JP2001080979A - Production of fertilizer consisting of incineration ash as raw material - Google Patents

Production of fertilizer consisting of incineration ash as raw material

Info

Publication number
JP2001080979A
JP2001080979A JP2000203229A JP2000203229A JP2001080979A JP 2001080979 A JP2001080979 A JP 2001080979A JP 2000203229 A JP2000203229 A JP 2000203229A JP 2000203229 A JP2000203229 A JP 2000203229A JP 2001080979 A JP2001080979 A JP 2001080979A
Authority
JP
Japan
Prior art keywords
raw material
fertilizer
incinerated ash
phosphoric acid
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000203229A
Other languages
Japanese (ja)
Other versions
JP4844941B2 (en
Inventor
Fumio Mishina
文雄 三品
Yoshihiro Iwai
良博 岩井
Tetsuharu Sadatsuka
徹治 定塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Japan Sewage Works Agency
Original Assignee
Sanki Engineering Co Ltd
Japan Sewage Works Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Japan Sewage Works Agency filed Critical Sanki Engineering Co Ltd
Priority to JP2000203229A priority Critical patent/JP4844941B2/en
Publication of JP2001080979A publication Critical patent/JP2001080979A/en
Application granted granted Critical
Publication of JP4844941B2 publication Critical patent/JP4844941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to recycle incineration ash of phosphorus- containing sludge and industrial waste as a phosphoric fertilizer by adding additives including magnesium, calcium, or the like, at need to the incineration ash and melting the mixture, then forming slag by rapid cooling and pulverizing the slag. SOLUTION: The incineration ash preferably containing 10 to 40 wt.% phosphoric acid is used as the raw material and is subjected to component regulation by adding <=50% P, <=60% Mg, <=80% Ca, or the like, at need thereto and after the mixture is melted, the mixture is formed as the slag by rapid cooling and the slag is pulverized. The addition quantities of these additives, such as phosphoric acid, magnesium oxide and calcium oxide, are respectively specified to 20 to 25% P (in terms of P2O5), 2.5 to 4.5 molar ratio (by P2O5) Mg (in terms of MgO) and 2.5 to 4.5 molar ratio (by P2O5) Ca (in terms of CaO). As a result, the natural resources included in the incineration ash are effectively utilized and the disposal amount thereof may be decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、汚泥その他の焼
却灰を原料とした肥料生産の技術分野に属する。
TECHNICAL FIELD The present invention belongs to the technical field of fertilizer production using sludge or other incinerated ash as a raw material.

【0002】[0002]

【従来の技術】汚泥や都市ゴミまたは産業廃棄物等の焼
却灰は多くの天然資源を含んでいるにもかかわらず、従
来これらの天然資源は殆ど利用されていなかった。近
年、天然資源の有限性が認識され、また、天然資源の大
量消費が引き起こす公害が問題とされるようになったこ
とから、天然資源を再利用するリサイクル技術が盛んに
研究される状況に至っている。汚泥や都市ゴミまたは産
業廃棄物等の焼却灰をリサイクルする技術として建設資
材として利用する方法や肥料として利用する方法が提案
されている。
2. Description of the Related Art Although incinerated ash such as sludge, municipal garbage or industrial waste contains many natural resources, these natural resources have hardly been used in the past. In recent years, the finite nature of natural resources has been recognized, and pollution caused by mass consumption of natural resources has become a problem, leading to a situation in which recycling technologies for reusing natural resources are being actively researched. I have. As a technique for recycling incinerated ash such as sludge, municipal garbage, or industrial waste, a method of using as construction material or a method of using as fertilizer has been proposed.

【0003】産業廃棄物、下水汚泥焼却灰等をリサイク
ルして土壌を改良するための土壌添加剤として利用する
方法として、例えば、公開特許公報第平6ー93260
号に開示されている方法がある。ここに開示されている
発明は廃珪砂、即ち、使用後の鋳物砂のように酸化珪素
を多量に含む廃砂に他の化合物等を添加して、高温で焼
成して土壌添加剤にする方法である。
[0003] As a method of recycling industrial waste, sewage sludge incineration ash and the like and using it as a soil additive for improving soil, for example, Japanese Patent Application Laid-Open No. Hei 6-93260.
There is a method disclosed in the issue. The invention disclosed herein is a method of adding another compound or the like to waste silica sand, that is, waste sand containing a large amount of silicon oxide such as foundry sand after use, and firing it at a high temperature to obtain a soil additive. It is.

【0004】また、公開特許公報第平9−328385
号には汚泥の焼却灰を利用した肥料の製法が開示されて
いる。ここに開示されている発明は汚泥の焼却灰に硫酸
カルシウムを20〜50重量%添加混合して肥料とした
ものであり、この肥料はカルシウム分を多く含んでい
る。上記した肥料の生産方法はいずれも単に添加剤を混
合するだけであり、廃砂又は焼却灰に含まれているリン
成分が有効にリサイクルできないという問題がある。
[0004] Also, Japanese Patent Application Laid-Open No. 9-328385.
No. 1 discloses a method of producing fertilizer using sludge incineration ash. The invention disclosed herein is a fertilizer obtained by adding 20 to 50% by weight of calcium sulfate to sludge incineration ash to produce a fertilizer, and this fertilizer contains a large amount of calcium. All of the above fertilizer production methods merely involve mixing additives, and there is a problem that the phosphorus component contained in waste sand or incinerated ash cannot be effectively recycled.

【0005】汚泥や都市ゴミまたは産業廃棄物等の焼却
灰を骨材等の建設資材としてリサイクルする技術として
は、例えば、公開特許公報第平8−26773号、同第
平9ー196573号等に開示されている。しかし、建
設資材として利用する上記方法は単に焼却灰の廃棄処分
する量を減少させる程度に過ぎず、焼却灰に含まれてい
る天然資源を有効にリサイクルしていない点で問題があ
る。
Techniques for recycling incinerated ash such as sludge, municipal garbage or industrial waste as construction materials such as aggregates are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 8-27673 and 9-196573. It has been disclosed. However, the above method used as a construction material merely reduces the amount of incinerated ash to be disposed of, and has a problem in that natural resources contained in the incinerated ash are not effectively recycled.

【0006】[0006]

【発明が解決しようとする課題】以上に説明したよう
に、従来のリサイクル技術では焼却灰等の廃材にリン成
分が多量に含まれている場合にもこれを有効にリサイク
ルする技術が確立しておらず、リン酸質肥料を生産する
にはリン鉱石を利用する以外に通がなかった。この発明
は、上述のような背景の下になされたもので、リン成分
を多量に含む焼却灰をリン酸質肥料としてリサイクルす
る方法を提供することを課題としている。
As described above, the conventional recycling technology has established a technology for effectively recycling even a large amount of phosphorus components in waste materials such as incinerated ash. The only way to produce phosphate fertilizer was to use phosphate rock. The present invention has been made under the above-mentioned background, and has an object to provide a method of recycling incinerated ash containing a large amount of a phosphorus component as a phosphate fertilizer.

【0007】[0007]

【課題を解決するための調査及び実験】上記した課題を
解決するために、焼却灰について以下のような調査及び
実験を行った。まず、下水汚泥焼却処理施設から発生し
た焼却灰の主な組成を調査し、図3に示すような結果が
得られた。なお、この調査は十数カ所の下水汚泥焼却処
理施設から発生した焼却灰について行った。ただし、本
発明は焼却灰中のリン成分をリサイクルすることが目的
であるところから、リン成分の少ない焼却灰は対象外と
した。
Investigations and experiments to solve the problems In order to solve the above-mentioned problems, the following investigations and experiments were performed on incinerated ash. First, the main composition of the incineration ash generated from the sewage sludge incineration facility was investigated, and the results shown in FIG. 3 were obtained. This survey was conducted on incinerated ash generated from more than a dozen sewage sludge incineration facilities. However, since the purpose of the present invention is to recycle the phosphorus component in the incineration ash, incineration ash with a low phosphorus content is excluded.

