JP2020060591A - ガンマ線イメージング - Google Patents

ガンマ線イメージング Download PDF

Info

Publication number
JP2020060591A
JP2020060591A JP2019235438A JP2019235438A JP2020060591A JP 2020060591 A JP2020060591 A JP 2020060591A JP 2019235438 A JP2019235438 A JP 2019235438A JP 2019235438 A JP2019235438 A JP 2019235438A JP 2020060591 A JP2020060591 A JP 2020060591A
Authority
JP
Japan
Prior art keywords
mask
radiation
coded
masks
imager
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019235438A
Other languages
English (en)
Other versions
JP6974424B2 (ja
Inventor
ボードマン,デビッド
Boardman David
サーバット,アダム
Sarbutt Adam
フリン,アリソン
FLYNN Alison
プロコポービッチ,デール
PROKOPOVICH Dale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Australian Nuclear Science and Technology Organization
Original Assignee
Australian Nuclear Science and Technology Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014901905A external-priority patent/AU2014901905A0/en
Application filed by Australian Nuclear Science and Technology Organization filed Critical Australian Nuclear Science and Technology Organization
Publication of JP2020060591A publication Critical patent/JP2020060591A/ja
Application granted granted Critical
Publication of JP6974424B2 publication Critical patent/JP6974424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/10Irradiation devices with provision for relative movement of beam source and object to be irradiated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/295Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using coded aperture devices, e.g. Fresnel zone plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】ガンマ線(中性子線)イメージングで、僅かな測定から画像を再構成する。【解決手段】ガンマ線(中性子線)に対する符号化マスク装置を提供する。この装置は、少なくとも1つが他方に対して回転する入れ子状マスクを使用する。マスクが回転した複数のマスク配置ごとに得られるデータに圧縮センシングを適用して画像を再構成する。【選択図】図1

