JP2020063570A - Precast floor slab, precast floor slab structure and construction method thereof - Google Patents

Precast floor slab, precast floor slab structure and construction method thereof Download PDF

Info

Publication number
JP2020063570A
JP2020063570A JP2018194710A JP2018194710A JP2020063570A JP 2020063570 A JP2020063570 A JP 2020063570A JP 2018194710 A JP2018194710 A JP 2018194710A JP 2018194710 A JP2018194710 A JP 2018194710A JP 2020063570 A JP2020063570 A JP 2020063570A
Authority
JP
Japan
Prior art keywords
floor slab
tunnel
precast
precast floor
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018194710A
Other languages
Japanese (ja)
Inventor
紀之 山田
Noriyuki Yamada
紀之 山田
謙一 福島
Kenichi Fukushima
謙一 福島
宣興 安本
Nobuoki Yasumoto
宣興 安本
裕生 最上
Yuki Mogami
裕生 最上
大地 房木
Daichi Fusaki
大地 房木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2018194710A priority Critical patent/JP2020063570A/en
Publication of JP2020063570A publication Critical patent/JP2020063570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

To provide a precast floor slab capable of being placed at a bottom portion of a tunnel in a stable and rattle-free state unneeded to be filled with a filling material that needs curing, and a tunnel floor slab structure and a construction method thereof.SOLUTION: A precast floor slab 2 is arranged at a bottom portion of a tunnel T, and includes a convex projection 23 on floor slab lower surface portions 22, 22 formed along the shape of the bottom portion of the tunnel T. In a tunnel floor slab structure and a construction method thereof, the convex projection 23 is placed to a center portion of the precast floor slab 2, and each of support members 3, 3 is disposed into each gap between each end of the precast floor slab 2 and the bottom portion of the tunnel T.SELECTED DRAWING: Figure 1

Description

本発明は、トンネル底部に配置するプレキャスト床版、トンネルの床版構造及びその構築方法に関する。 TECHNICAL FIELD The present invention relates to a precast floor slab arranged at the bottom of a tunnel, a tunnel floor slab structure, and a method for constructing the same.

近年、首都圏を中心として、都市部の大深度地下空間等を利用した高速道路や鉄道網の建設が盛んに行われている。
本線トンネルの多くが、世界的にも最大級の大断面長距離シールドトンネルであり、その施工には大断面長距離施工を可能とする高度な技術とともに、高速施工技術が求められている。
高速化を可能にするために、各種コンクリート部材にプレキャスト製品が積極的に採り入れられるようになってきている。例えば、道路トンネルでは、道路床版にハーフプレキャストタイプの合成床版を用いられることは一般化しつつある。
トンネル底部に配置されるインバートについても、従来は現場打ちコンクリートや掘削残土を再利用した流動化処理土等による現場施工が行われてきたが、インバート上は、シールドマシンの後続台車やセグメント等の資機材搬出入のためのバッテリーロコの軌条、ダンプトラック等の車両通行路等、仮設時に多目的に用いられるため、サイクルタイムのごく初期の段階で、その施工が完了していることが望ましく、一部の工事では、プレキャスト製品の適用が始められている。
In recent years, mainly in the Tokyo metropolitan area, construction of expressways and railway networks utilizing deep underground spaces in urban areas has been actively carried out.
Many of the main line tunnels are the largest large-section long-distance shield tunnels in the world, and the construction requires high-speed construction technology as well as advanced technology that enables large-section long-distance construction.
Precast products have been positively incorporated into various concrete members in order to increase the speed. For example, in road tunnels, the use of half-precast type synthetic slabs for road slabs is becoming common.
As for the invert placed at the bottom of the tunnel, conventionally, in-situ concrete and fluidized soil that reuses excavated residual soil have been used for on-site construction. Since it is used for multiple purposes at the time of temporary construction such as battery locomotive rails for loading and unloading materials and materials, vehicle passageways such as dump trucks, it is desirable that the construction is completed at the very early stage of the cycle time. In the construction of the department, application of precast products has started.

