JP2020068145A - レドックスフロー電池の制御装置 - Google Patents

レドックスフロー電池の制御装置 Download PDF

Info

Publication number
JP2020068145A
JP2020068145A JP2018201009A JP2018201009A JP2020068145A JP 2020068145 A JP2020068145 A JP 2020068145A JP 2018201009 A JP2018201009 A JP 2018201009A JP 2018201009 A JP2018201009 A JP 2018201009A JP 2020068145 A JP2020068145 A JP 2020068145A
Authority
JP
Japan
Prior art keywords
solution
soc
inlet
outlet
solution soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018201009A
Other languages
English (en)
Inventor
奏 田丸
Kana Tamaru
奏 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018201009A priority Critical patent/JP2020068145A/ja
Publication of JP2020068145A publication Critical patent/JP2020068145A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】レドックスフロー電池の制御装置に関し、ポンプの駆動にかかる電力ロスを削減する。【解決手段】レドックスフロー電池10のセル1,2に供給される電解液の流量を制御する制御装置20において、算出部21及び制御部23を設ける。算出部21は、セル1,2に流入する電解液の活物質イオン濃度に相当する入口溶液SOC、及び、セル1,2から流出する電解液の活物質イオン濃度に相当する出口溶液SOCを取得する。制御部23は、入口溶液SOC及び出口溶液SOCに基づき、電解液の流量を制御する。【選択図】図1