Description

本発明は、放射線検出に関し、詳しくは、単一の検出器及び符号化マスクを使用する圧縮センシング(compressed sensing)ガンマ線又は中性子イメージングデバイスに関する。
ガンマ線イメージングは、ガンマ線を放射する放射性核種を同定し及びその位置を特定することができる重要な放射線検出能力である。ガンマ線イメージングは、以下に限定されるわけではないが、廃炉、汚染除去、環境モニタリング(すなわち、実地調査、採掘調査)、医学イメージング(SPECT)、天文学及び国防用途(すなわち、非合法な放射性物質及び核物質の発見)等、多くの用途で利用することができる。
従来のガンマ線イメージング技術は、非常に高価な検出器のアレイ上に画像をフォーカスする手法、又は単一の検出器により画像平面を緩やかにラスタスキャンする手法に基づいている。ピクセル化された検出器アレイの費用又はラスタスキャンシステムの速度の遅さは受け入れられないことも多い。フォーカスが容易な光の光子と異なり、ガンマ線光子は、透過性が非常に高いために、フォーカスが極めて困難である。ピクセル化された検出器アレイを使用するガンマ線イメージングシステムは、通常、1つのピンホール、複数のピンホール又は平面符号化アパーチャ光学素子(planar coded aperture optics )を使用する。これらのシステムは、検出器アレイ上で画像又は符号化画像を形成するために使用される。天文学及び医療用途においては、ピンホール及び符号化アパーチャ光学素子が数十年も使用されている。この種のイメージングシステムの視野は、水平方向又は垂直方向において、約30°〜40°である。
1967年にMertzによってはじめて紹介された回転変調コリメータ(Rotating Modulation Collimator:RMC)は、通常、マスクの全長に亘って延びる平行なスリットを有する2つのマスクを使用する。マスクが回転すると、前面のマスクの投射は、光源に関して、後面のマスクを周回しているように見える。マスクの回転は、検出器において、光源の数、光源の強度、位置及びサイズに依存する変調されたカウントパターンを生成する。RMCは、以下を含む幾つかの短所を有する。すなわち、単一のRMCは、拡張された光源をイメージングすることが困難であり、視野が狭く、単一のRMCでは、回転中心軸上の光源を識別することが不可能である。これについては、「B. R. Kowash, A Rotating Modulation Imager for the Orphan Source Search Problem, PhD Thesis, 2008」に説明されている。
多くのガンマ線イメージングアプリケーションでイメージングされるシーンは、生来的に疎であり、通常、1つ以上の点光源の検出を必要とする。背景をゼロとして、16×16の画像にサンプリングされる単一点光源の単純なケースでは、1個の非ゼロピクセルと、255個のゼロピクセルが存在する。殆どがゼロであるN個(この場合、256個)の測定を行うのではなく、よりスマートなストラテジによって、N個より遙かに少ない測定で、非ゼロピクセルの位置を判定することができるはずであることが直観的に理解される。この直観は、近年、新しい信号処理理論の発展により、圧縮センシングとして証明された。圧縮センシングは、画像形成のための新しい手法を可能にする。圧縮センシング法は、(従来のイメージング技術に比べて)僅かな測定で画像を生成することができ、低コスト(単一検出器)システムオプションを実現することができる。近年、光、赤外線の及びTHz波長のための圧縮センシングに基づく単一ピクセルイメージングシステムが開発されている。これは、例えば、「R. G. Baraniuk et al, Method and Apparatus for Compressive Imaging Device, US patent 8,199,244 B2, 2012」に説明されている。
例えば、単一ピクセル検出器を一連のランダムマスクと組み合わせて使用し、高速画像取得を可能にするテラヘルツイメージングシステムが知られている。これについては、「W. L. Chan et al, A Single-Pixel Terahertz Imaging System Based on Compressed Sensing, Applied Physics Letters, vol. 93, 2008」に説明されている。これらの単一ピクセルイメージングシステムは、全て、ある種のレンズを使用して、画像をフォーカスし、続いて、ランダム圧縮測定を使用して、画像平面をサンプリングする。しかしながら、シーン平面をサンプリングする際は、画像を形成し、続いてサンプリングを行うのではなく、圧縮測定の実行が可能である必要がある。Huang他は、この手法を選択し、レンズを必要としない単一ピクセル光学イメージングシステムを開示している。ここでは、アパーチャアセンブリを使用して、ランダムにシーンをサンプリングし、「従来型の」画像を形成する段階はない。これについては、「G. Huang et al, Lensless Imaging by Compressive Sensing, 2013」に説明されている。
本発明は、圧縮センシングの原理に基づくシステムを設計することによって、従来のガンマ線イメージング法の欠点を克服する。
本発明の目的は、従来のガンマ線イメージング技術より測定を少なくできるガンマ線イメージングデバイスを提供することである。シーンの画像は、画像のピクセル数より少ない測定で生成することができる。
本発明の他の目的は、従来のアパーチャベースのガンマ線イメージング技術より視野が大きいガンマ線イメージングデバイスを提供することである。
本発明の他の目的は、ガンマ線についてシーンをランダムにサンプリングすることができるマスク装置を提供することである。このようなシーンのランダムプロジェクションを用いて、画像を再構成することができる。
したがって、1つ以上の回転マスクによって取り囲まれた単一の検出器を備えるイメージング装置を提供する。
好ましい実施形態においては、マスクは、円筒状、半球状、部分球状、又は球状である。
本発明をより明瞭にするために、以下の図面を参照する。
単一の検出器、マスク及び270度シールドの概略図である。 図1の単一の検出器、マスク及びシールド、並びに更なる上部シールド及び下部シールドを示す概略図である。 単一の検出器及び2つの入れ子状の回転する円筒状のマスクの概略図である。 単一の検出器及び2つの同心マスクのアパーチャの整列及び傾斜を示す概略図である。 アパーチャシステムとして移動するスロットを示す2つの同心マスクの概略図である。 基板に接合された浮いている要素を有するマスクの概略図である。 共通平面上の単一の検出器及び2つの同心の半球状のマスクの概略図である。 入れ子状球状マスクの概略図である 入れ子状球状マスクの概略図である 本発明の動作の方法を示すフローチャートである。 個別のガンマ線及び中性子遮蔽要素を有する符号化マスクの概略図である。
イメージャレイアウト及びセンシング
図1及び図2に示すように、単一のガンマ線検出器10は、検出器10を取り囲み又は閉じ込めるマスク11の中心に配置されている。検出器は、1又は複数のマスクの中央に位置し、望ましくは、マスク11の中心軸又は回転軸にある。ここでは、円筒状又は球状マスク11を使用してもよい。非中心の検出器位置を用いてもよいが、この場合、視野が僅かに異なる。更に複数の検出器12、13を使用してもよく、これらの更なる検出器は、異なる位置に設けてもよい。複数の検出器を使用することによって、イメージング時間を短縮することができる。
オプションの円筒状又は他の放射線シールド14は、円弧状開口15を有していてもよく、これによって、視野は、開口15によって画定される弧に制限される。マスク11は、ステッパモータ駆動ターンテーブル19、直接ギア付きステッパモータ20又は使用されている符号化マスク又は光学技術に応じた手法によって、断続回転(indexed)又は回転(rotated)させてもよい。ステッパモータ20、ギア21、並びに例えば、収集され処理されたデータから画像を生成するための表示及び印刷能力を有する制御コンピュータ22を用いることにより、データ収集及びマスクの調整された動き/回転を自動化することができる。マスクの動きは、離散的なステップで行ってもよく、連続運動として行ってもよい。
円筒状のマスク11を使用する場合、通常、図2に示すように、上部及び底部をシールド16、17で覆う必要があり、これによって、遮蔽されていないマスク11の開いたアパーチャ18を通った放射線のみが検出器に到達する。
圧縮センシングガンマ線イメージャは、如何なるガンマ線感知センサ10、12、13と共に使用してもよい。例えば、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ゲルマニウム酸ビスマス(BGO)、テルル化カドミウム(CdTe)、テルル化カドミウム亜鉛(CZT)、高純度ゲルマニウム(High Purity Germanium:HPGe)、ヨウ化ストロンチウム(SrI)及びCLYC等の物質に基づく典型的なガンマ線検出器システムを使用してもよい。測定された各光子のエネルギを判定する分光検出器を用いて、イメージングされている放射性核種を同定することができる。グロスカウント(gross counts)のみを記録する非分光検出器は、放射線ホットスポットに関する包括的な情報を提供する。他の放射線検出設備、例えば、線量率計をセンサとして使用することもでき、この場合、視野内の線量がマッピングされる。
好ましい実施形態では、検出された各ガンマ線光子のエネルギを測定する分光検出器を使用する。あらゆる特定のエネルギビン又はエネルギビン範囲からの光子カウント値を一組の測定からの観察されたデータとして使用することができる。所与の関心ピーク領域(例えば、60keV241Amライン)について観察された光子カウントデータを再構成することにより、放射性核種が存在する場合、241Amの位置が得られる。更なる関心領域について観察された光子データを再構成することにより、更なる放射性核種の位置を得ることができる。
