JP2020063701A - Fuel supply control device - Google Patents

Fuel supply control device Download PDF

Info

Publication number
JP2020063701A
JP2020063701A JP2018196142A JP2018196142A JP2020063701A JP 2020063701 A JP2020063701 A JP 2020063701A JP 2018196142 A JP2018196142 A JP 2018196142A JP 2018196142 A JP2018196142 A JP 2018196142A JP 2020063701 A JP2020063701 A JP 2020063701A
Authority
JP
Japan
Prior art keywords
fuel
pressure
passage
control device
supply control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018196142A
Other languages
Japanese (ja)
Other versions
JP7115210B2 (en
Inventor
顕 岩井
Akira Iwai
顕 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018196142A priority Critical patent/JP7115210B2/en
Publication of JP2020063701A publication Critical patent/JP2020063701A/en
Application granted granted Critical
Publication of JP7115210B2 publication Critical patent/JP7115210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To provide a fuel supply control device capable of detecting abnormality in a fuel passage.SOLUTION: A fuel supply control device 2 for an internal combustion engine comprises: a low-pressure fuel pump 14 for pumping a fuel inside of a fuel tank 11; a low-pressure passage 15 in which the fuel supplied from the low-pressure fuel pump 14 flows; a port delivery pipe 23 in which the fuel supplied from the low-pressure passage 15 is stored; and a port fuel injection valve 13 which injects the fuel stored in the port delivery pipe 23. A fuel supply control device 1 defining a fuel supply device 2 as a control object acquires a fuel pressure Pd inside of the port delivery pipe and an engine rotation number. The fuel supply control device 1 then detects a resonant rotation number in which the fuel pressure Pd becomes a maximal value, on the basis of the fuel pressure Pd and the engine rotation number Ne and, in a case where the resonant rotation number is out of a preset predetermined rotation number range, determines that abnormality occurs in the low-pressure passage 15.SELECTED DRAWING: Figure 1

Description

本発明は、燃料供給制御装置に関する。   The present invention relates to a fuel supply control device.

従来、内燃機関の燃料供給装置として、燃料ポンプ(フィードポンプ)により燃料タンクから汲み上げられる燃料を燃料通路を介してデリバリパイプに供給し、燃料噴射弁によりデリバリパイプ内に貯留された燃料を内燃機関の吸気通路に噴射するものがある(例えば、特許文献1)。   2. Description of the Related Art Conventionally, as a fuel supply device for an internal combustion engine, fuel pumped up from a fuel tank by a fuel pump (feed pump) is supplied to a delivery pipe through a fuel passage, and fuel stored in the delivery pipe by a fuel injection valve is supplied to the internal combustion engine. There is one that injects into the intake passage (for example, Patent Document 1).

特開2018−96230号公報JP, 2008-96230, A

ところで、燃料供給装置では、燃料通路に異物が詰まることがある。しかし、上記特許文献1には、こうした異常を検出する構成については開示されておらず、燃料通路の異常を検出する技術の開発が求められていた。   By the way, in the fuel supply device, foreign matter may be clogged in the fuel passage. However, the above-mentioned Patent Document 1 does not disclose a configuration for detecting such an abnormality, and development of a technique for detecting an abnormality in the fuel passage has been required.