特許文献1には、トンネルの底部に複数のコンクリート製のプレキャストインバートからなるインバートの構築方法が開示されている。インバートの中間部に複数のプレキャスト床版からなる床スラブが構築され、さらにプレキャストインバートとプレキャスト床版との間に複数のプレキャストコンクリート中壁からなる中壁が構築される。
なお、プレキャストインバートは、トンネルの底部に当該トンネルの軸方向に互いに隣接して敷設され、各プレキャストインバートはセグメントに複数のアンカーボルトによって固定される。アンカーボルトによって各プレキャストインバートのレベル調整が同時に行われ、調整後のプレキャストインバートとセグメントとの間に調整モルタルが充填される。当該プレキャストインバートの下端面はセグメントの内周面に沿って凸曲面状に形成されている。
プレキャストインバート上面を仮設利用する場合、当該プレキャストインバートがその端部近傍に配置されたアンカーボルトのみで支持された、セグメント内周面から浮いた状態を保ったまま、仮設設備等の荷重を載荷させることは構造上困難であり、現実的ではない(通常、本設共用時に曲げを想定していないインバートは曲げ部材としての曲げ耐力を保有していない。仮設時に発生する曲げに対抗するためだけに過度な鉄筋を配筋することは不合理である。)。したがって、プレキャストインバートとセグメント内周面との間に形成される隙間に充填するモルタルが所定の強度まで硬化した後に利用するのが相当である。
しかしながら、プレキャストインバートを配置した後にモルタルを充填する場合、モルタルが所定の強度を発現するまでの養生期間が必要であること、隙間が狭隘なため、充填不良を生じやすく、充填性を優先してモルタルの注入圧力を高くすれば、圧力によってプレキャストインバートに偏荷重が作用して損傷を招いたり、折角設置した位置から変動する可能性も考えられる。
Patent Document 1 discloses a method for constructing an invert that is composed of a plurality of concrete precast inverts at the bottom of a tunnel. A floor slab consisting of a plurality of precast slabs is constructed in the middle part of the invert, and a middle wall consisting of a plurality of precast concrete inner walls is constructed between the precast invert and the precast slab.
The precast inverts are laid on the bottom of the tunnel adjacent to each other in the axial direction of the tunnel, and each precast invert is fixed to the segment by a plurality of anchor bolts. The anchor bolts simultaneously adjust the level of each precast invert, and the adjustment mortar is filled between the adjusted precast inverts and the segments. The lower end surface of the precast invert is formed in a convex curved shape along the inner peripheral surface of the segment.
When temporarily using the upper surface of the precast invert, the precast invert is supported only by the anchor bolts located near the end of the precast invert, and the load of the temporary equipment etc. is applied while maintaining the state of floating from the inner peripheral surface of the segment. It is structurally difficult and unrealistic (Usually, Invert, which does not assume bending when used in the main installation, does not have bending resistance as a bending member. Only to counter the bending that occurs during temporary installation. It is unreasonable to arrange excessive rebar.) Therefore, it is considerable that the mortar filled in the gap formed between the precast invert and the inner peripheral surface of the segment is used after being hardened to a predetermined strength.
However, when filling the mortar after placing the precast invert, a curing period is required until the mortar develops a predetermined strength, and because the gap is narrow, poor filling is likely to occur and priority is given to filling properties. If the injection pressure of the mortar is increased, it is possible that the pressure causes an unbalanced load to act on the precast invert, causing damage, or it may fluctuate from the position where the mortar is installed.

特開2008−127834号公報JP, 2008-127834, A

本発明は、このような事情に鑑みなされたものであり、養生の必要な充填材の充填を不要とし、安定したガタツキの無い状態でプレキャスト床版をトンネル底部に配置できるプレキャスト床版、トンネルの床版構造及びその構築方法である。 The present invention has been made in view of such circumstances, pre-cast floor slab that can be placed in the tunnel bottom part pre-cast floor slab in the state without the need for the filling of the filler necessary for curing, stable rattling, A slab structure and a construction method thereof.

前記課題を解決するために、本発明のプレキャスト床版は、トンネル底部に配置する、該トンネル底部の形状に沿って形成された床版下面部に凸形状の凸部を具備している。前記凸部は、前記プレキャスト床版の中央部に設けられていることが望ましい。   In order to solve the above-mentioned problems, the precast floor slab of the present invention is provided at the bottom of the tunnel, and has a convex convex portion on the bottom surface of the floor slab formed along the shape of the bottom of the tunnel. It is preferable that the convex portion is provided in a central portion of the precast floor slab.

本発明のトンネルの床版構造は、前記プレキャスト床版は前記トンネル底部に配置されている状態で該プレキャスト床版の両端部と該トンネル底部との間の隙間に支持部材が配置されていることを特徴としている。前記支持部材の側面にはトンネル底部に固定されたずれ止め部材が配置されていることが望ましい。   In the floor slab structure of the tunnel of the present invention, a support member is disposed in a gap between both ends of the precast floor slab and the tunnel bottom in a state where the precast floor slab is disposed at the tunnel bottom. Is characterized by. It is desirable that a shift prevention member fixed to the bottom of the tunnel is disposed on the side surface of the support member.