Description

本発明は、レドックスフロー電池において電解液の流量を制御する制御装置に関する。
従来、電解液(活物質の溶液)を継続的にセル(流通型電解槽,フローセル)に供給することで、充放電反応を実現するレドックスフロー電池(酸化還元フロー電池)が知られている(特許文献1,2参照)。レドックスフロー電池は、保守性や拡張性に優れた二次電池であり、発電所や工場で電力貯蔵用バッテリーとして利用されている。近年では、自動車や自動二輪車などの走行用バッテリーとしての活用の途が検討されている。
特開2014-137898号公報 特開2017-091799号公報
レドックスフロー電池の電解液は、ポンプによって各セルに供給される。このポンプとして電動ポンプを用いた場合、レドックスフロー電池で発電した電力の一部がポンプの駆動に消費されることになり、電力ロスが生じる。また、レドックスフロー電池を電気自動車やハイブリッド自動車の走行用バッテリーとして活用したい場合には、ポンプの駆動に伴って生じる電力ロスが、車両の電費や航続可能距離を減少させる要因となってしまう。
本件の目的の一つは、上記のような課題に鑑みて創案されたものであり、ポンプの駆動にかかる電力ロスを削減できるようにしたレドックスフロー電池の制御装置を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。
(1)開示の制御装置は、レドックスフロー電池のセルに供給される電解液の流量を制御する制御装置である。この制御装置は、前記セルに流入する電解液の活物質イオン濃度に相当する入口溶液SOC、及び、前記セルから流出する電解液の活物質イオン濃度に相当する出口溶液SOCを算出する算出部を備える。また、前記入口溶液SOC及び前記出口溶液SOCに基づき、前記電解液の流量を制御する制御部を備える。
(2)前記電解液に光を照射する光源と、前記光に対する前記電解液の光学的物性値を測定する測定器とを備え、前記算出部が、前記光学的物性値に基づいて前記入口溶液SOC及び前記出口溶液SOCを算出することが好ましい。
(3)前記測定器が、前記電解液の紫外線吸収率を測定し、前記算出部が、前記紫外線吸収率に対応する前記入口溶液SOC及び前記出口溶液SOCを算出することが好ましい。
(4)基準電極に対する前記電解液の電圧を計測する第二計測器と、前記電圧に基づいて前記入口溶液SOC及び前記出口溶液SOCを算出する第二算出部とを備えることが好ましい。
(5)前記制御部が、前記入口溶液SOCと前記出口溶液SOCとの差の絶対値が所定値未満である場合、または、前記入口溶液SOCに対する前記出口溶液SOCの比と1との差の絶対値が第二所定値未満である場合に、前記電解液の流量を減少させることが好ましい。
(6)前記制御部が、前記入口溶液SOCに基づいて前記出口溶液SOCの目標値である目標出口溶液SOCを設定するとともに、前記出口溶液SOCが前記目標出口溶液SOCに一致するように前記電解液の流量を制御することが好ましい。
(7)前記制御部が、放電時における前記入口溶液SOCが低いほど前記目標出口溶液SOCを0%よりも大きい範囲で前記入口溶液SOCよりも低く設定することが好ましい。
(8)前記制御部が、充電時における前記入口溶液SOCが高いほど前記目標出口溶液SOCを100%よりも小さい範囲で前記入口溶液SOCよりも高く設定することが好ましい。
(9)前記算出部が、正極セル及び負極セルの各々について前記入口溶液SOC及び前記出口溶液SOCを算出し、前記制御部が、前記正極セル及び前記負極セルの各々に対する前記電解液の流量を個別に制御することが好ましい。
入口溶液SOCと出口溶液SOCとを用いて流量を制御することで、セル内での活物質の反応速度(酸化還元反応の速度)が適正化される流量で電解液をセルに供給することができ、ポンプの駆動にかかる電力ロスを削減することができる。これにより、充放電効率を向上させることができる。
レドックスフロー電池の制御装置が適用された車両の模式図である。 溶液SOCの算出手法を説明するための模式図である。 光吸収率と溶液SOCとの関係を例示するグラフである。 溶液SOCの算出手法を説明するための模式図である。 (A),(B)は、溶液電圧と溶液SOCとの関係を例示するグラフである。 目標出口溶液SOCの設定手法を説明するためのグラフである。 制御装置での制御内容を説明するためのフローチャートである。
[1.装置構成]
以下、図面を参照して実施形態としてのレドックスフロー電池10の制御装置20を説明する。レドックスフロー電池10及び制御装置20は、図1に示す車両19に適用される。車両19の種類は電気自動車やハイブリッド自動車など、バッテリーの電力を利用した走行が可能な車両である。また、レドックスフロー電池10とは、活物質の溶液(電解液)を正極セル1及び負極セル2の各々に積極的に供給することで充放電反応(酸化還元反応)を継続的に生じさせるフロー電池の一種である。本実施例のレドックスフロー電池10は、車両19の走行用バッテリーとして使用される。
正極セル1の内部には正極4が内蔵され、負極セル2の内部には負極5が内蔵される。正極4及び負極5はともに不活性電極である。また、正極セル1と負極セル2との間は、活物質イオンを通さないセパレーター3で区画される。各極の酸化還元反応で水素イオンが生成される場合には、プロトン交換膜(イオン交換膜)がセパレーター3として使用される。
正極セル1に供給される電解液(正極電解液)は、正極タンク6に貯留され、正極ポンプ8によって送給される。同様に、負極セル2に供給される電解液(負極電解液)は、負極タンク7に貯留され、負極ポンプ9によって送給される。正極タンク6,負極タンク7の容積は正極セル1,負極セル2の数百〜数千倍以上であり、大量の電解液が各々のタンク6,7に貯留される。また、正極ポンプ8,負極ポンプ9のそれぞれが吐出する電解液の流量は可変であり、各ポンプ8,9の回転数に応じた大きさの流量が得られるようになっている。各ポンプ8,9の回転数は、制御装置20によって制御される。
正極電解液に含まれる活物質の例としては、硫黄,バナジウム,鉄,臭素,マンガンなどが挙げられる。また、負極電解液に含まれる活物質の例としては、硫黄,バナジウム,クロム,チタンなどが挙げられる。これらの活物質は、レドックスフロー電池10の充放電に際し、一方が還元(Reduction)されるときに他方が酸化(Oxidation)される特性を持つ。正極電解液及び負極電解液のそれぞれに含まれる活物質とその組み合わせに関するいくつかの具体例A〜Lを以下に示す。
