between the amplitude x R of the received signal and the first amplitude threshold R thre1 and the second amplitude threshold R thre2 , the phase noise of the (bit_num) bit according to the above equations 3 to 6 is set. Calculates and outputs the based logarithmic likelihood ratio LLRφ (bit_num) .

熱雑音電力推定部23は、等化器18から出力されるベースバンド信号(受信信号)の入力を受け、前記ベースバンド信号に基づいて無線受信装置1における熱雑音電力を推定し、熱雑音電力の推定量を出力する。 The thermal noise power estimation unit 23 receives the input of the baseband signal (received signal) output from the equalizer 18, estimates the thermal noise power in the wireless receiver 1 based on the baseband signal, and estimates the thermal noise power. Outputs the estimated amount of.

重み係数制御部24は、等化器18から出力されるベースバンド信号(受信信号)の入力を受けるとともに、熱雑音電力推定部23から出力される熱雑音電力の推定量の入力を受け、前記ベースバンド信号および前記熱雑音電力の推定量を用いて(具体的には、熱雑音の分散Nを計算して)上記の数式8Aに従って熱雑音に基づく対数尤度比の重み係数WNを算出するとともに上記の数式8Bに従って位相雑音に基づく対数尤度比の重み係数Wφを算出して出力する。 The weighting coefficient control unit 24 receives the input of the baseband signal (received signal) output from the equalizer 18, and also receives the input of the estimated amount of the thermal noise power output from the thermal noise power estimation unit 23. Using the baseband signal and the estimated thermal noise power (specifically, the dispersion N of the thermal noise is calculated), the weighting coefficient W N of the logarithmic likelihood ratio based on the thermal noise is calculated according to the above equation 8A. At the same time, the weighting coefficient Wφ of the logarithmic likelihood ratio based on the phase noise is calculated and output according to the above equation 8B.

第1の乗算器25は、熱雑音LLR算出部21から出力される熱雑音に基づく対数尤度比LLRN(bit_num)の入力を受けるとともに、重み係数制御部24から出力される熱雑音に基づく対数尤度比の重み係数WNの入力を受け、前記熱雑音に基づく対数尤度比LLRN(bit_num)と前記熱雑音に基づく対数尤度比の重み係数WNとを乗算し、乗算した結果(即ち、WN×LLRN(bit_num))を出力する。 The first multiplier 25 receives an input of a logarithmic likelihood ratio LLR N (bit_num) based on the thermal noise output from the thermal noise LLR calculation unit 21, and is based on the thermal noise output from the weight coefficient control unit 24. Upon receiving the input of the weighting coefficient W N of the logarithmic likelihood ratio, the logarithmic likelihood ratio LLR N (bit_num) based on the thermal noise was multiplied by the weighting coefficient WN of the logarithmic likelihood ratio based on the thermal noise and multiplied. The result (that is, W N × LLR N (bit_num) ) is output.

第2の乗算器26は、位相雑音LLR算出部22から出力される位相雑音に基づく対数尤度比LLRφ(bit_num)の入力を受けるとともに、重み係数制御部24から出力される位相雑音に基づく対数尤度比の重み係数Wφの入力を受け、前記位相雑音に基づく対数尤度比LLRφ(bit_num)と前記位相雑音に基づく対数尤度比の重み係数Wφとを乗算し、乗算した結果(即ち、Wφ×LLRφ(bit_num))を出力する。 The second multiplier 26 receives an input of a logarithm likelihood ratio LLRφ (bit_num) output from the phase noise LLR calculation unit 22 and a logarithm based on the phase noise output from the weighting coefficient control unit 24. Upon receiving the input of the weighting coefficient Wφ of the likelihood ratio, the result of multiplying and multiplying the logarithmic likelihood ratio LLRφ (bit_num) based on the phase noise and the weighting coefficient Wφ of the logarithmic likelihood ratio based on the phase noise (that is,). Wφ × LLRφ (bit_num) ) is output.

加算器27は、第1の乗算器25から出力される乗算結果(即ち、WN×LLRN(bit_num))の入力を受けるとともに、第2の乗算器26から出力される乗算結果(即ち、Wφ×LLRφ(bit_num))の入力を受け、上記の数式1に従ってこれら乗算結果を加算し、加算した結果である(bit_num)bit目の対数尤度比LLRbit_num(=WN×LLRN(bit_num)+Wφ×LLRφ(bit_num))を出力する。 The adder 27 receives the input of the multiplication result (that is, W N × LLR N (bit_num) ) output from the first multiplier 25, and the multiplication result output from the second multiplier 26 (that is, that is, the adder 27). Upon receiving the input of Wφ × LLRφ (bit_num) ), these multiplication results are added according to the above formula 1, and the result of the addition is the logarithmic likelihood ratio LLR bit_num (= W N × LLR N ( bit_num)) of the (bit_num) bit. ) + Wφ × LLRφ (bit_num) ) is output.