上記課題を解決する燃料供給制御装置は、燃料タンク内の燃料を汲み上げる燃料ポンプと、前記燃料ポンプから供給される燃料が流通する燃料通路と、前記燃料通路から供給される燃料を貯留するデリバリパイプと、前記デリバリパイプ内に貯留される燃料を噴射する燃料噴射弁と、前記デリバリパイプ内の燃圧を検出する燃圧センサとを備えた内燃機関の燃料供給装置を制御対象とし、前記燃圧及び機関回転数に基づいて、前記燃圧が極大値となる機関回転数である共鳴回転数を検出し、該共鳴回転数が予め設定された所定回転数範囲外である場合に、前記燃料通路に異常が発生したと判定する。   A fuel supply control device that solves the above problems is a fuel pump that pumps up fuel in a fuel tank, a fuel passage through which fuel supplied from the fuel pump flows, and a delivery pipe that stores fuel supplied from the fuel passage. A fuel injection device for injecting fuel stored in the delivery pipe, and a fuel pressure sensor for detecting a fuel pressure in the delivery pipe, the fuel supply device for an internal combustion engine being controlled, and the fuel pressure and the engine rotation Based on the number, the resonance speed, which is the engine speed at which the fuel pressure has a maximum value, is detected, and when the resonance speed is outside a preset predetermined speed range, an abnormality occurs in the fuel passage. It is judged that it did.

デリバリパイプ内の燃料圧力(燃圧)は、例えば燃料噴射弁から燃料を噴射することによって脈動する。こうした燃圧の脈動は、燃料通路内を伝搬し、その端部等で反射することでデリバリパイプ内を往復する。そのため、燃料噴射のタイミング、すなわち単位時間あたりの燃料噴射回数によっては共鳴現象が生じることで、燃圧が大きくなる。共鳴現象が起きる単位時間あたりの燃料噴射回数は、デリバリパイプや燃料通路の長さ等によって決まるため、燃料通路に異常がなければ、燃料供給装置の仕様等に応じて決まった回数となる。そして、内燃機関に燃料供給を行う際における単位時間あたりの燃料噴射回数は、機関回転数に応じて決まるため、共鳴現象により燃圧が極大値(ピーク)となる機関回転数は、燃料供給装置の仕様に応じた所定回転数範囲の値となる。   The fuel pressure (fuel pressure) in the delivery pipe pulsates by injecting fuel from a fuel injection valve, for example. The pulsation of the fuel pressure propagates in the fuel passage and is reflected at the end of the fuel passage to reciprocate in the delivery pipe. Therefore, a resonance phenomenon occurs depending on the timing of fuel injection, that is, the number of fuel injections per unit time, and the fuel pressure increases. Since the number of fuel injections per unit time in which the resonance phenomenon occurs is determined by the length of the delivery pipe and the fuel passage, etc., if there is no abnormality in the fuel passage, the number of fuel injections is determined according to the specifications of the fuel supply device. Since the number of fuel injections per unit time when supplying fuel to the internal combustion engine is determined according to the engine speed, the engine speed at which the fuel pressure reaches a maximum value (peak) due to the resonance phenomenon is It is a value within a predetermined rotation speed range according to the specifications.

一方、例えば燃料通路に異物の詰まりが生じ始めると、燃料通路の同位置で脈動する燃料の一部が反射ことで、異なる燃料噴射回数でも共鳴現象が生じるようになる。したがって、上記構成のように燃圧が極大値となる共鳴回転数を検出し、該共鳴回転数が予め設定された所定回転数範囲外であれば、燃料通路に異常が生じたと判定できる。   On the other hand, for example, when a foreign substance is clogged in the fuel passage, a part of the fuel pulsating at the same position in the fuel passage is reflected, so that a resonance phenomenon occurs even at different fuel injection times. Therefore, it is possible to determine that an abnormality has occurred in the fuel passage by detecting the resonance rotational speed at which the fuel pressure has a maximum value as in the above configuration and if the resonance rotational speed is outside the preset predetermined rotational speed range.

内燃機関の燃料供給装置の概略構成図。The schematic block diagram of the fuel supply system of an internal-combustion engine. 正常時における機関回転数と燃圧との関係の一例を示すグラフ。The graph which shows an example of the relationship between engine speed and fuel pressure at the time of normal. 異常発生時における機関回転数と燃圧との関係の一例を示すグラフ。6 is a graph showing an example of the relationship between engine speed and fuel pressure when an abnormality occurs.

