JP2020060327A - 熱輸送装置 - Google Patents

熱輸送装置 Download PDF

Info

Publication number
JP2020060327A
JP2020060327A JP2018192062A JP2018192062A JP2020060327A JP 2020060327 A JP2020060327 A JP 2020060327A JP 2018192062 A JP2018192062 A JP 2018192062A JP 2018192062 A JP2018192062 A JP 2018192062A JP 2020060327 A JP2020060327 A JP 2020060327A
Authority
JP
Japan
Prior art keywords
heat
pipe
vibration
energy
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018192062A
Other languages
English (en)
Inventor
雄一 大野
Yuichi Ono
雄一 大野
孝一 柳澤
Koichi Yanagisawa
孝一 柳澤
康弘 長田
Yasuhiro Osada
康弘 長田
萩原 康正
Yasumasa Hagiwara
康正 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2018192062A priority Critical patent/JP2020060327A/ja
Publication of JP2020060327A publication Critical patent/JP2020060327A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】強制振動流型ヒートパイプの加振仕事に必要な動力エネルギを低減することの可能な熱輸送装置を提供する。【解決手段】強制振動流型ヒートパイプ2は、熱源で発生した熱を吸熱する吸熱部14と熱を放熱する放熱部15との間を蛇行かつ隣接するように構成された閉ループ状の流路により構成されるヒートパイプ本体10、および、そのヒートパイプ本体10の流路内に封入された封入流体に振動流を生じさせる加振機構20を有する。熱音響装置3は、音響エネルギを伝達する作業ガスが封入された音響伝達管30、および、熱源で発生した熱の一部または別の熱源で発生した熱を熱音響自励振動により音響伝達管30内の作業ガスの音響に変換するエネルギ変換装置40を有する。動力伝達部4は、音響伝達管30内の作業ガスの音響エネルギを加振機構20を駆動するためのエネルギに変換し、加振機構20に伝達する。【選択図】図1