Figure 2020068145
ここで、正極4及び負極5における充放電反応式を例示する。具体例Aの充放電反応は、以下の通りに表される。左辺から右辺への反応が放電反応を示し、右辺から左辺への反応が充電反応を示す。
Figure 2020068145
具体例Dの充放電反応は、以下の通りである。
Figure 2020068145
また、具体例Iに関する充放電反応は、以下の通りである。
Figure 2020068145
正極セル1と正極タンク6との間は、正極入口路11及び正極出口路12の二通路で接続される。正極入口路11は正極セル1に流入する正極電解液の通路であり、正極出口路12は正極セル1から流出する正極電解液の通路である。正極電解液は、正極入口路11,正極セル1,正極出口路12,正極タンク6の順に循環する。なお、図1では正極ポンプ8が正極入口路11に介装されているが、正極ポンプ8の位置は不問である。例えば、正極ポンプ8を正極出口路12に介装させてもよいし、正極タンク6に内蔵させてもよい。
同様に、負極セル2と負極タンク7との間は、負極入口路13及び負極出口路14の二通路で接続される。負極入口路13は負極セル2に流入する負極電解液の通路であり、負極出口路14は負極セル2から流出する負極電解液の通路である。負極電解液は、負極入口路13,負極セル2,負極出口路14,負極タンク7の順に循環する。負極ポンプ9の位置は負極入口路13上でなくてもよい。例えば、負極ポンプ9を負極出口路14に介装させてもよいし、負極タンク7に内蔵させてもよい。
正極入口路11と正極セル1との接続箇所の近傍には、正極入口センサー15が取り付けられる。正極入口センサー15は、正極セル1に流入する正極電解液の入口溶液SOCを計測するためのセンサーである。本実施形態の正極入口センサー15は、正極電解液の入口溶液SOCと相関を持つパラメーターを検出する。ここでいう入口溶液SOCとは、正極セル1に流入する正極電解液の活物質イオン濃度や活量(活動濃度)に相当するパラメーターであり、正極セル1の入口付近における溶液SOCを意味する。本実施形態の溶液SOCは、以下の式で定義される。
Figure 2020068145
例えば、具体例Aの正極4で充電時に生成される活物質イオンは、S4 2-イオン(多硫黄イオン)である。したがって、具体例Aにおける正極セル1の入口溶液SOCは、満充電時を基準としたS4 2-イオン濃度の百分率として表現される。同様に、具体例Dの入口溶液SOCは、満充電時を基準としたVO2 +イオン濃度(V5+イオン濃度)の百分率として表現される。また、具体例Iの入口溶液SOCは、満充電時を基準としたFe3+イオン濃度の百分率として表現される。
正極出口路12と正極セル1との接続箇所の近傍には、正極出口センサー16が取り付けられる。正極出口センサー16は、正極セル1から流出する正極電解液の出口溶液SOCを計測するためのセンサーである。本実施形態の正極出口センサー16は、正極電解液の出口溶液SOCと相関を持つパラメーターを検出する。ここでいう出口溶液SOCとは、正極セル1から流出する正極電解液の活物質イオン濃度に相当するパラメーターであり、正極セル1の出口付近における溶液SOCを意味する。一般に、放電時には出口溶液SOCが入口溶液SOCよりも低下し、充電時には出口溶液SOCが入口溶液SOCよりも上昇する。
このとき、充放電反応の反応性(言い換えれば、反応速度や反応の激しさ)は、入口溶液SOCと出口溶液SOCとの差や比の大きさに反映される。したがって、入口溶液SOC及び出口溶液SOCの双方を参照することで、充放電の反応性が良好であるか否か(電解液の流量に見合った十分な速度で充放電反応が進行しているか否か、あるいは、充放電の反応性の大小を踏まえて電解液の流量が適切といえるか否か)を精度よく把握できる。
負極セル2側にも同様のセンサーが設けられる。すなわち、負極入口路13と負極セル2との接続箇所の近傍には負極入口センサー17が取り付けられ、負極出口路14と負極セル2との接続箇所の近傍には負極出口センサー18が取り付けられる。負極入口センサー17は、負極セル2に流入する負極電解液の入口溶液SOC(負極セル2に流入する負極電解液の活物質イオン濃度に相当するパラメーター)を計測するためのセンサーである。また、負極出口センサー18は、負極セル2から流出する負極電解液の出口溶液SOC(負極セル2から流出する負極電解液の活物質イオン濃度に相当するパラメーター)を計測するためのセンサーである。
活物質イオンの濃度を計測するための手法としては、電解液の光学的物性値に基づく手法(光学的手法)と、電解液の電気的物性値に基づく手法(電気的手法)との二通りが挙げられる。これらの手法は互いに独立して実施することが可能であり、いずれか一方のみを実施してもよいし、双方の手法を併用してもよい。また、二つの手法を併用する場合に、信頼性の高いいずれか一方の結果を用いることとしてもよいし、二つの結果から平均値や推定値を求めてもよい。
図2に示すように、光学的手法を採用する場合の装置構成には、各センサー15〜18に光源31とフォトダイオード32(測定器)とが含まれる。光源31は、電解液に光(電磁波)を照射するものであり、フォトダイオード32は、電解液による光の吸収率や反射率といった光学的物性値を測定する測定器である。光源31から照射される光の波長やスペクトラムは、電解液に含まれる活物質イオンの種類に応じて適宜設定される。また、フォトダイオード32が検出可能な光の波長範囲は、光源31から照射される光の波長に応じて設定される。
例えば、具体例Aの正極4で充電時に生成されるS4 2-イオンは、波長が320[nm]付近の紫外線を吸収する特性を持つ。そこで、波長が320[nm]付近の紫外線を光源31から所定の強度で照射し、フォトダイオード32に入射する紫外線の強度がどの程度低下しているのかを計測する。これにより、電解液に含まれるS4 2-イオンで吸収された紫外線量や紫外線吸収率(光吸収率)を推定できる。