そして、復号部19が、LLR算出部20から出力される対数尤度比LLRbit_numの入力を受け、前記対数尤度比LLRbit_numを使用して例えばsum-product復号法に従って低密度パリティ検査復号処理を行う。 Then, the decoding unit 19 receives the input of the log-likelihood ratio LLR bit_num output from the LLR calculation unit 20, and uses the log-likelihood ratio LLR bit_num to perform low-density parity check decoding processing according to, for example, the sum-project decoding method. I do.

実施の形態に係る対数尤度比算出回路としてのLLR算出部20によれば、熱雑音に基づく対数尤度比LLRN(bit_num)と位相雑音に基づく対数尤度比LLRφ(bit_num)との相互の優先の度合いを考慮したうえで(具体的には、対数尤度比LLRN(bit_num)に重み係数WNを乗じるとともに対数尤度比LLRφ(bit_num)に重み係数Wφを乗じたうえで)これらを加算して各bitの対数尤度比LLRbit_numを算出することにより、対数尤度比の算出に熱雑音の影響に加えて位相雑音やフェージングによる分布変動の要素を考慮するようにしているので、位相雑音を含む外乱に対してロバストな低密度パリティ検査を実現することが可能となる。 According to the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment, the mutual of the log-likelihood ratio LLR N (bit_num) based on thermal noise and the log-likelihood ratio LLR φ (bit_num) based on phase noise. (Specifically, multiply the log-likelihood ratio LLR N (bit_num) by the weighting coefficient WN and multiply the log-likelihood ratio LLRφ (bit_num) by the weighting coefficient Wφ). By adding these and calculating the log-likelihood ratio LLR bit_num of each bit, the factors of distribution fluctuation due to phase noise and fading are taken into consideration in addition to the influence of thermal noise in the calculation of the log-likelihood ratio. Therefore, it is possible to realize a low-density parity inspection that is robust against disturbances including phase noise.

実施の形態に係る対数尤度比算出回路としてのLLR算出部20によれば、また、受信信号の位相雑音やフェージングなどによってシンボルの位相が正規分布/ガウス分布に基づいて回転・変動した際の確率分布も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音が支配的な環境下においても対数尤度比の算出精度を向上させることが可能となり、延いては、低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 According to the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment, when the phase of the symbol rotates / fluctuates based on the normal distribution / Gaussian distribution due to phase noise or fading of the received signal. Since the log-likelihood ratio is calculated in consideration of the probability distribution, it is possible to improve the calculation accuracy of the log-likelihood ratio even in an environment where the phase noise of the received signal is dominant. , It is possible to improve the error correction ability of low density parity inspection.

具体的には、図10に示すように、従来の対数尤度比の算出方法では、受信信号の熱雑音によって理想シンボル点を中心として正規分布/ガウス分布に基づいて受信信号の振幅が変動することを前提としている(同図中の破線円Cf参照)。このため、受信信号の位相雑音によってシンボルの位相が回転した際の変動(同図中の円弧矢印Fp参照)があると、受信した確率が高いと判断した信号Sfが実際の送信信号Ssとは異なってしまう。これに対して、実施の形態に係る対数尤度比算出回路としてのLLR算出部20では、受信信号の位相雑音による変動の分布を考慮するようにしているので、すなわち、受信信号の位相雑音によってシンボルが包絡線E上で変動する状況も考慮して対数尤度比を算出するようにしているので、受信信号の位相雑音によってシンボルの位相が回転した際の変動(同図中の円弧矢印Fp参照)があっても、受信した確率が高いと判断した信号が実際の送信信号Ssと一致して低密度パリティ検査の誤り訂正能力を向上させることが可能となる。 Specifically, as shown in FIG. 10, in the conventional method for calculating the log-likelihood ratio, the amplitude of the received signal fluctuates based on the normal distribution / Gaussian distribution around the ideal symbol point due to the thermal noise of the received signal. (Refer to the broken line circle Cf in the figure). Therefore, if there is a fluctuation when the phase of the symbol is rotated due to the phase noise of the received signal (see the arc arrow Fp in the figure), the signal Sf judged to have a high reception probability is the actual transmission signal Ss. It will be different. On the other hand, in the LLR calculation unit 20 as the log-likelihood ratio calculation circuit according to the embodiment, the distribution of fluctuations due to the phase noise of the received signal is taken into consideration, that is, due to the phase noise of the received signal. Since the log-likelihood ratio is calculated in consideration of the situation where the symbol fluctuates on the envelope E, the fluctuation when the phase of the symbol is rotated by the phase noise of the received signal (arc arrow Fp in the figure). Even if there is (see), it is possible to improve the error correction ability of the low density parity inspection by matching the signal determined to have a high reception probability with the actual transmission signal Ss.