Description

本発明は、熱源で発生した熱を放熱部に輸送する熱輸送装置に関するものである。
従来、熱源で発生した熱を放熱部に輸送する熱輸送装置として、種々のヒートパイプが知られている。ヒートパイプは、封入流体を流動させて大量の熱を輸送することができる装置であり、例えば、電子回路基板に搭載される半導体素子等の発熱体の冷却などに用いられる。
ヒートパイプの典型例として、ウィック型ヒートパイプが挙げられる。これは、封入流体の蒸発と凝縮とを利用し、放熱部で凝縮した封入流体の吸熱部(蒸発部)への還流を、ウィック(wick;灯心)等の毛管力の作用によって行うものである。ところが、ウィック型ヒートパイプは、以下に述べる欠点を有している。
(a)熱輸送量に上限界があり、その上限値がパイプ径の減少とともに急速に低下する。
(b)ヒートパイプの内部構造が、封入流体を還流させるためにやや複雑で特殊になる。
(c)熱輸送量が不凝縮性ガス濃度に影響され易い。
(d)ウィック型ヒートパイプはいわゆる受動型デバイス(外部から動力供給を行わずに作動するデバイス)であり、トップヒート(top heat;吸熱部が重力方向の上部にある状態)や微小重力場では作動することが困難である。
ウィック型ヒートパイプは、前記(a)あるいは(b)の欠点を有するため、細径化やフレキシブル化が困難である。そのため、前記(a)〜(d)の欠点を解消した新たなヒートパイプが求められている。
このような状況下で、封入流体の振動流によって効果的に熱輸送を行うことができる振動流型ヒートパイプが注目されている。この振動流型ヒートパイプは、以下に述べる(I)、(II)のタイプに大きく分けることができる。
(I)封入流体の相変化を利用するタイプ
このタイプは、蛇行閉ループに液体とその蒸気とをある割合で封入し、自励的に発生する二相振動流や脈動流を利用するものであり、自励振動流型ヒートパイプと呼ばれる。
(II)封入流体の相変化を利用しないタイプ
このタイプは、強制振動流における拡散促進効果を利用するものであり、強制振動流型ヒートパイプと呼ばれる。強制振動流型ヒートパイプは、ウィック式や相変化式のヒートパイプに比べて、トップヒートへの対応性が高い。さらに、振動流の振幅や周波数を変えることで熱輸送量をコントロールできるので、発熱体の温度コントロールが可能であるという利点もある。さらには、パイプの細径化やフレキシブル化への対応も可能と考えられる。なお、強制振動流型ヒートパイプには、隣接する流路内の振動流を同位相とする同位相式と、隣接する流路内の振動流を逆位相とする逆位相式とがある。
特許文献1には、逆位相式の強制振動流型ヒートパイプが記載されている。この強制振動流型ヒートパイプは、加振仕事に対して100倍近くの熱輸送も可能であり、銅の40倍近くの熱輸送力がある。
特開2002−364991号公報
しかしながら、強制振動流型ヒートパイプは、ウィック型ヒートパイプや自励振動型ヒートパイプと異なり、ヒートパイプ本体の流路内に封入された封入流体に振動流を生じさせる加振機構を必要とする。そのため、強制振動流型ヒートパイプは、熱源で発生した熱を放熱部に輸送する際に、加振機構を駆動するための動力エネルギが必要となる。
本発明は上記点に鑑みて、強制振動流型ヒートパイプの加振仕事に必要な動力エネルギを低減することの可能な熱輸送装置を提供することを目的とする。
上記目的を達成するため、請求項1に係る発明は、
熱源で発生した熱を放熱部(15)に輸送する熱輸送装置において、
熱源で発生した熱を吸熱する吸熱部(14)と熱を放熱する放熱部との間を蛇行かつ隣接するように構成された閉ループ状の流路により構成されるヒートパイプ本体(10)、および、ヒートパイプ本体の流路内に封入された封入流体に振動流を生じさせる加振機構(20)を有する強制振動流型ヒートパイプ(2)と、
音響エネルギを伝達する作業ガスが封入された音響伝達管(30)、および、熱源で発生した熱の一部または別の熱源で発生した熱を熱音響自励振動により音響伝達管内の作業ガスの音響に変換するエネルギ変換装置(40)を有する熱音響装置(3)と、
音響伝達管内の作業ガスの音響エネルギを加振機構を駆動するためのエネルギに変換し、加振機構に伝達する動力伝達部(4)と、を備える。
これによれば、強制振動流型ヒートパイプが有する加振機構は、熱源で発生した熱の一部または別の熱源で発生した熱により駆動する。熱源で発生した熱の一部とは、ヒートパイプ本体の吸熱部に配置される熱源で発生する熱の一部である。別の熱源として、例えば、燃料電池システムの排熱、車両走行用エンジンの排熱、電子機器の排熱、または、太陽光などを利用することが可能である。そのため、熱輸送装置は、熱源で発生した熱の一部または別の熱源で発生した熱を用いる以外に電力などの動力エネルギを用いることなく、加振機構を駆動し、熱源で発生した熱を強制振動流型ヒートパイプにより放熱部に輸送することが可能である。したがって、この熱輸送装置は、強制振動流型ヒートパイプの加振仕事に必要な動力エネルギを低減することができる。
また、強制振動流型ヒートパイプと熱音響装置はいずれも、重力に対する取付姿勢の制約がなく、さらに、ヒートパイプ本体と音響伝達管のフレキシブル化も可能である。そのため、この熱輸送装置は、車両、人工衛星または建造物など、種々の構造物に対して重力に対する取付姿勢の制約を受けることなく容易に搭載することができる。
さらに、この熱輸送装置は、熱音響装置が有するエネルギ変換装置への入熱量などを調整することで、強制振動流型ヒートパイプによる熱源から放熱部への熱輸送量を制御することが可能である。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る熱輸送装置の概略構成図である。 第2実施形態に係る熱輸送装置の概略構成図である。 第2実施形態に係る熱輸送装置の動力伝達部の拡大図である。 双方向タービンの説明図である。 第3実施形態に係る熱輸送装置の概略構成図である。 第4実施形態に係る熱輸送装置の概略構成図である。 第5実施形態に係る熱輸送装置の概略構成図である。 第6実施形態に係る熱輸送装置の概略構成図である。 第7実施形態に係る熱輸送装置の概略構成図である。 第8実施形態に係る熱輸送装置の概略構成図である。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
(第1実施形態)