【0008】図3の調査結果から、焼却灰に含まれる組
成成分は大略図4(A)に示す成分及び量が含まれてい
ることが判明した。即ち、リン成分はリン酸(5酸化燐
P2O5をいう、以下同じ。)に換算して10〜40重
量パーセントの範囲で含まれている。しかし、焼却灰を
直接にリン肥料として使用することはできない。リン肥
料として利用するためには、作物の吸収に適したク溶性
のリン成分にする必要がある。また、リン肥料(溶成リ
ン肥)として販売するためには法規制があり、ク溶性リ
ン酸が17重量パーセント以上、アルカリ分が40重量
パーセント以上、ク溶性マグネシウムが12重量パーセ
ント以上と定められており、有害金属等の最大含有量も
規制されている。また、単肥肥料として販売できない場
合であっても、化成肥料の原料として利用できる場合も
あり、さらに混合肥料の原料として利用できる場合もあ
る。以上のことを考慮して、図4(B)示す焼却灰A、
焼却灰Bをサンプルにして以下の実験を行った。焼却灰
Aはリン酸を略23重量パーセント含み、焼却灰Bはリ
ン酸を略28重量パーセント含んでいる。
From the investigation results shown in FIG. 3, it was found that the composition components contained in the incineration ash generally contained the components and amounts shown in FIG. 4 (A). That is, the phosphorus component is contained in the range of 10 to 40% by weight in terms of phosphoric acid (hereinafter referred to as phosphorus pentoxide P2O5). However, incinerated ash cannot be used directly as phosphorus fertilizer. In order to use it as a phosphorus fertilizer, it is necessary to make it a soluble phosphorus component suitable for crop absorption. In addition, there are laws and regulations for selling as a phosphorus fertilizer (fused phosphorus fertilizer), and it is specified that the soluble calcium is 17% by weight or more, the alkali content is 40% by weight or more, and the soluble magnesium is 12% by weight or more. And the maximum content of harmful metals is regulated. In addition, even when it cannot be sold as a single fertilizer, it can be used as a raw material for a chemical fertilizer, or can be used as a raw material for a mixed fertilizer. In consideration of the above, incineration ash A shown in FIG.
The following experiment was performed using incineration ash B as a sample. Incinerated ash A contains approximately 23 weight percent phosphoric acid and incinerated ash B contains approximately 28 weight percent phosphoric acid.

【0009】図5(A)に焼却灰Aの実験計画表を示
し、図5(B)に焼却灰Bの実験計画表を示す。即ち、
原料中に含まれるリン酸の量に対して酸化マグネシウム
のモル比及び酸化カルシウムのモル比を種々の値に変更
し、溶融及び急冷処理を行うことによってリン酸のク溶
率及び酸化マグネシウムのク溶率がどのように変化する
かを調べた。図6は焼却灰Aについてリン酸のク溶率変
化を示し、図7は焼却灰Aについて酸化マグネシウムの
ク溶率変化を示す。なお、リン酸のク溶率(酸化マグネ
シウムのク溶率)とは、製品中に含まれるリン酸(酸化
マグネシウム)に対するク溶性リン酸(ク溶性酸化マグ
ネシュウム)の割合を示す。
FIG. 5A shows an experimental plan for incinerated ash A, and FIG. 5B shows an experimental plan for incinerated ash B. That is,
The molar ratio of magnesium oxide and the molar ratio of calcium oxide are changed to various values with respect to the amount of phosphoric acid contained in the raw material, and melting and quenching treatments are carried out to obtain a phosphoric acid dissolution rate and magnesium oxide dissolution. We examined how the dissolution rate changed. FIG. 6 shows a change in the solubility of phosphoric acid in incinerated ash A, and FIG. 7 shows a change in the solubility of magnesium oxide in incinerated ash A. The dissolution rate of phosphoric acid (dissolution rate of magnesium oxide) indicates the ratio of dissolvable phosphoric acid (soluble magnesium oxide) to phosphoric acid (magnesium oxide) contained in the product.

【0010】図6(A)は酸化カルシウムの含有率(モ
ル比で表す。以下同じ)をパラメータとして酸化マグネ
シウムの含有率に対するリン酸のク溶率変化を示す。図
6(B)は酸化マグネシウムの含有率をパラメータとし
て酸化カルシウムの含有率に対するリン酸のク溶率変化
を示す。なお、以下において酸化カルシウム、酸化マグ
ネシウムのモル比はリン酸に対するモル比をいう。この
結果から酸化カルシウムのモル比が3.5以上で酸化マ
グネシウムのモル比が3.5以上の場合はリン酸のク溶
率は略100パーセントであり、酸化カルシウムのモル
比が略3.0以下で酸化マグネシウムのモル比が略3.
0以下の場合はリン酸のク溶率は酸化カルシウム及び酸
化マグネシウムの含有率に対し単調に増加する。
FIG. 6A shows a change in the dissolution rate of phosphoric acid with respect to the content of magnesium oxide, using the content of calcium oxide (expressed in terms of molar ratio; the same applies hereinafter) as a parameter. FIG. 6B shows a change in the solubility of phosphoric acid with respect to the content of calcium oxide, using the content of magnesium oxide as a parameter. In the following, the molar ratio of calcium oxide and magnesium oxide refers to the molar ratio to phosphoric acid. From this result, when the molar ratio of calcium oxide is 3.5 or more and the molar ratio of magnesium oxide is 3.5 or more, the solubility of phosphoric acid is approximately 100%, and the molar ratio of calcium oxide is approximately 3.0. Below, the molar ratio of magnesium oxide is approximately 3.
If it is 0 or less, the solubility of phosphoric acid monotonously increases with respect to the content of calcium oxide and magnesium oxide.

【0011】図7(A)は酸化カルシウムの含有率をパ
ラメータとして酸化マグネシウムの含有率に対する酸化
マグネシウムのク溶率変化を示す。図7(B)は酸化マ
グネシウムの含有率をパラメータとして酸化カルシウム
の含有率に対する酸化マグネシウムのク溶率変化を示
す。この結果から酸化カルシウム含有量に関わらず酸化
マグネシウムのモル比が3.5付近で酸化マグネシウム
のク溶率は最大となり、酸化カルシウムのモル比に略比
例して酸化マグネシウムのク溶率が増加する。即ち、酸
化マグネシウムのク溶率はリン酸に対する酸化マグネシ
ウムのモル比が略3.5で最大となり、酸化カルシウム
のモル比が大きいほど酸化マグネシウムのク溶率は増加
する。
FIG. 7A shows a change in the dissolution rate of magnesium oxide with respect to the content of magnesium oxide, using the content of calcium oxide as a parameter. FIG. 7B shows a change in the dissolution rate of magnesium oxide with respect to the content of calcium oxide using the content of magnesium oxide as a parameter. From this result, the solubility of magnesium oxide becomes maximum when the molar ratio of magnesium oxide is around 3.5 regardless of the content of calcium oxide, and the solubility of magnesium oxide increases almost in proportion to the molar ratio of calcium oxide. . That is, the dissolution rate of magnesium oxide is maximized when the molar ratio of magnesium oxide to phosphoric acid is about 3.5, and the dissolution rate of magnesium oxide increases as the molar ratio of calcium oxide increases.