この発明に係る対数尤度比算出回路の有効性の検証例を下記に説明する。 An example of verifying the effectiveness of the log-likelihood ratio calculation circuit according to the present invention will be described below.

この検証例では、熱雑音と位相雑音とが存在する環境下において従来の対数尤度比の算出方法とこの発明に係る対数尤度比算出回路との対数尤度比の算出精度を比較することを目的として、図11に示す評価系が用いられた。この検証例の評価系は、所定のサンプル信号を16QAM方式で変調する(同図中の符号31)とともに位相雑音および熱雑音を付加した(符号32,33)うえで、受信信号の熱雑音の分布に基づいて対数尤度比を算出する従来手法(符号34)と、受信信号の位相雑音も考慮して対数尤度比を算出するこの発明に係る対数尤度比算出回路(符号20)とのそれぞれの対数尤度比の算出精度を比較する系として構成された。 In this verification example, the calculation accuracy of the log-likelihood ratio between the conventional method for calculating the log-likelihood ratio and the log-likelihood ratio calculation circuit according to the present invention is compared in an environment where thermal noise and phase noise exist. The evaluation system shown in FIG. 11 was used for the purpose of. In the evaluation system of this verification example, a predetermined sample signal is modulated by the 16QAM method (reference numeral 31 in the figure), phase noise and thermal noise are added (reference numerals 32 and 33), and then the thermal noise of the received signal is measured. A conventional method (reference numeral 34) for calculating a logarithmic likelihood ratio based on a distribution, and a logarithmic likelihood ratio calculation circuit (reference numeral 20) according to the present invention for calculating a logarithmic likelihood ratio in consideration of phase noise of a received signal. It was constructed as a system to compare the calculation accuracy of each logarithmic likelihood ratio of.

また、この検証例の評価条件は下記のように設定された。
変調方式:16QAM方式
搬送波対雑音比(CNR:Carrier‐Noise Ratio の略):15~25dB
位相雑音レベル:-60dBc(1kHzオフセットにおける値)
QAM方式のシンボル間間隔Sd:2
優先調整係数α:0.125
同等調整係数β:100
The evaluation conditions for this verification example were set as follows.
Modulation method: 16QAM method Carrier-to-noise ratio (CNR: Abbreviation for Carrier-Noise Ratio): 15 to 25 dB
Phase noise level: -60 dBc (value at 1 kHz offset)
QAM method inter-symbol spacing S d : 2
Priority adjustment coefficient α: 0.125
Equivalent adjustment coefficient β: 100

ここで、対数尤度比は、送信bitが0である確率が高いときに正の値をとり、送信bitが1である確率が高いときに負の値をとる。このことを利用し、実際の送信bitと従来手法(図9中の符号34)で算出した対数尤度比の符号とを比較して符号が誤っている回数を計数する(符号35)とともに、実際の送信bitとこの発明に係る対数尤度比算出回路(符号20)で算出した対数尤度比の符号とを比較して符号が誤っている回数を計数した(符号36)。 Here, the log-likelihood ratio takes a positive value when the probability that the transmission bit is 0 is high, and takes a negative value when the probability that the transmission bit is 1 is high. Taking advantage of this, the actual transmission bit is compared with the code of the logarithmic likelihood ratio calculated by the conventional method (reference numeral 34 in FIG. 9) to count the number of times the code is incorrect (reference numeral 35). The actual transmission bit was compared with the code of the logarithmic likelihood ratio calculated by the logarithmic likelihood ratio calculation circuit (reference numeral 20) according to the present invention, and the number of times the code was incorrect was counted (reference numeral 36).