第1実施形態について図1を参照しつつ説明する。本実施形態の熱輸送装置1は、熱源で発生した熱を放熱部に輸送する装置である。なお、以下の説明では、図1の上側、下側、左側、右側といった用語を使用して説明するが、これは説明の便宜上用いるものにすぎず、熱輸送装置1の搭載方向を限定するものではない。
図1に示すように、熱輸送装置1は、強制振動流型ヒートパイプ2、熱音響装置3および動力伝達部4などを備えている。
強制振動流型ヒートパイプ2は、ヒートパイプ本体10、および、加振機構20を有している。ヒートパイプ本体10は、蛇行かつ隣接するように構成された閉ループ状の流路により構成されている。具体的には、ヒートパイプ本体10は、図1の上側から下側に延びる複数の壁部11と、図1の下側から上側に延びる複数の壁部12とを交互に有することで、蛇行かつ隣接する流路を構成している。そして、図1の最も左側の流路と最も右側の流路とが上側の連結流路13を通じて連通することで、閉ループ状の流路となっている。ヒートパイプ本体10の流路内には、封入流体が封入されている。この封入流体には、例えば、ナトリウムカリウム合金、水、エタノールなど、様々な流体を用いることができる。
加振機構20は、ヒートパイプ本体10の流路内に設けられており、ヒートパイプ本体10内に封入された封入流体に振動流を生じさせることが可能である。本実施形態では、加振機構20は、連結流路13に設けられている。加振機構20には、ソレノイドやダイヤフラム等のバイブレータを用いることができる。上述したようにヒートパイプ本体10は蛇行かつ隣接する流路を構成しているので、互いに隣接する流路内に封入された封入流体の振動流同士は逆位相となる。
強制振動流型ヒートパイプ2は、ヒートパイプ本体10の長手方向の一方に熱源で発生した熱を吸熱する吸熱部14が配置され、長手方向の他方に熱を放熱する放熱部15が配置される。吸熱部14には、熱源として、例えば車両に搭載されるインバータまたは電池などを設置することが可能である。一方、放熱部15には、例えば、熱を大気に放熱するための放熱フィンなどが設けられる。或いは、放熱部15には、例えば、冷却水などの熱媒体が循環する熱交換器を配置してもよい。
次に、熱音響装置3は、音響伝達管30、および、エネルギ変換装置40を有している。
音響伝達管30は、ループ状に形成されたループ管31と、直線状に形成された枝管32とを有するいわゆる枝付きループ型である。ループ管31の一部に、枝管32の一方の端部が連通している。音響伝達管30の内側には、音響エネルギを伝達可能な作業ガスが封入されている。作業ガスには、例えば、空気、窒素、アルゴン、ヘリウム等の不活性ガスが用いられる。作業ガスは、例えば0.1〜3.0MPa程度の圧力で充填される。なお、作業ガスとして、後述する第4実施形態で説明するように、音響伝達管30内で気液相変化を生じる凝縮性流体を単独または混合して用いてもよい。
エネルギ変換装置40は、音響伝達管30のうちループ管31に設けられている。エネルギ変換装置40は、蓄熱器41、高温熱交換器42、および、低温熱交換器43を有している。
蓄熱器41は、音響伝達管30内に微小間隔で微細な作業ガスの通路を形成する。蓄熱器41はスタックとも呼ばれる。蓄熱器41は、例えば、金属メッシュを複数枚積層した構造体により構成してもよく、或いは、多数の細孔が形成されたセラミックスまたは焼結金属からなるハニカム構造体により構成してもよい。
高温熱交換器42は、蓄熱器41の一方側に設けられ、熱源で発生した熱の一部または別の熱源で発生した熱を用いて音響伝達管30内のうち蓄熱器41の一方側の作業ガスを加熱する。熱源で発生した熱の一部とは、例えば、強制振動流型ヒートパイプ2の吸熱部14に配置されるインバータまたは電池などから生じた熱の一部である。別の熱源で発生した熱として、例えば、燃料電池システムの排熱、車両走行用エンジンの排熱、電子機器の排熱、または、太陽光などを利用することが可能である。
低温熱交換器43は、蓄熱器41の他方側に設けられ、音響伝達管30内のうち蓄熱器41の他方側の作業ガスを冷却する。低温熱交換器43は、例えば、冷却水などの熱媒体が循環するチューブにより構成してもよい。或いは、低温熱交換器43は、例えば、音響伝達管30内の作業ガスの熱を大気に放熱するための放熱フィンにより構成してもよい。
高温熱交換器42と低温熱交換器43により、蓄熱器41の通路壁にはループ管31の配管軸方向に温度勾配が生じる。蓄熱器41の微細通路内の作業ガスがその温度勾配に沿って移動すると、熱音響効果によって作業ガスに自励的な圧力変動が発生する。それにより、蓄熱器41は、作業ガスに熱音響自励振動による音波を発生させる。これにより、エネルギ変換装置40は、配管軸方向の温度勾配をつけることで、熱を、熱音響自励振動により音響伝達管30内の音響に変換する。音響伝達管30には、作業ガスの1/4波長の共鳴が起こる。
音響伝達管30の有する枝管32のうちループ管31とは反対側の端部に動力伝達部4が設けられている。動力伝達部4は、音響伝達管30内の作業ガスの音響エネルギを所定のエネルギに変換し、その所定のエネルギを強制振動流型ヒートパイプ2が有する加振機構20に伝達する機能を有している。第1実施形態の動力伝達部4は、音響伝達管30内の作業ガスの音響エネルギを振動エネルギに変換し、その振動エネルギを磁力により加振機構20に伝達するものである。
具体的には、動力伝達部4は、第1磁石50と、弾性部材としてのばね51を有している。第1磁石50は、音響伝達管30内の作業ガスの振動に応じて振動するように設置されている。ばね51は、その一端が音響伝達管30の内壁に固定され、他端が第1磁石50に固定されており、第1磁石50を音響伝達管30内に振動可能に設置している。なお、弾性部材としては、ばね51に代えて、ゴムを使用してもよい。
強制振動流型ヒートパイプ2が有する加振機構20は、動力伝達部4の有する第1磁石50の磁界内に設けられた図示しない第2磁石または磁性体を有している。加振機構20の有する第2磁石または磁性体は、第1磁石50の磁界の範囲内に設けられている。そして、その第2磁石または磁性体は、第1磁石50の振動に応じて振動するように構成されている。これにより、熱音響装置3では、エネルギ変換装置40により熱エネルギが音響エネルギに変換され、その音響エネルギが動力伝達部4により第1磁石50の振動エネルギに変換される。そして、その第1磁石50の振動エネルギは、磁力により強制振動流型ヒートパイプ2が有する加振機構20に伝達される。すなわち、加振機構20は、熱源で発生した熱の一部または別の熱源で発生した熱により駆動すると言える。そのため、この熱輸送装置1は、熱源で発生した熱の一部または別の熱源で発生した熱を用いる以外に電力などの動力エネルギを用いることなく強制振動流型ヒートパイプ2の加振機構20を駆動し、熱源で発生した熱を放熱部15に輸送することが可能である。したがって、この熱輸送装置1は、強制振動流型ヒートパイプ2の加振仕事に必要な動力エネルギを低減することができる。