【0012】図8、図9は焼却灰Bについてリン酸のク
溶率変化及び酸化マグネシウムのク溶率変化の実験結果
を表したグラフである。これらのグラフから判断できる
ように、リン酸のク溶率については焼却灰Aの場合とほ
ぼ同じ傾向が見られる。即ち、リン酸に対する酸化マグ
ネシウムのモル比及び酸化カルシウムのモル比が何れも
3.5以上の場合にはク溶率はほぼ100パーセントで
ある。しかし、酸化マグネシウムのモル比又は酸化カル
シウムのモル比の何れかが3.5以下の場合は焼却灰A
に比べて焼却灰Bの場合のク溶率が大きい。即ち、リン
酸の含有量が多い方がク溶率は高い。また、酸化マグネ
シウムのク溶率については、リン酸に対する酸化マグネ
シウムのモル比が略3.5の付近でク溶率が最大にな
り、酸化カルシウムのモル比に対しては略一定であるか
又は酸化カルシウムのモル比の増加に対して僅かに減少
する。
FIG. 8 and FIG. 9 are graphs showing the experimental results of the change in the solubility of phosphoric acid and the change in the solubility of magnesium oxide in incinerated ash B. As can be determined from these graphs, the dissolution rate of phosphoric acid shows almost the same tendency as in the case of incinerated ash A. That is, when both the molar ratio of magnesium oxide to phosphoric acid and the molar ratio of calcium oxide are 3.5 or more, the dissolution rate is almost 100%. However, when either the molar ratio of magnesium oxide or the molar ratio of calcium oxide is 3.5 or less, incineration ash A
In the case of incinerated ash B, the rate of dissolution is larger than that of incinerated ash B. That is, the higher the phosphoric acid content, the higher the solubility. In addition, regarding the dissolution rate of magnesium oxide, the dissolution rate becomes maximum when the molar ratio of magnesium oxide to phosphoric acid is about 3.5, and is substantially constant with respect to the molar ratio of calcium oxide. It decreases slightly with increasing molar ratio of calcium oxide.

【0013】以上の実験結果から、混合原料(焼却灰+
添加物)中のリン酸に対する酸化マグネシウムのモル比
及び酸化カルシウムのモル比が共に3.5以上の場合は
リン酸のク溶率はほぼ100パーセントで最大となり、
一方のモル比が3.5以下の場合は酸化マグネシウムの
モル比又は酸化カルシウムのモル比と共に増加する。ま
た、酸化マグネシウムのク溶率はリン酸に対する酸化マ
グネシウムのモル比が3.5の付近で最大となる。リン
酸の含有量が少ない場合(焼却灰Aの場合)はリン酸に
対する酸化カルシウムのモル比増加に伴って酸化マグネ
シウムのク溶率は増加するが、リン酸の含有量が多い場
合(焼却灰Bの場合)はリン酸に対する酸化カルシウム
のモル比増加に伴って酸化マグネシウムのク溶率は略一
定又は減少することが確認された。
From the above experimental results, the mixed raw material (incinerated ash +
When both the molar ratio of magnesium oxide and the molar ratio of calcium oxide to phosphoric acid in the additive are 3.5 or more, the dissolution rate of phosphoric acid becomes maximum at almost 100%,
When one of the molar ratios is 3.5 or less, the ratio increases with the molar ratio of magnesium oxide or calcium oxide. The solubility of magnesium oxide is maximized when the molar ratio of magnesium oxide to phosphoric acid is around 3.5. When the content of phosphoric acid is small (in the case of incinerated ash A), the dissolution rate of magnesium oxide increases with an increase in the molar ratio of calcium oxide to phosphoric acid, but when the content of phosphoric acid is large (incinerated ash A). In the case of B), it was confirmed that the solubility of magnesium oxide was substantially constant or decreased with an increase in the molar ratio of calcium oxide to phosphoric acid.

【0014】図10及び図11は原料の組成と所定の処
理を施して製品化した場合との関係を求めるために行っ
た実験結果を示す。図10(A)は焼却灰A、焼却灰B
に添加する添加物の組成及び添加量を示し、図10
(B)は添加物を添加、混合したときの組成及びモル比
を計算により求めた表を示す。図10(B)の表中、サ
ンプル番号は図10(A)に示す順番と同じである。な
お、添加物を添加する場合はク溶率が略最大となるモル
比を選択した。図11は溶融等の所定の処理を施して製
品化した場合のク溶性リン酸の量、ク溶性酸化マグネシ
ウムの量、アルカリ分の量及びカドミウムの残存量を求
めた結果を示す。
FIGS. 10 and 11 show the results of experiments conducted to determine the relationship between the composition of the raw materials and the case where the raw material is produced by performing a predetermined process. FIG. 10 (A) shows incineration ash A and incineration ash B
FIG. 10 shows the composition and amount of the additive added to FIG.
(B) shows a table obtained by calculating the composition and the molar ratio when additives are added and mixed. In the table of FIG. 10B, the sample numbers are the same as the order shown in FIG. When an additive was added, a molar ratio at which the solubility was substantially maximized was selected. FIG. 11 shows the results obtained by determining the amount of co-soluble phosphoric acid, the amount of co-soluble magnesium oxide, the amount of alkali and the residual amount of cadmium when the product is produced by performing a predetermined treatment such as melting.

【0015】この実験結果から、混合原料中のリン酸の
量を略18重量パーセントにし、酸化マグネシウムのモ
ル比、酸化カルシウムのモル比をク溶率が最大になる値
の近辺にすれば肥料取締法の規制値をクリアし、単肥肥
料として販売可能な成分が得られることがわかった。し
かし、焼却灰を有効活用するためには、必ずしも肥料取
締法の規制値をクリアしなくても焼却灰の組成等の性質
に応じて、混合肥料、化成肥料等の補助肥料にすれば広
い範囲の焼却灰が利用でき、天然資源の有効なリサイク
ルかが図られる。
From the results of this experiment, it was found that the amount of phosphoric acid in the mixed raw material was set to approximately 18% by weight, and the molar ratio of magnesium oxide and calcium oxide was set to a value close to the value at which the dissolution rate became maximum. It has been found that the ingredients that can be sold as single fertilizers are obtained by clearing the regulation values of the law. However, in order to use incinerated ash effectively, it is not necessary to clear the regulation values of the Fertilizer Control Law, but if it is used as an auxiliary fertilizer such as a mixed fertilizer or a chemical fertilizer, depending on the composition and other properties of the incinerated ash Incineration ash can be used, and effective recycling of natural resources can be planned.

【0016】また、肥料として利用できるためには有害
物質が多量に含まれていてはいけない。有害成分の許容
最大量は肥料取締法によって定められており、下水汚泥
肥料に対する最大規制値を図12の表の最下欄に示す。
また、表の上欄は焼却灰Aに含まれている有害成分を示
し、中欄の左側は添加物を何も添加しない場合(サンプ
ルA−3)で溶融等の所定の処理をした後の有害物の残
存量を示し、中欄の右側は処理による有害物の除去率を
示す。なお、水銀については微小で測定できなかった。
Further, in order to be able to use as a fertilizer, a large amount of harmful substances must not be contained. The maximum allowable amount of harmful components is determined by the Fertilizer Control Law, and the maximum regulatory value for sewage sludge fertilizer is shown in the lowermost column of the table in FIG.
In addition, the upper column of the table shows harmful components contained in incineration ash A, and the left column of the middle column shows a case where no additive is added (sample A-3) and after a predetermined treatment such as melting. The remaining amount of harmful substances is shown, and the right side of the middle column shows the removal rate of harmful substances by the treatment. Note that mercury was too small to be measured.