図11に示す評価系による結果として、図12に示すように、各搬送波対雑音比において、この発明に係る対数尤度比算出回路の方が符号の誤り率が小さいことが確認された。また、搬送波対雑音比が高くなって位相雑音が支配的になるほど、この発明に係る対数尤度比算出回路による改善率が大きくなることが確認された。この結果から、この発明に係る対数尤度比算出回路によれば、従来の対数尤度比の算出方法と比べて、符号の誤り率が低減することが確認された。 As a result of the evaluation system shown in FIG. 11, as shown in FIG. 12, it was confirmed that the log-likelihood ratio calculation circuit according to the present invention has a smaller code error rate in each carrier-to-noise ratio. It was also confirmed that the higher the carrier-to-noise ratio and the more dominant the phase noise, the greater the improvement rate by the log-likelihood ratio calculation circuit according to the present invention. From this result, it was confirmed that the log-likelihood ratio calculation circuit according to the present invention reduces the code error rate as compared with the conventional log-likelihood ratio calculation method.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。 Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above-described embodiment, and even if there is a design change or the like within a range that does not deviate from the gist of the present invention. Included in the invention.

具体的には、上記の実施の形態ではこの発明に係る対数尤度比算出回路が図1に概略構成を示す無線受信装置1にLLR算出部20として組み込まれるようにしているが、この発明に係る対数尤度比算出回路が組み込まれ得る無線装置の構成は図1に概略構成を示す無線受信装置1に限定されるものではなく、この発明に係る対数尤度比算出回路が他の構成の無線装置に組み込まれるようにしてもよい。 Specifically, in the above-described embodiment, the log-likelihood ratio calculation circuit according to the present invention is incorporated as the LLR calculation unit 20 in the wireless receiver 1 whose schematic configuration is shown in FIG. The configuration of the wireless device into which the log-likelihood ratio calculation circuit can be incorporated is not limited to the wireless receiver 1 whose schematic configuration is shown in FIG. 1, and the log-likelihood ratio calculation circuit according to the present invention has another configuration. It may be incorporated into a wireless device.

また、上記の実施の形態では熱雑音に基づく対数尤度比LLRN(bit_num)が上記の数式2A乃至数式2Dに従って算出されるようにしているが、熱雑音に基づく対数尤度比LLRN(bit_num)の算出式/算出方法は数式2A乃至数式2Dに限定されるものではなく、また、上記の実施の形態では位相雑音に基づく対数尤度比LLRφ(bit_num)が上記の数式3乃至数式6に従って算出されるようにしているが、位相雑音に基づく対数尤度比LLRφ(bit_num)の算出式/算出方法は数式3乃至数式6に限定されるものではない。すなわち、この発明の要点は熱雑音に基づく対数尤度比LLRN(bit_num)と位相雑音に基づく対数尤度比LLRφ(bit_num)との相互の優先の度合いを考慮したうえで(具体的には、対数尤度比LLRN(bit_num)に重み係数WNを乗じるとともに対数尤度比LLRφ(bit_num)に重み係数Wφを乗じたうえで)これらを加算して各bitの対数尤度比LLRbit_numを算出することであり、熱雑音に基づく対数尤度比LLRN(bit_num)や位相雑音に基づく対数尤度比LLRφ(bit_num)の算出式/算出方法を含むその他の構成は特定の構成には限定されない。 Further, in the above embodiment, the logarithmic likelihood ratio LLR N (bit_num) based on thermal noise is calculated according to the above equations 2A to 2D, but the logarithmic likelihood ratio LLR N (bit_num) based on thermal noise is calculated. The calculation formula / calculation method of bit_num) is not limited to the formulas 2A to 2D, and in the above embodiment, the logarithmic likelihood ratio LLRφ (bit_num) based on the phase noise is the above formulas 3 to 6 However, the calculation formula / calculation method of the logarithmic likelihood ratio LLRφ (bit_num) based on the phase noise is not limited to the formulas 3 to 6. That is, the main point of the present invention is to consider the degree of mutual priority between the log-likelihood ratio LLR N (bit_num) based on thermal noise and the log-likelihood ratio LLR φ (bit_num) based on phase noise (specifically). , The log-likelihood ratio LLR N (bit_num) is multiplied by the weighting coefficient W N and the log-likelihood ratio LLRφ (bit_num) is multiplied by the weighting coefficient Wφ). Is to calculate, and other configurations including the calculation formula / calculation method of the log-likelihood ratio LLR N (bit_num) based on thermal noise and the log-likelihood ratio LLR φ (bit_num) based on phase noise are suitable for a specific configuration. Not limited.