本発明のトンネルの床版構造の構築方法は、トンネル底部の形状に沿って形成された床版下面部に凸形状の凸部を具備したプレキャスト床版をトンネル底部に配置し、前記プレキャスト床版の両端部と該トンネル底部との間の隙間に支持部材を配置することを特徴とする。   The method for constructing a floor slab structure for a tunnel according to the present invention comprises: placing a precast floor slab having a convex portion on the lower surface of the floor slab formed along the shape of the tunnel bottom at the bottom of the tunnel; The support member is arranged in a gap between both ends of the tunnel and the bottom of the tunnel.

本発明のプレキャスト床版によれば、設置するトンネル底面の内周面の形状に沿って形成された下面側に凸形状の凸部が具備されているので、鉛直土圧よりも側方土圧の方が卓越する偏荷重によって縦潰れした、トンネル底面の内周面の曲率が小さくなった場合であっても、凸部がトンネル底面を確実に捉えることができるので、プレキャスト床版に局所的な負荷がかかることが無く、過度な曲げモーメントやせん断力が作用してプレキャスト床版を損傷することを回避できる。
また、前記のようにトンネルに縦潰れが生じた場合、プレキャスト床版の両端がトンネル内面に先行して接触するため、プレキャスト床版の両端を支点とする曲げモーメントが発生することが想定されるが、最大曲げモーメントが発生するプレキャスト床版の中央部に凸部が設けられていれば、両端部に先行してプレキャスト床版を単純梁とする梁の中央部に支点を設けることになり、発生曲げモーメントを小さく緩和できる。
According to the precast floor slab of the present invention, since the convex portion having the convex shape is provided on the lower surface side formed along the shape of the inner peripheral surface of the bottom surface of the tunnel to be installed, the lateral earth pressure is more than the vertical earth pressure. Even if the inner peripheral surface of the tunnel bottom surface is crushed vertically due to an unbalanced load, the convex portion can reliably catch the tunnel bottom surface. Therefore, it is possible to avoid damage to the precast floor slab due to excessive bending moment or shearing force, without applying a heavy load.
Further, as described above, when the tunnel is vertically crushed, both ends of the precast floor slab come into contact with the inner surface of the tunnel in advance, so that it is assumed that a bending moment is generated with the both ends of the precast floor slab as fulcrums. However, if a convex part is provided at the center of the precast floor slab where the maximum bending moment occurs, it means that a fulcrum will be provided at the center of the beam with the precast floor slab as a simple beam preceding both ends. The generated bending moment can be relaxed to a small extent.

本発明のトンネルの床版構造によれば、プレキャスト床版の凸部によって、プレキャスト床版の両端部とトンネル底部との間に隙間が生じても、その隙間に支持部材が配置されていることで、プレキャスト床版が天秤になることが無く、両端部に支持点を確保できるため、安定した床版構造が図られる。
また、支持部材の側面にトンネル底部に固定されたずれ止め部材が配置されていれば、係るプレキャスト構造に作用する車両等の振動や繰り返し荷重を受けても、支持部材が当該隙間から緩んで抜け出すことが無く、恒久的に安定した構造を保つことができる。
According to the floor slab structure for a tunnel of the present invention, even if a gap is formed between the both ends of the precast floor slab and the tunnel bottom due to the convex portion of the precast floor slab, the support member is arranged in the gap. Thus, since the precast floor slab does not become a balance and support points can be secured at both ends, a stable floor slab structure can be achieved.
Further, if the shift prevention member fixed to the bottom of the tunnel is arranged on the side surface of the support member, the support member loosens out of the gap even when subjected to vibration or repeated load of the vehicle or the like acting on the precast structure. And can maintain a stable structure permanently.

本発明のトンネルの床版構造の構築方法によれば、プレキャスト床版の床版下面部に設けられた凸部によって生じるプレキャスト床版の両端部とトンネル底部との間の隙間に支持部材を配置することで、トンネルの外荷重による変形、セグメントの目違いや目開き、製作誤差等に対しても柔軟に対応でき、ガタツキの無い安定した床版構造を保つことができる。   According to the method for constructing the tunnel floor slab structure of the present invention, the support member is arranged in the gap between the both ends of the precast floor slab and the tunnel bottom portion caused by the convex portion provided on the floor slab lower surface of the precast floor slab. By doing so, it is possible to flexibly deal with the deformation due to the external load of the tunnel, the misalignment and opening of the segment, the manufacturing error, etc., and it is possible to maintain a stable floor slab structure without rattling.

