JP2020059865A - Plated member - Google Patents

Plated member Download PDF

Info

Publication number
JP2020059865A
JP2020059865A JP2018189650A JP2018189650A JP2020059865A JP 2020059865 A JP2020059865 A JP 2020059865A JP 2018189650 A JP2018189650 A JP 2018189650A JP 2018189650 A JP2018189650 A JP 2018189650A JP 2020059865 A JP2020059865 A JP 2020059865A
Authority
JP
Japan
Prior art keywords
plated
crystal grains
electrogalvanized layer
plated member
cloudy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189650A
Other languages
Japanese (ja)
Other versions
JP7140624B2 (en
Inventor
健太郎 八木
Kentaro Yagi
健太郎 八木
濱本 利一
Riichi Hamamoto
利一 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEC CHAIN CORP
Original Assignee
FEC CHAIN CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEC CHAIN CORP filed Critical FEC CHAIN CORP
Priority to JP2018189650A priority Critical patent/JP7140624B2/en
Priority to TW108135521A priority patent/TWI719658B/en
Priority to CN201910951099.6A priority patent/CN111005042A/en
Publication of JP2020059865A publication Critical patent/JP2020059865A/en
Application granted granted Critical
Publication of JP7140624B2 publication Critical patent/JP7140624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a plated member capable of suppressing delayed fracture.SOLUTION: A plated member 10 is provided with a member 11 to be plated 11 made of steel and an electrogalvanized layer 17 formed on a surface 16 of the member 11 to be plated, and in the electrogalvanized layer 17, crystal grains 20 having a diameter S of a circumscribed circle 22 of 20 to 60 μm are produced on an observation surface 21 that is spaced in a thickness direction of the electrogalvanized layer 17 apart a distance D of 5 to 20 μm from the surface 16.SELECTED DRAWING: Figure 2

Description

本発明はめっき部材に関し、特に電気亜鉛めっき層が形成されためっき部材に関するものである。   The present invention relates to a plated member, and particularly to a plated member having an electrogalvanized layer formed thereon.

鋼製の被めっき部材に電気亜鉛めっきが施されためっき部材は、電気亜鉛めっき時に発生した水素原子が被めっき部材へ侵入することによる遅れ破壊がしばしば問題になる。遅れ破壊は、静的応力下のめっき部材が、ある時間の経過後に脆性的に破壊する現象である。遅れ破壊を抑制する技術として、吸蔵した水素原子をめっき部材から放出させる目的で、例えば190〜220℃の範囲の熱処理(ベーキング)が一般に行われている。特許文献1には、水素原子の侵入を防ぐニッケル製またはニッケル合金製の無電解めっき層を被めっき部材に形成し、その上に電気亜鉛めっき層を形成する技術が開示されている。   In a plated member obtained by subjecting a member to be plated made of steel to electrogalvanization, delayed fracture is often a problem because hydrogen atoms generated during electrogalvanization enter the member to be plated. Delayed fracture is a phenomenon in which a plated member under static stress breaks brittlely after a certain period of time. As a technique for suppressing delayed fracture, heat treatment (baking) in the range of 190 to 220 ° C. is generally performed for the purpose of releasing the absorbed hydrogen atoms from the plated member. Patent Document 1 discloses a technique of forming an electroless plating layer made of nickel or a nickel alloy for preventing the entry of hydrogen atoms on a member to be plated, and forming an electrogalvanized layer on the electroless plating layer.

特開2014−51686号公報JP, 2014-51686, A

しかし、この種のめっき部材の遅れ破壊をさらに抑制する技術が要求されている。   However, a technique for further suppressing delayed fracture of this type of plated member is required.

本発明はこの要求に応えるためになされたものであり、遅れ破壊を抑制できるめっき部材を提供することを目的としている。   The present invention has been made to meet this demand, and an object thereof is to provide a plated member capable of suppressing delayed fracture.