【0017】以上の表から解るように、クロム(Cr)
を除き溶融等の所定の処理によって、有害物の組成が著
しく減少している。クロムについては規制値を僅かに超
えているが、化成肥料又は混合肥料とする場合はクロム
含有量の少ない他の肥料を加えることによって規制値を
クリアすることは可能である。従って、リン酸、酸化マ
グネシウム、酸化カルシウムを添加せずに溶融等の所定
の処理をした後のク溶性リン酸、ク溶性酸化マグネシウ
ム、アルカリ分の量が規制値をクリアしていない場合で
あっても補助肥料として活用できる可能性がある。以上
に述べた実験結果及び考察に基づいて、前記した課題の
解決手段として以下に述べる方法を発明した。
As can be seen from the above table, chromium (Cr)
Except for the above, the composition of the harmful substance is significantly reduced by a predetermined treatment such as melting. Although chromium slightly exceeds the regulation value, when it is a chemical fertilizer or a mixed fertilizer, it is possible to clear the regulation value by adding another fertilizer having a low chromium content. Therefore, after the prescribed treatment such as melting without adding phosphoric acid, magnesium oxide, and calcium oxide, the amounts of the soluble phosphoric acid, the soluble magnesium oxide, and the alkali content do not meet the regulation values. There is a possibility that it can be used as an auxiliary fertilizer. Based on the experimental results and considerations described above, the following method has been invented as means for solving the above-mentioned problems.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
に本発明は以下の手段を採用している。即ち、請求項1
記載の発明は、リンを含有する汚泥又はその他の焼却灰
を原料とし、該原料を溶融し、その後に急冷してスラグ
化する工程を含むことを特徴としている。請求項2に記
載の発明は、請求項1の発明において、前記急冷工程の
後に、該スラグを粉砕する工程を含むことを特徴として
いる。
The present invention employs the following means to solve the above-mentioned problems. That is, claim 1
The described invention is characterized by including a step of using sludge containing phosphorus or other incinerated ash as a raw material, melting the raw material, and then rapidly cooling to form slag. The invention according to claim 2 is characterized in that, in the invention according to claim 1, after the quenching step, a step of pulverizing the slag is included.

【0019】請求項3記載の発明は、請求項1又は請求
項2の何れか1に記載の発明において、前記溶融工程の
前に、焼却灰に対して50重量パーセント以下の値のリ
ンを含む添加物を添加する工程を含むことを特徴として
いる。
According to a third aspect of the present invention, in the first aspect of the present invention, before the melting step, the content of phosphorus in the incinerated ash is 50% by weight or less. It is characterized by including a step of adding an additive.

【0020】請求項4記載の発明は、請求項3に記載の
発明において、前記リンを含む添加物は添加後における
混合原料中のリンの含有量をリン酸に換算して20〜2
5重量パーセントのリンを含む組成にしたことを特徴と
している。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the phosphorus-containing additive is obtained by converting the content of phosphorus in the mixed raw material after addition to 20 to 2 parts by conversion to phosphoric acid.
It is characterized by having a composition containing 5% by weight of phosphorus.

【0021】請求項5記載の発明は、請求項1〜請求項
4の何れか1に記載の発明において、前記溶融工程の前
に、焼却灰に対して60重量パーセント以下の値のマグ
ネシウムを含む添加物を添加する工程を含むことを特徴
としている。
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein before the melting step, magnesium having a value of 60% by weight or less based on the incinerated ash is contained. It is characterized by including a step of adding an additive.

【0022】請求項6記載の発明は、請求項1〜請求項
4の何れか1に記載の発明において、前記添加工程にお
いて、前記混合原料中に含まれるマグネシウムの添加量
を酸化マグネシウムに換算して、前記原料又は前記混合
原料中に含まれるリン酸の含有量に対するモル比が2.
5〜4.5のマグネシウムを含む組成にしたことを特徴
としている。
According to a sixth aspect of the present invention, in the invention of any one of the first to fourth aspects, in the adding step, the amount of magnesium contained in the mixed raw material is converted into magnesium oxide. The molar ratio with respect to the content of phosphoric acid contained in the raw material or the mixed raw material is 2.
It is characterized in that it has a composition containing 5 to 4.5 magnesium.

【0023】請求項7記載の発明は、請求項1〜請求項
6の何れか1に記載の発明において、前記溶融工程の前
に、焼却灰に対して80重量パーセント以下の値のカル
シウムを含む添加物を添加する工程を含むことを特徴と
している。
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein before the melting step, calcium having a value of 80% by weight or less based on the incinerated ash is contained. It is characterized by including a step of adding an additive.

【0024】請求項8記載の発明は、請求項1〜請求項
6の何れか1に記載の発明において、前記添加工程は、
前記混合原料中に含まれるカルシウムの添加量を酸化カ
ルシウムに換算して、前記原料又は前記混合原料中に含
まれるリン酸の含有量に対するモル比が2.5〜4.5
のカルシウムを含む組成にしたことを特徴としている。
[0024] According to an eighth aspect of the present invention, in the first aspect of the present invention, the adding step includes the step of:
The amount of calcium contained in the mixed raw material is converted into calcium oxide, and the molar ratio to the content of phosphoric acid contained in the raw material or the mixed raw material is 2.5 to 4.5.
Is characterized by having a composition containing calcium.

【0025】請求項9記載の発明は、請求項1〜請求項
8の何れか1に記載の発明において、前記添加工程にお
いて、前記混合原料中に含まれるマグネシウム及びカル
シウムの添加量を、酸化マグネシウム又は酸化カルシウ
ムに換算して、前記原料又は前記混合原料中に含まれる
リン酸の含有量に対するモル比がそれぞれ3〜4の成分
を含む組成にしたことを特徴としている。
According to a ninth aspect of the present invention, in the invention according to any one of the first to eighth aspects, in the adding step, the addition amounts of magnesium and calcium contained in the mixed raw material are reduced by magnesium oxide. Alternatively, the composition is characterized in that the composition is such that the molar ratio to the content of phosphoric acid contained in the raw material or the mixed raw material is 3 to 4 in terms of calcium oxide.

【0026】請求項10記載の発明は、請求項1〜請求
項9の何れか1に記載の発明において、前記焼却灰はリ
ン酸の含有量が10〜40重量%を含むことを特徴とし
ている。
According to a tenth aspect of the present invention, in the invention according to any one of the first to ninth aspects, the incinerated ash has a phosphoric acid content of 10 to 40% by weight. .

【0027】請求項11記載の発明は、請求項1〜請求
項10の何れか1に記載の発明において、前記添加工程
の前に、焼却灰のサンプルを分析し、分析結果に基づい
て生産するリン肥料のランクを決定し、添加物の成分及
び添加量を決定する工程を含むことを特徴としている。
According to an eleventh aspect of the present invention, in the invention according to any one of the first to tenth aspects, before the adding step, a sample of the incinerated ash is analyzed and produced based on the analysis result. It is characterized by including a step of determining the rank of the phosphorus fertilizer, and determining the components and the amount of the additive.

