JP2020066541A - Method of producing fertilizing slag using as raw material digestive sludge containing phosphorus or burned ash thereof, operation method of melting furnace, and melting facility - Google Patents

Method of producing fertilizing slag using as raw material digestive sludge containing phosphorus or burned ash thereof, operation method of melting furnace, and melting facility Download PDF

Info

Publication number
JP2020066541A
JP2020066541A JP2018198979A JP2018198979A JP2020066541A JP 2020066541 A JP2020066541 A JP 2020066541A JP 2018198979 A JP2018198979 A JP 2018198979A JP 2018198979 A JP2018198979 A JP 2018198979A JP 2020066541 A JP2020066541 A JP 2020066541A
Authority
JP
Japan
Prior art keywords
slag
auxiliary agent
melting
sludge
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018198979A
Other languages
Japanese (ja)
Other versions
JP7154942B2 (en
Inventor
正治 岡田
Masaharu Okada
正治 岡田
倉田 雅人
Masahito Kurata
雅人 倉田
上林 史朗
Shiro Kamibayashi
史朗 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018198979A priority Critical patent/JP7154942B2/en
Publication of JP2020066541A publication Critical patent/JP2020066541A/en
Application granted granted Critical
Publication of JP7154942B2 publication Critical patent/JP7154942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

To provide a method of producing fertilizing slag suitable for digestive sludge or its burned ash, a phosphorus content of which is low.SOLUTION: A method of producing a fertilizing slag using digestive sludge containing phosphorous or its burned ash as a raw material includes: a magnesium-based auxiliary agent adding step of adding a magnesium-based auxiliary agent to the digestive sludge or its burned ash; a melting step of subjecting, after the magnesium-based auxiliary agent adding step, the digestive sludge or its burned ash to melting processing under presence of the magnesium-based auxiliary agent; and a cooling step of cooling the molten slag in the melting step.SELECTED DRAWING: Figure 1

Description

本発明は、リンが含まれる消化汚泥またはその焼却灰を原料とする肥効性スラグの製造方法、溶融炉の運転方法及び溶融設備に関する。   The present invention relates to a method for producing a fertilizing slag using a digested sludge containing phosphorus or its incinerated ash as a raw material, a method for operating a melting furnace, and a melting facility.

農業や食品に関わるリン資源として56万t・P/年を輸入に頼っており、そのうち5.5万t‐P/年ものリンが農耕・家畜・食糧を経由して下水道に流入している。下水道に流入したリンはその1割程度しか農業利用されておらず、下水中のリンの再資源化が早急に求められている。   We rely on imports of 560,000 t-P / year as phosphorus resources related to agriculture and food, of which 55,000 t-P / year of phosphorus flows into the sewers through agriculture, livestock, and food. . Only about 10% of the phosphorus that flows into the sewer is used for agriculture, and there is an urgent need to recycle the phosphorus in the sewage.

下水道処理で発生する下水汚泥にはリンが高濃度に濃縮され、特に汚泥処理方法のひとつである溶融処理で得られるスラグには、溶融処理過程でカドミウムや鉛などの有害金属がほとんど揮散し、かつ、リン鉱石に近い濃度まで濃縮されるため、肥料原料としてリンを回収する方法の一つとして期待されている。   Phosphorus is concentrated to a high concentration in the sewage sludge generated in the sewage treatment, and particularly in the slag obtained by the melting treatment which is one of the sludge treatment methods, most harmful metals such as cadmium and lead are volatilized in the melting treatment process. Moreover, since it is concentrated to a concentration close to that of phosphate rock, it is expected as one of the methods for recovering phosphorus as a fertilizer raw material.

特許文献1には、前処理した溶融対象物を溶融炉において強還元雰囲気中で溶融スラグ化して、溶融対象物に含まれたリンをスラグ中もしくは溶融時に還元生成する金属中に固定化するリン固定化方法であって、前処理において、溶融処理温度で揮散するリンをリン化物として固定化する金属元素の濃度と、酸性酸化物を生成する酸性酸化物形成元素の濃度との比を調整指標比Rとし、調整指標比Rが所定の下限値以上となるように溶融対象物の成分調整を行なうことを特徴とするリン固定化方法が提案されている。   In Patent Document 1, the pretreated molten object is melted and slagged in a strong reducing atmosphere in a melting furnace, and the phosphorus contained in the molten object is immobilized in the slag or in the metal that is reduced and produced during melting. An immobilization method, wherein in the pretreatment, the ratio of the concentration of the metal element that immobilizes phosphorus that volatilizes at the melting treatment temperature as a phosphide and the concentration of the acidic oxide-forming element that produces an acidic oxide is an adjustment index There has been proposed a phosphorus immobilization method characterized in that the ratio R is adjusted and the components of the object to be melted are adjusted so that the adjustment index ratio R becomes equal to or higher than a predetermined lower limit value.

しかし、特許文献1に記載されたリン固定化方法は、リンを金属中に固定化する技術であり、得られたスラグをく溶性の肥料などにそのまま用いることができなかった。   However, the phosphorus immobilization method described in Patent Document 1 is a technique of immobilizing phosphorus in a metal, and thus the obtained slag cannot be used as it is for a soluble fertilizer.

特許文献2には、く溶性の肥料などに用いることを可能にすべく、リン含有汚泥を溶融炉に投入して溶融する溶融ステップと、溶融ステップで溶融生成されたスラグを冷却して固化する冷却ステップと、を含み、リン成分をスラグ中に捕捉するリン含有汚泥の溶融処理方法が提案されている。   In Patent Document 2, in order to make it possible to use it as a poorly soluble fertilizer or the like, a melting step in which phosphorus-containing sludge is put into a melting furnace to melt, and slag generated by melting in the melting step is cooled and solidified. A method for melting and treating phosphorus-containing sludge, which comprises a cooling step and captures phosphorus components in slag, has been proposed.

当該リン含有汚泥の溶融処理方法は、主に活性汚泥法や膜分離活性汚泥法により生物処理された下水汚泥を対象とする方法であり、リン含有物質に2価または3価の鉄化合物を添加する鉄化合物添加ステップを、汚泥の含水量を調整する前処理ステップまたはその前後に実行することにより、溶融ステップで、リン含有汚泥に含まれるリン成分の揮散を防止するとともに、リン成分のリン化鉄を含む金属リン化合物への移行を抑制しながらスラグに捕捉するように構成されている。   The phosphorus-containing sludge melting treatment method is a method mainly for sewage sludge biologically treated by an activated sludge method or a membrane separation activated sludge method, and a divalent or trivalent iron compound is added to a phosphorus-containing substance. By performing the iron compound addition step, which is performed before or after the pretreatment step for adjusting the water content of the sludge, in the melting step, the volatilization of the phosphorus component contained in the phosphorus-containing sludge is prevented, and the phosphorus component is phosphorylated. It is configured to be captured in slag while suppressing the transition to a metal phosphorus compound containing iron.

そして、鉄化合物添加ステップでは、鉄(Fe)量が乾燥物質換算量DS(Dry Solid)に対して1〜8wt%の範囲に入るように2価または3価の鉄化合物が添加されるとともに、鉄(Fe)リン(P)シリカ(Si)比(=Fe/(P+Si)[mol/mol])が0.2〜0.8の範囲に入るように鉄化合物が添加され、さらに、リン含有汚泥に塩基度調整剤を添加してリン含有汚泥の塩基度が0.2から1.0、好ましくは0.7±0.1の範囲に入るように調整する塩基度調整ステップが実行される。   Then, in the iron compound addition step, the divalent or trivalent iron compound is added so that the iron (Fe) amount falls within the range of 1 to 8 wt% with respect to the dry substance conversion amount DS (Dry Solid), Iron (Fe) Phosphorus (P) Silica (Si) ratio (= Fe / (P + Si) [mol / mol]) is added so that the iron compound is in the range of 0.2 to 0.8. A basicity adjusting step is performed in which a basicity adjusting agent is added to the sludge to adjust the basicity of the phosphorus-containing sludge to fall within the range of 0.2 to 1.0, preferably 0.7 ± 0.1. .

特開2001−29998号公報JP 2001-29998 A 特開2015−33691号公報JP, 2015-33691, A

しかし、上述した特許文献2に記載された従来技術は、主に活性汚泥法や膜分離活性汚泥法で生物処理されたリン含有量の高い下水汚泥を対象とするものであり、近年のエネルギー回収気運の高まりによって導入されつつある消化処理設備で嫌気性消化処理された消化汚泥は、活性汚泥法で処理された下水汚泥よりもシリカ成分の含有量が高く、かつ、リン含有量がそれほど高くはない消化汚泥に対して、そのまま従来技術を適用してもリンのく溶率が低く、スラグの溶流性が高まらないため、効率よく肥効性スラグを得ることができないという問題があった。   However, the prior art described in the above-mentioned Patent Document 2 is mainly directed to sewage sludge having a high phosphorus content that has been biologically treated by the activated sludge method or the membrane separation activated sludge method, and the energy recovery in recent years Digested sludge that has been anaerobically digested by the digestion treatment equipment that is being introduced due to increased energy has a higher silica content than sewage sludge treated by the activated sludge method, and the phosphorus content is not so high. Even if the conventional technology is applied to the undigested sludge as it is, the dissolution rate of phosphorus is low and the melt flowability of the slag does not increase, so that there is a problem that the fertilizing slag cannot be efficiently obtained.