1 無線受信装置
10 アンテナ
11 チャネルフィルタ
12 局部発振器
13 ミキサ
14 自動利得制御部
15 A/D変換器
16 デジタル直交検波部
17 ロールオフフィルタ
18 等化器
19 復号部
20 LLR算出部
21 熱雑音LLR算出部
22 位相雑音LLR算出部
23 熱雑音電力推定部
24 重み係数制御部
25 第1の乗算器
26 第2の乗算器
27 加算器
1 Wireless receiver 10 Antenna 11 Channel filter 12 Local oscillator 13 Mixer 14 Automatic gain control unit 15 A / D converter 16 Digital orthogonal detector 17 Roll-off filter 18 Equalizer 19 Decoding unit 20 LLR calculation unit 21 Thermal noise LLR calculation Part 22 Phase noise LLR calculation part 23 Thermal noise power estimation part 24 Weight coefficient control part 25 First multiplier 26 Second multiplier 27 Adder

Claims (4)

熱雑音に基づく対数尤度比と位相雑音に基づく対数尤度比とのそれぞれに重み係数を乗じたうえで加算して対数尤度比を算出する、
ことを特徴とする対数尤度比算出回路。
The log-likelihood ratio is calculated by multiplying each of the log-likelihood ratio based on thermal noise and the log-likelihood ratio based on phase noise by a weighting coefficient and then adding them.
A log-likelihood ratio calculation circuit characterized by this.
前記位相雑音に基づく対数尤度比を、
送信側において多値数が16の直角位相振幅変調方式で変調された4bitの受信信号のうち、
理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitについては、
前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、
振幅に応じて0になるか1になるかが区別されている理想シンボル点(「振幅区別シンボル点」と呼ぶ)と位相角度に応じて0になるか1になるかが区別されている理想シンボル点(「位相区別シンボル点」と呼ぶ)とに分けられるbitについては、
前記振幅区別シンボル点と前記位相区別シンボル点とのうちのどちらであるかを前記受信信号の振幅に基づいて判断したうえで、
前記振幅区別シンボル点について、前記受信信号の振幅を用いて、振幅に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出し、
前記位相区別シンボル点について、前記受信信号の位相角度を用いて、位相角度に応じて0になる確率密度分布と1になる確率密度分布とに基づいて算出する、
ことを特徴とする請求項1に記載の対数尤度比算出回路。
The log-likelihood ratio based on the phase noise,
Of the 4-bit received signals modulated by the quadrature amplitude modulation method with a multi-valued number of 16 on the transmitting side
For bits that are distinguished whether they are 0 or 1 depending on the phase angle of the ideal symbol point,
Using the phase angle of the received signal, it is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle.
An ideal symbol point that distinguishes between 0 and 1 depending on the amplitude (called an "amplitude distinction symbol point") and an ideal that distinguishes between 0 and 1 depending on the phase angle. For bits that can be divided into symbol points (called "phase-distinguishing symbol points")
After determining which of the amplitude-distinguishing symbol point and the phase-distinguishing symbol point is based on the amplitude of the received signal,
The amplitude distinction symbol point is calculated using the amplitude of the received signal based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the amplitude.
The phase distinction symbol point is calculated based on the probability density distribution that becomes 0 and the probability density distribution that becomes 1 according to the phase angle, using the phase angle of the received signal.
The log-likelihood ratio calculation circuit according to claim 1.
前記理想シンボル点の位相角度に応じて0になるか1になるかが区別されているbitである1bit目について下記の数式1に従って位相雑音に基づく対数尤度比を算出するとともに3bit目について下記の数式3に従って位相雑音に基づく対数尤度比を算出し、
前記振幅区別シンボル点と前記位相区別シンボル点とに分けられるbitである2bit目について下記の数式2に従って位相雑音に基づく対数尤度比を算出するとともに4bit目について下記の数式4に従って位相雑音に基づく対数尤度比を算出する(但し、xR≧Rthre1 または xR≦Rthre2 のときに数式2Aおよび数式4Aが用いられ、Rthre2<xR<Rthre1 のときに数式2Bおよび数式4Bが用いられる)、
Figure 2022076113000008
Figure 2022076113000009
Figure 2022076113000010
Figure 2022076113000011
ここに、
xφ:受信信号の位相角度
R:受信信号の振幅
φi:理想シンボル点の位相角度(但し、φの添字i=0,1,2,・・・,11)
i:理想シンボル点の振幅(但し、Rの添字i=0,1,2)
σ2:雑音分散
thre1:第1の振幅閾値
thre2:第2の振幅閾値
ことを特徴とする請求項2に記載の対数尤度比算出回路。
The log-likelihood ratio based on the phase noise is calculated according to the following mathematical formula 1 for the 1st bit, which is a bit that is distinguished whether it becomes 0 or 1 depending on the phase angle of the ideal symbol point, and the 3rd bit is described below. Calculate the log-likelihood ratio based on the phase noise according to Equation 3 of
The logarithmic likelihood ratio based on the phase noise is calculated according to the following formula 2 for the second bit, which is the bit divided into the amplitude distinction symbol point and the phase distinction symbol point, and the fourth bit is based on the phase noise according to the following formula 4. Calculate the logarithmic likelihood ratio (where equation 2A and equation 4A are used when x R ≥ R thre1 or x R ≤ R thre2 , and equations 2B and 4B are used when R thre2 <x R <R thre1 . Used),
Figure 2022076113000008
Figure 2022076113000009
Figure 2022076113000010
Figure 2022076113000011
Here,
xφ: Phase angle of received signal x R : Amplitude of received signal φ i : Phase angle of ideal symbol point (however, the subscript i of φ i = 0, 1, 2, ..., 11)
R i : Amplitude of ideal symbol point (however, subscript i of R = 0, 1, 2)
σ 2 : Noise dispersion R thre1 : First amplitude threshold value R thre2 : Second amplitude threshold value The log-likelihood ratio calculation circuit according to claim 2.
請求項1から3のうちのいずれか1項に記載の対数尤度比算出回路を備える、
ことを特徴とする無線受信装置。
The log-likelihood ratio calculation circuit according to any one of claims 1 to 3 is provided.
A wireless receiver characterized by that.
JP2020186373A 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver Pending JP2022076113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186373A JP2022076113A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186373A JP2022076113A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Publications (1)