また、光吸収率と溶液SOCとの対応関係をあらかじめ把握しておくことで、光吸収率に対応する溶液SOCの値を算出できる。光吸収率と溶液SOCとの対応関係は、図3に示すように、光吸収率が増加するほど溶液SOCが上昇するような相関関係を数式,マップ,テーブルなどの形式で制御装置20に記憶させておけばよい。なお、S4 2-イオンの紫外線吸収特性については、B. S. Kim et al., “Journal of the Electrochemical Society”, 140 (1993), 115を参照されたい。
また、硫酸バナジウム水溶液の色は、その水溶液に含まれるバナジウムイオンの価数に応じて、幅広い波長域内で変色する(紫,青,緑,黄色などになる)ことが知られている。そこで、具体例Dの正極4において光源31から自然光に近い波長帯の光を照射し、フォトダイオード32で光のスペクトラムを計測する。これにより、電解液に含まれるバナジウムイオンで吸収された光の量や光吸収率を推定でき、溶液SOCの値を算出できる。
図4に示すように、電気的手法を採用する場合の装置構成には、各センサー15〜18に流路部33,基準極部34,分離膜35,流路電極36,基準電極37,電圧センサー38が含まれる。流路部33は、電解液が導入されて通過する部屋である。流路部33の内部には流路電極36が配置される。一方、基準極部34は、電位の基準点を与える基準電極37(例えば、標準水素電極)が内蔵される部屋である。流路部33及び基準極部34は分離膜35で区画される。
電圧センサー38は、流路電極36と基準電極37との間の電圧(溶液電圧)を計測するセンサー(第二計測器)である。ここで計測される正極溶液電圧は、以下に示すネルンストの式に従い、活物質イオンの溶液SOC(活物質イオンの活量)に応じた値となる。この式中のVは溶液電圧、V0は溶液SOCが50[%]のときの溶液電圧、Rは気体定数、Fはファラデー定数、Tは絶対温度である。なお、負極溶液電圧は、数6に示すように、右辺第2項が異なる。
Figure 2020068145
Figure 2020068145
したがって、溶液電圧と溶液SOCとの対応関係をあらかじめ把握しておくことで、溶液電圧に対応する溶液SOCの値を算出できる。溶液電圧と溶液SOCとの対応関係は、図5(A),(B)に示すようなマップ,テーブル,数式などの形式で制御装置20に記憶させておけばよい。なお、図5(A)は正極セル1での推定時に用いられる対応関係を表している。ここでは、溶液電圧が所定電圧(正の値)よりも高い範囲において、溶液電圧が上昇するほど溶液SOCが上昇する特性が定められる。反対に、図5(B)は負極セル2での推定時に用いられる対応関係を表している。ここでは、溶液電圧が第二所定電圧(負の値)よりも低い範囲において、溶液電圧が低下するほど溶液SOCが上昇する特性が定められる。所定電圧や第二所定電圧の値は、電解液に含まれる活物質の種類に応じた値である。
上記の正極入口センサー15,正極出口センサー16,負極入口センサー17,負極出口センサー18で計測された溶液SOCの情報は、制御装置20に随時伝達される。制御装置20は、正極ポンプ8,負極ポンプの各回転数を制御することで、正極セル1,負極セル2のそれぞれに流入する電解液の流量(単位時間あたりの供給量)を適正化するためのコンピューターである。この制御装置20には、プロセッサー(中央処理装置),メモリ(メインメモリ),記憶装置(ストレージ),インタフェース装置などが内蔵され、これらが内部バスを介して互いに接続されている。
プロセッサは、制御ユニット(制御回路)や演算ユニット(演算回路),キャッシュメモリ(レジスタ群)などを内蔵する中央処理装置である。また、メモリは、プログラムや作業中のデータが格納される記憶装置であり、例えばROM(Read Only Memory),RAM(Random Access Memory)がこれに含まれる。補助記憶装置は、メモリよりも長期的に保持されるデータやファームウェアが格納されるメモリ装置であり、例えばフラッシュメモリやEEPROMなどの不揮発性メモリがこれに含まれる。
また、インタフェース装置は、制御装置20と外部との間の入出力(Input and Output;I/O)を司るものである。制御装置20は、インタフェース装置を介して、記録媒体ドライブ(光ディスクドライブ),記憶装置(SSD),表示装置(ディスプレイ),入力装置(タッチパネル),通信装置などに接続される。なお、制御装置20には公知のハードウェア構成を適用することが可能である。例えば、制御装置20の機能をバッテリーECU,モーターECU,EV-ECU(電気自動車ECU),PHEV-ECU(ハイブリッド自動車ECU)といった公知のECU(Electronic Control Unit)に実行させてもよい。
[2.制御]
図1に示すように、制御装置20には算出部21,第二算出部22,制御部23が設けられる。これらの要素は、制御装置20での制御内容を便器的に分類して示したものであり、個々の要素を独立したプログラムとして記述してもよいし、二つの機能を兼ね備えた複合プログラムとして記述してもよい。なお、算出部21及び第二算出部22は、各センサー15〜18の二通りの計測手法に対応するために設けられたものであり、いずれか一方を省略することが可能である。
算出部21は、上記の正極入口センサー15,正極出口センサー16,負極入口センサー17,負極出口センサー18で計測された情報に基づいて、入口溶液SOCと出口溶液SOCとを算出する機能を持つ。ここでは、正極セル1及び負極セル2のそれぞれについて、入口溶液SOCと出口溶液SOCとが個別に算出される。また、算出部21には、各センサー15〜18で計測される光学的物性値(例えば光吸収率)と溶液SOCとの対応関係が記録,設定されているものとする。例えば、図3に示すような対応関係があらかじめ保存される。この対応関係は、正極セル1と負極セル2とのそれぞれについて、個別に用意される。
第二算出部22は、算出部21と同様に、各センサー15〜18で計測された溶液SOCの情報に基づいて、入口溶液SOCと出口溶液SOCとを算出する機能を持つ。ここでも、正極セル1及び負極セル2のそれぞれについて、入口溶液SOCと出口溶液SOCとが個別に算出される。算出部21が光学的物性値に基づく溶液SOCの推定を実施するのに対し、第二算出部22は、電気的物性値に基づく溶液SOCの推定を実施する。つまり、第二算出部22には、各センサー15〜18で計測される電気的物性値(例えば電圧)と溶液SOCとの対応関係が記録,設定されている。例えば、図5(A),(B)に示すような対応関係があらかじめ保存される。