本発明の目的は、上述した問題点に鑑み、リン含有率が低い消化汚泥またはその焼却灰に好適な肥効性スラグの製造方法、溶融炉の運転方法及び溶融設備を提供する点にある。   In view of the above problems, an object of the present invention is to provide a method for producing a fertilizing slag suitable for digested sludge having a low phosphorus content or incinerated ash thereof, a method for operating a melting furnace, and a melting facility.

上述の目的を達成するため、本発明による肥効性スラグの製造方法の第一の特徴構成は、特許請求の範囲の請求項1に記載した通り、リンが含まれる消化汚泥またはその焼却灰を原料とする肥効性スラグの製造方法であって、前記消化汚泥またはその焼却灰にマグネシウム系助剤を添加するマグネシウム系助剤添加ステップと、前記マグネシウム系助剤添加ステップの後に前記消化汚泥またはその焼却灰を前記マグネシウム系助剤の存在下で溶融処理する溶融ステップと、前記溶融ステップで溶融されたスラグを冷却する冷却ステップと、を含む点にある。   In order to achieve the above-mentioned object, the first characteristic constitution of the method for producing a fertilizing slag according to the present invention is, as described in claim 1 of the claims, a digested sludge containing phosphorus or its incinerated ash. A method for producing a fertilizing slag as a raw material, wherein the magnesium-based auxiliary agent adding step of adding a magnesium-based auxiliary agent to the digested sludge or its incinerated ash, and the digested sludge after the magnesium-based auxiliary agent addition step It is a point including a melting step of melting the incinerated ash in the presence of the magnesium-based auxiliary agent, and a cooling step of cooling the slag melted in the melting step.

本願発明者らによる鋭意研究の結果、マグネシウム系助剤添加ステップで消化汚泥またはその焼却灰にマグネシウム系助剤を添加することにより、溶融ステップで溶融されたスラグにリンの高いく溶性が発現するという新知見が得られた。このようにして得られたスラグはリン成分のみならずマグネシウム成分も含まれるので、く溶率の高い肥効性スラグとして有効に活用できるようになる。   As a result of earnest research by the inventors of the present application, by adding the magnesium-based auxiliary agent to the digested sludge or its incinerated ash in the magnesium-based auxiliary agent addition step, a high solubility of phosphorus is developed in the slag melted in the melting step. The new knowledge was obtained. Since the slag thus obtained contains not only the phosphorus component but also the magnesium component, it can be effectively utilized as a fertilizing slag with a high solubility.

同第二の特徴構成は、同請求項2に記載した通り、上述した第一の特徴構成に加えて、前記マグネシウム系助剤添加ステップで添加されるマグネシウム系助剤の添加量は、前記焼却灰に対して5〜20wt%の範囲に設定されている点にある。   The second characteristic configuration is, in addition to the first characteristic configuration described above, as described in claim 2, the addition amount of the magnesium-based auxiliary agent added in the magnesium-based auxiliary agent addition step is the incineration. It is in the range of 5 to 20 wt% with respect to ash.

マグネシウム系助剤の添加量は前記焼却灰に対して5〜20wt%の範囲であることにより、高いく溶率の肥効性スラグが得られるようになる。   When the amount of the magnesium-based auxiliary agent added is in the range of 5 to 20 wt% with respect to the incinerated ash, a fertilizing slag having a high dissolution rate can be obtained.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記消化汚泥またはその焼却灰にカルシウム系助剤を添加するカルシウム系助剤添加ステップをさらに含み、前記カルシウム系助剤添加ステップで添加されるカルシウム系助剤の添加量は、前記焼却灰に対して5〜20wt%の範囲に設定されている点にある。   The third characteristic constitution is, as described in claim 3, in addition to the second characteristic constitution described above, a calcium-based auxiliary agent adding step of adding a calcium-based auxiliary agent to the digested sludge or incinerated ash thereof. Further, the addition amount of the calcium-based auxiliary agent added in the calcium-based auxiliary agent addition step is set to a range of 5 to 20 wt% with respect to the incinerated ash.

前記焼却灰に対して5〜20wt%の範囲になるようにてカルシウム系助剤を塩基度調整助剤として添加することにより、シリカ成分の含有量が高い消化汚泥であっても効率的に溶融処理できるようになる。   By adding a calcium-based auxiliary agent as a basicity adjusting auxiliary agent so as to be in the range of 5 to 20 wt% with respect to the incinerated ash, even if the digested sludge having a high silica component content is efficiently melted. You will be able to process.

本発明による溶融炉の運転方法の特徴構成は、同請求項4に記載した通り、リンが含まれる消化汚泥またはその焼却灰を溶融する溶融炉の運転方法であって、予め前記消化汚泥またはその焼却灰にマグネシウム系助剤を前記焼却灰に対して5〜20wt%の範囲に入るように添加し、撹拌した後に前記溶融炉に投入して溶融する点にある。   The characteristic configuration of the operating method of the melting furnace according to the present invention is, as described in claim 4, a method of operating a melting furnace for melting digested sludge containing phosphorus or incinerated ash thereof, wherein the digested sludge or its The magnesium auxiliaries are added to the incineration ash so as to be in the range of 5 to 20 wt% with respect to the incineration ash, and the mixture is stirred and then put into the melting furnace to melt.

本発明による溶融設備の特徴構成は、同請求項5に記載した通り、上述した特徴構成を備えた溶融炉の運転方法が用いられる溶融設備であって、リンが含まれる消化汚泥またはその焼却灰を集積する集積装置と、燃焼器が配置された天井部の周囲に立設された内筒と、底部中央に出滓口が形成された有底の外筒とを共通軸心周りに配置し、前記外筒と前記内筒との間に形成された環状の蓄積部に投入された前記消化汚泥またはその焼却灰を、前記外筒と前記内筒の相対回転により前記内筒の下縁部から前記天井部の下部空間の主燃焼室に移動させて、その露出面を前記燃焼器の燃焼火炎により溶融し、前記出滓口から滴下排出された溶融スラグを冷却する水槽を備えて構成される回転式表面溶融炉と、前記集積装置から前記蓄積部に前記消化汚泥またはその焼却灰を搬送する搬送装置と、前記搬送装置により搬送される前記消化汚泥またはその焼却灰にマグネシウム系助剤を添加する助剤添加装置と、を備えている点にある。   The characteristic configuration of the melting facility according to the present invention is, as described in claim 5, a melting facility in which the method for operating a melting furnace having the above-described characteristic configuration is used, and the digested sludge containing phosphorus or its incinerated ash. A stacking device for stacking, a combustor-arranged inner cylinder erected around the ceiling, and a bottomed outer cylinder having a slag opening in the center of the bottom are arranged around a common axis. , The lower edge portion of the inner cylinder by the relative rotation of the outer cylinder and the inner cylinder, the digested sludge or its incinerated ash introduced into the annular accumulation portion formed between the outer cylinder and the inner cylinder, To the main combustion chamber of the lower space of the ceiling portion, the exposed surface is melted by the combustion flame of the combustor, and is provided with a water tank for cooling the molten slag dropped and discharged from the outlet. Rotary surface melting furnace, and the digester from the accumulator to the accumulator A conveying device for conveying mud or the ash lies in that and an auxiliary agent adding device of adding a magnesium-based additive to the digested sludge or ash is conveyed by the conveying device.