以下、燃料供給制御装置の一実施形態を図面に従って説明する。
図1に示すように、燃料供給制御装置1の制御対象となる内燃機関の燃料供給装置2は、燃料が貯留されている燃料タンク11と、内燃機関の気筒内に燃料を直接噴射する複数の直噴用燃料噴射弁12と、内燃機関の吸気通路に燃料を噴射する燃料噴射弁としての複数のポート用燃料噴射弁13とを備えている。また、燃料供給装置2には、燃料タンク11内の燃料を汲み上げる燃料ポンプとしての電動の低圧燃料ポンプ(フィードポンプ)14と、低圧燃料ポンプ14から供給された燃料が流通する燃料通路としての低圧通路15とが設けられている。
An embodiment of the fuel supply control device will be described below with reference to the drawings.
As shown in FIG. 1, a fuel supply device 2 for an internal combustion engine, which is a control target of the fuel supply control device 1, includes a fuel tank 11 in which fuel is stored and a plurality of fuel injection devices that directly inject the fuel into the cylinders of the internal combustion engine. A direct injection fuel injection valve 12 and a plurality of port fuel injection valves 13 as fuel injection valves for injecting fuel into an intake passage of an internal combustion engine are provided. Further, the fuel supply device 2 includes an electric low-pressure fuel pump (feed pump) 14 as a fuel pump for pumping the fuel in the fuel tank 11, and a low-pressure fuel passage as a fuel passage through which the fuel supplied from the low-pressure fuel pump 14 flows. A passage 15 is provided.

低圧通路15は、下流側で2つに分岐しており、一方の第1分岐通路21は高圧燃料ポンプ16に接続され、他方の第2分岐通路22はデリバリパイプとしてのポート用デリバリパイプ23に接続されている。高圧燃料ポンプ16は、第1分岐通路21から供給された燃料を加圧し、直噴用デリバリパイプ24に供給する。直噴用デリバリパイプ24に貯留されている燃料は、各直噴用燃料噴射弁12から噴射される。ポート用デリバリパイプ23に貯留されている燃料は、各ポート用燃料噴射弁13から噴射される。   The low-pressure passage 15 is branched into two on the downstream side, one first branch passage 21 is connected to the high-pressure fuel pump 16, and the other second branch passage 22 is a delivery pipe 23 for a port as a delivery pipe. It is connected. The high-pressure fuel pump 16 pressurizes the fuel supplied from the first branch passage 21 and supplies it to the direct injection delivery pipe 24. The fuel stored in the direct injection delivery pipe 24 is injected from each direct injection fuel injection valve 12. The fuel stored in the port delivery pipe 23 is injected from each port fuel injection valve 13.

高圧燃料ポンプ16は、低圧通路15に接続されている吸入通路31と、直噴用デリバリパイプ24に接続されている吐出通路32と、吸入通路31及び吐出通路32と連通する加圧室33を有する加圧部34とを備えている。吐出通路32内には、加圧室33側から直噴用デリバリパイプ24側への燃料の流通は許容する一方で、直噴用デリバリパイプ24側から加圧室33側への燃料の流通は規制する吐出逆止弁35が設けられている。また、高圧燃料ポンプ16には、開弁時には吸入通路31を通じた低圧通路15と加圧室33との間での燃料の流通を許容する一方、閉弁時には吸入通路31を通じた低圧通路15と加圧室33との間での燃料の流通を規制する電動の吸入弁36が設けられている。なお、吸入弁36の開閉動作は、燃料供給制御装置1によって制御される。   The high-pressure fuel pump 16 includes a suction passage 31 connected to the low-pressure passage 15, a discharge passage 32 connected to the direct injection delivery pipe 24, and a pressurizing chamber 33 communicating with the suction passage 31 and the discharge passage 32. And a pressurizing unit 34. In the discharge passage 32, fuel is allowed to flow from the pressure chamber 33 side to the direct injection delivery pipe 24 side, while fuel is allowed to flow from the direct injection delivery pipe 24 side to the pressure chamber 33 side. A discharge check valve 35 for regulating is provided. Further, the high-pressure fuel pump 16 allows the fuel to flow between the low-pressure passage 15 and the pressurizing chamber 33 through the suction passage 31 when the valve is opened, and the low-pressure passage 15 through the suction passage 31 when the valve is closed. An electric suction valve 36 that regulates the flow of fuel to and from the pressurizing chamber 33 is provided. The opening / closing operation of the intake valve 36 is controlled by the fuel supply control device 1.