この目的を達成するために本発明のめっき部材は、鋼製の被めっき部材と、被めっき部材の表面に形成された電気亜鉛めっき層と、を備え、電気亜鉛めっき層は、被めっき部材の表面と5〜20μmの距離を隔てて電気亜鉛めっき層の厚さ方向に離隔する観察面に、外接円の直径が20〜60μmの結晶粒が現出する。   In order to achieve this object, the plated member of the present invention comprises a member to be plated made of steel, and an electrogalvanized layer formed on the surface of the member to be plated, wherein the electrogalvanized layer is a member to be plated. Crystal grains having a diameter of the circumscribed circle of 20 to 60 μm appear on the observation surface that is separated from the surface by a distance of 5 to 20 μm in the thickness direction of the electrogalvanized layer.

請求項1記載のめっき部材によれば、被めっき部材の表面と5〜20μmの距離を隔てて電気亜鉛めっき層の厚さ方向に離隔する観察面に、外接円の直径が20〜60μmの結晶粒が現出する。この結晶粒は、融点が比較的低い亜鉛や亜鉛を含む合金が析出して粒成長したものであり、結晶粒の大きさは電気亜鉛めっき時の電流効率の高さを示している。電気亜鉛めっき時の電流効率を高くすることにより、金属の析出以外に使われる電気量を少なくできるので、電気亜鉛めっき時の水素原子の発生量を抑制できる。その結果、電気亜鉛めっき時に被めっき部材が吸蔵する水素原子を少なくできるので、遅れ破壊を抑制できる。   According to the plated member of claim 1, a crystal having a diameter of a circumscribed circle of 20 to 60 μm on an observation surface that is separated from the surface of the member to be plated by 5 to 20 μm in the thickness direction of the electrogalvanized layer. Grain appears. The crystal grains are grains grown by precipitation of zinc or an alloy containing zinc having a relatively low melting point, and the size of the crystal grains indicates high current efficiency during electrogalvanizing. By increasing the current efficiency during electrogalvanizing, the amount of electricity used for other than metal deposition can be reduced, so that the amount of hydrogen atoms generated during electrogalvanizing can be suppressed. As a result, hydrogen atoms that are occluded by the member to be plated during electrogalvanization can be reduced, and delayed fracture can be suppressed.

請求項2記載のめっき部材によれば、観察面において、300×400μmの大きさの視野に現出する結晶粒のうち、外接円の直径が20〜60μmの結晶粒の割合は60%以上100%以下である。これにより、請求項1の効果に加え、遅れ破壊をさらに抑制できる。   According to the plated member of claim 2, of the crystal grains appearing in the visual field of 300 × 400 μm on the observation surface, the proportion of crystal grains having a circumscribed circle diameter of 20 to 60 μm is 60% or more and 100% or more. % Or less. Thereby, in addition to the effect of claim 1, delayed fracture can be further suppressed.

請求項3記載のめっき部材によれば、被めっき部材はチェーンである。よって、請求項1又は2の効果に加え、チェーンに引張力が加えられたときの遅れ破壊を抑制できる。   According to the plated member of the third aspect, the member to be plated is a chain. Therefore, in addition to the effect of claim 1 or 2, delayed fracture when a tensile force is applied to the chain can be suppressed.

請求項4記載のめっき部材によれば、電気亜鉛めっき層は、光沢部と、光沢部よりも相対的に表面の粗さが大きい曇り部と、からなる。光沢部の面積は曇り部の面積よりも広いので、請求項1から3のいずれかの効果に加え、めっき部材の光沢感を確保できる。   According to the plated member of the fourth aspect, the electrogalvanized layer includes a glossy portion and a cloudy portion having a surface roughness relatively larger than that of the glossy portion. Since the area of the glossy portion is larger than the area of the cloudy portion, in addition to the effect according to any one of claims 1 to 3, the glossy feeling of the plated member can be secured.