以上説明した通り、本発明によれば、リン含有率が低い消化汚泥またはその焼却灰に好適な肥効性スラグの製造方法、溶融炉の運転方法及び溶融設備を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a method for producing a fertilizing slag suitable for a digested sludge having a low phosphorus content or an incinerated ash thereof, a method for operating a melting furnace, and a melting facility. It was

本発明によるリン含有物質の溶融処理方法の説明図Explanatory drawing of the melting processing method of the phosphorus containing substance by this invention (a),(b)溶融炉の説明図(A), (b) Explanatory drawing of a melting furnace (a)〜(c)は溶流度試験方法の説明図(A)-(c) is explanatory drawing of the melt flow rate test method. 実験で用いた試料A及び資料Bの各汚泥焼却灰の組成説明図Composition explanatory diagram of each sludge incineration ash of sample A and material B used in the experiment (a)は成分調整された試料Aを基準に試料Bに対する汚泥スラグのく溶率の特性値を比較する説明図、(b)は汚泥の溶流性を表す写真(A) is an explanatory view comparing the characteristic values of the sludge slag dissolution rate with respect to the sample B based on the sample A having the adjusted components, and (b) is a photograph showing the sludge meltability. (a)は2%クエン酸溶液並びに蒸留水で処理した試料A汚泥のスラグ残渣を表す写真、(b)は蒸留水で処理した試料A汚泥のスラグ残渣の電子顕微鏡写真、(c)は2%クエン酸溶液で処理した試料A汚泥のスラグ残渣の電子顕微鏡写真(A) is a photograph showing the slag residue of sample A sludge treated with a 2% citric acid solution and distilled water, (b) is an electron micrograph of the slag residue of sample A sludge treated with distilled water, and (c) is 2 Micrograph of slag residue of sample A sludge treated with 10% citric acid solution (a)から(f)は2%クエン酸溶液並びに蒸留水で処理したスラグのEDS測定結果の説明図(A) to (f) are explanatory diagrams of EDS measurement results of slag treated with a 2% citric acid solution and distilled water. (a)は成分未調整の試料Bを基準に成分調整した試料Bに対する汚泥スラグのく溶率の特性値を比較する説明図、(b)は試料Bの汚泥焼却灰にMgOを加えた汚泥の溶流性を表す写真(A) is an explanatory diagram comparing the characteristic values of the dissolution rate of sludge slag with respect to sample B whose components have been adjusted with reference to sample B whose components have not been adjusted, and (b) is sludge obtained by adding MgO to the sludge incineration ash of sample B. A photograph showing the meltability of

以下、本発明によるリンが含まれる消化汚泥またはその焼却灰を原料とする肥効性スラグの製造方法、溶融炉の運転方法及び溶融設備の実施形態を説明する。   Embodiments of a method for producing a fertilizing slag using a digested sludge containing phosphorus or its incinerated ash as a raw material, a method for operating a melting furnace, and a melting facility according to the present invention will be described below.

図1には、リンが含まれる消化汚泥を原料とする肥効性スラグの製造方法が示されている。当該消化汚泥は、消化槽に投入された下水汚泥(初沈汚泥、余剰汚泥、またはそれらの混合物)中の有機物を嫌気条件下で微生物により消化処理して、汚泥を減量すると共にメタンガスを含む消化ガスに変換する消化処理設備から消化汚泥として取り出され、必要に応じて凝集剤が添加されて濃縮され、その後にスクリュープレスやフィルタプレス等の脱水機1で脱水処理されて貯留ピット2に貯留される。尚、この脱水処理で脱水汚泥の含水率は約70〜85%となる。   FIG. 1 shows a method for producing a fertilizing slag using a digested sludge containing phosphorus as a raw material. The digested sludge is a digestion process that reduces the amount of sludge and digests methane gas by digesting organic matter in sewage sludge (first settled sludge, surplus sludge, or a mixture thereof) put into a digestion tank under anaerobic conditions. It is taken out as digested sludge from the digestion treatment facility that converts it into gas, and is condensed with a flocculant if necessary, after which it is dehydrated by a dehydrator 1 such as a screw press or a filter press and stored in a storage pit 2. It The water content of the dehydrated sludge becomes about 70 to 85% by this dehydration treatment.

貯留ピット2に貯留された脱水汚泥は、蒸気式の乾燥機3に投入されて撹拌されながら乾燥処理されて乾燥汚泥となり、集積装置としてのホッパー4に貯留される。尚、この乾燥処理で乾燥汚泥の含水率は約20〜30%となる。   The dehydrated sludge stored in the storage pit 2 is put into a steam type dryer 3 and dried while being stirred to be dried sludge, which is stored in a hopper 4 as a stacking device. The water content of the dried sludge becomes about 20 to 30% by this drying treatment.

ホッパー4に貯留された乾燥汚泥は、助剤添加装置によりく溶性発現助剤として酸化マグネシウム(MgO)が添加されるとともに、必要に応じて塩基度調整剤として消石灰(Ca(OH))が添加された後に、スクリューコンベアなどの搬送装置によって溶融炉5に投入される。 The dried sludge stored in the hopper 4 was added with magnesium oxide (MgO) as a solubility developing aid by an auxiliary addition device, and slaked lime (Ca (OH) 2 ) was added as a basicity adjusting agent as needed. After being added, it is charged into the melting furnace 5 by a conveying device such as a screw conveyor.

酸化マグネシウム(MgO)を添加するステップが、マグネシウム系助剤を添加するマグネシウム系助剤添加ステップとなり、消石灰(Ca(OH))を添加するステップが、カルシウム系助剤添加ステップとなる。 The step of adding magnesium oxide (MgO) is the step of adding the magnesium-based auxiliary agent to add the magnesium-based auxiliary agent, and the step of adding the slaked lime (Ca (OH) 2 ) is the step of adding the calcium-based auxiliary agent.

マグネシウム系助剤添加ステップは、マグネシウム系助剤をく溶性発現助剤として機能させてく溶率を調整するく溶率調整ステップであり、カルシウム系助剤添加ステップは、カルシウム系助剤を塩基度調整助剤として機能させて塩基度を調整する塩基度調整ステップである。   The step of adding the magnesium-based auxiliary agent is a step of adjusting the solubility of the magnesium-based auxiliary agent to function as the solubility-enhancing agent, and the step of adding the calcium-based auxiliary agent is the step of adjusting the calcium-based auxiliary agent to the basicity. This is a basicity adjusting step of adjusting the basicity by causing it to function as an adjusting aid.

酸化マグネシウム(MgO)及び必要に応じて消石灰(Ca(OH))が添加された乾燥汚泥は、搬送装置を介して順次溶融炉5に投入されて溶融処理され、溶融炉5で溶融生成されたスラグは、その後冷却して固化される。溶融炉として表面式溶融炉、電気式溶融炉、旋回式溶融炉、コークスベッド炉等を用いることができ、特に旋回式溶融炉、表面式溶融炉を好適に用いることができる。本実施形態では表面式溶融炉に属する回転式表面溶融炉が用いられている。 The dried sludge, to which magnesium oxide (MgO) and slaked lime (Ca (OH) 2 ) have been added as required, is sequentially introduced into the melting furnace 5 via a conveying device, melt-processed, and melt-generated in the melting furnace 5. The slag is then cooled and solidified. As the melting furnace, a surface melting furnace, an electric melting furnace, a swirling melting furnace, a coke bed furnace and the like can be used, and particularly, a swirling melting furnace and a surface melting furnace can be preferably used. In this embodiment, a rotary surface melting furnace belonging to the surface melting furnace is used.

く溶性発現助剤として酸化マグネシウム(MgO)以外に、ドロマイト(CaMg(CO)、塩化マグネシウム(MgCl)などのマグネシウム系助剤を用いることができる。塩化マグネシウム(MgCl)を用いる場合には、塩素成分により低沸点の重金属が効果的に気化されるので、スラグへの重金属の混入率を効果的に低減させることができる。 In addition to magnesium oxide (MgO), magnesium-based auxiliaries such as dolomite (CaMg (CO 3 ) 2 ) and magnesium chloride (MgCl 2 ) can be used as the solubility enhancing aid. When magnesium chloride (MgCl 2 ) is used, the low boiling point heavy metal is effectively vaporized by the chlorine component, so that the mixing ratio of the heavy metal into the slag can be effectively reduced.

マグネシウム系助剤添加ステップで乾燥汚泥に添加されるマグネシウム系助剤の添加量は、汚泥の含水率による影響を排除して正確に調整するため、汚泥の乾燥物質換算量DS(Dry Solid)に対する添加量として規定されることが好ましい。さらに、汚泥の乾燥物質換算量DS(Dry Solid)には有機物が含まれるが、目的物であるスラグは無機物のみで構成されるため、無機物である焼却灰の重量にチャイする添加量として規定することがより好ましい。従って、以下、本実施形態では汚泥を焼却した際の焼却灰に対する添加量として説明する。

高いく溶率の肥効性スラグを得るため、マグネシウム系助剤添加ステップで添加されるマグネシウム系助剤の添加量は、汚泥を焼却した際の焼却灰に対して3〜20wt%の範囲に設定されることが好ましい。
In order to eliminate the influence of the water content of the sludge and adjust it accurately, the amount of the magnesium-based additive added to the dry sludge in the magnesium-based auxiliary addition step should be adjusted to the dry matter conversion amount DS (Dry Solid) of the sludge. It is preferable to define the amount to be added. Furthermore, although the dry matter conversion amount DS (Dry Solid) of sludge contains organic matter, since the target slag is composed only of inorganic matter, it is specified as the amount to be added to the weight of the incinerated ash that is inorganic matter. Is more preferable. Therefore, in the present embodiment, the amount added to the incinerated ash when the sludge is incinerated will be described below.

In order to obtain a fertilizing slag with a high dissolution rate, the addition amount of the magnesium-based auxiliary agent in the magnesium-based auxiliary agent addition step is in the range of 3 to 20 wt% with respect to the incinerated ash when the sludge is incinerated. It is preferably set.