加圧部34は、加圧室33に流入した燃料を加圧して吐出通路32に吐出する。具体的には、加圧部34は、シリンダ41と、シリンダ41内でその軸方向に沿って往復運動するプランジャ42とを有しており、シリンダ41とプランジャ42とによって加圧室33が区画されている。プランジャ42は、内燃機関のカム軸43と一体回転するカムピース44の回転に連動して往復運動する。このようにプランジャ42が往復運動することで、加圧室33の容積が変わる。そして、加圧部34は、プランジャ42の往復運動と吸入弁36の開閉動作とを連動させることにより、低圧通路15側から加圧室33内に燃料を吸入し、当該燃料を加圧して直噴用デリバリパイプ24に供給する。   The pressurizing unit 34 pressurizes the fuel that has flowed into the pressurizing chamber 33 and discharges the fuel into the discharge passage 32. Specifically, the pressurizing unit 34 has a cylinder 41 and a plunger 42 that reciprocates in the cylinder 41 along the axial direction thereof, and the pressurizing chamber 33 is partitioned by the cylinder 41 and the plunger 42. Has been done. The plunger 42 reciprocates in conjunction with the rotation of the cam piece 44 that rotates integrally with the cam shaft 43 of the internal combustion engine. As the plunger 42 reciprocates in this manner, the volume of the pressurizing chamber 33 changes. Then, the pressurizing unit 34 interlocks the reciprocating motion of the plunger 42 with the opening / closing operation of the intake valve 36 to suck the fuel into the pressurizing chamber 33 from the low pressure passage 15 side and directly pressurize the fuel. Supply to the delivery pipe 24 for injection.

燃料供給制御装置1は、図示しない中央処理装置(CPU)やメモリを備えており、所定の演算周期ごとにメモリに記憶されたプログラムをCPUが実行する。燃料供給制御装置1には、各種センサが接続されており、これらのセンサから取得する状態量に基づいて各種の制御を実行する。各種センサの一として、燃料供給制御装置1には、クランク角センサ51が電気的に接続されている。クランク角センサ51は、クランク軸の回転角度(クランク角θ)を検出する。そして、燃料供給制御装置1は、検出されるクランク角θに同期して直噴用燃料噴射弁12及びポート用燃料噴射弁13から燃料噴射を行い、内燃機関に燃料を供給する。   The fuel supply control device 1 includes a central processing unit (CPU) and a memory (not shown), and the CPU executes a program stored in the memory at every predetermined calculation cycle. Various sensors are connected to the fuel supply control device 1, and various controls are executed based on the state quantities obtained from these sensors. As one of various sensors, a crank angle sensor 51 is electrically connected to the fuel supply control device 1. The crank angle sensor 51 detects the rotation angle (crank angle θ) of the crank shaft. Then, the fuel supply control device 1 performs fuel injection from the direct injection fuel injection valve 12 and the port fuel injection valve 13 in synchronization with the detected crank angle θ, and supplies fuel to the internal combustion engine.