請求項5記載のめっき部材によれば、被めっき部材は、環状のリンクが複数つなげられたチェーンである。リンクは、互いに対向する一対の曲線部と、曲線部に隣接する直線部と、互いに突き合わされた直線部を接合する溶接部と、を備える。曇り部は溶接部と直線部との境界に存在するので、請求項4の効果に加え、曇り部による違和感を与え難くできる。   According to the plated member of the fifth aspect, the member to be plated is a chain in which a plurality of annular links are connected. The link includes a pair of curved portions facing each other, a linear portion adjacent to the curved portion, and a welding portion that joins the linear portions that are abutted to each other. Since the cloudy part exists at the boundary between the welded part and the straight part, in addition to the effect of the fourth aspect, it is possible to make it difficult to give a feeling of strangeness due to the cloudy part.

一実施の形態におけるめっき部材の正面図である。It is a front view of the plating member in one embodiment. 図1のII−II線におけるめっき部材の断面図である。It is sectional drawing of the plated member in the II-II line of FIG. (a)は電気亜鉛めっき工程初期の結晶粒の模式図であり、(b)はめっき工程中期の結晶粒の模式図であり、(c)めっき工程終了後の結晶粒の模式図である。(A) is a schematic diagram of crystal grains in the early stage of the electrogalvanizing process, (b) is a schematic diagram of crystal grains in the middle stage of the plating process, and (c) is a schematic diagram of crystal grains after the plating process is completed. (a)はめっき部材の観察面の模式図であり、(b)は結晶粒の模式図である。(A) is a schematic diagram of an observation surface of a plated member, and (b) is a schematic diagram of crystal grains. めっき部材の一部の正面図である。It is a front view of a part of plating member. 外接円の直径が20〜60μmの結晶粒の割合と限界応力/降伏応力との相関図である。FIG. 3 is a correlation diagram of the ratio of crystal grains having a circumscribed circle diameter of 20 to 60 μm and the limit stress / yield stress. 拡散性水素量の測定結果である。It is a measurement result of the amount of diffusible hydrogen.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。まず、図1を参照して、本発明の一実施の形態におけるめっき部材10の構成を説明する。図1は一実施の形態におけるめっき部材10の正面図であり、図2は図1のII−II線におけるめっき部材10の断面図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, with reference to FIG. 1, the structure of the plated member 10 in the embodiment of the present invention will be described. FIG. 1 is a front view of a plated member 10 according to one embodiment, and FIG. 2 is a sectional view of the plated member 10 taken along the line II-II in FIG.

本実施形態ではチェーンを例示してめっき部材10を説明する。チェーンは、チェーンブロック、チェーンレバーホイスト、電気チェーンブロック等に用いられるロードチェーン、巻上機などに用いられるチェーンスリング等が挙げられる。なお、図1ではめっき部材10の長手方向の中間部分の図示が一部省略されており、図2では断面の一部が拡大して図示されている。   In the present embodiment, the plated member 10 will be described by taking a chain as an example. Examples of the chain include a chain block, a chain lever hoist, a load chain used for an electric chain block, and a chain sling used for a hoisting machine. It should be noted that a part of the intermediate portion of the plated member 10 in the longitudinal direction is omitted in FIG. 1, and a part of the cross section is enlarged in FIG.

図1に示すようにめっき部材10は、O形状に形成された環状の被めっき部材11(リンク)が複数つながれている。被めっき部材11は、炭素鋼、合金鋼、特殊鋼、ステンレス鋼などの鋼製の棒材により形成されている。鋼は、浸炭焼入れ焼戻し等の表面硬化処理がされた鋼、調質鋼、非調質鋼などが好適に用いられる。   As shown in FIG. 1, in the plated member 10, a plurality of annular members 11 (links) formed in an O shape are connected. The member 11 to be plated is formed of a steel rod material such as carbon steel, alloy steel, special steel, and stainless steel. As the steel, steel subjected to surface hardening treatment such as carburizing, quenching and tempering, heat-treated steel, non-heat-treated steel, etc. are preferably used.