以上説明したように、第1実施形態の熱輸送装置1が備える強制振動流型ヒートパイプ2は、ウィック型ヒートパイプのように受動的に作動せず、振動流を作るための加振機構20が必要である。その加振仕事は、吸熱部14と放熱部15の温度勾配を10K/mとすると、熱輸送量に対して1/100になるので(特開2002−364991参照)、電子機器の冷却などを想定すると100W程度の冷却能力を得るために約1Wの仕事が必要となる。その加振仕事をつくる装置として本実施形態では熱音響装置3を用いている。熱音響装置3は加振部を持たないので耐久性が高く、外部動力不要で熱源があれば良い。
電子機器を想定すると、例えばCPU(〜90℃)、インバータ(〜60℃)というように、発熱温度や熱量が異なる複数の熱源があることが多い。その場合、熱音響装置3を高温となるCPUによって駆動し、強制振動流型ヒートパイプ2を加振する。そのヒートパイプ2でインバータの熱を輸送することでCPUとインバータをどちらも冷却できる。このように、本実施形態では、それぞれの熱源に対して効率的な冷却方法を設計でき、一つの装置で複数熱源を冷却できるので冷却装置すなわち熱輸送装置1自体を小型化できる。
また、本実施形態では、熱音響装置3と強制振動流型ヒートパイプ2とを磁力で接続することで、加振機構20などにピストン等を用いたりするよりも簡素にヒートパイプ2を構成できる。ピストンの場合、流路からシールなどを入れて外部にピストンの軸を取り出す必要があるのでかなり構成は複雑になる。これに対し、本実施形態では、熱音響装置3と強制振動流型ヒートパイプ2とを簡素な構成で接続できる。
ちなみに、本実施形態の熱音響装置3では、熱と音響の変換効率は、理論比の10%である(社内実測値)。蓄熱器41の高温側が150℃、低温側20℃の場合、熱と音響の変換効率の理論比は30%であるので、実際の変換効率は3%となる。
一方、強制振動流型ヒートパイプ2は、吸熱部14側と放熱部15側との温度勾配1K/mのとき、冷却能力に対して加振仕事は1/8.9である。すなわち、強制振動流型ヒートパイプ2は、温度勾配10K/mで冷却能力が200Wとすると加振仕事は2.2W必要となる。その2.2Wの加振仕事を作るためには、熱音響装置3側で73Wの入熱(冷却能力)エネルギが必要となる。
本実施形態の熱輸送装置1の適用事例として、例えば、パソコン冷却、または、電池冷却などが考えられる。特に電池冷却に関しては、仮にサーモサイフォンを使用する場合、駆動力が重力のため放熱器の位置を高く設置する必要がある。これに対し、本実施形態の熱輸送装置1ではそのような制限が無く設置自由度が高い。太陽光の熱で熱音響装置3を駆動すれば電池冷却が可能となる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して動力伝達部4と加振機構20の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図2に示すように、第2実施形態では、動力伝達部4は、音響伝達管30内の作動ガスの振動を電力エネルギに変換するように構成されている。動力伝達部4により生成された電力エネルギは、配線52を通じて加振機構20に伝達される。加振機構20は、電力により駆動する図示しないリニアソレノイドを有している。そして、加振機構20は、そのリニアソレノイドの駆動によりヒートパイプ本体10内の封入流体に振動流を生じさせる。
図3に示すように、動力伝達部4は、双方向タービン53、および、発電機54を有している。双方向タービン53は、音響伝達管30内の作動ガスの振動によって回転するように構成されている。
図4は、双方向タービン53の一例を説明するための説明図である。双方向タービン53は、音響伝達管30の内壁に設けられた案内羽根531と、音響伝達管30内で軸周りに回転可能に設けられた動翼532を有している。音響伝達管30内の作動ガスが矢印Aの方向に移動すると、双方向タービン53の動翼532は矢印Bの方向に回転する。音響伝達管30内の作動ガスが矢印Cの方向に移動しても、双方向タービン53の動翼532は矢印Bの方向に回転する。すなわち、双方向タービン53は、音響伝達管30内の作動ガスの振動流を動翼532の一方向回転力に変換する。双方向タービン53の動翼532には、発電機54のシャフト541が固定されている。
図3に示すように、発電機54は、シャフト541、ロータ542およびステータ543を有している。双方向タービン53の動翼532と共にシャフト541が回転すると、シャフト541と共にロータ542が回転し、電力が生じる。発電機54により生成された電力が配線52を通じて加振機構20に伝達されると、加振機構20が有するリニアソレノイドが駆動し、ヒートパイプ本体10内の封入流体に振動流が生じる。
第2実施形態では、音響伝達管30内の作動ガスの振動エネルギを一旦電気エネルギに変えることで、加振周波数などの調整がしやすくなるなどの利点がある。また、第2実施形態では、動力伝達部4と加振機構20とを配線52で接続することで、熱音響装置3と強制振動流型ヒートパイプ2とを離れた場所に配置することができる。
なお、第2実施形態の動力伝達部4の変形例として、音響伝達管30内の作動ガスの振動エネルギをそのまま電気エネルギに変換できるリニア発電機を用いてもよい。
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第1実施形態等に対して熱音響装置3の構成を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図5に示すように、第3実施形態では、熱音響装置3の音響伝達管30は、ループ管により構成されたいわゆるシングルループ型である。音響伝達管30には、エネルギ変換装置40と動力伝達部4とが配置されている。エネルギ変換装置40が有する蓄熱器41からループ管の一方向回りにて動力伝達部4の第1磁石50までの距離と、エネルギ変換装置40が有する蓄熱器41からループ管を逆方向回りにて動力伝達部4の第1磁石50までの距離とは、同じ長さにされている。音響伝達管30には、作業ガスの1波長の共鳴が起こる。