本発明のプレキャスト床版と床版構造の断面図である。It is sectional drawing of the precast floor slab and floor slab structure of this invention. 本発明のプレキャスト床版端部の断面図である(図1のA部詳細図)。It is sectional drawing of the precast floor slab edge part of this invention (A part detail drawing of FIG. 1). 本発明のカルバートと一体となったプレキャスト床版と床版構造の断面図である。It is sectional drawing of the precast floor slab and floor slab structure integrated with the culvert of this invention.

以下に、本発明の実施形態について、図面を参照しながら説明する。
<プレキャスト床版及びトンネルの床版構造>
図1に、本発明のプレキャスト床版と床版構造の断面図を示す。
本実施形態におけるトンネルTは、円形のシールドトンネルであり、複数のセグメントS,S・・・を組み合わせてリング状に形成されている。セグメントSは、内面側が平滑なRCセグメント(鉄筋コンクリート製セグメント)又は、合成セグメント(中詰めコンクリート鋼製セグメント)のいずれかである。
プレキャスト床版2は、椀形に形成されており、上面の平滑面である床版上面部21と、下面の曲面である床版下面部22,22と、最下面に凸形状を有する凸部23とで構成されている。
床版下面部22の曲率は、設置範囲であるトンネルTの底部内周面形状に沿って形成されている。ここでトンネルTの内周面形状とは、トンネルTが理想的な真円に組み立てられた場合に相当する。
また、凸部23も床版下面部22と同様な曲率を有するが、設計上想定されるトンネルの変形やセグメントS,S・・・の製作及び施工誤差等を考慮して、必要に応じて曲率を変えても良く、凸部23の下面に不図示のゴム板を介在させて、プレキャスト床版2に局所的な応力集中が生じないように配慮したり、該ゴム板を高さ調整に用いても良い。
凸部23の厚さは、設計上想定されるトンネルの変形やセグメントS,S・・・の製作及び施工誤差等を考慮して、トンネルT軸方向のどの位置に配置しても、プレキャスト床版2の両端部が凸部23に先行してトンネルTを構成するセグメントSの内面に接触しないように設計、計画される。
Embodiments of the present invention will be described below with reference to the drawings.
<Precast floor slab and tunnel floor slab structure>
FIG. 1 shows a cross-sectional view of the precast floor slab and floor slab structure of the present invention.
The tunnel T in the present embodiment is a circular shield tunnel, and is formed in a ring shape by combining a plurality of segments S, S ... The segment S is either an RC segment (reinforced concrete segment) having a smooth inner surface or a synthetic segment (filled concrete steel segment).
The precast floor slab 2 is formed in a bowl shape and has a floor slab upper surface portion 21 which is a smooth surface on the upper surface, floor slab lower surface portions 22 and 22 which are curved surfaces on the lower surface, and a convex portion having a convex shape on the lowermost surface. 23 and.
The curvature of the floor slab lower surface portion 22 is formed along the shape of the inner peripheral surface of the bottom portion of the tunnel T which is the installation range. Here, the shape of the inner peripheral surface of the tunnel T corresponds to the case where the tunnel T is assembled into an ideal perfect circle.
Further, the convex portion 23 also has a curvature similar to that of the floor slab lower surface portion 22, but considering the deformation of the tunnel assumed in design, the manufacturing and construction errors of the segments S, S ... The curvature may be changed, and a rubber plate (not shown) is interposed on the lower surface of the convex portion 23 to prevent local stress concentration on the precast floor slab 2 and to adjust the height of the rubber plate. You may use.
The thickness of the convex portion 23 may be arranged at any position in the tunnel T-axis direction in consideration of the deformation of the tunnel, the manufacturing and construction errors of the segments S, S ... It is designed and planned so that both ends of the plate 2 do not come into contact with the inner surface of the segment S forming the tunnel T prior to the convex portion 23.