次に、燃料供給制御装置1による低圧通路15の異常検出について説明する。
燃料供給制御装置1は、クランク角θに基づいて機関回転数(機関回転速度)Neを演算する。また、燃料供給制御装置1には、ポート用デリバリパイプ23内の燃圧(燃料圧力)Pdを検出する燃圧センサ52が接続されている。そして、燃料供給制御装置1は、機関回転数Neと燃圧Pdとの関係に基づいて低圧通路15の異物の詰まりを検出する。
Next, the abnormality detection of the low pressure passage 15 by the fuel supply control device 1 will be described.
The fuel supply control device 1 calculates the engine speed (engine speed) Ne based on the crank angle θ. A fuel pressure sensor 52 that detects the fuel pressure (fuel pressure) Pd in the port delivery pipe 23 is connected to the fuel supply control device 1. Then, the fuel supply control device 1 detects clogging of foreign matter in the low pressure passage 15 based on the relationship between the engine speed Ne and the fuel pressure Pd.

ここで、ポート用デリバリパイプ23内の燃圧は、例えばポート用燃料噴射弁13から燃料を噴射することによって脈動する。こうした燃圧の脈動は、低圧通路15内を伝搬し、高圧燃料ポンプ16等で反射することでポート用デリバリパイプ23内を往復する。そのため、ポート用燃料噴射弁13からの燃料噴射のタイミング、すなわち単位時間あたりの燃料噴射回数によっては共鳴現象が生じることで、燃圧Pdが大きくなる。こうした共鳴現象が起きる単位時間あたりの燃料噴射回数は、ポート用デリバリパイプ23や低圧通路15の長さ等によって決まるため、低圧通路15に異物が詰まる等の異常がなければ、燃料供給装置2の仕様等に応じて決まった回数となる。そして、内燃機関に燃料供給を行う際における単位時間あたりの燃料噴射回数は、機関回転数Neによって一義的に決まるため、図2に示すように、共鳴現象により燃圧Pdが極大値(ピーク)となる機関回転数Neは、燃料供給装置2の仕様に応じた所定回転数範囲Rthの値となる。一方、例えば低圧通路15に異物の詰まりが生じ始めると、低圧通路15の同位置で脈動する燃料の一部が反射ことで、異なる燃料噴射回数でも共鳴現象が生じるようになる。   Here, the fuel pressure in the port delivery pipe 23 pulsates by injecting fuel from the port fuel injection valve 13, for example. Such fuel pressure pulsation propagates in the low-pressure passage 15 and is reflected by the high-pressure fuel pump 16 and the like to reciprocate in the port delivery pipe 23. Therefore, a resonance phenomenon occurs depending on the timing of fuel injection from the port fuel injection valve 13, that is, the number of fuel injections per unit time, and the fuel pressure Pd increases. The number of fuel injections per unit time in which such a resonance phenomenon occurs is determined by the length of the port delivery pipe 23, the low pressure passage 15, etc. Therefore, if there is no abnormality such as foreign matter clogging in the low pressure passage 15, the fuel supply device 2 The number of times is determined according to the specifications. Since the number of fuel injections per unit time when fuel is supplied to the internal combustion engine is uniquely determined by the engine speed Ne, as shown in FIG. 2, the fuel pressure Pd has a maximum value (peak) due to the resonance phenomenon. The engine rotation speed Ne becomes a value in a predetermined rotation speed range Rth according to the specifications of the fuel supply device 2. On the other hand, for example, when foreign matter is clogged in the low-pressure passage 15, a part of the fuel pulsating at the same position in the low-pressure passage 15 is reflected, so that a resonance phenomenon occurs even at different fuel injection times.