(第4実施形態)
第4実施形態について、図6を参照して説明する。第4実施形態は、第1実施形態等に対して音響伝達管30に封入される作業ガス等を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態と異なる部分についてのみ説明する。
第4実施形態では、音響伝達管30内に封入される作動ガスは、音響伝達管30内で気液相変化を生じる凝縮性流体を含んでいる。具体的には、音響伝達管30内に凝縮性の媒体(作動温度域で沸騰凝縮する媒体)を混入させそこに凝縮性流体(例えば水)を入れ、蓄熱器41にて保持させることで入熱部の温度が低温度(高温側が水の沸騰温度(大気圧であれば100℃))で熱音響現象が生じる。熱音響装置3は、通常は200〜300℃で駆動するので、それにより低い温度の熱源を利用することができるとともに、潜熱を利用することができるので凝縮性流体を封入しない場合よりも体格あたり出力を大きくできる。
蓄熱器41の高温側で沸騰した水は水蒸気となり拡散する。水蒸気となった水がすべて蓄熱器41の低温側で凝縮することができれば、熱音響装置3のどこかに低温部を設けて水を回収し、蓄熱器41に戻すような機能を別途設ける必要はなく簡素な構成となる。しかし実際は、水蒸気が蓄熱器41だけでなく配管側にも拡散してしまうため、配管途中でも水蒸気が凝縮してしまう。そこで、図6に示すように、凝縮水と蓄熱器41とを接続する経路33を設けることで、その水を回収して再び蓄熱器41に戻すような構成にすれば継続的に蓄熱器41の入熱側温度を低く駆動できる。なお、第4実施形態の変形例として、凝縮水が溜まる場所に加熱装置を設け、凝縮水を蒸発させるように構成してもよい。
(第5実施形態)
第5実施形態について説明する。第5実施形態は、熱輸送装置1の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図7に示すように、第5実施形態の熱輸送装置1は、第1実施形態等で説明した熱音響装置3に代えて、水スターリングエンジン6を備えている。熱音響装置3では封入ガスが仮想的にピストンとして駆動しているのに対して、水等の液柱が上下振動するものを水スターリングエンジン6と呼ぶ。第5実施形態の水スターリングエンジン6も、熱源で発生した熱の一部または別の熱源で発生した熱を管内の液体の振動に変換することが可能である。
水スターリングエンジン6の配管部は、ディスプレーサ61、共鳴振動管62およびパワーピストン63により構成されている。ディスプレーサ61は、ループ状に形成されている。共鳴振動管62は、一方の端部がディスプレーサ61に連通し、他方の端部がパワーピストン63に連通している。パワーピストン63は、重力方向に沿うように延びている。水スターリングエンジン6の配管部には、水などの液体が入れられている。
その配管部を構成するディスプレーサ61の中で水に浸かっていない箇所に再生機71、加熱部72、冷却部73が配置されている。再生機71、加熱部72、冷却部73はそれぞれ、第1実施形態で説明した蓄熱器41、高温熱交換器42、低温熱交換器43と実質的に同一の構成とすることが可能である。水スターリングエンジン6は、ディスプレーサ61内の気体部分の膨張収縮により、共鳴振動管62の長さで決まる周波数でパワーピストン63の液柱が振動する。
パワーピストン63の端部には、動力伝達部4が設けられている。動力伝達部4は、水スターリングエンジン6の管内の液体の振動エネルギを磁力などにより加振機構20に伝達するように構成されている。
第5実施形態の熱輸送装置1が備える水スターリングエンジン6は、第4実施形態で説明した相変化利用型の熱音響装置3と同様に、小さい温度差で作動できる。さらに、水スターリングエンジン6を用いると加振する媒体が水等の液体になる。水等の液体はガスよりも質量が大きいので加振仕事を大きくとることができる。加振仕事を大きくできるので、熱輸送能力を大きくすることができる。ただし、水スターリングエンジン6は横置きでは作動しないなど、姿勢の制限がある。
(第6〜第8実施形態)
第6〜第8実施形態について説明する。第6〜第8実施形態は、第1実施形態等に対して熱音響装置3の構成をパルス管エンジン7に変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態と異なる部分についてのみ説明する。なお、熱音響装置3のうち、音響伝達管30が直管で構成されたものをパルス管エンジン7と呼ぶ。パルス管エンジン7は、配管の長さと波長に応じた共鳴周波数で作動するループ型の熱音響装置3と異なり、オリフィス8と下流のバネマスで決まるインピーダンスで決まる周波数で共振する。共振周波数は全長によらないので、配管長が短くても低周波数で共振することができる。
(第6実施形態)
図8に示すように、第6実施形態のパルス管エンジン7は、配管の一部に設けられたエネルギ変換装置40を有している。エネルギ変換装置40は、蓄熱器41、高温熱交換器42、低温熱交換器43により構成されている。これらは、第1実施形態で説明したものと実質的に同一の構成である。高温熱交換器42と低温熱交換器43により、蓄熱器41の通路壁に配管軸方向に温度勾配が生じると、熱音響効果によって作業ガスに自励的な圧力変動が発生する。これにより、配管内の作業ガスに熱音響自励振動による音波が発生する。
また、パルス管エンジン7は、エネルギ変換装置40から離れた位置に設けられたオリフィス8を有している。そして、そのオリフィス8に対しエネルギ変換装置40とは反対側に動力伝達部4が設けられている。動力伝達部4は、第1磁石50と、弾性部材としてのばね51を有している。これらは、第1実施形態で説明したものと実質的に同一の構成である。動力伝達部4は、音響伝達管30内の作業ガスの音響エネルギを振動エネルギに変換し、その振動エネルギを磁力により加振機構20に伝達する。そのため、強制振動流型ヒートパイプ2は、熱源で発生した熱を放熱部15に輸送することが可能である。
(第7実施形態)
図9に示すように、第7実施形態のパルス管エンジン7が有するエネルギ変換装置40は、高温熱交換器42とバッファタンク44により構成されている。高温熱交換器42によって配管内の空気が加熱されると、バッファタンク44内の作業ガスが共鳴し、配管内の作業ガスに熱音響自励振動による音波が発生する。