図2に、図1のA部の詳細であるプレキャスト床版端部の断面図を示す。
凸部23とトンネルTとの接触によって生じるプレキャスト床版2の両端部とトンネルTとの隙間は、その隙間の大きさに応じて加工された支持部材3,3を勘合させる。プレキャスト床版2の両端部は、トンネルTの内面との接触により損傷を受けないように、テーパー部24,24が設けられており、支持部材3,3は、テーパー部24,24のテーパー面に沿って打ち込まれることによって、プレキャスト床版2がガタツキ無く安定した状態でトンネルTの底面に設置される。支持部材3は、挿入方向に向かって楔となるように、テーパーが設けられている。床版上面21に作用する将来荷重に対して、弾性範囲内で変形する材質であれば限定されないが、実施形態では鋼製を採用している。
勘合状態の支持部材3,3が荷重の繰り返し載荷等による緩みによって抜け出さないように、支持部材3,3の側面には、それぞれずれ止め部材4,4が配置される。ずれ止め部材4は、L形鋼材を使用した反力部材41と、反力部材41のセグメントS側の面に設けられた不図示の貫通孔を介して、同じくセグメントSに設けられたインサートに対してボルト42によって一体に固定され、最終的にトンネルの床版構造1が形成される。
FIG. 2 shows a cross-sectional view of the end portion of the precast floor slab, which is a detail of part A in FIG.
The gap between the tunnel T and both ends of the precast floor slab 2 caused by the contact between the convex portion 23 and the tunnel T fits the support members 3 and 3 processed according to the size of the gap. Both ends of the precast floor slab 2 are provided with taper portions 24 and 24 so as not to be damaged by contact with the inner surface of the tunnel T, and the support members 3 and 3 are tapered surfaces of the taper portions 24 and 24. By being driven along, the precast floor slab 2 is installed on the bottom surface of the tunnel T in a stable state without rattling. The support member 3 is provided with a taper so as to form a wedge in the insertion direction. The material is not limited as long as it is a material that can be deformed within the elastic range with respect to a future load acting on the floor slab upper surface 21, but steel is used in the embodiment.
In order to prevent the fitted support members 3 and 3 from coming off due to slackness due to repeated loading of load, etc., shift prevention members 4 and 4 are arranged on the side surfaces of the support members 3 and 3, respectively. The slip-prevention member 4 is attached to the insert provided in the segment S through the reaction force member 41 using the L-shaped steel material and the through hole (not shown) provided in the surface of the reaction force member 41 on the segment S side. On the other hand, they are integrally fixed by bolts 42, and finally the floor slab structure 1 of the tunnel is formed.

図3に、カルバートと一体となったプレキャスト床版と床版構造の断面図を示す。
特に、高速道路トンネル等では、道路床版の下部空間にカルバートを設け、火災時等の緊急避難通路として利用する形態があり、本実施形態は、当該カルバートの底版を兼ねたプレキャスト床版1の一実施形態を示すものである。
FIG. 3 shows a cross-sectional view of the precast floor slab integrated with the culvert and the floor slab structure.
In particular, in a highway tunnel or the like, there is a form in which a culvert is provided in the lower space of the road slab and is used as an emergency evacuation passage in the event of a fire. In this embodiment, the precast slab 1 that also serves as the slab of the culvert is used. 1 illustrates one embodiment.

<トンネルの床版構造の構築方法>
図1〜3より、本発明の実施形態であるトンネルの床版構造の構築方法は、トンネルTの底部の形状に沿って形成された床版下面部22,22に凸形状の凸部23を具備したプレキャスト床版2をトンネルTの底部に配置し、プレキャスト床版2の両端部とトンネルTの底部との間の隙間に支持部材3,3を配置する。
プレキャスト床版1は、搬入されたプレキャスト床版1をトンネルT坑内に配置された不図示の楊重機によって、所定のトンネルTの底部に配置する。プレキャスト床版1の高さは、凸部23の下面に不図示のゴム板を複数枚介在させることで調整しても良い。
支持部材3,3は、挿入方向に対してハンマー等を用いて挿入勘合させる。
その後、勘合した状態で、支持部材3,3の側面にずれ止め部材を配置する。ずれ止め部材4は、L形鋼材を使用した反力部材41と、反力部材41のセグメントS側の面に設けられた不図示の貫通孔を介して、同じくセグメントSに設けられたインサートに対してボルト42によって一体に固定され、最終的にトンネルの床版構造1が形成される。
<Construction method of floor slab structure of tunnel>
1 to 3, the method for constructing the floor slab structure of the tunnel according to the embodiment of the present invention is configured such that the convex ridges 23 are formed on the floor slab lower surface portions 22, 22 formed along the shape of the bottom of the tunnel T. The provided precast floor slab 2 is placed at the bottom of the tunnel T, and the support members 3, 3 are placed in the gap between both ends of the precast floor slab 2 and the bottom of the tunnel T.
The precast floor slab 1 is arranged at the bottom of a predetermined tunnel T by a toothed loader (not shown) arranged in the tunnel T tunnel. The height of the precast floor slab 1 may be adjusted by interposing a plurality of rubber plates (not shown) on the lower surface of the convex portion 23.
The support members 3 and 3 are inserted and fitted in the insertion direction using a hammer or the like.
Then, in the fitted state, the shift preventing members are arranged on the side surfaces of the supporting members 3 and 3. The slip-prevention member 4 is attached to the insert provided in the segment S through the reaction force member 41 using the L-shaped steel material and the through hole (not shown) provided in the surface of the reaction force member 41 on the segment S side. On the other hand, they are integrally fixed by bolts 42, and finally the floor slab structure 1 of the tunnel is formed.