【0028】[0028]

【発明の実施形態】以下、図面を参照してこの発明の実
施形態及び実施例について説明する。図1は本発明の実
施形態の生産工程を示す。図1において、ステップS1
では、焼却灰のサンプルを採取して組成の分析を行う。
組成分析はリン酸、酸化マグネシウム、酸化カルシウム
の含有量の他、肥料の原料として役立つ可能性のある物
質及び有害物の組成についても含有量を分析する。焼却
灰は汚泥、都市ゴミ又は産業廃棄物等を焼却して灰にし
たもので、リン成分を含んでいるものを使用する。リン
の含有量はリン酸に換算して20重量パーセント以上含
んでいるものが好ましい。リンを高濃度に含むものとし
ては、工場排水、畜産排水及びし尿投入の排水等があ
る。本実施例における焼却灰A,Bの組成を図4(B)
に示す。
Embodiments and examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a production process according to an embodiment of the present invention. In FIG. 1, step S1
Then, a sample of incineration ash is collected and the composition is analyzed.
The composition analysis analyzes the content of phosphoric acid, magnesium oxide, and calcium oxide, as well as the composition of substances and harmful substances that may serve as raw materials for fertilizers. The incinerated ash is obtained by incinerating sludge, municipal garbage, industrial waste, or the like, and using ash containing phosphorus components. The content of phosphorus is preferably 20% by weight or more in terms of phosphoric acid. Examples of those containing a high concentration of phosphorus include industrial wastewater, livestock wastewater, and human waste input wastewater. FIG. 4B shows the composition of the incineration ashes A and B in this embodiment.
Shown in

【0029】ステップ2では組成の分析結果、製品の価
格、添加原料の価格や設備等の条件も考慮して生産する
製品のランクを決定する。製品のランクとしては、例え
ば、規制値をクリアさせた単肥肥料にするか、規制値を
クリアしなくても化成肥料の原料となる製品にするか、
或いは添加物の添加をほぼゼロにして混合肥料として製
品にするかの3段階のランクであってもよいし、さらに
細かくランクを分類してもよいし、逆に2ランクに分類
してもよい。この実施例では、図2の目標製品に示すラ
ンクに分類している。
In step 2, the rank of the product to be produced is determined in consideration of the results of the composition analysis, the price of the product, the price of the added raw material, the conditions of the equipment, and the like. As the rank of the product, for example, whether it is a single fertilizer that cleared the regulation value, or a product that is a raw material of chemical fertilizer without clearing the regulation value,
Alternatively, it may be a three-stage rank of adding an additive to the product as a mixed fertilizer with almost no addition, or may further classify the rank more finely, or may classify it into two ranks. . In this embodiment, the products are classified into the ranks shown as the target products in FIG.

【0030】ステップ3では焼却灰の成分組成と生産目
標とする製品のランクの成分組成とから添加物の成分と
添加量(又は添加量の範囲)を前記した実験結果等を利
用して、又はその他の方法により求める。添加剤として
はマグネシウム成分、カルシウム成分等がある。マグネ
シウム成分を単独に添加してもよいし、マグネシウム成
分と同時にカルシウム成分を添加してもよい。添加量は
焼却灰がこれらの成分をどの程度含んでいるか、生産す
る製品のランクにも依存する。マグネシウムの添加量は
酸化マグネシウム(MgO)換算で、汚泥焼却灰の場合
は、混合原料中のリン酸に対するモル比が2.5〜4.
5程度添加するのが好ましい。また、カルシウムの添加
量は酸化カルシウム(CaO)換算で、混合原料中のリ
ン酸に対するモル比が2.5〜3.5程度添加するのが
好ましい。なお、肥料の成分調整のために、更に他の成
分を添加してもよいし、マグネシウム成分及びカルシウ
ム成分を添加しないでよい場合もある。
In step 3, the components of the additive and the amount of addition (or the range of the amount of addition) are determined from the composition of the incineration ash and the composition of the rank of the product to be produced using the above-described experimental results, or Calculate by other methods. The additives include a magnesium component and a calcium component. The magnesium component may be added alone, or the calcium component may be added simultaneously with the magnesium component. The amount of addition depends on the degree to which the incinerated ash contains these components and also on the rank of the product to be produced. The amount of magnesium added is calculated in terms of magnesium oxide (MgO). In the case of sludge incineration ash, the molar ratio to phosphoric acid in the mixed raw material is 2.5 to 4.
Preferably, about 5 is added. In addition, the amount of calcium to be added is preferably about 2.5 to 3.5 in terms of calcium oxide (CaO) in terms of molar ratio to phosphoric acid in the mixed raw material. In addition, in order to adjust the components of the fertilizer, other components may be further added, or the magnesium component and the calcium component may not be added in some cases.

【0031】マグネシウムやカルシウム成分を添加する
目的の1つは、例えば、下水汚泥焼却灰では酸化マグネ
シウム(MgO)は数%、アルカリ分(可溶性カルシウ
ムと可溶性マグネシウムの含量を酸化カルシウム量に換
算したものをいう)は5〜20重量%程度しか含まれて
いない場合もある。溶成リン肥(溶成マグネシウムリン
肥料をいう)として利用するためにはこれらの含有率を
上げるために成分調整が必要である。更に、他の目的
は、融点を下げて溶融成分を均一化することと、フッ素
アパタイト構造の破壊率を上昇させ、肥料中のリンのク
エン酸可溶性を上昇させ、肥料としての効果、価値を高
めることである。また、マグネシウム成分を添加した場
合は融点が下がり、リンのクエン酸可溶度が上昇する。
更に、カルシウム成分を添加するとアルカリ分の組成比
が上昇し、肥料の価値が上昇する。なお、添加物の組成
決定を上の方法で決定しないで他の方法(判断基準)に
よって決定してもよい。図2に本実施例における添加物
の組成及び添加量の例を示している。
One of the purposes of adding the magnesium and calcium components is, for example, in the case of sewage sludge incineration ash, magnesium oxide (MgO) is a few percent, alkali (a content of soluble calcium and soluble magnesium converted into calcium oxide amount). In some cases) may contain only about 5 to 20% by weight. In order to use as fused phosphorus fertilizer (referred to as fused magnesium phosphorus fertilizer), it is necessary to adjust the components to increase the content of these. In addition, the other purpose is to lower the melting point to homogenize the molten components, increase the destruction rate of the fluorapatite structure, increase the solubility of phosphorus in the fertilizer in citric acid, and increase the effect and value as a fertilizer That is. Further, when a magnesium component is added, the melting point decreases and the solubility of phosphorus in citric acid increases.
Further, when the calcium component is added, the composition ratio of the alkali component increases, and the value of the fertilizer increases. The composition of the additive may be determined by another method (criterion) without being determined by the above method. FIG. 2 shows an example of the composition and amount of the additive in the present embodiment.

【0032】ステップS4は、上記した混合物を溶融炉
で加熱溶融する。溶融炉は電気炉、平炉等の溶融炉で従
来から知られているものを使用する。加熱温度は溶融温
度以上で、溶融温度は原料の組成によって異なるが、概
ね、1200〜1500度摂氏の範囲である。適当な時
間、溶融温度以上に加熱すると、混合物は完全に溶融流
動化し、溶融スラグとなる。本実施例においては、溶融
温度並びに溶融時間を図2に示すように、摂氏1400
度で20分としている。
In step S4, the mixture is heated and melted in a melting furnace. As the melting furnace, a conventionally known melting furnace such as an electric furnace or a flat furnace is used. The heating temperature is equal to or higher than the melting temperature. The melting temperature varies depending on the composition of the raw material, but is generally in the range of 1200 to 1500 degrees Celsius. When heated above the melting temperature for a suitable period of time, the mixture completely melts and fluidizes into molten slag. In this embodiment, as shown in FIG.
It is 20 minutes in degrees.