制御部23は、正極ポンプ8,負極ポンプ9の回転数を調節することで、正極電解液,負極電解液の流量を制御する機能を持つ。正極ポンプ8の作動状態は、正極電解液の入口溶液SOC及び出口溶液SOCに基づいて制御される。一方、負極ポンプ9の作動状態は、負極電解液の入口溶液SOC及び出口溶液SOCに基づいて制御される。このように、正極セル1の流量制御と負極セル2の流量制御とは、互いに独立している。
本実施形態の制御部23は、以下に示す四つの機能を持つ。
機能1. 入口溶液SOCと出口溶液SOCとの差A(または比B)を算出する
機能2. 差Aの絶対値が小さい(比Bが1に近い)場合、電解液の流量を減少させる
機能3. 差Aの絶対値が大きい(比Bが1から遠い)場合、目標出口溶液SOCを設定する
機能4. 出口溶液SOCが目標出口溶液SOCになるようにフィードバック制御する
機能1に関して、制御部23は入口溶液SOCと出口溶液SOCとの差A、または、入口溶液SOCに対する出口溶液SOCの比Bを算出する。差Aは出口溶液SOCから入口溶液SOCを減じることで算出され、比Bは出口溶液SOCを入口溶液SOCで除することで算出される。充電時において、差Aは正の値となり、比Bは1よりも大きな値となる。また、充電反応性が高いほど、差Aの絶対値が大きくなり、比Bが1から遠くなる(すなわち、比Bと1との差の絶対値が大きくなる)。一方、放電時において、差Aは負の値となり、比Bは正の範囲内で1よりも小さな値となる。また、放電反応性が高いほど、差Aの絶対値が大きくなり、比Bが1から遠くなる(すなわち、比Bと1との差の絶対値が大きくなる)。
機能2に関して、制御部23は各セル1,2内での充放電の反応性が低い場合に、電解液の流量を減少させることでしっかりと充放電反応をさせる制御を実施する。すなわち、差Aの絶対値が所定値A0未満である場合か、比Bが1に近い値である場合(比Bと1との差の絶対値が第二所定値B0未満である場合)に、正極ポンプ8,負極ポンプ9の回転数を低下させて、電解液の流量を減少させる。これにより、正極4,負極5の近傍に電解質イオンが長時間とどまりやすくなり、充放電の反応性が改善される。
機能3,4に関して、制御部23は各セル1,2内での充放電の反応性が高い場合に、電解液の流量を最適化するためのフィードバック制御を実施する。すなわち、入口溶液SOCに基づいて出口溶液SOCの目標値である目標出口溶液SOCを設定するとともに、出口溶液SOCが目標出口溶液SOCに一致するように電解液の流量を制御する。目標出口溶液SOCは、充放電状態と入口溶液SOCとに応じて設定される。
本実施形態における入口溶液SOCと目標出口溶液SOCとの関係を、図6に例示する。まず、充電時の目標出口溶液SOCは、入口溶液SOCよりも高い値に(図6中の破線よりも上の範囲内で)設定される。一方、放電時の目標出口溶液SOCは、入口溶液SOCよりも低い値に(図6中の破線よりも下の範囲内で)設定される。いずれの場合においても、入口溶液SOCが高いほど目標出口溶液SOCが高く設定され、入口溶液SOCが低いほど目標出口溶液SOCが低く設定される。このように、出口溶液SOCの最適値は入口溶液SOCに応じて変化する。
また、目標出口溶液SOCは、図6に示す下限値X1から上限値X2までの範囲内で設定される。下限値X1は0[%]よりも大きい値とし、上限値X2は100[%]よりも小さい値とする。これは、下限値X1を0[%]に設定してしまうと、放電時の電解液の流量が過剰なのか適切なのかを判断できなくなるからである。同様に、上限値X2を100[%]に設定してしまうと、充電時の電解液の流量が過小なのか適切なのかを判断できなくなる。したがって、放電時における目標出口溶液SOCは、0[%]よりも大きい範囲で入口溶液SOCが低いほど低く設定する。また、充電時における目標出口溶液SOCは、100[%]よりも小さい範囲で入口溶液SOCが高いほど高く設定する。
[3.フローチャート]
図7は、制御装置20による制御の流れを説明するためのフローチャートである。ここでは、各センサー15〜18が光学的手法を用いて活物質イオンの濃度を計測する場合の制御例を示している。すなわち、各センサー15〜18のフォトダイオード32が電解液の光吸収度を測定し(ステップA1)、その測定情報を制御装置20の算出部21に伝達する。これを受けて算出部21は、入口溶液SOCと出口溶液SOCとを算出する(ステップA2)。
正極セル1の入口溶液SOCは、正極入口センサー15で測定された光吸収率に基づいて算出され、出口溶液SOCは、正極出口センサー16で測定された光吸収率に基づいて算出される。また、負極セル2の入口溶液SOCは負極入口センサー17で測定された光吸収率に基づいて算出され、負極セル2の出口溶液SOCは、負極出口センサー18で測定された光吸収率に基づいて算出される。
制御部23は、正極セル1及び負極セル2のそれぞれについて、 入口溶液SOCと出口溶液SOCとの差Aを算出し(ステップA3)、その絶対値|A|が所定値A0未満であるか否かを判定する(ステップA4)。ここで、|A|<A0である場合には充放電の反応性が低いものと判断し、電解液の流量を減少させる(ステップA5)。このとき、|A|<A0であるセルが正極セル1ならば正極ポンプ8の回転数を低下させ、負極セル2ならば負極ポンプ9の回転数を低下させる。これにより、正極4,負極5の近傍に活物質イオンが長時間とどまりやすくなり、充放電の反応性が改善される。なお、正極ポンプ8の回転数,負極ポンプ9の回転数は個別に制御されうるものであって、必ずしも一致させる必要はない。
ステップA4の条件が不成立の場合にはステップA6に進み、放電中であるか否かを判定する。ここで放電中であれば、制御部23が入口溶液SOCに基づいて放電時の目標出口溶液SOCを設定する(ステップA7)。また、出口溶液SOCと目標出口溶液SOCとの大小関係を比較し(ステップA8)、出口溶液SOCが目標出口溶液SOCよりも低い場合には、過剰に放電されていると判断して電解液の流量を増加させる(ステップA9)。反対に、出口溶液SOCが目標出口溶液SOC以上の場合には、放電が過小であると判断して電解液の流量を減少させる(ステップA10)。このような制御により、放電時における正極ポンプ8,負極ポンプ9のそれぞれの回転数が適正化され、電力ロスが削減されるとともに放電効率が最適化される。