何らかの1又は複数の中性子感知センサ10、12、13と共に圧縮センシング中性子イメージャを用いてもよい。
これに限定されるわけではないが、CLYCを含む二重方式(dual modality)センサ10、12、13を用いて、ガンマ線及び中性子の両方の変調を測定してもよい。
本発明の教示は、適切なマスク及び検出器を用いることによって、如何なる波長の放射線(又は如何なる粒子)に適用してもよいことは明らかである。
マスク及びマスクアパーチャ
マスクパターン開口又はアパーチャは、好ましくは、行及び列によって構成される。マスクパターン開口18の位置は、例えば、ランダムに形成してもよい。例えば、16×16の可能なアパーチャマスクは、合計256個の番号付きアパーチャを有する。この場合、乱数発生器を用いて、1から256の間の128個のアパーチャ番号をランダムに選択する。そして、これらの128個の番号のアパーチャを開アパーチャとして設定する。(元の256個の番号からの)残りの128個の位置は、ゼロ(閉アパーチャ)として設定する。これによって、50%開いているマスクパターンが実現する。マスクコラムが断続回転又は回転する回転マスクでは、開/閉アパーチャのランダムな選択は、マスク全体ではなく、行毎に行ってもよい。これによって、各マスク行が(例えば)50%開いていることを確実にでき、行の開アパーチャの数が多すぎたり少なすぎたりして画像再構成に影響が生じる状況を防止できる。
システムの幾何学的形状は、空間分解能を画定する。アパーチャ寸法は、望ましくは、検出器寸法と等しいか、これより大きい必要がある。例えば、システムが0.5cm×0.5cmの寸法のアパーチャ18を有する場合、検出器の断面積は、0.5cm×0.5cm以下である必要がある。検出器がマスクから離れているほど、空間分解能が向上する。
なお、アパーチャの寸法より大きい検出器を使用してもよいが、この場合、隣接するアパーチャの視野の間で重なりが大きくなる。この重なり(空間分解能の劣化/不鮮明化)は、マスクの応答関数をデコンボリューションすることによって取り除くことができる。
好ましいアパーチャ断面形状は、正方形である。アパーチャの好ましい数は、必須ではないが、2の累乗(すなわち、64、128、256、512、1024)である。マスクアパーチャ間の分離は最小又はゼロであることが望ましい。
マスク厚は、用途に依存する。高エネルギ光子(例えば、60Coからの1.3MeV光子)のイメージングの場合、2cmの鉛の総マスク厚によって、1.3MeV光子の約72%が減衰される。
マスク材料は、入射放射線の強さを十分に変調できる本体材料から形成される。高エネルギガンマ線の場合、通常、ガンマ放射線を吸収(減衰)する原子番号(Z)が大きく密度が高い材料が選択される。典型的な材料は、以下に限定されるわけではないが、タングステン、鉛、金、タンタル、ハフニウム及びこれらの合金又は合成物(すなわち、3D印刷−タングステン粉末をエポキシに混合)を含むことができる。低エネルギガンマ線光子の場合、低Zから中Zの材料、例えば、鋼によって、十分に光子強度を変調することができる。好ましい実施形態においては、マスク材料は、光子強度を変調するために光子を減衰させる。他の実施形態として、光子強度の十分な変調を示すものであれば、例えば、コンプトン散乱等の他の相互作用メカニズムを使用してもよい。
中性子放射線のイメージングについては、マスク本体は、中性子強度を変調する必要があり、したがって、マスク材料は、中性子相互作用が高い断面を必要とする。中性子マスク本体材料は、以下に限定されるわけではないが、ハフニウム、ガドリニウム、カドミウム、ホウ素添加材料、水素リッチ材料及びこれらの組合せを含むことができる。
マスクは、ガンマ線及び中性子の変調を可能にする材料から設計してもよい。ハフニウムのような単一の材料がガンマ線及び中性子の両方の強度の変調に適切である場合がある。複数の材料の使用、例えば、タングステン及びカドミウムの組合せがガンマ線及び中性子の両方の強度の変調に適する場合もある。ガンマ線マスクのための開いたアパーチャは、ガンマ線強度の変調に影響しない何らかの水素リッチ材料から構成してもよい。そして、これらの水素リッチアパーチャは、中性子マスクについては、閉じたアパーチャ又は変調領域となる。拡張によって、これらのマスク材料を使用して、如何なるEM波長(すなわち、光、赤外線の、THz等)又は如何なる粒子(すなわち、電子、陽子等)の強度も変調することができる。
図11に示すように、符号化マスクは、ガンマ線及び中性子を個別に変調することができ、すなわち、幾つかのマスク領域は、ガンマ線のみを遮蔽するために使用され、他の幾つかのマスク領域は、中性子のみを遮蔽するために使用される。図11の例では、マスク領域の1つのサブセット(黒塗りで表されている)は、ガンマ線のみを変調する材料から形成されている。マスク領域の他のサブセット92(白色で表現されている。)は、ガンマ線ではなく、中性子のみを変調する。このタイプのマスクは、本明細書によって開示又は示唆される如何なる技術、材料、形状又は構成に基づいて形成してもよい。
マスクは、単一であっても複数であってもよく、入れ子状、長方形状、円形状、円弧状、半球状又は球状であってもよい。符号化マスクセンシングのために必要とされる連続的な測定は、現在のマスクを新たなマスクに置換すること又は1以上のマスクの回転の何らかの形式を使用することによって得られる新しいマスクパターンを必要とする。平らなマスク形状は、前方に臨むのみであり、検出器及びマスクジオメトリによって視野角度が画定されるので、視野が限定されている。
円弧状、円筒状又は球状マスクの長所は、大きな視野(FOV)を実現できる点である。現在市販されているピンホール/符号化アパーチャガンマ線カメラ(pinhole/coded aperture gamma-ray cameras)は、約30°〜40°の水平及び垂直のFOVを有している。直立した円筒状のマスクの実施形態は、360°の水平FOVを有し、半球状のマスクの実施形態は、2πのFOVを有し、球状マスクの実施形態は、略4πのFOVを有する。他の実施形態は、以下に限定されるわけではないが、楕円体、円錐、直方体又は六角形の形状のマスクを含むことができる。
単一の円筒状のマスクの実施形態の場合、マスクを1列回転させることによって、新しい測定のための所望のFOVを有する新しいマスクパターンが構成される。単一の円筒状のマスクの実施形態では、放射線シールドを用いて、FOVを制限することができ、したがって、より多くの測定を可能にする多数の列を有することができる(図2参照)。単一の円筒状マスクの手法の短所は、より多くの測定を実行するために、より多くの列が必要である点であり、このため、シリンダの直径が大きくなり、システム全体の物理的サイズが大きくなる。
図3に示すように、各マスク本体35、36がコンピュータ22によって個別に移動又は断続回転することができる入れ子状、すなわちマスク内にマスクを入れ込んだ構成を利用する手法(又は二重又は複数マスク法)では、2つのマスクパターンの可能な組合せの数から遙かに多くの測定が可能になる。好ましい実施形態においては、二重マスク法は、円筒内に円筒を入れ込んだ構成を有する(図3参照)。各マスクは、図2に示す単一マスクについて提案した手法と同様に、センシング軸又はイメージング軸を中心に独立して回転し、この軸に沿って検出器を設けてもよい。多数のマスクパターン(したがって、測定)によって、360°のFOVをイメージングすることができる、より小型の(1本のシリンダの列の総数がより少ない)システムが実現する。二重半球状又は球状マスク設計についても、同様の説明を適用することができる。二重マスク法では、組み合わされたマスクの開口率は、約50%とすることができるが、この率は、マスクの回転に伴って変化する。一方のマスクが回転角度で断続回転を行って一回転すると、他方のマスクが1列だけ断続回転するようにしてもよく、これによって、列の数の2乗に相当する数の仮想マスクが生成される。他の実施形態においては、マスクが交互に又は非交互に1列だけ反対方向に回転するような構成としてもよい。各仮想マスクは、次のマスクが生成される前に、放射線測定のために使用される。各マスクは、1方向のみに回転すればよい。
マスクアパーチャの断面又は投影形状(projected shape)は、以下に限定されるわけではないが、正方形、長方形、円形、三角形及び六角形等であってもよい。マスクアパーチャ間は、分離しても分離しなくてもよい。単一マスクシステムの好ましい実施形態では、マスクアパーチャ形状は、四角形である。
図4に示すように、二重マスクの実施形態では、内側マスク30及び外側マスク31の寸法及び向きは、異なっていてもよく、内側及び外側マスクの両方が検出器33に対して同じFOVを生成するように、傾斜32を有していてもよい(但し、互いの辺は、整列される)。これらのアパーチャ34の3次元形状は、以下に限定されるわけではないが、台形プリズム及び円錐を含むことができる。
図5に示すように、開いたアパーチャは、一方のマスク上の螺旋線41の形状又は他の構造である開構造と、他方のマスク上の垂直スリット43等の他の形状の開構造との連続的な開構造の重なりによって形成してもよい。マスク42、44がそれぞれ他方に対して互いに回転することによって、符号化アパーチャが生成される。