上記の点を踏まえ、本実施形態の燃料供給制御装置1には、燃料供給装置2の仕様に応じた所定回転数範囲Rthが予め記憶されている。また、燃料供給制御装置1は、燃圧Pdの機関回転数Neに対する変化を検出し、燃圧Pdが極大値(ピーク)となる機関回転数Neである共鳴回転数Nrを取得する。なお、共鳴回転数Nrの取得方法としては、例えば燃圧Pdの機関回転数Neに対する変化量(微分値)を演算し、変化量の符号が反転して該変化量がゼロになる機関回転数Neを共鳴回転数Nrとする方法を採用できるが、他の方法も適宜採用可能である。そして、燃料供給制御装置1は、共鳴回転数Nrが所定回転数範囲Rth内の値であれば異常が発生していないと判定し、共鳴回転数Nrが所定回転数範囲Rth外の値であれば異常が発生したと判定する。   Based on the above points, the fuel supply control device 1 of the present embodiment stores in advance a predetermined rotational speed range Rth according to the specifications of the fuel supply device 2. Further, the fuel supply control device 1 detects a change in the fuel pressure Pd with respect to the engine rotation speed Ne, and acquires the resonance rotation speed Nr which is the engine rotation speed Ne at which the fuel pressure Pd has a maximum value (peak). As a method of obtaining the resonance speed Nr, for example, a change amount (differential value) of the fuel pressure Pd with respect to the engine speed Ne is calculated, and the sign of the change amount is inverted so that the change amount becomes zero. Can be adopted as the resonance rotational speed Nr, but other methods can also be adopted as appropriate. Then, the fuel supply control device 1 determines that no abnormality has occurred if the resonance rotation speed Nr is a value within the predetermined rotation speed range Rth, and the resonance rotation speed Nr is a value outside the predetermined rotation speed range Rth. For example, it is determined that an abnormality has occurred.

次に、一例として第1分岐通路21に異物が詰まり始めた状態を想定する。
この場合、図3において実線で示すように、燃圧Pdは2つの機関回転数Neで極大値となるため、燃料供給制御装置1は、共鳴回転数Nr1,Nr2を取得する。このうち、共鳴回転数Nr1は所定回転数範囲Rth内の値であるため、燃料供給制御装置1は、共鳴回転数Nr1を取得した時点では、異常が発生したと判定しない。一方、共鳴回転数Nr2は所定回転数範囲Rth外の値であるため、燃料供給制御装置1は、共鳴回転数Nr2を取得した時点で、異常が発生したと判定する。
Next, as an example, assume that the first branch passage 21 is clogged with foreign matter.
In this case, as indicated by the solid line in FIG. 3, the fuel pressure Pd has the maximum value at the two engine speeds Ne, so the fuel supply control device 1 acquires the resonance speeds Nr1 and Nr2. Of these, the resonance rotation speed Nr1 is a value within the predetermined rotation speed range Rth, so the fuel supply control device 1 does not determine that an abnormality has occurred at the time when the resonance rotation speed Nr1 is acquired. On the other hand, since the resonance rotation speed Nr2 is a value outside the predetermined rotation speed range Rth, the fuel supply control device 1 determines that an abnormality has occurred at the time when the resonance rotation speed Nr2 is acquired.

なお、共鳴回転数Nr2での燃圧Pdは、第1分岐通路21に異物が詰まることで、該第1分岐通路21の内径が小さくなり、同位置が絞り部(オリフィス)として機能するようになるため、圧力降下が生じる。その結果、共鳴回転数Nr1付近での燃圧Pdは、図3において破線で示す正常時の燃圧Pdと比較して小さくなる。   Regarding the fuel pressure Pd at the resonance rotational speed Nr2, when the first branch passage 21 is clogged with foreign matter, the inner diameter of the first branch passage 21 becomes smaller, and the same position functions as a throttle portion (orifice). Therefore, a pressure drop occurs. As a result, the fuel pressure Pd near the resonance rotational speed Nr1 becomes smaller than the normal fuel pressure Pd shown by the broken line in FIG.