【0033】ステップS5では、溶融スラグを排出口
(例えば、炉底に設けられた排出口)より取り出し、例
えば水槽中に流し込み、急冷水砕する。急冷はリン酸分
をクエン酸に可溶化(ク溶化)する上で重要な処理であ
る。急冷が不十分の場合はフッ素アパタイト等が析出
し、ク溶性が低下する。ク溶性とは、2%のクエン酸溶
液に溶けるリン酸分をク溶性リン酸という。ク溶性リン
酸は作物の根の作用により溶解、吸収され、施肥の初期
には大きな効果はないが、肥効に持続性を有するという
特徴がある。また、ク溶性リン酸は雨水による流亡や土
壌中のアルミニウムや鉄と結合して不可給態となること
もない。従って、肥料中に含まれるリン酸分をク溶化す
ることは肥料に長期にわたってエネルギー代謝、物質合
成を行わせ、リン欠乏症を起こさせないために重要であ
る。水槽中で冷却された溶融スラグはガラス状細粒とな
る。
In step S5, the molten slag is taken out from a discharge port (for example, a discharge port provided in the furnace bottom), poured into, for example, a water tank, and quenched. Quenching is an important treatment for solubilizing phosphoric acid in citric acid. If the quenching is insufficient, fluorapatite or the like precipitates, and the solubility of the polymer decreases. The term "soluble" refers to phosphoric acid dissolved in a 2% citric acid solution. Cu-soluble phosphoric acid is dissolved and absorbed by the action of the roots of the crop, and has no significant effect in the early stage of fertilization, but has a characteristic that the fertilizing effect is persistent. In addition, the ku-soluble phosphoric acid does not run off due to rainwater or combine with aluminum or iron in the soil to become unsupplied. Therefore, it is important to solubilize the phosphoric acid content contained in the fertilizer so that the fertilizer performs energy metabolism and substance synthesis for a long time and does not cause phosphorus deficiency. The molten slag cooled in the water tank becomes glassy fine particles.

【0034】ステップS6では、ガラス状細粒となった
肥料を乾燥して粉砕し、製品にする。本実施例における
製品の分析結果を図11及び図12に示す。図11に示
す分析データから理解できるように、製品A−1、製品
B−1は両者とも規制値をクリアしており、単肥肥料と
して販売が可能である。製品A−2は規制値をクリアし
ていないが化成肥料原料として活用ができる。製品A−
3、製品B−2は、図12のデータからも解るように有
害成分が除去されており肥料原料として活用できる。
In step S6, the fertilizer in the form of glassy fine particles is dried and pulverized to obtain a product. FIGS. 11 and 12 show the analysis results of the product in this example. As can be understood from the analysis data shown in FIG. 11, both the product A-1 and the product B-1 have cleared the regulation values, and can be sold as a single fertilizer. Although the product A-2 has not cleared the regulation value, it can be used as a raw material for chemical fertilizer. Product A-
3. As can be seen from the data in FIG. 12, the product B-2 has no harmful components removed and can be used as a fertilizer raw material.

【0035】以上に述べたことから本実施形態は以下の
ような効果を有する。焼却灰の組成に応じた肥料製品を
選択できることから、広い組成範囲の焼却灰を活用する
ことができるという効果がある。このことから、資源の
有効なリサイクルが可能となり、資源保護、環境保護に
も役立つという効果が得られる。また、混合原料の組成
が最良な比率となるように添加物を添加することによ
り、ク溶率を上げて規制値をクリアする単肥肥料を低コ
ストで生産できることから利益の向上が図れるという効
果もある。また、添加原料の組成を製品の市場価格等に
基づいて決定することができるから肥料の生産調整が容
易にできるという効果もある。
As described above, the present embodiment has the following effects. Since the fertilizer product can be selected according to the composition of the incineration ash, there is an effect that incineration ash of a wide composition range can be used. As a result, the resources can be effectively recycled, and the resources can be protected and the environment can be protected. In addition, by adding additives so that the composition of the mixed raw material becomes the best ratio, it is possible to produce low-cost single fertilizer that increases the rate of dissolution and clears regulatory values, thereby improving profits. There is also. In addition, since the composition of the added raw material can be determined based on the market price of the product and the like, there is an effect that the production adjustment of the fertilizer can be easily performed.

【0036】以上、この発明の実施形態、実施例を図面
により詳述してきたが、具体的な構成はこの実施例に限
られるものではなく、この発明の要旨を逸脱しない範囲
の設計の変更等があってもこの発明に含まれる。例え
ば、リンを含有する都市ゴミ又は産業廃棄物等の焼却灰
に対しても本発明は適用できる。また、スラグ化するた
めの冷却は水槽で冷却する場合に限定されない。例え
ば、他の容器又は水流中で冷却する場合でもよい。ま
た、その他の成分を添加する場合で、顕著な効果、特異
な効果を有しない添加物を添加する場合は本発明の技術
範囲に属する。また、添加物の成分及び量を決定する方
法は上記に記載した方法に限定されず、任意の判断基準
で定めてもよい。
The embodiments and examples of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the examples, and changes in design and the like may be made without departing from the gist of the present invention. Even if there is, it is included in the present invention. For example, the present invention can be applied to incinerated ash such as municipal waste or industrial waste containing phosphorus. Cooling for slag formation is not limited to cooling in a water tank. For example, the cooling may be performed in another container or a water stream. In addition, when other components are added, and an additive that does not have a remarkable effect or a unique effect is added, it belongs to the technical scope of the present invention. In addition, the method for determining the components and amounts of the additives is not limited to the method described above, and may be determined based on any criteria.

【0037】[0037]

【発明の効果】以上説明したように、この発明の構成に
よれば、焼却灰を利用してク溶性の高い有効な肥料の生
産が可能であると共に製品のランクに応じた製品も生産
可能であり、広い組成範囲の焼却灰を活用できるという
効果が得られる。従って、資源の有効なリサイクルが可
能になり、資源保護、環境保護に役立つという効果が得
られ、しかも経済的にも低コストで生産できるという効
果も得られる。また、添加原料の組成を製品の市場価格
等に基づいて決定すれば、肥料の生産調整が容易にでき
るという効果もある。
As described above, according to the configuration of the present invention, it is possible to produce an effective fertilizer having high solubility in water by using incineration ash and to produce a product according to the rank of the product. There is an effect that incineration ash of a wide composition range can be used. Therefore, the resources can be effectively recycled, and the resources can be effectively protected and the environment can be protected. In addition, there can be obtained an economical and low-cost production. Further, if the composition of the added raw material is determined based on the market price of the product, etc., there is an effect that the production adjustment of the fertilizer can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による実施形態の生産方法のフローチ
ャートを示す。
FIG. 1 shows a flowchart of a production method according to an embodiment of the present invention.

【図2】 本実施形態の各種の条件を示す。FIG. 2 shows various conditions of the present embodiment.

【図3】 下水汚泥焼却灰の組成を示す。FIG. 3 shows the composition of sewage sludge incineration ash.

【図4】 (A)は焼却灰の成分範囲を示し、(B)は
サンプルの組成を示す。
FIG. 4 (A) shows the component range of the incinerated ash, and FIG. 4 (B) shows the composition of the sample.

【図5】 (A)、(B)はサンプルを利用する実験計
画を示す。
FIGS. 5A and 5B show an experimental plan using a sample.

【図6】 (A)、(B)はサンプルAのリン酸のク溶
率変化を示す。
6 (A) and 6 (B) show changes in the dissolution rate of phosphoric acid in sample A. FIG.