ステップA6で充電中ならば、制御部23が入口溶液SOCに基づいて充電時の目標出口溶液SOCを設定する(ステップA11)。また、出口溶液SOCと目標出口溶液SOCとの大小関係を比較し(ステップA12)、出口溶液SOCが目標出口溶液SOCを超える場合には、過剰に充電されていると判断して電解液の流量を増加させる(ステップA13)。反対に、出口溶液SOCが目標出口溶液SOC以下の場合には、充電が過小であると判断して電解液の流量を減少させる(ステップA14)。このような制御により、充電時における正極ポンプ8,負極ポンプ9のそれぞれの回転数が適正化され、電力ロスが削減されるとともに充電効率が最適化される。
[4.作用・効果]
(1)上記のレドックスフロー電池10の制御装置20では、算出部21で各セル1,2の入口溶液SOCと出口溶液SOCとが算出される。また、制御部23では、入口溶液SOCと出口溶液SOCとに基づいて電解液の流量が制御される。このような制御を実施することで、活物質の反応速度(酸化還元反応の速度)が適正化される流量になるように、電解液の供給量を調節することができ、ポンプ8,9の駆動にかかる電力ロスを削減することができる。これにより、レドックスフロー電池10の充放電効率を向上させることができる。
(2)図2に示すように、電解液に光源31の光を照射することで光学的物性値を測定することで、入口溶液SOC及び前記出口溶液SOCを精度よく求めることができ、活物質の反応速度の制御精度を向上させることができる。これにより、電力ロスの削減効率を高めることができ、レドックスフロー電池10の充放電効率をさらに高めることができる。
(3)また、光源31から紫外線を照射して、電解液の紫外線吸収率を測定することで、S4 2-イオンの存在量(多硫黄イオン濃度,S4 2-イオン濃度)を精度よく求めることができる。つまり、活物質としての硫黄を含むレドックスフロー電池10において、入口溶液SOC及び前記出口溶液SOCを精度よく求めることができる。したがって、電力ロスの削減効率を高めることができ、充放電効率をさらに高めることができる。
(4)図4に示すように、基準電極に対する電解液の電圧を計測することで、入口溶液SOC及び出口溶液SOCを容易に求めることができる。活物質イオンの濃度推定に際し、光吸収率の測定ができない場合であっても、入口溶液SOCと出口溶液SOCとを求めることができる。したがって、電力ロスの削減効率を高めることができ、充放電効率をさらに高めることができる。
(5)上記の制御装置20では、入口溶液SOCと出口溶液SOCとの差Aの絶対値が所定値A0未満であるか、入口溶液SOCに対する出口溶液SOCの比Bと1との差の絶対値(すなわち|B-1|)が第二所定値B0未満である場合に、電解液の流量を減少させている。このような制御により、正極4,負極5の近傍に活物質イオンを長時間にわたってとどまらせることができ、充放電の反応性を改善させてしっかりと充放電反応を行わせることができる。
(6)また、入口溶液SOCに基づいて目標出口溶液SOCを設定し、出口溶液SOCが目標出口溶液SOCになるようにフィードバック制御することで、正極4や負極5での活物質の反応速度を常に適正化することができる。例えば、入口溶液SOCが変動したとしても、均一な充放電効率を維持することができる。また、フィードバック制御によって電解液の流量が最適化されることから、電力ロスの削減を適切に継続させることができる。
(7)図6に示すように、放電時における目標出口溶液SOCは、入口溶液SOCが低いほど低く、0[%]よりも大きい範囲(0[%]を含まない範囲)で入口溶液SOCよりも低く設定される。これにより、放電時の電解液の流量が過剰なのか適切なのかを判断することが可能となる。したがって、電力ロスの削減効率を高めることができ、放電効率を向上させることができる。
(8)同様に、充電時における目標出口溶液SOCは、入口溶液SOCが高いほど高く、100[%]よりも小さい範囲(100[%]を含まない範囲)で入口溶液SOCよりも高く設定される。これにより、充電時の電解液の流量が過小なのか適切なのかを判断することが可能となる。したがって、電力ロスの削減効率を高めることができ、充電効率を向上させることができる。
(9)上記の制御装置20では、正極セル1及び負極セル2の各々について、入口溶液SOCと出口溶液SOCとが算出される。正極電解液の流量は、正極電解液の入口溶液SOC及び出口溶液SOCに基づいて制御される。一方、負極電解液の流量は、負極電解液の入口溶液SOC及び出口溶液SOCに基づいて制御される。このように、正極セル1側の制御と負極セル2側の制御とを独立させることで、充放電反応の種類や反応速度が相違する場合であっても、適切に両極の電解液流量を適正化することができる。したがって、レドックスフロー電池10の全体的な(トータルの)電力ロスを削減することができ、充放電効率を向上させることができる。
[5.変形例]
上記の実施形態はあくまでも例示に過ぎず、本実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
上述の実施形態では、各ポンプ8,9の回転数を調節することで正極電解液,負極電解液の流量を適正化しているが、制御対象となる装置は正極ポンプ8や負極ポンプ9に限定されない。例えば、正極入口路11や正極出口路12に流量制御弁を介装させ、そのバルブ開度を調節することで流量を増減させてもよい。少なくとも、電解液の流量を増減させるように機能する装置は、制御装置20の制御対象となりうる。
1 正極セル
2 負極セル
3 セパレーター
4 正極
5 負極
6 正極タンク
7 負極タンク
8 正極ポンプ
9 負極ポンプ
10 レドックスフロー電池
11 正極入口路
12 正極出口路
13 負極入口路
14 負極出口路
15 正極入口センサー
16 正極出口センサー
17 負極入口センサー
18 負極出口センサー
19 車両
20 制御装置
21 算出部
22 第二算出部
23 制御部
31 光源
32 フォトダイオード(測定器)
33 流路部
34 基準極部
35 分離膜
36 流路電極
37 基準電極
38 電圧センサー(第二計測器)