被めっき部材11(リンク)は、互いに対向する一対の曲線部12と、曲線部12の一端にそれぞれ隣接し曲線部12同士を接続する第1直線部13と、曲線部12の他端に隣接し第1直線部13と離隔する一対の第2直線部14と、互いに突き合わされた第2直線部14同士を接合する溶接部15と、を備えている。溶接部15は、曲線部12を形成するための棒材の曲げ加工により互いに突き合わされた第2直線部14に、電気抵抗溶接などにより形成されている。   The member to be plated 11 (link) is a pair of curved portions 12 facing each other, a first linear portion 13 that is adjacent to one end of the curved portion 12 and connects the curved portions 12, and is adjacent to the other end of the curved portion 12. A pair of second straight line portions 14 separated from the first straight line portion 13 and a welded portion 15 that joins the mutually joined second straight line portions 14 together are provided. The welded portion 15 is formed by electric resistance welding or the like on the second linear portions 14 that are butted against each other by bending the rod material to form the curved portion 12.

図2に示すようにめっき部材10は、被めっき部材11の表面16に電気亜鉛めっき層17が形成されている。電気亜鉛めっき層17は、被めっき部材11の防錆のために、被めっき部材11の表面16と電気亜鉛めっき層17の表面18との間の距離(厚さ)Tが5μm以上に設定される。電気亜鉛めっき層17の厚さTの測定は、JIS H8501:1999に規定される顕微鏡断面試験方法、磁力式試験方法、電解式試験方法および蛍光X線式試験方法のいずれかによって行う。   As shown in FIG. 2, in the plated member 10, an electrogalvanized layer 17 is formed on the surface 16 of the member 11 to be plated. In the electrogalvanized layer 17, the distance (thickness) T between the surface 16 of the plated member 11 and the surface 18 of the electrogalvanized layer 17 is set to 5 μm or more in order to prevent rusting of the plated member 11. It The thickness T of the electrogalvanized layer 17 is measured by any of the microscope cross-section test method, magnetic force test method, electrolytic test method, and fluorescent X-ray test method defined in JIS H8501: 1999.

電気亜鉛めっき層17は、例えばZn−Niめっき、Zn−Feめっき、Zn−Alめっき等のようにZn以外の成分を含んでいても良いし、Zn以外の成分を含まなくても良い。電気亜鉛めっき層17の組成は、一般に、Feを0質量%以上20質量%以下、Alを0質量%以上1質量%以下含有し、さらにPb,Sb,Si,Sn,Mg,Mn,Ni,Cr,Co,Ca,Cu,Li,Ti,Be,Bi,希土類金属から選択する1種または2種以上を合計で0質量%以上20質量%以下含有し、残部がZn及び不可避不純物からなる。   The electrogalvanized layer 17 may contain components other than Zn, such as Zn-Ni plating, Zn-Fe plating, and Zn-Al plating, or may not contain components other than Zn. The composition of the electrogalvanized layer 17 generally contains 0 mass% or more and 20 mass% or less of Fe, 0 mass% or more and 1 mass% or less of Al, and further contains Pb, Sb, Si, Sn, Mg, Mn, Ni, One or two or more selected from Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and rare earth metals are contained in a total amount of 0% by mass to 20% by mass, and the balance is Zn and inevitable impurities.

図3を参照して、電気亜鉛めっき層17の結晶粒20について説明する。図3(a)は電気亜鉛めっき工程初期の被めっき部材11の模式図であり、図3(b)はめっき工程中期の被めっき部材11の模式図であり、図3(c)めっき工程終了後の被めっき部材11の模式図である。電気亜鉛めっき工程では、亜鉛または亜鉛合金の金属塩を含有するめっき液に被めっき部材11及び亜鉛電極(図示せず)を浸漬し、被めっき部材11を陰極、亜鉛電極を陽極として電解めっきを施す。めっき液の亜鉛濃度は20〜70g/L程度とし、添加剤はめっき液に含まれないか、含まれていても最小量とする。   The crystal grains 20 of the electrogalvanized layer 17 will be described with reference to FIG. FIG. 3A is a schematic diagram of the member 11 to be plated in the early stage of the electrogalvanizing process, FIG. 3B is a schematic diagram of the member 11 to be plated in the middle stage of the plating process, and FIG. It is a schematic diagram of the to-be-plated member 11 after. In the electrogalvanizing step, the member 11 to be plated and a zinc electrode (not shown) are immersed in a plating solution containing a metal salt of zinc or a zinc alloy, and the member 11 to be plated is used as a cathode and the zinc electrode is used as an anode for electrolytic plating. Give. The zinc concentration of the plating solution is set to about 20 to 70 g / L, and the additive is not included in the plating solution or is contained in the plating solution in the minimum amount.