(第8実施形態)
図10に示すように、第8実施形態のパルス管エンジン7が有するエネルギ変換装置40は、複数の高温熱交換器421、422、423により構成されている。複数の高温熱交換器421、422、423は、それぞれ異なった温度に設定される。複数の高温熱交換器421、422、423によって配管内の空気がそれぞれ異なる温度に加熱されると、配管内の作業ガスに熱音響自励振動による音波が発生する。
以上説明した第6〜第8実施形態では、熱音響装置3としてパルス管エンジン7を用いることで、配管長を短くすることができる。したがって、熱輸送装置1全体を小型化することができる。
なお、第6〜第8実施形態のパルス管エンジン7は、空気利用を想定して開放管になっているが、パルス管エンジン7は、閉じられた配管を使用するものであってもよい。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、熱源で発生した熱を放熱部に輸送する熱輸送装置は、強制振動流型ヒートパイプ、熱音響装置、および動力伝達部を備える。強制振動流型ヒートパイプは、熱源で発生した熱を吸熱する吸熱部と熱を放熱する放熱部との間を蛇行かつ隣接するように構成された閉ループ状の流路により構成されるヒートパイプ本体、および、そのヒートパイプ本体の流路内に封入された封入流体に振動流を生じさせる加振機構を有する。熱音響装置は、音響エネルギを伝達する作業ガスが封入された音響伝達管、および、熱源で発生した熱の一部または別の熱源で発生した熱を熱音響自励振動により音響伝達管内の作業ガスの音響に変換するエネルギ変換装置を有する。動力伝達部は、音響伝達管内の作業ガスの音響エネルギを加振機構を駆動するためのエネルギに変換し、加振機構に伝達する。
第2の観点によれば、動力伝達部は、エネルギ変換装置で生成された音響エネルギを物体の振動エネルギに変換し、その振動エネルギを磁力により加振機構に伝達するように構成されている。
これによれば、動力伝達部から加振機構への振動エネルギの伝達に磁力を用いることで、動力伝達部と加振機構との接続箇所の構成を簡素なものにすることができる。
第3の観点によれば、動力伝達部は、音響伝達管内の作業ガスの振動によって振動する第1磁石、および、その第1磁石を音響伝達管内に振動可能に設置する弾性部材を有する。加振機構は、第1磁石の磁界内に設けられ、第1磁石の振動に応じて振動するように構成された第2磁石または磁性体を有する。
これによれば、音響伝達管内の作業ガスの振動によって第1磁石が振動すると、その第1磁石の振動に応じて加振機構が有する第2磁石または磁性体が振動する。したがって、この構成により、動力伝達部と加振機構との間の振動エネルギの伝達に磁力を用いることができる。
第4の観点によれば、動力伝達部は、音響伝達管内の作業ガスの振動によって回転するように構成された双方向タービン、および、その双方向タービンの回転により電力を発生する発電機を有する。加振機構は、発電機で発生した電力が供給されて駆動するように構成されたリニアソレノイドを有する。
これによれば、動力伝達部から加振機構へのエネルギの伝達に電力を用いることで、加振周波数などの調整がしやすくなる。また、動力伝達部と加振機構とを配線で接続することで、動力伝達部と加振機構とを離れた場所に配置することができる。
第5の観点によれば、エネルギ変換装置は、音響伝達管内に微小間隔で微細な作業ガスの通路を形成する蓄熱器、熱源で発生した熱の一部または別の熱源で発生した熱を用いて蓄熱器の一方側の作業ガスを加熱する高温熱交換器、および、蓄熱器の他方側の作業ガスを冷却する低温熱交換器を有し、蓄熱器の一方側と他方側に温度勾配をつけることで熱音響自励振動により熱を音響伝達管内の作業ガスの音響に変換するものである。
これによれば、エネルギ変換装置は、熱源で発生した熱の一部または別の熱源で発生した熱を熱音響自励振動により音響伝達管内の作業ガスの音響に変換することが可能である。そのため、熱輸送装置は、熱源で発生した熱の一部または別の熱源で発生した熱を用いる以外に電力などの動力エネルギを用いることなく、加振機構を駆動し、強制振動流型ヒートパイプにより熱源で発生した熱を放熱部に輸送することができる。
第6の観点によれば、強制振動流型ヒートパイプが有するヒートパイプ本体は、互いに隣接する流路内に封入された封入流体の振動流同士が逆位相となるように構成されたものである。
これによれば、強制振動流型ヒートパイプは、互いに隣接する流路内に封入された封入流体同士の振動流が同位相となるように構成されたものに対し、加振機構による加振仕事に対する熱輸送量を大きいものとすることが可能である。
第7の観点によれば、熱音響装置が有する音響伝達管内に封入される作業ガスは、音響伝達管内で気液相変化を生じる凝縮性流体を含んでいる。
これによれば、音響伝達管内に配置されたエネルギ変換装置の蓄熱器で凝縮性流体が沸騰するように高温熱交換器の温度を調整することで、凝縮性流体が沸騰する程度の比較的低温で熱音響装置を駆動することが可能である。また、熱音響装置の体格に対して作業ガスの音響エネルギを大きくすることが可能である。そのため、熱音響装置の体格を小型化し、搭載性を向上することができる。
第8の観点によれば、熱輸送装置は、熱音響装置に代えて、熱源で発生した熱の一部または別の熱源で発生した熱を管内の液体の振動に変換する水スターリングエンジンを備える。動力伝達部は、水スターリングエンジンの管内の液体の振動エネルギを加振機構に伝達する。
これによれば、熱音響装置は、水スターリングエンジンを用いることで、液体の振動による大きな加振振幅を得ることが可能である。振幅の2乗で熱輸送能力が増やせる。したがって、小型装置を考えた時に、低周波数で強制振動流型ヒートパイプの出力がでやすい条件(例えばウオマスリー数が0.4〜7程度)で運転できるので熱輸送能力を大きくすることができる。
第9の観点によれば、熱音響装置は、音響伝達管が直管で構成されたパルス管エンジンである。
これによれば、パルス管エンジンは、音響伝達管が直管で構成されているので、装置全体を小型化することができる。
1 熱輸送装置
2 強制振動流型ヒートパイプ
3 熱音響装置
4 動力伝達部
10 ヒートパイプ本体
14 吸熱部
15 放熱部
20 加振機構
30 音響伝達管
40 エネルギ変換装置