本発明のプレキャスト床版の実施形態によれば、設置するトンネル底面の内周面の形状に沿って形成された下面側に凸形状の凸部が具備されているので、鉛直土圧よりも側方土圧の方が卓越する偏荷重によって縦潰れした、トンネル底面の内周面の曲率が小さくなった場合であっても、凸部がトンネル底面を確実に捉えることができるので、プレキャスト床版に局所的な負荷がかかることが無く、過度な曲げモーメントやせん断力が作用してプレキャスト床版を損傷することを回避できる。
また、前記のようにトンネルに縦潰れが生じた場合、プレキャスト床版の両端がトンネル内面に先行して接触するため、プレキャスト床版の両端を支点とする曲げモーメントが発生することが想定されるが、最大曲げモーメントが発生するプレキャスト床版の中央部に凸部が設けられていれば、両端部に先行してプレキャスト床版を単純梁とする梁の中央部に支点を設けることになり、発生曲げモーメントを小さく緩和できる。
According to the embodiment of the precast floor slab of the present invention, since the convex portion of the convex shape is provided on the lower surface side formed along the shape of the inner peripheral surface of the bottom surface of the tunnel to be installed, it is more than the vertical earth pressure side. Even if the inner circumferential surface of the tunnel bottom surface is crushed vertically due to predominantly biased earth pressure, the convex portion can reliably catch the tunnel bottom surface, so the precast floor slab It is possible to prevent the precast floor slab from being damaged by an excessive bending moment or shearing force being applied to the precast floor slab.
Further, as described above, when the tunnel is vertically crushed, both ends of the precast floor slab come into contact with the inner surface of the tunnel in advance, so that it is assumed that a bending moment is generated with the both ends of the precast floor slab as fulcrums. However, if a convex part is provided at the center of the precast floor slab where the maximum bending moment occurs, it means that a fulcrum will be provided at the center of the beam with the precast floor slab as a simple beam preceding both ends. The generated bending moment can be relaxed to a small extent.

本発明のトンネルの床版構造の実施形態によれば、プレキャスト床版の凸部によって、プレキャスト床版の両端部とトンネル底部との間に隙間が生じても、その隙間に支持部材が配置されていることで、プレキャスト床版が天秤になることが無く、両端部に支持点を確保できるため、安定した床版構造が図られる。
また、支持部材の側面にトンネル底部に固定されたずれ止め部材が配置されていれば、係るプレキャスト構造に作用する車両等の振動や繰り返し荷重を受けても、支持部材が当該隙間から緩んで抜け出すことが無く、恒久的に安定した構造を保つことができる。
According to the embodiment of the floor slab structure for a tunnel of the present invention, even if a gap is formed between both ends of the precast floor slab and the tunnel bottom due to the convex portion of the precast floor slab, the support member is arranged in the gap. By doing so, the precast floor slab does not become a balance, and since support points can be secured at both ends, a stable floor slab structure can be achieved.
Further, if the shift prevention member fixed to the bottom of the tunnel is arranged on the side surface of the support member, the support member loosens out of the gap even when subjected to vibration or repeated load of the vehicle or the like acting on the precast structure. And can maintain a stable structure permanently.

本発明のトンネル床版構造の構築方法の実施形態によれば、プレキャスト床版の床版下面部に設けられた凸部によって生じるプレキャスト床版の両端部とトンネル底部との間の隙間に支持部材を配置することで、トンネルの外荷重による変形、セグメントの目違いや目開き、製作誤差等に対しても柔軟に対応でき、ガタツキの無い安定した床版構造を保つことができる。   According to the embodiment of the method for constructing the tunnel floor slab structure of the present invention, the support member is provided in the gap between the both ends of the precast floor slab and the tunnel bottom caused by the convex portion provided on the floor slab lower surface of the precast floor slab. By arranging, it is possible to flexibly deal with deformation due to the external load of the tunnel, misalignment and opening of segments, manufacturing error, etc., and it is possible to maintain a stable floor slab structure without rattling.