図3(a)に示すようにめっき工程の初期では、亜鉛を含む金属原子19が被めっき部材11に析出する。亜鉛は比較的融点が低いので、図3(b)に示すようにめっき工程の中期において、金属原子19がそれぞれ成長し結晶粒20となる。結晶粒20は成長を続け、電気亜鉛めっき層17の厚さ方向(図3(b)上下方向)へ延びる柱状に発達する。結晶粒20は、電気亜鉛めっき層17が厚くなるにつれて大きくなる。   As shown in FIG. 3A, metal atoms 19 containing zinc are deposited on the member to be plated 11 at the beginning of the plating process. Since zinc has a relatively low melting point, as shown in FIG. 3B, in the middle of the plating process, the metal atoms 19 grow and become crystal grains 20. The crystal grains 20 continue to grow and develop into a columnar shape extending in the thickness direction of the electrogalvanized layer 17 (vertical direction in FIG. 3B). The crystal grains 20 become larger as the electrogalvanized layer 17 becomes thicker.

図3(c)に示すように電気亜鉛めっき層17は、被めっき部材11の表面16と5〜20μmの距離Dを隔てて電気亜鉛めっき層17の厚さ方向(図3(c)上下方向)に離隔する観察面21に結晶粒20が現出する。本実施形態では、観察面21は電気亜鉛めっき層17の表面18の研磨面である。しかし、これに限られるものではなく、電気亜鉛めっき層17の厚さT(図2参照)が20μm以下の場合には、電気亜鉛めっき層17の表面18を観察面とすることは当然可能である。   As shown in FIG. 3 (c), the electrogalvanized layer 17 is separated from the surface 16 of the member 11 to be plated by a distance D of 5 to 20 μm in the thickness direction of the electrogalvanized layer 17 (FIG. 3 (c) vertical direction). ), The crystal grains 20 appear on the observation surface 21 separated from each other. In this embodiment, the observation surface 21 is a polished surface of the surface 18 of the electrogalvanized layer 17. However, the present invention is not limited to this, and when the thickness T (see FIG. 2) of the electrogalvanized layer 17 is 20 μm or less, the surface 18 of the electrogalvanized layer 17 can naturally be used as the observation surface. is there.

なお、被めっき部材11の表面16と観察面21との間の距離Dを5〜20μmとするのは、電気亜鉛めっき層17が厚くなるにつれて結晶粒20が大きくなるので、測定条件を一定にするためである。また、距離Dを一定値にしないで5〜20μmの範囲を設けているのは、被めっき部材11の用途や大きさ等に応じて電気亜鉛めっき層17の厚さTは異なるので、被めっき部材11の表面16と観察面21との間の距離Dを5〜20μmの範囲で選択できるようにするためである。   The distance D between the surface 16 of the member to be plated 11 and the observation surface 21 is set to 5 to 20 μm because the crystal grains 20 become larger as the electrogalvanized layer 17 becomes thicker, so that the measurement conditions are kept constant. This is because The reason why the distance D is not set to a constant value and a range of 5 to 20 μm is provided is that the thickness T of the electrogalvanized layer 17 varies depending on the use and size of the member 11 to be plated. This is because the distance D between the surface 16 of the member 11 and the observation surface 21 can be selected within the range of 5 to 20 μm.