マスクパターンは、ランダム、疑似ランダム、非ランダム又は決定論的に設計してもよい。マスクパターンは、通常、圧縮センシングを機能させるために、定義された条件を満たす必要がある。再構成プロセスでは、行列の形式によるマスクパターンの表現を使用する。再構成において使用されるセンシング行列は、巡回行列又はテプリッツ行列であってもよく、これによって、演算速度を高めることができる。好ましい実施形態においては、各マスク要素が1(開−100%の透過)又は0(閉−0%の透過)の等しい確率を有する疑似乱数マスクパターンを生成する。閉マスク要素の透過率は、100%未満の値である必要があり、例えば、0%であることが望ましいが、画像を再構成するために効果的に強度を変調する目的では、50%の透過率でも十分である。透過率は、エネルギがより高いガンマ線の透過性の増加と関係を有する。例えば、10mmの鉛からなる閉マスク要素は、60keVのガンマ線光子に対して透過率が0%であるが、1332keVのガンマ線光子に対しては、この透過率は、約53%となることがある。開アパーチャ及び閉アパーチャの透過率が近すぎると、画像を再構成するために十分に光子強度を変調できないことがある。例えば、開アパーチャ及び閉アパーチャの透過率がそれぞれ100%及び90%だとすると、これらは、光子強度の十分な変調を行うには近すぎる。所与のエネルギについて、マスク内に3レベル以上の透過率があってもよく、例えば、3レベルの透過率は、33%、66%及び100%であってもよい。他のレベルの透過率は、25%、50%、75%及び100%、又は0.16%、4%及び100%であってもよい。後者の例では、低い側の2つの透過率が近いために、3レベルの透過率が2レベルの透過率に効果的に近似し、再構成時間が短くなり、再構成品質が高まり、測定を少なくできる可能性がある。透過のレベルは、0%〜100%の間の2以上のレベルをカバーしてもよい。センシング行列の値は、特定のガンマ線エネルギについての減衰値であってもよい。異なるガンマ線エネルギの再構成のために、異なる減衰値、したがって異なるセンシング行列を使用してもよい。
図6に示すように、マスク構造が自立(self-supporting)するように、如何なる形状のマスクのマスクパターンを生成してもよい。例えば、浮いている(floating)又は取り付けられていない(unattached)「閉」要素50のアレイを有するマスクパターンを非マスキング基板51に固定し、接着し又は取り付けてもよい。このように、放射線不透過マスク要素50は、互いに取り付けるのではなく、基板51によって取り付けてもよい。これに代えて、浮いている又は取り付けられていない「閉」要素50を有さないマスクパターンを選択してもよく、このマスクパターンは、基板51を必要としないが、外側の閉要素50を共通の構造に取り付けることを必要とする。
図7〜図9に示すように、1又は複数のマスクは、半球状又は部分球状、例えば、任意の切断平面より上のキャップ又はオプションとして2つの平面間のセグメントであってもよい。図7は、球面キャップの形状の2つの入れ子状の同心マスクである内側キャップ61及び外側キャップ62を表しており、これらは、それぞれの縁部(すなわち、最も下の行)が共通平面内にある半球である。一方又は両方のマスク61、62は、データサンプリング位置に回転し、データがサンプリング又は取得される際に、列63、64及び両方の行が整列し又は揃えられる。2つのマスクの行と列の数は同じである。各行は、球における2つの平行な平面の間の帯状の区域に相当する。ある例では、図3の場合と同様に、内側の半球状のマスク61は、一方向に1列だけ断続回転し、外側マスク62は、反対方向に、単一の列によって定義される角度だけ断続回転又は回転する。同時に両方のマスクを動かすことによって、一方のマスクを静止させて、他方のマスクだけ動かす場合に比べて、マスク要素が開く又は閉じる変化が大きくなる。この構成により、縁65、66を含む平面より上の空間全体の単一検出器符号化マスクイメージングが可能になる。
図8及び図9は、2つのマスク又は、オプションとして、同心の球形である2対の入れ子状マスク71、72の使用を例示している。このような構成により、中心検出器又は複数の検出器の周りの空間の全てをイメージングできる。各球状マスク又はマスク対71、72は、2つの半球状のマスク又は図7に示すマスク対から形成してもよい。この構成内の各マスクは、システムのコンピュータ22(図2参照)によって駆動されるターンテーブル又はステッパモータ構成を含む自らの駆動システムを有する。
マスクの幾何学的設計
マスク設計は、対象となる放射線イメージング用途の要求によって決定される。システムの幾何学的構成は、例えば、空間分解能、FOV及び感度等のシステム効率に影響する。重要な幾何学的パラメータは、検出器寸法、検出器からマスクまでの距離、アパーチャ寸法(すなわち、厚さ、長さ及び幅)、マスクから光源までの距離、隔壁の厚さ、マスクアパーチャの数及び検出器の中心と2つの近接するマスクアパーチャによって画定される弧の角度等を含む。例えば、マスクアパーチャが小さい程、空間分解能が高くなる。
再構成アルゴリズム
多くの再構成アルゴリズムが圧縮センシングのために使用されている。例えば、勾配投影法(gradient projection methods)、繰返し縮小/閾値法(iterative shrinkage/thresholding methods)及びマッチング追跡法(matching pursuit methods)等がある。これらについては、「R. M. Willett, R. F. Marcia and J. M. Nichols, Compressed Sensing for Practical Optical Imaging Systems: a Tutorial, Optical Engineering vol. 50(7), July 2011」に説明されている。これらの手法又は他の幾つかの適切な手法の何れも圧縮センシング測定の再構成に使用できる。ANSTO圧縮センシングのインプリメンテーションは、スパース再構成のための勾配投影(Gradient Projection for Sparse Reconstruction:GPSR)アルゴリズムを使用している。これについては、「Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems, by M. A. Figueiredo, R. D. Nowak, S. J. Wright, Journal of Selected Topics in Signal Processing, December 2007」に説明されている。
画像融合(Image fusion)
圧縮センシング測定の後に生成されるガンマ線画像は、同じ視野に揃えられた光画像に重ねてもよい。また、中性子画像を光画像に重ねてもよい。光画像に放射線画像を重ねることにより、ユーザのために放射線源の位置を視覚化することができる。放射線画像は、他の如何なる波長(例えば、赤外線)における画像と重ねてもよい。
方法
図10に示すように、光源は、放射線80を出射する。この放射線80は、上述したように、1又は複数のマスク81を通過する。システムのコンピュータ22は、検出器10を動作させ、又は動作中の検出器82から読出値を受け取る。そして、検出器は、測定された値83をコンピュータ22に送信する。コンピュータは、値及び1又は複数のマスクの位置を保存し、これらを使用して、画像に再構成されるデータをコンパイルする。そして、コンピュータは、1又は複数のモータによって1又は複数のマスクを駆動し、次の測定位置に回転又は断続回転させる。プロセスが繰り返されると、放射線は、実質的に、新しいマスク又はマスク方向81を通過する。
本発明を特定の具体例を参照して説明したが、本発明は、他の多くの形式で実現できることは、当業者にとって明らかである。
ここで使用する、共通の対象物を記述する「第1」、「第2」、「第3」等の順序に関する修飾語は、特に明記しない限り、単に、同様の対象物の異なる例に言及しているにすぎず、このように記述した対象物が時間的に、空間的に、ランクとして又は他の如何なる形式で所与の順序である必要があるという意味を意図するものではない。
本明細書を通して、「一実施形態」、「実施形態」又は「具体例」等の言及は、実施形態に関連して記述される特定の特徴、構造体又は特徴が本発明の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書内の様々な箇所で使用する「一実施形態において」又は「具体例において」等の句は、必ずしも同じ実施形態又は具体例を指しているわけではないが、同じ実施形態又は具体例を指している場合もある。更に、本開示によって当業者にとって明らかなように、特定の特徴、構造又は特徴は、1つ以上の実施形態において適切な如何なる手法で組み合わせてもよい。
なお、本発明の例示的な実施形態に関する上記の説明では、本開示を合理化し、1つ以上の本発明の様々な側面の理解を補助する目的で、本発明の様々な特徴を単一の実施形態、図面又はその説明にまとめている。但し、この開示の手法は、特許請求される発明が、各請求項に明示的に示されている特徴以外の特徴を必要とするといった意図を表しているとは解釈されない。すなわち、以下の請求項は、本発明の側面が、上述した単一の実施形態の全ての特徴より少ない特徴でも成立することを反映している。詳細な説明に続く何れの請求項も、この詳細な説明に明示的に組み込まれ、各請求項は、本発明の個別の実施形態として成立するものとする。
以下の議論からも明らかなように、本明細書において、特に言及しない限り、例えば「処理」、「演算」、「計算」、「判定」又はこれらに類似する用語を使用する説明は、マイクロプロセッサ、コントローラ若しくはコンピュータシステム、又はデータを処理及び/又は変換するこれらに類する電子演算又は信号処理デバイスの動作及び/又は処理を指す。
更に、ここに記述する幾つかの実施形態は、他の実施形態に含まれていない特徴を含むことがあるが、異なる実施形態の特徴の組合せも本発明の範囲内であり、この組合せが異なる実施形態を構成することは、当業者にとって明らかである。例えば、特許請求の範囲において請求される実施形態は、如何なる組合せで使用してもよい。
すなわち、これまで本発明の好ましいと考えられる実施形態を記述したが、本発明の精神を逸脱することなく、これらに他の更なる修正を加えることができ、このような全ての変更及び修正は、本発明の範囲に含まれることは、当業者にとって明らかである。
特定の構成の詳細を参照して本発明を説明してきたが、これらは、例示的なものであると理解され、本発明の範囲又は思想を限定するものではない。