Claims (9)

  1. レドックスフロー電池のセルに供給される電解液の流量を制御する制御装置であって、
    前記セルに流入する電解液の活物質イオン濃度に相当する入口溶液SOC、及び、前記セルから流出する電解液の活物質イオン濃度に相当する出口溶液SOCを算出する算出部と、
    前記入口溶液SOC及び前記出口溶液SOCに基づき、前記電解液の流量を制御する制御部と
    を備えることを特徴とする、レドックスフロー電池の制御装置。
  2. 前記電解液に光を照射する光源と、
    前記光に対する前記電解液の光学的物性値を測定する測定器とを備え、
    前記算出部が、前記光学的物性値に基づいて前記入口溶液SOC及び前記出口溶液SOCを算出する
    ことを特徴とする、請求項1記載のレドックスフロー電池の制御装置。
  3. 前記測定器が、前記電解液の紫外線吸収率を測定し、
    前記算出部が、前記紫外線吸収率に対応する前記入口溶液SOC及び前記出口溶液SOCを算出する
    ことを特徴とする、請求項2記載のレドックスフロー電池の制御装置。
  4. 基準電極に対する前記電解液の電圧を計測する第二計測器と、
    前記電圧に基づいて前記入口溶液SOC及び前記出口溶液SOCを算出する第二算出部とを備える
    ことを特徴とする、請求項1記載のレドックスフロー電池の制御装置。
  5. 前記制御部が、前記入口溶液SOCと前記出口溶液SOCとの差の絶対値が所定値未満である場合、または、前記入口溶液SOCに対する前記出口溶液SOCの比と1との差の絶対値が第二所定値未満である場合に、前記電解液の流量を減少させる
    ことを特徴とする、請求項1〜4のいずれか1項に記載のレドックスフロー電池の制御装置。
  6. 前記制御部が、前記入口溶液SOCに基づいて前記出口溶液SOCの目標値である目標出口溶液SOCを設定するとともに、前記出口溶液SOCが前記目標出口溶液SOCに一致するように前記電解液の流量を制御する
    ことを特徴とする、請求項1〜5のいずれか1項に記載のレドックスフロー電池の制御装置。
  7. 前記制御部が、放電時における前記入口溶液SOCが低いほど前記目標出口溶液SOCを0%よりも大きい範囲で前記入口溶液SOCよりも低く設定する
    ことを特徴とする、請求項6記載のレドックスフロー電池の制御装置。
  8. 前記制御部が、充電時における前記入口溶液SOCが高いほど前記目標出口溶液SOCを100%よりも小さい範囲で前記入口溶液SOCよりも高く設定する
    ことを特徴とする、請求項6または7記載のレドックスフロー電池の制御装置。
  9. 前記算出部が、正極セル及び負極セルの各々について前記入口溶液SOC及び前記出口溶液SOCを算出し、
    前記制御部が、前記正極セル及び前記負極セルの各々に対する前記電解液の流量を個別に制御する
    ことを特徴とする、請求項1〜8のいずれか1項に記載のレドックスフロー電池の制御装置。
JP2018201009A 2018-10-25 2018-10-25 レドックスフロー電池の制御装置 Pending JP2020068145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201009A JP2020068145A (ja) 2018-10-25 2018-10-25 レドックスフロー電池の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201009A JP2020068145A (ja) 2018-10-25 2018-10-25 レドックスフロー電池の制御装置