図4(a)はめっき部材10の観察面21の模式図であり、図4(b)は結晶粒20の模式図である。JIS G0553:2008に規定されるように、硝酸エタノール(ナイタール)等の腐食液にめっき部材10を浸漬して観察面21を腐食した後、観察面21を金属顕微鏡やSEM等の顕微鏡で観察する。観察面21の顕微鏡画像を演算処理することにより、結晶粒20の外接円22の直径Sは測定できる。めっき部材10は、外接円22の直径Sが20〜60μmの結晶粒20が、観察面21に現出する。   FIG. 4A is a schematic view of the observation surface 21 of the plated member 10, and FIG. 4B is a schematic view of the crystal grains 20. As specified in JIS G0553: 2008, after observing the observation surface 21 by immersing the plated member 10 in a corrosive liquid such as ethanol nitrate (nital), the observation surface 21 is observed with a microscope such as a metal microscope or SEM. . The diameter S of the circumscribed circle 22 of the crystal grain 20 can be measured by arithmetically processing the microscope image of the observation surface 21. In the plated member 10, crystal grains 20 having a circumscribed circle 22 having a diameter S of 20 to 60 μm appear on the observation surface 21.

これに対し、めっき液の亜鉛濃度が15g/L程度であって、めっき液に添加剤が十分に含まれていると、添加剤は被めっき部材11及び金属原子19に吸着して、その後の金属の析出を一部抑制し、結晶粒を微細化する。さらに添加剤は電気亜鉛めっき層17の表面18の粗さを小さくし、電気亜鉛めっき層17の光沢を発現する。この場合、観察面21に現出する結晶粒の粒径は一般に1μm以下である。   On the other hand, when the zinc concentration of the plating solution is about 15 g / L and the additive is sufficiently contained in the plating solution, the additive is adsorbed to the member 11 to be plated and the metal atom 19, and thereafter Partially suppress metal precipitation and refine crystal grains. Further, the additive reduces the roughness of the surface 18 of the electrogalvanized layer 17 and develops the gloss of the electrogalvanized layer 17. In this case, the grain size of the crystal grains appearing on the observation surface 21 is generally 1 μm or less.

めっき液の添加剤等が金属原子19の析出を抑制するときには電流効率が低くなり、めっき液に加えられた電気量のうち金属の析出に使われない電気量は、水素原子の発生に使われる。そうすると水素原子の発生量が多くなり、水素原子が被めっき部材11へ多く侵入する可能性が高くなる。一方、本実施形態では、めっき液の亜鉛および添加剤の濃度などを調整して、電気亜鉛めっき時の電流効率を高くする。   When an additive or the like of the plating solution suppresses the deposition of metal atoms 19, the current efficiency becomes low, and the amount of electricity added to the plating solution that is not used for metal deposition is used for the generation of hydrogen atoms. . Then, the amount of hydrogen atoms generated increases, and the possibility that a large number of hydrogen atoms penetrate into the plated member 11 increases. On the other hand, in this embodiment, the current efficiency during electrogalvanizing is increased by adjusting the concentrations of zinc and additives in the plating solution.

外接円22の直径Sが20〜60μmの結晶粒20が観察面21に現出することは、電気亜鉛めっき時の電流効率の高さを示している。電気亜鉛めっき時の電流効率を高くすることにより、金属の析出以外に使われる電気亜鉛めっき時の電気量を少なくできる。これにより、電気亜鉛めっき時の水素原子の発生量を抑制できるので、電気亜鉛めっき時に被めっき部材11が吸蔵する水素原子を少なくできる。よって、めっき部材10の遅れ破壊を抑制できる。   The appearance of the crystal grains 20 having the diameter S of the circumscribing circle 22 of 20 to 60 μm on the observation surface 21 indicates the high current efficiency during electrogalvanizing. By increasing the current efficiency during electrogalvanizing, it is possible to reduce the amount of electricity during electrogalvanizing that is used in addition to metal deposition. As a result, the amount of hydrogen atoms generated during electrogalvanizing can be suppressed, and the number of hydrogen atoms stored in the plated member 11 during electrogalvanizing can be reduced. Therefore, delayed fracture of the plated member 10 can be suppressed.