【図7】 (A)、(B)はサンプルAの酸化マグネシ
ウムのク溶率変化を示す。
7 (A) and 7 (B) show changes in the solubility of magnesium oxide in sample A. FIG.

【図8】 (A)、(B)はサンプルBのリン酸のク溶
率変化を示す。
8 (A) and 8 (B) show changes in phosphoric acid dissolution rate of sample B. FIG.

【図9】 (A)、(B)はサンプルBの酸化マグネシ
ウムのク溶率変化を示す。
FIGS. 9A and 9B show changes in the dissolution rate of magnesium oxide in Sample B. FIGS.

【図10】 (A)は添加物の組成を示し、(B)は混
合原料の組成を示す。
10A shows the composition of an additive, and FIG. 10B shows the composition of a mixed raw material.

【図11】 サンプルの処理後の組成を示す。FIG. 11 shows the composition of the sample after processing.

【図12】 有害成分の残存組成を示す。FIG. 12 shows a residual composition of a harmful component.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C05D 3:02) (C05G 1/00 C05D 5:00) (72)発明者 定塚 徹治 東京都千代田区有楽町1−4−1 三機工 業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C05D 3:02) (C05G 1/00 C05D 5:00) (72) Inventor Tetsuji Sadazuka Yurakucho, Chiyoda-ku, Tokyo 1-4-1 Sanki Kogyo Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 リンを含有する汚泥又はその他の焼却灰
を原料とし、該原料を溶融し、その後に急冷してスラグ
化する工程を含むことを特徴とする焼却灰を原料とする
肥料の生産方法。
1. Production of fertilizer using incinerated ash as a raw material, comprising a step of using sludge containing phosphorus or other incinerated ash as a raw material, melting the raw material, and then rapidly cooling the slag to form a slag. Method.
【請求項2】 前記急冷工程の後に、該スラグを粉砕す
る工程を含むことを特徴とする請求項1に記載の焼却灰
を原料とする肥料の生産方法。
2. The method according to claim 1, further comprising a step of pulverizing the slag after the quenching step.
【請求項3】 前記溶融工程の前に、焼却灰に対して5
0重量パーセント以下の値のリンを含む添加物を添加す
る工程を含むことを特徴とする請求項1又は請求項2の
何れか1に記載の焼却灰を原料とする肥料の生産方法。
3. Prior to the melting step, 5 min.
The method for producing a fertilizer using incinerated ash as a raw material according to any one of claims 1 and 2, further comprising a step of adding an additive containing phosphorus having a value of 0% by weight or less.
【請求項4】 前記添加工程において、前記リンを含む
添加物は添加後における混合原料中のリンの含有量をリ
ン酸に換算して20〜25重量パーセントのリンを含む
組成にしたことを特徴とする請求項3に記載の焼却灰を
原料とする肥料の生産方法。
4. In the addition step, the phosphorus-containing additive has a composition containing 20 to 25% by weight of phosphorus in terms of phosphoric acid in terms of the content of phosphorus in the mixed raw material after addition. The method for producing a fertilizer using the incinerated ash according to claim 3 as a raw material.
【請求項5】 前記溶融工程の前に、焼却灰に対して6
0重量パーセント以下の値のマグネシウムを含む添加物
を添加する工程を含むことを特徴とする請求項1〜請求
項4の何れか1に記載の焼却灰を原料とする肥料の生産
方法。
5. The method according to claim 5, wherein before the melting step, 6 incineration ash is applied.
The method for producing a fertilizer from incinerated ash according to any one of claims 1 to 4, further comprising a step of adding an additive containing magnesium having a value of 0% by weight or less.
【請求項6】 前記添加工程において、前記混合原料中
に含まれるマグネシウムの添加量を酸化マグネシウムに
換算して、前記原料又は前記混合原料中に含まれるリン
酸の含有量に対するモル比が2.5〜4.5のマグネシ
ウムを含む組成にしたことを特徴とする請求項1〜請求
項4の何れか1に記載の焼却灰を原料とする肥料の生産
方法。
6. In the adding step, the amount of magnesium contained in the mixed raw material is converted into magnesium oxide, and the molar ratio to the content of phosphoric acid contained in the raw material or the mixed raw material is 2. The method for producing a fertilizer using incinerated ash as a raw material according to any one of claims 1 to 4, wherein the composition contains a magnesium containing 5 to 4.5 magnesium.
【請求項7】 前記溶融工程の前に、焼却灰に対して8
0重量パーセント以下の値のカルシウムを含む添加物を
添加する工程を含むことを特徴とする請求項1〜請求項
6の何れか1に記載の焼却灰を原料とする肥料の生産方
法。
7. The method according to claim 8, wherein said incineration ash is treated with 8
The method for producing a fertilizer from incinerated ash according to any one of claims 1 to 6, further comprising a step of adding an additive containing calcium having a value of 0% by weight or less.
【請求項8】 前記添加工程において、前記混合原料中
に含まれるカルシウムの添加量を酸化カルシウムに換算
して、前記原料又は前記混合原料中に含まれるリン酸の
含有量に対するモル比が2.5〜4.5のカルシウムを
含む組成にしたことを特徴とする請求項1〜請求項6の
何れか1に記載の焼却灰を原料とする肥料の生産方法。
8. In the adding step, the amount of calcium contained in the mixed raw material is converted into calcium oxide, and the molar ratio to the content of phosphoric acid contained in the raw material or the mixed raw material is 2. The method for producing a fertilizer using incinerated ash as a raw material according to any one of claims 1 to 6, wherein the composition contains calcium of 5 to 4.5.
【請求項9】 前記添加工程において、前記混合原料中
に含まれるマグネシウム及びカルシウムの添加量を、酸
化マグネシウム又は酸化カルシウムに換算して、前記原
料又は前記混合原料中に含まれるリン酸の含有量に対す
るモル比がそれぞれ3〜4の成分を含む組成にしたこと
を特徴とする請求項1〜請求項8の何れか1に記載の焼
却灰を原料とする肥料の生産方法。
9. The content of phosphoric acid contained in the raw material or the mixed raw material, wherein the amount of magnesium and calcium contained in the mixed raw material is converted into magnesium oxide or calcium oxide in the adding step. The method for producing a fertilizer using incinerated ash as a raw material according to any one of claims 1 to 8, wherein the composition has a composition containing a component having a molar ratio of 3 to 4 respectively.
【請求項10】 前記焼却灰はリン酸の含有量が10〜
40重量%を含むことを特徴とする請求項1〜請求項9
の何れか1に記載の焼却灰を原料とする肥料の生産方
法。
10. The incinerated ash has a phosphoric acid content of 10 to 10.
10. The composition according to claim 1, comprising 40% by weight.
A method for producing a fertilizer using the incinerated ash according to any one of the above.
【請求項11】 前記添加工程の前に、焼却灰のサンプ
ルを分析し、分析結果に基づいて生産するリン肥料のラ
ンクを決定し、添加物の成分及び添加量を決定する工程
を含むことを特徴とする請求項1〜請求項10の何れか
1に記載の焼却灰を原料とする肥料の生産方法。
11. The method according to claim 1, further comprising, before the adding step, a step of analyzing a sample of the incinerated ash, determining a rank of the phosphorus fertilizer to be produced based on the analysis result, and determining a component and an additive amount of the additive. A method for producing a fertilizer using the incinerated ash according to any one of claims 1 to 10 as a raw material.
JP2000203229A 1999-07-07 2000-07-05 Fertilizer production method using incinerated ash as raw material Expired - Lifetime JP4844941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203229A JP4844941B2 (en) 1999-07-07 2000-07-05 Fertilizer production method using incinerated ash as raw material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11-193196 1999-07-07
JP1999193196 1999-07-07
JP19319699 1999-07-07
JP2000203229A JP4844941B2 (en) 1999-07-07 2000-07-05 Fertilizer production method using incinerated ash as raw material