Claims (9)

  1. 熱源で発生した熱を放熱部(15)に輸送する熱輸送装置において、
    前記熱源で発生した熱を吸熱する吸熱部(14)と熱を放熱する前記放熱部との間を蛇行かつ隣接するように構成された閉ループ状の流路により構成されるヒートパイプ本体(10)、および、前記ヒートパイプ本体の流路内に封入された封入流体に振動流を生じさせる加振機構(20)を有する強制振動流型ヒートパイプ(2)と、
    音響エネルギを伝達する作業ガスが封入された音響伝達管(30)、および、前記熱源で発生した熱の一部または別の熱源で発生した熱を熱音響自励振動により前記音響伝達管内の作業ガスの音響に変換するエネルギ変換装置(40)を有する熱音響装置(3)と、
    前記音響伝達管内の作業ガスの音響エネルギを前記加振機構を駆動するためのエネルギに変換し、前記加振機構に伝達する動力伝達部(4)と、を備える熱輸送装置。
  2. 前記動力伝達部は、前記エネルギ変換装置で生成された音響エネルギを物体の振動エネルギに変換し、その振動エネルギを磁力により前記加振機構に伝達するように構成されている、請求項1に記載の熱輸送装置。
  3. 前記動力伝達部は、前記音響伝達管内の作業ガスの振動によって振動する第1磁石(50)、および、前記第1磁石を前記音響伝達管内に振動可能に設置する弾性部材(51)を有し、
    前記加振機構は、前記第1磁石の磁界内に設けられ、前記第1磁石の振動に応じて振動するように構成された第2磁石または磁性体を有する、請求項1または2に記載の熱輸送装置。
  4. 前記動力伝達部は、前記音響伝達管内の作業ガスの振動によって回転するように構成された双方向タービン(53)、および、前記双方向タービンの回転により電力を発生する発電機(54)を有し、
    前記加振機構は、前記発電機で発生した電力が供給されて駆動するように構成されたリニアソレノイドを有する、請求項1に記載の熱輸送装置。
  5. 前記エネルギ変換装置は、前記音響伝達管内に微小間隔で微細な作業ガスの通路を形成する蓄熱器(41)、前記熱源で発生した熱の一部または別の熱源で発生した熱を用いて前記蓄熱器の一方側の作業ガスを加熱する高温熱交換器(42)、および、前記蓄熱器の他方側の作業ガスを冷却する低温熱交換器(43)を有し、前記蓄熱器の一方側と他方側に温度勾配をつけることで熱音響自励振動により熱を前記音響伝達管内の作業ガスの音響に変換するものである、請求項1ないし4のいずれか1つに記載の熱輸送装置。
  6. 前記強制振動流型ヒートパイプが有する前記ヒートパイプ本体は、互いに隣接する流路内に封入された封入流体の振動流同士が逆位相となるように構成されたものである、請求項1ないし5のいずれか1つに記載の熱輸送装置。
  7. 前記音響伝達管内に封入される作業ガスは、前記音響伝達管内で気液相変化を生じる凝縮性流体を含んでいる、請求項1ないし6のいずれか1つに記載の熱輸送装置。
  8. 前記熱輸送装置は、前記熱音響装置に代えて、前記熱源で発生した熱の一部または別の熱源で発生した熱を管内の液体の振動に変換する水スターリングエンジン(6)を備え、
    前記動力伝達部は、前記水スターリングエンジンの前記管内の液体の振動エネルギを前記加振機構に伝達する、請求項1に記載の熱輸送装置。
  9. 前記熱音響装置は、前記音響伝達管が直管で構成されたパルス管エンジン(7)である、請求項1ないし7のいずれか1つに記載の熱輸送装置。
JP2018192062A 2018-10-10 2018-10-10 熱輸送装置 Pending JP2020060327A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192062A JP2020060327A (ja) 2018-10-10 2018-10-10 熱輸送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192062A JP2020060327A (ja) 2018-10-10 2018-10-10 熱輸送装置