塩基度調整助剤として機能するカルシウム系助剤として、消石灰(Ca(OH))以外に生石灰(CaO)や炭酸カルシウム(CaCO)などを用いることができる。
塩基度とは、(全塩基性スラグ成分の重量%の和)/(全酸性スラグ成分の重量%の和)で表され、簡易的に酸化カルシウムと二酸化珪素の比[CaO(%)/SiO(%)]で表される。塩基度が1に近づくと相対的に融点が低くなりスラグの流動性が高まる。塩基度調整助剤を添加することによって融点を降下させ、流動性を上昇させることができるようになる。
As the calcium-based auxiliary agent that functions as a basicity adjusting auxiliary agent, quick lime (CaO), calcium carbonate (CaCO 3 ) or the like can be used in addition to slaked lime (Ca (OH) 2 ).
The basicity is represented by (sum of weight% of all basic slag components) / (sum of weight% of all acidic slag components), and is simply the ratio of calcium oxide and silicon dioxide [CaO (%) / SiO. 2 (%)]. When the basicity approaches 1, the melting point becomes relatively low and the fluidity of the slag increases. By adding the basicity adjusting aid, the melting point can be lowered and the fluidity can be increased.

消化汚泥は、活性汚泥法で得られる下水汚泥と比較してSiO成分が多く、塩基度が1よりも小さな値となる。そこで、カルシウム系助剤を添加して塩基度を1に近づけることで融点を降下させることができる。 Compared with sewage sludge obtained by the activated sludge method, digested sludge has more SiO 2 components and a basicity of less than 1. Therefore, the melting point can be lowered by adding a calcium-based auxiliary agent to bring the basicity close to 1.

カルシウム系助剤添加ステップで添加されるカルシウム系助剤の添加量は、汚泥を焼却した際の焼却灰に対して5〜20wt%の範囲に設定されていることが好ましく、シリカ成分の含有量が高い消化汚泥であっても効率的に溶融処理できるようになる。   The addition amount of the calcium-based auxiliary agent added in the calcium-based auxiliary agent adding step is preferably set in the range of 5 to 20 wt% with respect to the incinerated ash when the sludge is incinerated, and the content of the silica component is Even if the digested sludge has a high level, it can be efficiently melted.

図2(a),(b)に示すように、回転式表面溶融炉5は、燃焼器51が配置された天井部52の周囲に立設された内筒53と、底部中央に出滓口54が形成された有底の外筒55とが共通軸心周りに配置され、外筒55を軸心周りに回転させる回転機構を備え、外筒55が内筒53に対して回転可能に構成されている。   As shown in FIGS. 2A and 2B, the rotary surface melting furnace 5 includes an inner cylinder 53 standing upright around a ceiling 52 where a combustor 51 is arranged, and a slag outlet at the center of the bottom. A bottomed outer cylinder 55 in which 54 is formed is arranged around a common axis, and a rotation mechanism that rotates the outer cylinder 55 around the axis is provided, and the outer cylinder 55 is configured to be rotatable with respect to the inner cylinder 53. Has been done.

燃焼器51は、燃料タンクから供給される燃料とブロワから供給される空気を混合して燃焼させるバーナで構成され、燃料の供給量を調整することによって溶融スラグの温度が1300℃前後になるように主燃焼室56の温度が調整される。   The combustor 51 is composed of a burner that mixes and burns the fuel supplied from the fuel tank and the air supplied from the blower, so that the temperature of the molten slag becomes about 1300 ° C. by adjusting the supply amount of the fuel. Then, the temperature of the main combustion chamber 56 is adjusted.

内筒53と外筒55の間に形成された環状の蓄積部57に投入された乾燥汚泥は、内筒53と外筒55の相対回転により内筒53の下縁部から主燃焼室56に供給される。汚泥の露出面が燃焼器51の燃焼火炎により溶融して、主燃焼室56の底面の中央部に形成された出滓口54から溶融スラグとして滴下排出される。出滓口24から滴下した溶融スラグは、下方に配置された水槽で急冷され水砕スラグとなる。   The dried sludge thrown into the annular accumulation portion 57 formed between the inner cylinder 53 and the outer cylinder 55 is transferred from the lower edge of the inner cylinder 53 to the main combustion chamber 56 by the relative rotation of the inner cylinder 53 and the outer cylinder 55. Supplied. The exposed surface of the sludge is melted by the combustion flame of the combustor 51, and is dropped and discharged as molten slag from the slag port 54 formed in the central portion of the bottom surface of the main combustion chamber 56. The molten slag dropped from the slag outlet 24 is rapidly cooled in a water tank arranged below to become granulated slag.

溶融炉5から排出された排ガスは、廃熱ボイラ6、乾式電気集塵機7、排煙処理塔8、湿式電気集塵機9を通して処理され、湿式電気集塵機9の返流水は水処理設備で浄化処理される。   Exhaust gas discharged from the melting furnace 5 is treated through a waste heat boiler 6, a dry type electrostatic precipitator 7, a smoke treatment tower 8, and a wet electrostatic precipitator 9, and return water of the wet electrostatic precipitator 9 is purified by a water treatment facility. .

つまり、回転式表面溶融炉5で溶融ステップが実行され、溶融ステップで溶融されたスラグを冷却して水砕スラグとして固化する冷却ステップが出滓口54の下方に配置された水槽で実行される。   That is, the melting step is executed in the rotary surface melting furnace 5, and the cooling step of cooling the slag melted in the melting step and solidifying it as water granulated slag is executed in the water tank arranged below the outlet 54. .

上述の説明では、ホッパー4に貯留された乾燥汚泥に、助剤添加装置を介してく溶性発現助剤として酸化マグネシウム(MgO)が添加されるとともに、必要に応じて塩基度調整剤として消石灰(Ca(OH))が添加された後に、スクリューコンベアなどの搬送装置によって溶融炉5に投入される例を説明したが、貯留ピット2からホッパー4に到る経路の何れかに助剤添加装置を備えてく溶性発現助剤及び塩基度調整剤を添加するように構成してもよい。 In the above description, magnesium oxide (MgO) is added to the dry sludge stored in the hopper 4 as a solubility developing aid through an auxiliary adding device, and slaked lime (Ca) as a basicity adjusting agent is added as necessary. Although the example in which (OH) 2 ) is added to the melting furnace 5 by a conveying device such as a screw conveyor has been described, an auxiliary agent adding device may be provided in any of the paths from the storage pit 2 to the hopper 4. You may comprise so that a solubility-developing aid and a basicity adjusting agent may be added.

上述の説明では、消化汚泥を原料とする肥効性スラグの製造方法について説明したが、当該肥効性スラグの製造方法に用いる原料は、消化汚泥以外に消化汚泥を焼却処理して得られる焼却灰を用いることも可能である。   In the above description, a method for producing a fertilizing slag using digested sludge as a raw material has been described, but the raw material used in the method for producing the fertilizing slag is incinerated by incinerating digested sludge in addition to digested sludge. It is also possible to use ash.

マグネシウム系助剤添加ステップで消化汚泥またはその焼却灰にマグネシウム系助剤をく溶性発現助剤として添加することにより、溶融ステップで溶融されたスラグにリンの高いく溶性が発現し、このようにして得られたスラグはリン成分のみならずマグネシウム成分も含まれるので、く溶率の高い肥効性スラグとして有効に活用できるようになる。   By adding a magnesium-based auxiliary agent to the digested sludge or its incineration ash as a solubility-developing auxiliary agent in the magnesium-based auxiliary agent addition step, a high solubility of phosphorus is developed in the slag melted in the melting step. Since the slag thus obtained contains not only the phosphorus component but also the magnesium component, it can be effectively utilized as a fertilizing slag with a high solubility.

以上説明したように、リンが含まれる消化汚泥またはその焼却灰を溶融する溶融炉の運転方法は、予め消化汚泥またはその焼却灰にく溶性発現助剤としてマグネシウム系助剤を前記焼却灰に対して5〜20wt%の範囲に入るように添加し、撹拌した後に前記溶融炉に投入して溶融するように構成されている。   As described above, the operating method of the melting furnace that melts the digested sludge containing phosphorus or its incinerated ash, the magnesium-based auxiliary agent as a solubility-developing auxiliary agent to the digested sludge or its incinerated ash in advance to the incinerated ash. Is added so as to fall within the range of 5 to 20 wt%, stirred, and then charged into the melting furnace to melt.

また、上述した溶融炉の運転方法が用いられる溶融設備は、リンが含まれる消化汚泥またはその焼却灰を集積する集積装置4と、回転式表面溶融炉5と、集積装置5から回転式表面溶融炉5の蓄積部に消化汚泥またはその焼却灰を搬送する搬送装置と、搬送装置により搬送される消化汚泥またはその焼却灰にく溶性発現助剤としてマグネシウム系助剤を添加する助剤添加装置とを備えている。   Further, the melting equipment in which the above-described method for operating the melting furnace is used includes a collecting device 4 for collecting digested sludge containing phosphorus or its incinerated ash, a rotary surface melting furnace 5, and a rotary surface melting device from the collecting device 5. A conveying device for conveying the digested sludge or its incinerated ash to the accumulation part of the furnace 5, and an auxiliary agent addition device for adding a magnesium-based auxiliary agent as a solubility-developing auxiliary agent to the digested sludge or its incinerated ash conveyed by the conveying device. Is equipped with.