Publications (1)

Publication Number Publication Date
JP2020068145A true JP2020068145A (ja) 2020-04-30

Family

ID=70390502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201009A Pending JP2020068145A (ja) 2018-10-25 2018-10-25 レドックスフロー電池の制御装置

Country Status (1)

Country Link
JP (1) JP2020068145A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012786A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177366U (ja) * 1985-04-22 1986-11-05
JPH07192748A (ja) * 1993-12-24 1995-07-28 Agency Of Ind Science & Technol 電解液流通型電池
WO2015122390A1 (ja) * 2014-02-17 2015-08-20 住友電気工業株式会社 レドックスフロー電池システム、及びレドックスフロー電池の運転方法
JP2016503943A (ja) * 2012-12-14 2016-02-08 ハイドラレドックス テクノロジーズ ホールディングス リミテッド レドックス・フロー・バッテリ・システム及びそれを制御する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177366U (ja) * 1985-04-22 1986-11-05
JPH07192748A (ja) * 1993-12-24 1995-07-28 Agency Of Ind Science & Technol 電解液流通型電池
JP2016503943A (ja) * 2012-12-14 2016-02-08 ハイドラレドックス テクノロジーズ ホールディングス リミテッド レドックス・フロー・バッテリ・システム及びそれを制御する方法
WO2015122390A1 (ja) * 2014-02-17 2015-08-20 住友電気工業株式会社 レドックスフロー電池システム、及びレドックスフロー電池の運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012786A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池

Similar Documents

Publication Publication Date Title
JP6399361B2 (ja) レドックスフロー電池システム、及びレドックスフロー電池の運転方法
JP4905182B2 (ja) 燃料電池システム
US20190267648A1 (en) Determining the state of charge of an all-vanadium redox flow battery using uv/vis measurement
US8883333B2 (en) Flow and SOC determination using pump measurements
US20140272653A1 (en) Flow Battery System and Method of SOC Determination
US7318971B2 (en) Fuel cell system utilizing control of operating current to adjust moisture content within fuel cell
KR20150036610A (ko) 연료 전지 및 에너지 저장 시스템을 포함하는 자동차 구동 유닛
US20150207159A1 (en) Fuel cell system and control method thereof
JP6394779B2 (ja) 燃料電池の状態検出装置及び状態検出方法
JP2006147374A (ja) バナジウムレドックスフロー電池システムの運転方法
CN105190976B (zh) 燃料电池系统以及燃料电池系统的控制方法
JP2022166622A (ja) レドックスフロー電池およびレドックスフロー電池の制御方法
JPS6070672A (ja) レドツクス・フロ−型二次電池の運転方法
JP3193991B2 (ja) 電解液流通型電池
Wang et al. Lifetime simulation of rechargeable zinc-air battery based on electrode aging
JP2020068145A (ja) レドックスフロー電池の制御装置
JP5857454B2 (ja) 燃料電池システム
EP3214683B1 (en) Fuel cell state estimation device, state estimation method, and fuel cell system
JP7248029B2 (ja) レドックスフロー電池システム
US8179140B2 (en) Method of estimating solid phase potential
JP5672639B2 (ja) 燃料電池システム及びその運転方法
JP2020187939A (ja) レドックスフロー電池システム、及びレドックスフロー電池の運転方法
KR20200122463A (ko) 연료전지의 운전 제어방법 및 제어시스템
JP2006164740A (ja) 燃料電池システムの制御装置
KR20160024499A (ko) 플로우 배터리의 잔존 용량 측정 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230124