Claims (21)

  1. 入射放射線の圧縮センシングに使用されるマスク装置において、
    1つの符号化マスクあるいは2つ以上の符号化マスクを備え、
    前記2つ以上の符号化マスクのそれぞれあるいは前記1つの符号化マスクが前記入射放射線の強度を変調する材料から形成されている本体を有し、
    前記1つの符号化マスクまたは前記2以上の符号化マスクのそれぞれは、複数のマスクアパーチャ領域を有し、前記複数のマスクアパーチャ領域は、前記マスクアパーチャ領域とは別の領域と比較して圧縮センシング測定を再構成するのに十分に高い放射線透過性を許容し、
    前記1つの符号化マスクあるいは2つ以上の符号化マスクは、回転するように構成され、
    前記マスク装置が2つ以上の前記符号化マスクを有する場合、少なくとも1つの前記符号化マスクが他の符号化マスクに対して回転する、マスク装置。
  2. (i)前記1つの符号化マスクまたは前記2以上の符号化マスクは、円筒状であるか、
    (ii)前記1つの符号化マスクまたは前記2以上の符号化マスクは半球状であり、前記マスク装置は2πの視野角を有するか、又は
    (iii)前記1つの符号化マスクまたは前記2以上の符号化マスクは球状であり、前記マスク装置は4πの視野角を有する、
    請求項1に記載のマスク装置。
  3. 前記1以上のマスクは、それぞれ上部及び底部を有し、
    前記マスク装置は、前記上部及び前記前記底部を覆う放射線シールドを有する請求項1または2に記載のマスク装置。
  4. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、半球状、球面の一部、又は球状である請求項1に記載のマスク装置。
  5. 前記1つの符号化マスクまたは前記2以上の符号化マスクの前記複数のマスクアパーチャ領域の合計数は、2の累乗に等しい請求項1から4のいずれか1項に記載のマスク装置。
  6. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、タングステン、鉛、金、タンタル、ハフニウム又はこれらの合金を含むグループから選択される材料から形成されている請求項1から5のいずれか1項に記載のマスク装置。
  7. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、入射ガンマ線を変調する材料から形成されている請求項1に記載のマスク装置。
  8. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、入射光学的放射線又は赤外線を変調する材料から形成されている請求項1に記載のマスク装置。
  9. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、入射中性子放射線を変調する材料から形成されている請求項1に記載のマスク装置。
  10. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、入射ガンマ放射線及び中性子を変調する材料から形成されている請求項1に記載のマスク装置。
  11. 前記複数のマスクアパーチャ領域は、ガンマ線のための変調領域と中性子のための変調領域とを有する請求項10に記載のマスク装置。
  12. 前記1以上のマスクを囲む放射線シールドを有し、当該放射線シールドは、前記複数のマスク内に位置する放射線センサの視野を制限する開口を有する請求項1に記載のマスク装置。
  13. 前記1つの符号化マスクまたは前記2以上の符号化マスクは、上部及び底部を有し、前記マスク装置は、前記上部及び底部を覆う放射線シールドを有する請求項12に記載のマスク装置。
  14. 請求項1から13のいずれか1項のマスク装置内の放射線センサで圧縮センシング測定を行う放射線検出方法。
  15. 請求項14の方法を有する廃炉、汚染除去、環境モニタリング、医学イメージング、天文学、又は国防の方法。
  16. 請求項1から13のいずれか1項に記載のマスク装置、及び前記マスク装置内に配設された少なくとも1つの放射線センサを有する圧縮センシング放射線イメージャであって、 前記イメージャは、圧縮センシング測定を行い、当該圧縮センシング測定から放射線イメージデータを生成する圧縮センシング放射線イメージャ。
  17. 前記少なくとも1つの放射線センサは、
    (i)前記放射線イメージャが、ガンマ線放射線イメージャを構成する少なくとも1つのガンマ線放射線センサ、
    (ii) 前記放射線イメージャが、中性子放射線イメージャを構成する少なくとも1つの中性子放射線センサ、
    (iii)前記放射線イメージャが、ガンマ線放射線イメージャ及び中性子放射線イメージャを構成する少なくとも1つのガンマ線放射線イメージャ及び少なくとも1つの中性子放射線イメージャ、
    (iv)少なくとも1つの2重モードセンサ、又は
    ガンマ線及び中性子を検知する少なくとも1つの2重モードセンサ
    である請求項16に記載の圧縮センシング放射線イメージャ。
  18. 可視域、赤外域又は他の波長域のイメージをとらえ、イメージデータを出力するように構成された請求項16または17に記載の圧縮センシング放射線イメージャ。
  19. 前記放射イメージデータと、共通の視野に揃えられた光イメージあるいは赤外イメージとを重ね合わせるように構成された請求項16または17に記載の圧縮センシング放射線イメージャ。
  20. 請求項16から19のいずれか1項に記載の圧縮センシング放射線イメージャで、圧縮センシング測定を行う放射線検知方法。
  21. 請求項16から19のいずれか1項に記載の圧縮センシング放射線イメージャで、廃炉、汚染除去、環境モニタリング、医学イメージング、天文学、又は国防を行う方法。
JP2019235438A 2014-05-22 2019-12-26 ガンマ線イメージング Active JP6974424B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2014901905A AU2014901905A0 (en) 2014-05-22 Gamma-Ray Imaging
AU2014901905 2014-05-22
JP2016568816A JP6654578B2 (ja) 2014-05-22 2015-05-22 ガンマ線イメージング