そして、回転式表面溶融炉5は、燃焼器51が配置された天井部52の周囲に立設された内筒53と、底部中央に出滓口54が形成された有底の外筒55とを共通軸心周りに配置し、外筒55と内筒53との間に形成された環状の蓄積部57に投入された消化汚泥またはその焼却灰を、外筒55と内筒53の相対回転により内筒53の下縁部から天井部52の下部空間の主燃焼室56に移動させて、その露出面を燃焼器51の燃焼火炎により溶融し、出滓口54から滴下排出された溶融スラグを冷却する水槽を備えて構成されている。   The rotary surface melting furnace 5 includes an inner cylinder 53 standing upright around a ceiling 52 in which the combustor 51 is arranged, and a bottomed outer cylinder 55 having a slag outlet 54 formed at the center of the bottom. Are arranged around a common axis, and digested sludge or its incinerated ash put into an annular accumulation portion 57 formed between the outer cylinder 55 and the inner cylinder 53 is rotated relative to the outer cylinder 55 and the inner cylinder 53. Is moved from the lower edge portion of the inner cylinder 53 to the main combustion chamber 56 in the lower space of the ceiling portion 52, the exposed surface is melted by the combustion flame of the combustor 51, and the molten slag discharged and discharged from the outlet 54 is discharged. It is provided with a water tank for cooling.

スラグ中に捕捉したリンに関して、有効な肥料成分として評価可能なく溶性リンの割合(以下、く溶率=く溶性リン(C−P)濃度/全リン(T−P)濃度)に着目し、特許文献1に開示されているように、く溶率向上には消石灰、鉄系薬剤による成分調整が有効との知見を得ている。   Regarding phosphorus captured in slag, focusing on the proportion of soluble phosphorus that cannot be evaluated as an effective fertilizer component (hereinafter, solubility rate = soluble phosphorus (CP) concentration / total phosphorus (TP) concentration), As disclosed in Patent Document 1, it has been found that slaked lime and component adjustment by iron-based chemicals are effective for improving the dissolution rate.

具体的に、リン含有汚泥に2価または3価の鉄化合物を添加する鉄化合物添加ステップを実行した後に溶融炉に投入して溶融する溶融ステップを実行することにより、リン含有汚泥に含まれるリン成分の揮散を防止するとともに、リン成分のリン化鉄を含む金属リン化合物への移行を抑制しながらスラグに捕捉するリン含有汚泥の溶融処理方法である。   Specifically, by performing an iron compound addition step of adding a divalent or trivalent iron compound to the phosphorus-containing sludge, and then performing a melting step of charging the phosphorus-containing sludge into a melting furnace to melt the phosphorus-containing sludge, It is a melting treatment method of phosphorus-containing sludge which prevents vaporization of components and captures in slag while suppressing migration of phosphorus components to metallic phosphorus compounds containing iron phosphide.

2%のクエン酸溶液に溶けるリン酸分をく溶性リンという。く溶性リンは作物の根から出る根酸程度の弱い酸の下で、直ぐには溶けず徐々に溶けて吸収されるため、施肥の所期には大きな効果はないが、肥効に持続性を有するという特徴がある。またく溶性リンは、雨水による流失や土壌中のアルミニウムや鉄と結合して不可給形態になることもない。従って、肥料中に含まれるリン酸分をく溶化することは、作物に長期にわたってエネルギー代謝物質合成を行なわせ、リン欠乏症を起こさせないために重要である。   Phosphoric acid dissolved in a 2% citric acid solution is called soluble phosphorus. Highly soluble phosphorus does not dissolve immediately and is gradually dissolved and absorbed under a weak acid such as root acid, which comes out from the roots of crops. It has the feature of having. In addition, soluble phosphorus does not become washed out by rainwater, and does not combine with aluminum or iron in the soil to form an inadequate form. Therefore, it is important to dissolve the phosphoric acid content contained in the fertilizer so as to allow the crop to synthesize the energy metabolites for a long period of time and prevent the phosphorus deficiency from occurring.

当該鉄化合物添加ステップでは、鉄(Fe)量が乾燥物質換算量DS(Dry Solid)に対して1〜8wt%の範囲に入るように2価または3価の鉄化合物が添加されるとともに、鉄(Fe)リン(P)シリカ(Si)比(=Fe/(P+Si)[mol/mol])が0.2〜0.8の範囲に入るように鉄化合物が添加される鉄リンシリカ比調整ステップが実行される。   In the iron compound addition step, a divalent or trivalent iron compound is added so that the amount of iron (Fe) falls within the range of 1 to 8 wt% with respect to the dry substance conversion amount DS (Dry Solid), and the iron compound is added. (Fe) Phosphorus (P) silica (Si) ratio (= Fe / (P + Si) [mol / mol]) an iron compound is added so that the iron compound is in the range of 0.2 to 0.8. Is executed.

さらに、溶融処理前にリン含有物質に塩基度調整剤を添加してリン含有物質の塩基度が0.2から1.0の範囲、好ましくは0.7±0.1の範囲に入るように調整する塩基度調整ステップが実行される。以下では、このような成分調整方法を「鉄化合物添加による成分調整方法」と記す。   Furthermore, a basicity adjusting agent is added to the phosphorus-containing substance before the melting treatment so that the basicity of the phosphorus-containing substance falls within the range of 0.2 to 1.0, preferably 0.7 ± 0.1. The adjusting basicity adjusting step is executed. Hereinafter, such a component adjusting method will be referred to as “a component adjusting method by adding an iron compound”.

下水汚泥に含まれる無機成分は合流式/分流式により異なり、それらに対する水処理で使用される薬剤種などの影響を受ける。特に下水汚泥を消化処理した消化汚泥のように相対的にSiO濃度が高く、P濃度が低いような組成範囲の汚泥スラグは、消石灰や鉄系薬剤による上述した汚泥の成分調整法を用いてく溶率の向上を目指すのは困難であることが判明した。 The inorganic components contained in sewage sludge differ depending on the combined / divided type and are affected by the chemical species used in water treatment for them. In particular, sludge slag having a composition range such as a relatively high SiO 2 concentration and a low P 2 O 5 concentration, such as digested sludge obtained by digesting sewage sludge, is a method for adjusting the components of sludge described above by slaked lime or iron-based chemicals. It was found that it is difficult to aim at the improvement of the dissolution rate by using.

そこで、リンのく溶率の高い下水汚泥のスラグをクエン酸溶液で処理して酸処理後のスラグの表面の元素組成をエネルギー分散型X線分光器(以下、「EDS」と記す。)で測定することでリンのく溶性に寄与する元素を予測し、その元素を含む化合物をく溶性の低い消化汚泥に添加してスラグ化したところ、く溶率を改善することができるという新知見を得た。以下に詳述する。   Therefore, the elemental composition of the surface of the slag after acid treatment by treating the slag of sewage sludge having a high phosphorus solubility with an energy dispersive X-ray spectrometer (hereinafter referred to as "EDS"). A new finding that it is possible to improve the dissolution rate by predicting the element that contributes to the solubility of phosphorus by measurement and adding a compound containing that element to digested sludge with low solubility to form slag Obtained. The details will be described below.

[実験の概要]
[水砕スラグの作成]
組成の異なる2種類の汚泥を電気炉(800℃)でそれぞれ灰化し、遊星ミル(フリュッチュ製P−6)で粉砕して均質化した汚泥焼却灰を作成した。汚泥焼却灰に溶融助剤を添加して所定の成分調整を行ったのち、アルミナボードに成分調整灰を充填後、1350℃に昇温した電気炉(27kW)に装填した。成分調整灰を1350℃で30分間加熱後、ボードを取り出し、溶融状態のスラグをすばやく水槽に流し込むことで水砕スラグを得た。
[Outline of experiment]
[Creating granulated slag]
Two types of sludge having different compositions were ashed in an electric furnace (800 ° C.) and pulverized with a planetary mill (P-6 manufactured by Fructu) to produce homogenized sludge incineration ash. After the melting aid was added to the sludge incineration ash to adjust the predetermined components, the alumina ash was filled with the component adjustment ash and then loaded into an electric furnace (27 kW) heated to 1350 ° C. After heating the component-adjusted ash at 1350 ° C. for 30 minutes, the board was taken out, and the molten slag was quickly poured into a water tank to obtain granulated slag.