以上、本発明の実施形態について説明したが、本発明は前記の実施形態に限られず、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
例えば、プレキャスト床版の凸部は中央部の1つに限定されず、複数あっても良い。また、プレキャスト床版の適用対象は、セグメントはRCセグメント、合成セグメントに限定されず、鋼製セグメント等の内空面側が平滑でないセグメントであっても良い。この場合、トンネル底部にプレキャスト床版を配置した後、プレキャスト床版とトンネルを構成するセグメントとの隙間にモルタル等の充填材を充填することで対応する。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately modified without departing from the spirit of the present invention.
For example, the convex portion of the precast floor slab is not limited to one in the central portion, and there may be a plurality of convex portions. Further, the target to which the precast floor slab is applied is not limited to the RC segment and the composite segment, and may be a segment such as a steel segment whose inner space surface side is not smooth. In this case, after placing the precast floor slab on the bottom of the tunnel, a gap between the precast floor slab and the segment forming the tunnel is filled with a filler such as mortar.

T トンネル
S セグメント
1 トンネルの床版構造
2 プレキャスト床版
21 床版上面部
22 床版下面部
23 凸部
24 テーパー部
3 支持部材
4 ずれ止め部材
41 反力部材
42 ボルト
T Tunnel S Segment 1 Tunnel floor slab structure 2 Precast floor slab 21 Floor slab upper surface 22 Floor slab lower surface 23 Convex portion 24 Tapered portion 3 Support member 4 Shift prevention member 41 Reaction force member 42 Bolt

Claims (5)

トンネル底部に配置する、該トンネル底部の形状に沿って形成された床版下面部に凸形状の凸部を具備したプレキャスト床版。   A precast floor slab arranged on the bottom of a tunnel, having a convex portion on the lower surface of the floor slab formed along the shape of the bottom of the tunnel. 前記凸部は前記プレキャスト床版の中央部に設けられていることを特徴とする請求項1に記載のプレキャスト床版。   The precast floor slab according to claim 1, wherein the convex portion is provided in a central portion of the precast floor slab. 前記プレキャスト床版は前記トンネル底部に配置されている状態で該プレキャスト床版の両端部と該トンネル底部との間の隙間に支持部材が配置されていることを特徴とする請求項1又は請求項2に記載のトンネルの床版構造。   The support member is arranged in a gap between both ends of the precast floor slab and the tunnel bottom in a state where the precast floor slab is arranged in the tunnel bottom. The floor slab structure of the tunnel described in 2. 前記支持部材の側面にはトンネル底部に固定されたずれ止め部材が配置されていることを特徴とする請求項3に記載のトンネルの床版構造。   The floor slab structure for a tunnel according to claim 3, wherein a shift preventing member fixed to a bottom portion of the tunnel is disposed on a side surface of the supporting member. トンネル底部の形状に沿って形成された床版下面部に凸形状の凸部を具備したプレキャスト床版をトンネル底部に配置し、
前記プレキャスト床版の両端部と該トンネル底部との間の隙間に支持部材を配置することを特徴とするトンネルの床版構造の構築方法。
A precast floor slab provided with a convex portion on the lower surface of the floor slab formed along the shape of the tunnel bottom is arranged at the bottom of the tunnel.
A method for constructing a floor slab structure for a tunnel, characterized in that support members are arranged in a gap between both ends of the precast floor slab and the bottom of the tunnel.
JP2018194710A 2018-10-16 2018-10-16 Precast floor slab, precast floor slab structure and construction method thereof Pending JP2020063570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194710A JP2020063570A (en) 2018-10-16 2018-10-16 Precast floor slab, precast floor slab structure and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194710A JP2020063570A (en) 2018-10-16 2018-10-16 Precast floor slab, precast floor slab structure and construction method thereof

Publications (1)

Publication Number Publication Date
JP2020063570A true JP2020063570A (en) 2020-04-23

Family

ID=70386902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194710A Pending JP2020063570A (en) 2018-10-16 2018-10-16 Precast floor slab, precast floor slab structure and construction method thereof

Country Status (1)