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016568816A Division JP6654578B2 (ja) 2014-05-22 2015-05-22 ガンマ線イメージング

Publications (2)

Publication Number Publication Date
JP2020060591A true JP2020060591A (ja) 2020-04-16
JP6974424B2 JP6974424B2 (ja) 2021-12-01

Family

ID=54553100

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016568816A Active JP6654578B2 (ja) 2014-05-22 2015-05-22 ガンマ線イメージング
JP2019235438A Active JP6974424B2 (ja) 2014-05-22 2019-12-26 ガンマ線イメージング

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016568816A Active JP6654578B2 (ja) 2014-05-22 2015-05-22 ガンマ線イメージング

Country Status (17)

Country Link
US (3) US10795036B2 (ja)
EP (3) EP3944260B1 (ja)
JP (2) JP6654578B2 (ja)
KR (1) KR102393273B1 (ja)
CN (1) CN106663489B (ja)
AU (1) AU2015263838B2 (ja)
CA (1) CA2949558C (ja)
DK (1) DK3146527T3 (ja)
ES (1) ES2897650T3 (ja)
HU (1) HUE057042T2 (ja)
LT (1) LT3146527T (ja)
MX (1) MX363049B (ja)
PL (1) PL3146527T3 (ja)
RU (1) RU2706736C2 (ja)
SG (2) SG10201808726RA (ja)
UA (1) UA123038C2 (ja)
WO (1) WO2015176115A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102533179B1 (ko) * 2022-11-08 2023-05-17 한전케이피에스 주식회사 부호화구경 조립체 및 이를 포함하는 방사선 검출기