次に、本実施形態の作用及び効果について説明する。
(1)燃料供給制御装置1は、上記のように正常時には共鳴回転数Nrが所定回転数範囲Rthとなることを踏まえ、燃圧Pd及び機関回転数Neに基づいて検出した共鳴回転数Nrが予め設定された所定回転数範囲Rth外である場合には、低圧通路15に異常が発生したと判定できる。さらに、こうした共鳴現象は低圧通路15に詰まりが生じ始めることで起こるため、燃料供給制御装置1は、異物により低圧通路15が閉塞されて燃圧Pdが異常に高い値となるよりも早い段階で低圧通路15の異常を検出できる。
Next, the operation and effect of this embodiment will be described.
(1) The fuel supply control device 1 preliminarily sets the resonance rotational speed Nr detected based on the fuel pressure Pd and the engine rotational speed Ne in consideration of the fact that the resonance rotational speed Nr is in the predetermined rotational speed range Rth as described above. If it is outside the set predetermined rotation speed range Rth, it can be determined that an abnormality has occurred in the low pressure passage 15. Further, since such a resonance phenomenon occurs when the low pressure passage 15 starts to be clogged, the fuel supply control device 1 lowers the low pressure at a stage earlier than when the low pressure passage 15 is blocked by foreign matter and the fuel pressure Pd becomes an abnormally high value. An abnormality in the passage 15 can be detected.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、燃料供給制御装置1に所定回転数範囲Rthを1つだけ設定したが、これに限らない。燃圧Pdの脈動は、ポート用燃料噴射弁13からの燃料噴射に以外にも、例えば高圧燃料ポンプ16の作動等によっても生じるため、燃料供給装置2の仕様に応じて共鳴現象が生じる機関回転数Neが複数ある場合には、複数の所定回転数範囲Rthを設定してもよい。
The present embodiment can be modified and implemented as follows. The present embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
In the above embodiment, the fuel supply control device 1 is set to have only one predetermined rotation speed range Rth, but the present invention is not limited to this. Since the pulsation of the fuel pressure Pd is caused not only by the fuel injection from the port fuel injection valve 13 but also by, for example, the operation of the high-pressure fuel pump 16, the engine speed at which a resonance phenomenon occurs according to the specifications of the fuel supply device 2 is generated. When there are a plurality of Nes, a plurality of predetermined rotation speed ranges Rth may be set.

Ne…機関回転数、Nr…共鳴回転数、Pd…燃圧、Rth…所定回転数範囲、1…燃料供給制御装置、2…燃料供給装置、11…燃料タンク、12…直噴用燃料噴射弁、13…ポート用燃料噴射弁(燃料噴射弁)、14…低圧燃料ポンプ(燃料ポンプ)、15…低圧通路(燃料通路)、16…高圧燃料ポンプ、23…ポート用デリバリパイプ(デリバリパイプ)、24…直噴用デリバリパイプ、51…クランク角センサ、52…燃圧センサ。   Ne ... Engine speed, Nr ... Resonance speed, Pd ... Fuel pressure, Rth ... Predetermined speed range, 1 ... Fuel supply control device, 2 ... Fuel supply device, 11 ... Fuel tank, 12 ... Direct injection fuel injection valve, 13 ... Port fuel injection valve (fuel injection valve), 14 ... Low pressure fuel pump (fuel pump), 15 ... Low pressure passage (fuel passage), 16 ... High pressure fuel pump, 23 ... Port delivery pipe (delivery pipe), 24 ... direct injection delivery pipe, 51 ... crank angle sensor, 52 ... fuel pressure sensor.

Claims (1)

燃料タンク内の燃料を汲み上げる燃料ポンプと、
前記燃料ポンプから供給される燃料が流通する燃料通路と、
前記燃料通路から供給される燃料を貯留するデリバリパイプと、
前記デリバリパイプ内に貯留される燃料を噴射する燃料噴射弁と、
前記デリバリパイプ内の燃圧を検出する燃圧センサとを備えた内燃機関の燃料供給装置を制御対象とし、
前記燃圧及び機関回転数に基づいて、前記燃圧が極大値となる機関回転数である共鳴回転数を検出し、該共鳴回転数が予め設定された所定回転数範囲外である場合に、前記燃料通路に異常が発生したと判定する燃料供給制御装置。
A fuel pump that pumps up the fuel in the fuel tank,
A fuel passage through which the fuel supplied from the fuel pump flows,
A delivery pipe for storing the fuel supplied from the fuel passage,
A fuel injection valve for injecting fuel stored in the delivery pipe;
A fuel supply device of an internal combustion engine including a fuel pressure sensor that detects a fuel pressure in the delivery pipe is controlled,
On the basis of the fuel pressure and the engine speed, the fuel pressure is detected as a resonance speed which is a maximum engine speed, and when the resonance speed is out of a preset predetermined speed range, the fuel is A fuel supply control device that determines that an abnormality has occurred in the passage.
JP2018196142A 2018-10-17 2018-10-17 fuel supply controller Active JP7115210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196142A JP7115210B2 (en) 2018-10-17 2018-10-17 fuel supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196142A JP7115210B2 (en) 2018-10-17 2018-10-17 fuel supply controller