Publication Number Publication Date
JP2022076113A true JP2022076113A (en) 2022-05-19

Family

ID=81606678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186373A Pending JP2022076113A (en) 2020-11-09 2020-11-09 Log-likelihood ratio calculation circuit and wireless receiver

Country Status (1)

Country Link
JP (1) JP2022076113A (en)

Similar Documents

Publication Publication Date Title
US9100071B2 (en) Timing pilot generation for highly-spectrally-efficient communications
US7796708B2 (en) Adaptive receiver loops with weighted decision-directed error
KR960012425B1 (en) System &amp; method for calculating channel gain &amp; noise variance of a communication channel
EP2329627B1 (en) Method and apparatus for low-complexity interference cancellation in communication signal processing
US20080123788A1 (en) Method and apparatus for detecting and correcting modulated signal impairments
CN102811190B (en) Suppression method for single-frequency interference in OFDM (Orthogonal Frequency Division Multiplexing) communication system
JP2013531927A (en) Equalization method, communication apparatus, and computer-readable medium
US9768989B2 (en) Method and apparatus for soft symbol generation in a communication receiver
US7295144B1 (en) Quantizer responsive to noise level for a wireless communications system
WO2009081860A1 (en) Radio communication system, reception device, and reception method
CA2505035A1 (en) Method and apparatus for determining signal-to-interference ratio with reduced bias effect
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
US20080123786A1 (en) Method and apparatus for detecting and correcting modulated signal impairments
US20080123787A1 (en) Method and apparatus for detecting and correcting modulated signal impairments
US10476731B2 (en) Joint noncoherent demodulation and carrier frequency offset correction based on non-linear filtering
EP2507957A1 (en) Bit soft value normalization
JP2022076113A (en) Log-likelihood ratio calculation circuit and wireless receiver
JP2008277936A (en) Ofdm reception device
US9755801B2 (en) Receiving apparatus in wireless communication system and channel estimation control method
US7609615B2 (en) Method and apparatus for performing channel compensation and symbol demodulation for coherent demodulation in an OFDM system
JP2022076112A (en) Log-likelihood ratio calculation circuit and wireless receiver
JP2022176484A (en) Log-Likelihood Ratio Calculation Circuit and Radio Receiver
US9979567B2 (en) Equalization enhancing module, demodulation system and equalization enhancing method
JP7446678B2 (en) wireless receiving device
JP3355147B2 (en) Automatic frequency control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231101