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140414A1 (en) 2012-03-07 2023-03-01 Ziteo, Inc. Methods and systems for tracking and guiding sensors and instruments
EP3944260B1 (en) * 2014-05-22 2024-05-08 Australian Nuclear Science And Technology Organisation Proton, neutron, electron or electromagnetic radiation imaging
GB2530574B (en) * 2014-09-29 2020-12-02 Inst Jozef Stefan Angle-sensitive gamma camera with a rotary obstruction
US10617401B2 (en) 2014-11-14 2020-04-14 Ziteo, Inc. Systems for localization of targets inside a body
US10133936B2 (en) * 2016-06-13 2018-11-20 The Board Of Trustees Of The University Of Alabama Active compressive sensing via a thermal sensor for human scenario recognition
US10586624B2 (en) * 2017-07-31 2020-03-10 H3D, Inc. Control of imaging assembly with interchangeable radiation shielding
RU2020116355A (ru) * 2017-10-20 2021-11-23 Острэйлиен Ньюклиар Сайенс Энд Текнолоджи Организейшн Способ и система получения изображения на основе сжатого считывания
IL280492B2 (en) * 2018-08-07 2023-09-01 Siemens Medical Solutions Usa Inc Computed tomography medical imaging system, multimode Compton and single photon emission
CN109273131B (zh) 2018-10-31 2024-07-02 同方威视技术股份有限公司 准直器组件和射线检测设备
US10948614B2 (en) 2018-11-01 2021-03-16 H3D, Inc. Imaging system with one or more mask units and corresponding method of recording radiation
JP2022526445A (ja) 2019-04-09 2022-05-24 ジティオ, インコーポレイテッド 高性能かつ万能な分子画像のための方法およびシステム
KR102242971B1 (ko) * 2019-06-10 2021-04-21 한국원자력연구원 방사성 물질 위치 탐지를 위한 전방향 방사선 탐지 장치 및 그 방법
KR102241475B1 (ko) * 2019-11-26 2021-04-16 한국원자력연구원 휴대용 방사선 탐지 장치 및 그 방법
KR102341342B1 (ko) * 2020-02-11 2021-12-21 한국원자력연구원 방사성 오염 물질의 방향 및 거리 정보를 제공하는 휴대용 방사선 탐지 장치 및 그 방법
FR3118199B1 (fr) * 2020-12-21 2022-12-09 Commissariat Energie Atomique Dispositif et procédé de localisation de sources de rayonnements ionisants
TWI817544B (zh) * 2021-06-08 2023-10-01 中央研究院 一種粒子誘發的射線照相系統及3d成像系統
EP4377680A1 (en) * 2021-07-28 2024-06-05 Bar-Ilan University Method and system for high photon energies imaging

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544800A (en) * 1968-11-20 1970-12-01 Quantic Ind Inc Optical apparatus for encoding angular movement of a rotating shaft
US3799675A (en) * 1972-12-07 1974-03-26 Sanders Associates Inc Direction determining system
GB2170980B (en) * 1985-02-07 1988-05-25 Steve Webb Ct scanner and detector therefor
JPH07117502B2 (ja) 1986-11-25 1995-12-18 ペトロ−カナダ・インコ−ポレ−テツド 計測装置
US20050259302A9 (en) * 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
DE3829688A1 (de) * 1988-09-01 1990-03-15 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderlicher richtung
JPH0636031B2 (ja) * 1988-10-31 1994-05-11 株式会社島津製作所 放射型断層撮像装置
DE3908966A1 (de) * 1989-03-18 1990-09-20 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderbarer lage
US5606165A (en) * 1993-11-19 1997-02-25 Ail Systems Inc. Square anti-symmetric uniformly redundant array coded aperture imaging system
CA2197706A1 (en) * 1997-02-14 1998-08-14 Peter Ehbets Method of fabricating apodized phase mask
US6757422B1 (en) * 1998-11-12 2004-06-29 Canon Kabushiki Kaisha Viewpoint position detection apparatus and method, and stereoscopic image display system
US6272206B1 (en) * 1999-11-03 2001-08-07 Perkinelmer Detection Systems, Inc. Rotatable cylinder dual beam modulator
FR2801113B1 (fr) * 1999-11-15 2003-05-09 Commissariat Energie Atomique Procede d'obtention et source de rayonnement extreme ultra violet, application en lithographie
US6737652B2 (en) * 2000-09-29 2004-05-18 Massachusetts Institute Of Technology Coded aperture imaging
US7394053B2 (en) * 2004-09-09 2008-07-01 Beth Israel Deaconess Medical Center, Inc. Systems and methods for multi-modal imaging having a spatial relationship in three dimensions between first and second image data
FR2879304B1 (fr) * 2004-12-14 2007-01-26 Commissariat Energie Atomique Dispositif d'imagerie gamma ameliore.
US7064340B1 (en) * 2004-12-15 2006-06-20 Axcelis Technologies, Inc. Method and apparatus for ion beam profiling
US20060239336A1 (en) 2005-04-21 2006-10-26 Baraniuk Richard G Method and Apparatus for Compressive Imaging Device
GB0510470D0 (en) * 2005-05-23 2005-06-29 Qinetiq Ltd Coded aperture imaging system
US20080012750A1 (en) * 2006-06-30 2008-01-17 Robert Wayne Austin Directional alignment and alignment monitoring systems for directional and omni-directional antennas based on solar positioning alone or with electronic level sensing
CN101568855A (zh) * 2006-10-24 2009-10-28 塞莫尼根分析技术有限责任公司 利用编码光束检查目标的设备
EP2245512B1 (en) * 2008-01-29 2019-09-11 Brewer Science, Inc. On-track process for patterning hardmask by multiple dark field exposures
JP2009277712A (ja) * 2008-05-12 2009-11-26 Canon Inc 測定装置および露光装置
CN102130252B (zh) * 2010-11-03 2013-02-27 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
WO2012145741A2 (en) * 2011-04-22 2012-10-26 The University Of Memphis Reasearch Foundation Spatially-selective disks, submillimeter imaging devices, methods of submillimeter imaging profiling scanners, spectrometry devices, and methods of spectrometry
US8519343B1 (en) 2011-04-25 2013-08-27 U.S. Department Of Energy Multimode imaging device
US9293197B2 (en) * 2011-08-15 2016-03-22 Lockheed Martin Corporation Reconfigurable phase change material masks for electro-optical compressive sensing
EP2562568B1 (en) * 2011-08-23 2014-06-25 SICK STEGMANN GmbH Fabrication method of cylindrical gratings
EP3944260B1 (en) * 2014-05-22 2024-05-08 Australian Nuclear Science And Technology Organisation Proton, neutron, electron or electromagnetic radiation imaging
KR102144855B1 (ko) * 2014-09-03 2020-08-18 삼성디스플레이 주식회사 광학 마스크
US10437083B1 (en) * 2014-10-20 2019-10-08 Lockheed Martin Corporation Individually addressable infrared mask array
US20160220221A1 (en) * 2015-02-03 2016-08-04 The Uab Research Foundation Apparatuses And Methods For Determining The Beam Width Of A Computed Tomography Scanner
US10224175B2 (en) * 2015-03-18 2019-03-05 Battelle Memorial Institute Compressive transmission microscopy
US10170274B2 (en) * 2015-03-18 2019-01-01 Battelle Memorial Institute TEM phase contrast imaging with image plane phase grating
WO2017189212A1 (en) * 2016-04-29 2017-11-02 Battelle Memorial Institute Compressive scanning spectroscopy
JP6666554B2 (ja) * 2016-05-23 2020-03-18 富士通株式会社 情報処理装置、変換プログラム、及び変換方法
US10133936B2 (en) * 2016-06-13 2018-11-20 The Board Of Trustees Of The University Of Alabama Active compressive sensing via a thermal sensor for human scenario recognition
US11047997B2 (en) * 2019-03-11 2021-06-29 United States Of America As Represented By The Secretary Of The Air Force Rotating scatter mask for directional radiation detection and imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102533179B1 (ko) * 2022-11-08 2023-05-17 한전케이피에스 주식회사 부호화구경 조립체 및 이를 포함하는 방사선 검출기