[溶流度試験によるスラグの溶流性の確認]
スラグの溶流性については溶流度試験方法を用いた。所定の温度に昇温した電気炉に汚泥焼却灰を充填したアルミナボードを所定角度傾けて装填後、所定時間定温で加熱したのちに取り出し、焼却灰の溶け具合やスラグの流れ具合により汚泥に対する溶融処理のし易さを溶流度として評価する方法である。
[Confirmation of slag meltability by meltability test]
The melt flowability test method was used for the melt flowability of the slag. After loading the alumina board filled with sludge incineration ash at a predetermined angle into an electric furnace heated to a predetermined temperature and heating it at a constant temperature for a predetermined time, it is taken out and melted in the sludge depending on the melting condition of the incineration ash and the flow condition of slag. This is a method of evaluating the ease of processing as the melt flow rate.

具体的に、溶流度とは、図3(a),(b),(c)に示すように、船形形状の磁性ボードの一端部側に試験片を充填し、充填部が上方になるように磁性ボードを所定角度(5°)傾斜させた状態で、所定温度に保持された電気炉内に所定時間(15分)静置し、その後取り出して室温で冷却したときの試験片の状態を計測して、以下の式に基づいて算出される値である。
溶流度(M値)=(L−L)/L×100
Specifically, the melt flow rate means that, as shown in FIGS. 3 (a), 3 (b), and 3 (c), one end of a boat-shaped magnetic board is filled with a test piece, and the filled portion is located above. The state of the test piece when the magnetic board is tilted at a predetermined angle (5 °) and left in an electric furnace maintained at a predetermined temperature for a predetermined time (15 minutes), and then taken out and cooled at room temperature. Is a value calculated based on the following formula.
Melt flow rate (M value) = (L−L 0 ) / L 0 × 100

通常、溶流度が60%となる温度が溶流点として評価され、溶流度40%で溶融炉は運転可能で、溶流度が60%以上であれば溶融性が高いと判断される。尚、磁性ボードは長さ150mm、幅20mm、高さ12mmで、所定容量に形成され、磁性ボードに充填される試験片の長さは70mmに設定される。   Usually, the temperature at which the melt flow rate becomes 60% is evaluated as the melt flow point, and the melt furnace can be operated at the melt flow rate of 40%, and it is judged that the meltability is high when the melt flow rate is 60% or more. . The magnetic board has a length of 150 mm, a width of 20 mm, and a height of 12 mm, is formed to have a predetermined capacity, and the length of the test piece filled in the magnetic board is set to 70 mm.

[薬液浸漬処理したスラグの作成]
く溶性を示すスラグは酸によって、リンがどのような成分とともに溶出するのかを確認するため、試料Aのスラグを肥料のく溶性リン酸分析方法(肥料分析法(農林水産省農業環境技術研究所法))を参考にして、クエン酸溶液で浸漬処理を行った。
[Creating a slag that has been immersed in a chemical solution]
In order to confirm what kind of component phosphorus dissolves with acid in the slag that shows solubility, the slag of Sample A is analyzed as a soluble phosphate in fertilizer (fertilizer analysis method (Ministry of Agriculture, Forestry and Fisheries Method)), and a dipping treatment was performed with a citric acid solution.

即ち、浸漬処理には2%クエン酸液とそのコントロールとして蒸留水を用い、ビーカ内でスラグを200rpmで2時間浸漬・撹拌操作を行った。浸漬操作後、薬液から引きあげたスラグを蒸留水で軽く洗い流し、スラグを105℃で乾燥して電子顕微鏡の観察用試料とした。なお、浸漬操作に用いたスラグは、電子顕微鏡で表面状態が観察しやすいように5mm前後のサイズを用いた。   That is, for the dipping treatment, a 2% citric acid solution and distilled water as its control were used, and the slag was dipped and stirred in a beaker at 200 rpm for 2 hours. After the dipping operation, the slag pulled up from the chemical solution was lightly washed with distilled water, and the slag was dried at 105 ° C. to obtain an electron microscope observation sample. The slag used for the dipping operation had a size of about 5 mm so that the surface state could be easily observed with an electron microscope.

[電子顕微鏡による表面観察と組成分析]
薬液処理後のスラグは電子顕微鏡(日立ハイテク製TM3000)で表面状態の観察と表面組成を測定した。なお、試料の観察は研磨や蒸着を行うとその表面状態が変化するため、有姿の状態で行った。また、スラグの表面組成はTM3000付属のEDS(OXFORD製SwiftED)で測定した。
[Surface observation by electron microscope and composition analysis]
The surface state of the slag after the chemical treatment was observed with an electron microscope (TM3000 manufactured by Hitachi High-Tech) and the surface composition was measured. Note that the surface of the sample was observed when polishing or vapor deposition was performed, so that the sample was observed as it was. The surface composition of the slag was measured by EDS (SwiftED manufactured by OXFORD) attached to TM3000.

[スラグのく溶率の測定]
スラグのく溶率は、上述した農林水産省の肥料分析方法を用いてく溶性リン濃度を測定し、底質調査法を用いて全リン含有量を測定し、スラグのく溶性リン濃度を全リン濃度で除することで算出した。
[Measurement of slag dissolution rate]
The slag dissolution rate was measured by measuring the soluble phosphorus concentration using the fertilizer analysis method of the Ministry of Agriculture, Forestry and Fisheries described above, and measuring the total phosphorus content using the sediment survey method. It was calculated by dividing by the concentration.

[実験の結果]
[下水汚泥焼却灰の性状]
図4には実験で用いた汚泥焼却灰の組成が示されている。試料Aは従来の活性汚泥法を用いた下水の水処理で生じた下水汚泥の焼却灰であり、試料Bは下水汚泥の嫌気性消化処理で生じた消化汚泥の焼却灰である。
[results of the experiment]
[Properties of sewage sludge incineration ash]
FIG. 4 shows the composition of the sludge incineration ash used in the experiment. Sample A is an incineration ash of sewage sludge produced by the conventional sewage water treatment using the activated sludge method, and sample B is an incineration ash of digested sludge produced by the anaerobic digestion treatment of sewage sludge.

試料Aは既に上述した「鉄化合物添加による成分調整方法」を用いて消石灰と鉄系助剤でく溶性が最も発現する調整(目標塩基度:0.7、目標鉄リンシリカmol比(Fe/(Si+P):0.45)が施されている。   Sample A was adjusted by using the above-mentioned “method for adjusting the component by adding an iron compound” so that slaked lime and the iron-based auxiliary agent exhibit the highest solubility (target basicity: 0.7, target iron phosphorus silica mol ratio (Fe / ( Si + P): 0.45).

試料AはSiOが18.5wt%、CaOが13.5wt%、T−Pが24.6wt%、Feが25.5wt%であるのに対して、試料BはSiOが38.7wt%、CaOが9.9wt%、T−Pが11.6wt%、Feが13.8wt%であり、両者の汚泥組成は特にSiOとP、Fe濃度で大きく異なる。 Sample A has 18.5 wt% of SiO 2 , 13.5 wt% of CaO, 24.6 wt% of TP 2 O 5 and 25.5 wt% of Fe 2 O 3 , whereas sample B has SiO 2. 2 is 38.7 wt%, CaO is 9.9 wt%, TP 2 O 5 is 11.6 wt%, Fe 2 O 3 is 13.8 wt%, and the sludge composition of both is particularly SiO 2 and P 2 O. 5 and Fe 2 O 3 concentration greatly differ.

「鉄化合物添加による成分調整方法」によるスラグのリンの肥効性
試料Bの汚泥焼却灰の組成を、「鉄化合物添加による成分調整方法」で指標としている汚泥の塩基度と鉄リンシリカ比となるように、消石灰と鉄系薬剤を用いて調整した後、1350℃でスラグ化し、く溶性リン濃度並びにく溶率を確認した。
Phosphorus fertilizing effect of slag by "component adjustment method by adding iron compound" The composition of the sludge incineration ash of sample B is the basicity of the sludge and the iron-phosphorus-silica ratio, which are the indexes in "component adjustment method by adding iron compound". As described above, after adjusting with slaked lime and iron-based chemicals, slag was formed at 1350 ° C., and the concentration of soluble phosphorus and the rate of dissolution were confirmed.

なお、試料Bの成分調整は試料Aの肥効性が発現する目標塩基度及び目標鉄リンシリカ比に近づける方向で行った。図5(a)に成分調整した汚泥スラグのく溶率が示され、図5(b)に汚泥の溶流性を表す写真が示されている。
試料Aのスラグに対して試料Bのスラグは、汚泥灰分に対して消石灰を10wt%、またFeを5wt%添加することで溶流性は100%に向上するが、試料Bスラグのリンのく溶率は試料Aスラグの99.5%に対して、最大でも42.0%であり、試料Aスラグで確認された高いく溶率に改善することができなかった。
The components of Sample B were adjusted in the direction of approaching the target basicity and the target iron-phosphorus-silica ratio at which the fertilizing effect of Sample A is exhibited. FIG. 5 (a) shows the dissolution rate of the sludge slag whose components have been adjusted, and FIG. 5 (b) shows a photograph showing the sludge flowability.
Compared to the slag of Sample A, the meltability of Sample B slag is improved to 100% by adding 10 wt% of slaked lime and 5 wt% of Fe to the sludge ash content. The dissolution rate was 42.0% at the maximum with respect to 99.5% of the sample A slag, and it was not possible to improve the high dissolution rate confirmed with the sample A slag.