Publications (2)

Publication Number Publication Date
JP2001080979A true JP2001080979A (en) 2001-03-27
JP4844941B2 JP4844941B2 (en) 2011-12-28

Family

ID=26507748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203229A Expired - Lifetime JP4844941B2 (en) 1999-07-07 2000-07-05 Fertilizer production method using incinerated ash as raw material

Country Status (1)

Country Link
JP (1) JP4844941B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123629A1 (en) * 2004-06-21 2005-12-29 Sanki Engineering Co., Ltd. Method and apparatus for producing phosphate fertilizer utilizing incineration ash
WO2006072982A1 (en) 2005-01-06 2006-07-13 Sanki Engineering Co., Ltd Process for producing phosphatic fertilizer and apparatus therefor
JP2008272580A (en) * 2007-02-09 2008-11-13 Jikco Ltd Treatment method for heavy metals in waste ash
JP2012232864A (en) * 2011-04-28 2012-11-29 Kubota Corp Method for producing fertilizer and rotary surface melting furnace used in the same
WO2013002250A1 (en) * 2011-06-27 2013-01-03 太平洋セメント株式会社 Phosphate fertilizer, and method for producing phosphate fertilizer
JP2013032269A (en) * 2011-06-27 2013-02-14 Taiheiyo Cement Corp Phosphate fertilizer and method for producing the same
JP2013053061A (en) * 2011-08-10 2013-03-21 Taiheiyo Cement Corp Phosphate fertilizer, and method for producing the same
JP2013237588A (en) * 2012-05-15 2013-11-28 Taiheiyo Cement Corp Phosphate fertilizer and method for producing the same
JP2013253000A (en) * 2012-06-07 2013-12-19 Taiheiyo Cement Corp Method for producing phosphate fertilizer
JP2014001095A (en) * 2012-06-18 2014-01-09 Taiheiyo Cement Corp Production method of silicic acid-phosphoric acid fertilizer and silicic acid-phosphoric acid fertilizer
JP2014114190A (en) * 2012-12-11 2014-06-26 Taiheiyo Cement Corp Phosphate fertilizer and production method thereof
JP2014122132A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Phosphoric acid fertilizer and its manufacturing method
JP5793232B1 (en) * 2014-08-25 2015-10-14 日本重化学工業株式会社 Fertilizer production method
JP2020066541A (en) * 2018-10-23 2020-04-30 株式会社クボタ Method of producing fertilizing slag using as raw material digestive sludge containing phosphorus or burned ash thereof, operation method of melting furnace, and melting facility

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001819A (en) * 2004-06-21 2006-01-05 Tokyo Metropolis Method and apparatus for manufacturing phosphorus fertilizer using incineration ash
WO2005123629A1 (en) * 2004-06-21 2005-12-29 Sanki Engineering Co., Ltd. Method and apparatus for producing phosphate fertilizer utilizing incineration ash
WO2006072982A1 (en) 2005-01-06 2006-07-13 Sanki Engineering Co., Ltd Process for producing phosphatic fertilizer and apparatus therefor
JP2008272580A (en) * 2007-02-09 2008-11-13 Jikco Ltd Treatment method for heavy metals in waste ash
JP2012232864A (en) * 2011-04-28 2012-11-29 Kubota Corp Method for producing fertilizer and rotary surface melting furnace used in the same
CN103649016A (en) * 2011-06-27 2014-03-19 太平洋水泥株式会社 Phosphate fertilizer, and method for producing phosphate fertilizer
WO2013002250A1 (en) * 2011-06-27 2013-01-03 太平洋セメント株式会社 Phosphate fertilizer, and method for producing phosphate fertilizer
JP2013032269A (en) * 2011-06-27 2013-02-14 Taiheiyo Cement Corp Phosphate fertilizer and method for producing the same
CN103649016B (en) * 2011-06-27 2015-09-23 太平洋水泥株式会社 The manufacture method of phosphatic manure and phosphatic manure
JP2013053061A (en) * 2011-08-10 2013-03-21 Taiheiyo Cement Corp Phosphate fertilizer, and method for producing the same
JP2013237588A (en) * 2012-05-15 2013-11-28 Taiheiyo Cement Corp Phosphate fertilizer and method for producing the same
JP2013253000A (en) * 2012-06-07 2013-12-19 Taiheiyo Cement Corp Method for producing phosphate fertilizer
JP2014001095A (en) * 2012-06-18 2014-01-09 Taiheiyo Cement Corp Production method of silicic acid-phosphoric acid fertilizer and silicic acid-phosphoric acid fertilizer
JP2014114190A (en) * 2012-12-11 2014-06-26 Taiheiyo Cement Corp Phosphate fertilizer and production method thereof
JP2014122132A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Phosphoric acid fertilizer and its manufacturing method
JP5793232B1 (en) * 2014-08-25 2015-10-14 日本重化学工業株式会社 Fertilizer production method
JP2020066541A (en) * 2018-10-23 2020-04-30 株式会社クボタ Method of producing fertilizing slag using as raw material digestive sludge containing phosphorus or burned ash thereof, operation method of melting furnace, and melting facility
JP7154942B2 (en) 2018-10-23 2022-10-18 株式会社クボタ Method for producing fertilizing slag using digested sludge containing phosphorus or its incinerated ash as a raw material

Also Published As

Publication number Publication date
JP4844941B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP2001080979A (en) Production of fertilizer consisting of incineration ash as raw material
Pesonen et al. Co-granulation of bio-ash with sewage sludge and lime for fertilizer use
ES2741133T3 (en) High value fertilizer bioorganically increased
WO2005123629A1 (en) Method and apparatus for producing phosphate fertilizer utilizing incineration ash
US2532548A (en) Method for disposal of waste picle liquor
da Costa et al. Life cycle assessment of woody biomass ash for soil amelioration
Barriga et al. Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: thermal study
WO2012016394A1 (en) Silicon-calcium-magnesium-sulfur fertilizer and its preparation method
JP2000169269A (en) Production of molten and solidified material of sludge
JP2006321703A (en) Method for manufacturing organic fertilizer and organic fertilizer obtained by the method
JP4040542B2 (en) Silicic fertilizer
KR101279135B1 (en) Treating method for ferment of sewage sludge
JP2005255485A (en) Method for producing phosphorous silicate fertilizer and apparatus therefor
EP0970933A2 (en) Slow release matrix bound fertilisers
JP2000282034A (en) Method for preventing soil acidification and for stabilizing soil ph
JP2004137136A (en) Raw material for silicate phosphate fertilizer, and its manufacturing method
JP6782061B2 (en) Silicic acid fertilizer for gramineous plants
JPH09328384A (en) Production of sludge melt-solidified form
Smol et al. Sewage sludge ash (SSA) as a phosphate fertilizer in the aspect of legal regulations
JP4653531B2 (en) Method for stabilizing slag solidified product
Davis et al. Disposal and utilization of waste kiln dust from cement industry
KR100450718B1 (en) Fertilizer manufacturing method and manufactured thereof
CN107973505A (en) A kind of Treatment of Sludge additive and preparation method thereof
JPS61271087A (en) Treatment of waste water containing phosphate
JP2003112988A (en) Method for manufacturing phosphorus fertilizer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000804

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20001010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term