Publications (2)

Publication Number Publication Date
JP2020063701A true JP2020063701A (en) 2020-04-23
JP7115210B2 JP7115210B2 (en) 2022-08-09

Family

ID=70387019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196142A Active JP7115210B2 (en) 2018-10-17 2018-10-17 fuel supply controller

Country Status (1)

Country Link
JP (1) JP7115210B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295337A (en) * 2001-03-29 2002-10-09 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2006316771A (en) * 2005-05-16 2006-11-24 Denso Corp Intake passage monitoring device for fuel supply device
JP2007016795A (en) * 2006-10-23 2007-01-25 Toyota Motor Corp Fuel supply device of internal combustion engine
JP2008121594A (en) * 2006-11-14 2008-05-29 Denso Corp Fuel system abnormality detection device
JP2014190180A (en) * 2013-03-26 2014-10-06 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2015004667A (en) * 2013-05-20 2015-01-08 株式会社デンソー Sensor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295337A (en) * 2001-03-29 2002-10-09 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2006316771A (en) * 2005-05-16 2006-11-24 Denso Corp Intake passage monitoring device for fuel supply device
JP2007016795A (en) * 2006-10-23 2007-01-25 Toyota Motor Corp Fuel supply device of internal combustion engine
JP2008121594A (en) * 2006-11-14 2008-05-29 Denso Corp Fuel system abnormality detection device
JP2014190180A (en) * 2013-03-26 2014-10-06 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2015004667A (en) * 2013-05-20 2015-01-08 株式会社デンソー Sensor device

Also Published As

Publication number Publication date
JP7115210B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP4165572B2 (en) Fuel supply device for internal combustion engine
US7100574B2 (en) Common rail type fuel injection system
US6971370B2 (en) Common rail type fuel injection system
JP2017198096A (en) Fuel supply system for engine
JP2007023944A (en) Fuel injection device and method for detecting failure of fuel injection device
JP2008291808A (en) Common rail type fuel injection device and force feed characteristic compensating method of high pressure pump
JP6146274B2 (en) Control device for internal combustion engine
JP2005139975A (en) Common rail type fuel injection device
JP6090112B2 (en) Control device for internal combustion engine
JP6167830B2 (en) Control device for internal combustion engine
JP4888437B2 (en) Fuel filter replacement time determination device and fuel supply system
JP2010216279A (en) Fuel injection control device and accumulator fuel injection system using the same
JP7115210B2 (en) fuel supply controller
JP5556209B2 (en) High-pressure fuel pump reference time calculation device
US11384710B2 (en) Control device for fuel injection system
JP2018100644A (en) Control device for internal combustion engine
JP2007120356A (en) Fuel pipe structure of internal combustion engine
JP2004084538A (en) Common rail type fuel injection system
JP4329653B2 (en) Accumulated fuel injection system
US20170051715A1 (en) Fuel rail for an internal combustion engine
JP2014202075A (en) Fuel injection device
JP4457522B2 (en) Fuel injection control device for internal combustion engine
JP6330678B2 (en) Pressure reducing valve controller
JP2005351135A (en) Fuel supply device of internal combustion engine
JP2012229673A (en) Fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151