[薬液処理したスラグの表面状態と組成]
図6(a)には2%クエン酸溶液並びに蒸留水で処理した試料A汚泥のスラグ残渣、並びに図6(b),(c)にはその電子顕微鏡写真による表面状態が示されている。水で処理したスラグは表面がほぼ平滑に対してクエン酸溶液で処理したスラグ表面はスポンジ状となっているように、クエン酸溶液によってなんらかの物質が溶けた痕跡がみられた。
図7(a)〜(f)に2%クエン酸溶液並びに蒸留水で処理したスラグのEDS測定結果が示されている。実線で示されるW1〜W7が蒸留水による処理結果、破線で示されるC1〜C7が2%クエン酸溶液による処理結果である。EDS分析の結果、クエン酸溶液で処理したスラグの組成は蒸留水処理のスラグに比べて相対的にPやCa、Mgが低く、SiやFeが高いことが判明した。
[Surface condition and composition of chemical-treated slag]
FIG. 6 (a) shows the slag residue of the sample A sludge treated with a 2% citric acid solution and distilled water, and FIGS. 6 (b) and 6 (c) show the surface states by electron micrographs. The surface of the slag treated with water was almost smooth, whereas the surface of the slag treated with the citric acid solution had a sponge-like appearance, and traces of dissolution of some substance by the citric acid solution were observed.
7A to 7F show the EDS measurement results of the slag treated with the 2% citric acid solution and distilled water. W1 to W7 indicated by solid lines are the treatment results with distilled water, and C1 to C7 indicated by the broken lines are treatment results with the 2% citric acid solution. As a result of EDS analysis, it was found that the composition of the slag treated with the citric acid solution was relatively low in P, Ca and Mg and high in Si and Fe as compared with the slag treated with distilled water.

[試料Bスラグの改質]
改質後の試料Bスラグのく溶率
EDS測定結果より高いく溶率を示した試料Aの汚泥に対してく溶率の低い試料Bの汚泥はマグネシウム(Mg)が不足していると考えられる。そこで、試料BにMgを含む薬剤を加えてスラグ化して、そのスラグのく溶率を測定した。
その結果、図8(a)に示すように、試料Bの汚泥は、「鉄化合物添加による成分調整方法」つまり消石灰とFe系助剤で成分調整したスラグに対して、MgOを5〜20wt%添加することでく溶率を68.9〜95.8%に向上させることができた。なお、MgOの5〜20wt%添加は試料B中のT−Pの11.6wt%に対して0.43〜1.72倍である。なお、本実施例においては焼却灰にマグネシウム系助剤を添加することについて説明したが、焼却灰ではなく消化汚泥に添加する場合には、添加量を適宜調整すればよい。
[Modification of sample B slag]
Slag solubility of sample B slag after reforming It is considered that the sludge of sample B having a low solubility is deficient in magnesium (Mg) with respect to the sludge of sample A having a higher solubility than the EDS measurement result. . Then, the chemical | medical agent containing Mg was added to the sample B, it was made into slag, and the slag dissolution rate was measured.
As a result, as shown in FIG. 8 (a), the sludge of Sample B contained 5 to 20 wt% of MgO with respect to “a component adjusting method by adding an iron compound”, that is, slag whose components were adjusted with slaked lime and an Fe-based auxiliary agent. It was possible to improve the dissolution rate to 68.9 to 95.8% by adding it. The addition of 5 to 20 wt% of MgO is 0.43 to 1.72 times the 11.6 wt% of TP 2 O 5 in Sample B. In addition, although the addition of the magnesium-based auxiliary agent to the incineration ash has been described in this example, when the magnesium-based auxiliary agent is added to the digested sludge instead of the incineration ash, the addition amount may be appropriately adjusted.

改質後の試料Bの汚泥スラグの溶流性
試料Bの汚泥焼却灰にMgOを加えた汚泥の溶流性が図8(b)に示されている。従来の調整方法では溶流度が高く溶融しにくい汚泥であったが、MgOを5wt%添加することでく溶率の向上に加え、溶流性も改善された。
Melt flow property of sludge slag of Sample B after reforming The melt flow property of sludge of Sample B in which MgO is added is shown in FIG. 8 (b). Although the sludge had a high melt flow rate and was difficult to melt by the conventional adjustment method, the melt flow rate was improved as well as the melt rate was improved by adding 5 wt% of MgO.

[考察]
試料A汚泥のスラグは塩基度と鉄添加による調整で高いく溶率が発現したのに対して、試料B汚泥のスラグはそのような成分調整だけでは高いく溶率が発現しなかったため、リンを含む酸に溶解する組成を積極的に生成するように試料B汚泥にMgOを添加することで高いく溶率を発現させることができた。
[Discussion]
The slag of Sample A sludge exhibited a high solubility by adjusting the basicity and addition of iron, whereas the slag of Sample B sludge did not develop a high solubility by only adjusting the components, and thus phosphorus It was possible to develop a high solubility by adding MgO to the sample B sludge so as to positively generate a composition that dissolves in the acid containing s.

スラグからのリンの溶出は、電子顕微鏡によるスラグの表面観察結果により、スラグの均質なガラス構造がクエン酸によって壊れる程度の違いでリンが溶出するのではなく、汚泥を高温で溶融することで汚泥組成が水や酸に溶けにくいガラス成分と水には溶けないが酸には可溶なリン酸に富むガラス成分が生成し、リン酸に富んだガラス相がクエン酸によって溶解していると考えられる。   The elution of phosphorus from the slag is based on the results of observing the surface of the slag with an electron microscope.The phosphorus does not elute due to the difference in the degree to which the homogeneous glass structure of the slag is destroyed by citric acid, but the sludge is melted at a high temperature. It is considered that a glass component whose composition is difficult to dissolve in water or acid and a phosphoric acid-rich glass component that is insoluble in water but soluble in acid are generated, and the phosphoric acid-rich glass phase is dissolved by citric acid. To be

試料Bのように相対的にSiOに富みPが低い汚泥でも、適切な薬剤を選定して添加することによって、リンに富み、酸に可溶なガラス組成を生成でき、く溶率のコントロールが可能になることが判明した。 Even with sludge that is relatively rich in SiO 2 and low in P 2 O 5 as in sample B, a glass composition rich in phosphorus and soluble in acid can be produced by selecting an appropriate chemical and adding it. It turns out that it becomes possible to control the rate.

一般的にMg系薬剤はCa系薬剤に比べて高価であるが、安価なドロマイトなどの天然鉱物を採用することができる。またマグネシウムMgも肥料成分であるため、得られたスラグはマグネシウム含有のリン酸肥料原料として利用できる可能性も期待できる。   Generally, Mg-based drugs are more expensive than Ca-based drugs, but inexpensive natural minerals such as dolomite can be used. Since magnesium Mg is also a fertilizer component, the obtained slag can be expected to be usable as a raw material for phosphate fertilizer containing magnesium.

1:脱水機
2:貯留ピット
3:乾燥機
4:ホッパー
5:溶融炉
1: Dehydrator 2: Storage pit 3: Dryer 4: Hopper 5: Melting furnace

Claims (5)