Publications (1)

Publication Number Publication Date
JP2020060327A true JP2020060327A (ja) 2020-04-16

Family

ID=70220141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192062A Pending JP2020060327A (ja) 2018-10-10 2018-10-10 熱輸送装置

Country Status (1)

Country Link
JP (1) JP2020060327A (ja)

Similar Documents

Publication Publication Date Title
US6931852B2 (en) Steam engine
JP2007237020A (ja) 熱音響装置
Wang et al. Stirling cycle engines for recovering low and moderate temperature heat: A review
US9777951B2 (en) Thermoacoustic engine
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
JP2009074722A (ja) 相変化型熱音響機関
JP4048821B2 (ja) 熱音響発電機
JP2006189218A (ja) 熱音響装置
JPWO2007029662A1 (ja) ロータリー熱エンジン
JP5892582B2 (ja) 熱音響機関
US20070151969A1 (en) Heat-pipe electric-power generating device
JP5651947B2 (ja) 熱音響機関
JP4724317B2 (ja) 強制振動流型ヒートパイプ及びその設計方法
JP2019190718A (ja) 熱音響装置
US20020096884A1 (en) Method and device for transmitting mechanical energy between a stirling machine and a generator or an electric motor
JP5453950B2 (ja) 熱音響機関
JP6884491B2 (ja) 熱音響エンジン
TW202146754A (zh) 熱力發動機及其製造方法
JP2020060327A (ja) 熱輸送装置
JP2010071559A (ja) 熱音響冷却装置
JP2011099599A (ja) 熱輸送管
JP6495098B2 (ja) 熱音響発電システム
JP5655313B2 (ja) 熱音響機関
JP5310287B2 (ja) 熱音響機関
JP2018091580A (ja) 熱音響機関