Also Published As

Publication number Publication date
JP2017522543A (ja) 2017-08-10
US11346964B2 (en) 2022-05-31
RU2016150551A (ru) 2018-06-25
CN106663489A (zh) 2017-05-10
DK3146527T3 (da) 2021-11-22
EP3146527A1 (en) 2017-03-29
SG10201808726RA (en) 2018-11-29
HUE057042T2 (hu) 2022-04-28
US20170322327A1 (en) 2017-11-09
EP3944260A1 (en) 2022-01-26
KR102393273B1 (ko) 2022-04-29
RU2016150551A3 (ja) 2018-06-25
LT3146527T (lt) 2022-02-25
AU2015263838A2 (en) 2017-07-20
KR20170018836A (ko) 2017-02-20
US20200408940A1 (en) 2020-12-31
CA2949558A1 (en) 2015-11-26
PL3146527T3 (pl) 2022-02-07
JP6974424B2 (ja) 2021-12-01
EP3944260C0 (en) 2024-05-08
ES2897650T3 (es) 2022-03-02
EP4403908A2 (en) 2024-07-24
US10795036B2 (en) 2020-10-06
WO2015176115A1 (en) 2015-11-26
EP3944260B1 (en) 2024-05-08
EP3146527B1 (en) 2021-08-18
EP3146527A4 (en) 2018-05-02
MX363049B (es) 2019-03-06
UA123038C2 (uk) 2021-02-10
RU2706736C2 (ru) 2019-11-20
CN106663489B (zh) 2020-03-27
AU2015263838B2 (en) 2019-09-26
US20220308244A1 (en) 2022-09-29
CA2949558C (en) 2022-10-25
MX2016015292A (es) 2017-06-20
JP6654578B2 (ja) 2020-02-26
SG11201609671UA (en) 2016-12-29
AU2015263838A1 (en) 2016-12-22
US11754731B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP6974424B2 (ja) ガンマ線イメージング
KR102123562B1 (ko) 방사선 실시간 정보 획득용 영상처리 시스템 및 이에 적용되는 부호화구경
KR102389288B1 (ko) 중성자 차폐 부호화구경 및 이를 이용한 이중입자 영상 융합장치
Liang et al. Self-supporting design of a time-encoded aperture, gamma-neutron imaging system
JP2016223997A (ja) 放射線カメラ
JP7244505B2 (ja) 圧縮撮像方法及びシステム
Ivanov et al. Portable X-ray and gamma-ray imager with coded mask: performance characteristics and methods of image reconstruction
Woolf et al. An active interrogation detection system (ACTINIDES) based on a dual fast neutron/gamma-ray coded aperture imager
Chen et al. A new compact gamma camera with super resolution capability and high sensitivity for monitoring sparse radioactive sources in large area
KR102182315B1 (ko) 방사선 영상의 반복적 영상 재구성에 대한 선원 위치 및 강도 정확도의 개선 방법
KR102714102B1 (ko) 압축 이미징 방법 및 시스템
KR102390955B1 (ko) 원자력 발전소의 해체 지역의 방사선원 영상화 장치
Liu et al. Radioactive Source Localization Method for the Partially Coded Field-of-View of Coded-Aperture Imaging in Nuclear Security Applications
Budden et al. Lanthanum bromide-based rotational modulation gamma ray imager
Clark et al. A stand-off imager for the location and identification of nuclear threat materials
Clark et al. A sensitive radiation imaging system having a 360 degree field-of-view
Sudarkin et al. Portable digital x-ray and gamma-ray imaging system with pinhole and coded mask collimators
Hindi et al. Gamma vector camera: A gamma ray and neutron directional detector
Caroli et al. Polarimetry with a Laue Lens and CZT pixel detector
GB2463254A (en) Radiation detector for determining a direction to a radio-active source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150