リンが含まれる消化汚泥またはその焼却灰を原料とする肥効性スラグの製造方法であって、
前記消化汚泥またはその焼却灰にマグネシウム系助剤を添加するマグネシウム系助剤添加ステップと、
前記マグネシウム系助剤添加ステップの後に前記消化汚泥またはその焼却灰を前記マグネシウム系助剤の存在下で溶融処理する溶融ステップと、
前記溶融ステップで溶融されたスラグを冷却する冷却ステップと、
を含む肥効性スラグの製造方法。
A method for producing a fertilizing slag using a digested sludge containing phosphorus or its incinerated ash as a raw material,
A magnesium-based auxiliary agent adding step of adding a magnesium-based auxiliary agent to the digested sludge or its incinerated ash,
A melting step in which the digested sludge or incineration ash thereof is melt-processed in the presence of the magnesium-based auxiliary agent after the magnesium-based auxiliary agent adding step,
A cooling step of cooling the slag melted in the melting step,
A method for producing a fertilizing slag containing:
前記マグネシウム系助剤添加ステップで添加されるマグネシウム系助剤の添加量は、前記焼却灰に対して5〜20wt%の範囲に設定されている請求項1記載の肥効性スラグの製造方法。   The method for producing a fertilizing slag according to claim 1, wherein an addition amount of the magnesium-based auxiliary agent added in the magnesium-based auxiliary agent adding step is set in a range of 5 to 20 wt% with respect to the incinerated ash. 前記下水汚泥またはその焼却灰にカルシウム系助剤を添加するカルシウム系助剤添加ステップをさらに含み、前記カルシウム系助剤添加ステップで添加されるカルシウム系助剤の添加量は、前記焼却灰に対して5〜20wt%の範囲に設定されている請求項2記載の肥効性スラグの製造方法。   The method further comprises a calcium-based auxiliary agent adding step of adding a calcium-based auxiliary agent to the sewage sludge or its incinerated ash, and the addition amount of the calcium-based auxiliary agent added in the calcium-based auxiliary agent adding step is relative to the incinerated ash. 3. The method for producing a fertilizing slag according to claim 2, wherein the range is 5 to 20 wt%. リンが含まれる消化汚泥またはその焼却灰を溶融する溶融炉の運転方法であって、
予め前記消化汚泥またはその焼却灰にマグネシウム系助剤を前記焼却灰に対して5〜20wt%の範囲に入るように添加し、撹拌した後に前記溶融炉に投入して溶融する溶融炉の運転方法。
A method for operating a melting furnace for melting digested sludge containing phosphorus or its incinerated ash,
A method of operating a melting furnace in which a magnesium-based auxiliary agent is added to the digested sludge or its incinerated ash in advance so as to fall within a range of 5 to 20 wt% with respect to the incinerated ash, and the mixture is stirred and then put into the melting furnace to melt. .
請求項4記載の溶融炉の運転方法が用いられる溶融設備であって、
リンが含まれる消化汚泥またはその焼却灰を集積する集積装置と、
燃焼器が配置された天井部の周囲に立設された内筒と、底部中央に出滓口が形成された有底の外筒とを共通軸心周りに配置し、前記外筒と前記内筒との間に形成された環状の蓄積部に投入された前記消化汚泥またはその焼却灰を、前記外筒と前記内筒の相対回転により前記内筒の下縁部から前記天井部の下部空間の主燃焼室に移動させて、その露出面を前記燃焼器の燃焼火炎により溶融し、前記出滓口から滴下排出された溶融スラグを冷却する水槽を備えて構成される回転式表面溶融炉と、
前記集積装置から前記蓄積部に前記消化汚泥またはその焼却灰を搬送する搬送装置と、
前記搬送装置により搬送される前記消化汚泥またはその焼却灰にマグネシウム系助剤を添加する助剤添加装置と、
を備えている溶融設備。
A melting facility using the method for operating a melting furnace according to claim 4,
An accumulation device for accumulating digested sludge containing phosphorus or its incinerated ash,
An inner cylinder erected around the ceiling where the combustor is arranged and a bottomed outer cylinder having a slag opening formed in the center of the bottom are arranged around a common axis, and the outer cylinder and the inner cylinder The digested sludge or its incinerated ash put into an annular accumulation section formed between the cylinder and the lower space of the ceiling from the lower edge of the inner cylinder by the relative rotation of the outer cylinder and the inner cylinder. And a rotary surface melting furnace configured to include a water tank for melting the exposed surface thereof by the combustion flame of the combustor and cooling the molten slag dropped and discharged from the outlet. ,
A transport device that transports the digested sludge or its incinerated ash from the stacking device to the storage unit,
An auxiliary agent adding device for adding a magnesium-based auxiliary agent to the digested sludge or its incinerated ash conveyed by the conveying device,
Melting equipment equipped with.
JP2018198979A 2018-10-23 2018-10-23 Method for producing fertilizing slag using digested sludge containing phosphorus or its incinerated ash as a raw material Active JP7154942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018198979A JP7154942B2 (en) 2018-10-23 2018-10-23 Method for producing fertilizing slag using digested sludge containing phosphorus or its incinerated ash as a raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198979A JP7154942B2 (en) 2018-10-23 2018-10-23 Method for producing fertilizing slag using digested sludge containing phosphorus or its incinerated ash as a raw material

Publications (2)

Publication Number Publication Date
JP2020066541A true JP2020066541A (en) 2020-04-30
JP7154942B2 JP7154942B2 (en) 2022-10-18

Family

ID=70389518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198979A Active JP7154942B2 (en) 2018-10-23 2018-10-23 Method for producing fertilizing slag using digested sludge containing phosphorus or its incinerated ash as a raw material

Country Status (1)

Country Link
JP (1) JP7154942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117299754A (en) * 2023-09-01 2023-12-29 北京科技大学 Multi-source solid waste recycling method based on calcium-silicon-aluminum-magnesium oxide allocation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279997A (en) * 1999-03-29 2000-10-10 Osaka Gas Co Ltd Process and system for sludge treatment
JP2001080979A (en) * 1999-07-07 2001-03-27 Japan Sewage Works Agency Production of fertilizer consisting of incineration ash as raw material
JP2001247389A (en) * 2000-03-07 2001-09-11 Chikyu Kankyo Kaizen System:Kk Organic mixed fertilizer and method for producing the same
JP2003212615A (en) * 2002-01-22 2003-07-30 Kobe Steel Ltd Method for melt treatment of sludge incineration ash and method for manufacturing rigid aggregate
JP2012232864A (en) * 2011-04-28 2012-11-29 Kubota Corp Method for producing fertilizer and rotary surface melting furnace used in the same
JP2015033691A (en) * 2013-07-09 2015-02-19 株式会社クボタ Melting treatment method of phosphorus-containing material and operation method of melting furnace
JP2015151292A (en) * 2014-02-13 2015-08-24 太平洋セメント株式会社 Phosphoric acid fertilizer, and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169269A (en) 1998-12-04 2000-06-20 Nkk Plant Engineering Corp Production of molten and solidified material of sludge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279997A (en) * 1999-03-29 2000-10-10 Osaka Gas Co Ltd Process and system for sludge treatment
JP2001080979A (en) * 1999-07-07 2001-03-27 Japan Sewage Works Agency Production of fertilizer consisting of incineration ash as raw material
JP2001247389A (en) * 2000-03-07 2001-09-11 Chikyu Kankyo Kaizen System:Kk Organic mixed fertilizer and method for producing the same
JP2003212615A (en) * 2002-01-22 2003-07-30 Kobe Steel Ltd Method for melt treatment of sludge incineration ash and method for manufacturing rigid aggregate
JP2012232864A (en) * 2011-04-28 2012-11-29 Kubota Corp Method for producing fertilizer and rotary surface melting furnace used in the same
JP2015033691A (en) * 2013-07-09 2015-02-19 株式会社クボタ Melting treatment method of phosphorus-containing material and operation method of melting furnace
JP2015151292A (en) * 2014-02-13 2015-08-24 太平洋セメント株式会社 Phosphoric acid fertilizer, and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117299754A (en) * 2023-09-01 2023-12-29 北京科技大学 Multi-source solid waste recycling method based on calcium-silicon-aluminum-magnesium oxide allocation
CN117299754B (en) * 2023-09-01 2024-05-10 北京科技大学 Multi-source solid waste recycling method based on calcium-silicon-aluminum-magnesium oxide allocation

Also Published As

Publication number Publication date
JP7154942B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
Thomsen et al. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge
Fytili et al. Utilization of sewage sludge in EU application of old and new methods—A review
Pesonen et al. Co-granulation of bio-ash with sewage sludge and lime for fertilizer use
CN106082646B (en) The method for cooperateing with melting to prepare glass sand with domestic garbage incineration flyash using electroplating sludge
Leng et al. Characterisation of ashes from waste biomass power plants and phosphorus recovery
Skoglund et al. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge
JPH06509539A (en) Method for treating fly ash and sewage sludge, method for producing lightweight aggregate using fly ash and sewage sludge, and lightweight aggregate
Yang et al. Phosphorus recovery from sewage sludge via incineration with chlorine-based additives
JP2015033691A (en) Melting treatment method of phosphorus-containing material and operation method of melting furnace
Luyckx et al. Recovery of phosphorus from sewage sludge ash: Influence of chemical addition prior to incineration on ash mineralogy and related phosphorus and heavy metal extraction
JP2020066541A (en) Method of producing fertilizing slag using as raw material digestive sludge containing phosphorus or burned ash thereof, operation method of melting furnace, and melting facility
Zheng et al. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors
Luyckx et al. Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids
KR102454555B1 (en) Stabilizing agents of heavy metals in fly ash and method for stabilizing heavy metals in fly ash using the same
CN105749480A (en) Aluminum slag stabilizing agent
CN116874162A (en) Sludge phosphorus recovery method
JP2008255171A (en) Fixing agent for inorganic harmful component
JP2008031262A (en) Method for stabilization-treating carbonized product
EP3239108B1 (en) Method for melting treatment of phosphorus-containing substance and melting furnace operation method
JP2004105835A (en) Method for utilizing activated sludge
Dhote et al. Co-combustion of distillery sludge and coal for application in boiler and subsequent utilization of the generated bottom ash
JP4259270B2 (en) Incineration main ash treatment method
RU2294904C2 (en) Method of the decontamination and utilization of the fly ashes formed at burning and gasification of the wastes
JP4033585B2 (en) Sludge melting method
JP2006088020A (en) Stabilizing treatment method for carbonized product

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7154942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150