Country Link
JP (1) JP2020063570A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589536U (en) * 1991-09-07 1993-12-07 伸一 相沢 Manhole invert block
JPH07259490A (en) * 1994-03-23 1995-10-09 Ishikawajima Constr Materials Co Ltd Walk floor laying method for tunnel
JPH11287095A (en) * 1998-04-02 1999-10-19 Ishikawajima Constr Materials Co Ltd Invert block and segment, and assembly structure thereof
JP2005023612A (en) * 2003-06-30 2005-01-27 Fumie Kato Precast concrete skeleton, building using this skeleton and its construction method
JP2006233538A (en) * 2005-02-24 2006-09-07 Setsuo Takaku Invert for tunnel, invert block, and invert construction method using invert block
JP2008127834A (en) * 2006-11-20 2008-06-05 Kajima Corp Tunnel interior construction method and precast floor slab
JP2008190133A (en) * 2007-02-01 2008-08-21 Kajima Corp Construction method for internal structure of tunnel
JP2009150165A (en) * 2007-12-21 2009-07-09 Kajima Corp Tunnel interior structure and its construction method
JP2013119743A (en) * 2011-12-08 2013-06-17 Daiwa-Cres Co Ltd Retaining wall formation
KR101399787B1 (en) * 2012-04-27 2014-06-27 강릉건설 주식회사 Bottom segment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589536U (en) * 1991-09-07 1993-12-07 伸一 相沢 Manhole invert block
JPH07259490A (en) * 1994-03-23 1995-10-09 Ishikawajima Constr Materials Co Ltd Walk floor laying method for tunnel
JPH11287095A (en) * 1998-04-02 1999-10-19 Ishikawajima Constr Materials Co Ltd Invert block and segment, and assembly structure thereof
JP2005023612A (en) * 2003-06-30 2005-01-27 Fumie Kato Precast concrete skeleton, building using this skeleton and its construction method
JP2006233538A (en) * 2005-02-24 2006-09-07 Setsuo Takaku Invert for tunnel, invert block, and invert construction method using invert block
JP2008127834A (en) * 2006-11-20 2008-06-05 Kajima Corp Tunnel interior construction method and precast floor slab
JP2008190133A (en) * 2007-02-01 2008-08-21 Kajima Corp Construction method for internal structure of tunnel
JP2009150165A (en) * 2007-12-21 2009-07-09 Kajima Corp Tunnel interior structure and its construction method
JP2013119743A (en) * 2011-12-08 2013-06-17 Daiwa-Cres Co Ltd Retaining wall formation
KR101399787B1 (en) * 2012-04-27 2014-06-27 강릉건설 주식회사 Bottom segment

Similar Documents

Publication Publication Date Title
JP6615869B2 (en) Method for expanding the space below a stone arch bridge and a stone arch bridge
US6988337B1 (en) Means and method for constructing a fully precast top arch overfilled system
JP2013028898A (en) Construction method of invert, invert and precast member
KR100642332B1 (en) A fabric for preventing fall of a road bridge
KR100650411B1 (en) Tunnel cover plate
JP2011247046A (en) Bridge provided with means for absorbing bridge abutment deformation
JP5210202B2 (en) Support structure between concrete soil
US2355771A (en) Load transfer device and tie bar
JP6605943B2 (en) Tunnel internal structure and construction method thereof
JP2020063570A (en) Precast floor slab, precast floor slab structure and construction method thereof
CN211171579U (en) Take seamless antidetonation abutment of disconnect-type strap
JP5920774B2 (en) Bonding method and structure of old and new concrete
JP2005248523A (en) Structure of pile head joint section
JP6796160B2 (en) Tunnel internal structure and its construction method
KR100555046B1 (en) A tunnel structure and method for constructing of it
JP2010168844A (en) Road widening structure
KR20100012939A (en) Position adjustable fixing structure for corrugated multi plate
KR100648007B1 (en) The structure of a box culvert with fixed precast bedding plate and the method constructing the box culvert with the bedding plate
KR20150019507A (en) Underground box structure for strengthening reinforced-concrete wall and slab using preflexion of bracing member, and method for reinforcing the same
KR102014471B1 (en) Tunnel construction method and tunnel supporting structure
JP7106305B2 (en) Structural columns and seismically isolated buildings
JP6834055B2 (en) How to build the tunnel internal structure
JP2011247045A (en) Reinforcement method for bridge abutment
KR100659641B1 (en) construction method using corrugated steel plate and structure utilizing the same
JP6579902B2 (en) Tunnel reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129