なお、観察面21において300×400μmの大きさの矩形の視野に現出する結晶粒20のうち、外接円22の直径Sが20〜60μmの結晶粒20の割合は60%以上であるのが好ましい。これにより、電気亜鉛めっき時の電流効率をより高くできたといえるので、めっき部材10の遅れ破壊をさらに抑制できる。   It should be noted that the proportion of the crystal grains 20 having a diameter S of the circumscribing circle 22 of 20 to 60 μm is 60% or more among the crystal grains 20 appearing in a rectangular visual field of 300 × 400 μm on the observation surface 21. preferable. Since it can be said that the current efficiency at the time of electrogalvanizing can be further increased by this, the delayed fracture of the plated member 10 can be further suppressed.

図5はめっき部材10の一部の正面図である。図3(c)に示すように、電気亜鉛めっき層17の表面18は凹凸があって光沢が少ないので、必要に応じて、例えばめっき部材10同士またはめっき部材10と研削材(図示せず)とを擦り合わせたりブラスト処理等を施したりして、電気亜鉛めっき層17の表面18の粗さを小さくする。   FIG. 5 is a front view of a part of the plated member 10. As shown in FIG. 3 (c), the surface 18 of the electrogalvanized layer 17 has irregularities and little gloss, so that, for example, the plated members 10 or the plated members 10 and an abrasive (not shown) may be used as necessary. Are rubbed with each other or subjected to a blast treatment or the like to reduce the roughness of the surface 18 of the electrogalvanized layer 17.

図5に示すように、表面18の粗さが小さくされためっき部材10の電気亜鉛めっき層17は、光沢部23と、光沢部23よりも相対的に表面の粗さが大きい曇り部24と、からなる。光沢部23は、電気亜鉛めっき層17の表面18が十分に擦られた部位であり、曇り部24は、光沢部23に比べて擦られ方が少なかったか擦られなかった部位である。めっき部材10は、光沢部23の面積が曇り部24の面積よりも広いので、めっき部材10の光沢感を確保できる。   As shown in FIG. 5, the electrogalvanized layer 17 of the plated member 10 whose surface 18 has a reduced roughness has a glossy portion 23 and a cloudy portion 24 having a surface roughness relatively larger than that of the glossy portion 23. Consists of. The glossy portion 23 is a portion where the surface 18 of the electrogalvanized layer 17 is sufficiently rubbed, and the cloudy portion 24 is a portion which is less rubbed or is not rubbed as compared with the glossy portion 23. In the plated member 10, since the area of the glossy portion 23 is larger than the area of the cloudy portion 24, the glossy feeling of the plated member 10 can be secured.

また曇り部24は、めっき部材10の溶接部15と第2直線部14との境界に存在する。溶接部15と第2直線部14とは質感が異なるので、曇り部24による違和感を与え難くできる。本実施形態では溶接部15は第2直線部14よりも太いので、第2直線部14と溶接部15との間の隅に曇り部24が形成される。隅に曇り部24が形成されることにより、曇り部24による違和感をさらに与え難くできる。   Further, the cloudy portion 24 exists at the boundary between the welded portion 15 of the plated member 10 and the second straight portion 14. Since the welded portion 15 and the second straight portion 14 have different textures, it is possible to prevent the cloudy portion 24 from giving an uncomfortable feeling. In the present embodiment, the welded portion 15 is thicker than the second linear portion 14, so that the clouded portion 24 is formed at the corner between the second linear portion 14 and the welded portion 15. By forming the cloudy portion 24 in the corner, it is possible to further reduce the feeling of strangeness caused by the cloudy portion 24.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

(サンプルの作成)
鋼製の環状のリンクを5個つないだチェーン(被めっき部材)をめっき液に浸漬して、目標厚さ20μmの電気亜鉛めっきを施した種々のサンプル(めっき部材)を作成した。各サンプルは、めっき液の亜鉛濃度、添加剤の濃度、めっき時の電流密度を異ならせて、電気亜鉛めっき層の表面に現出する結晶粒の粒径を異ならせた。各サンプルのリンク(鋼)の材質および寸法、めっき液の温度は一定にした。各サンプルは、いわゆるベーキングは行わなかった。
(Create sample)
A chain (member to be plated) having five circular annular links made of steel was dipped in a plating solution to prepare various samples (plated members) which were subjected to electrogalvanization with a target thickness of 20 μm. In each sample, the zinc concentration of the plating solution, the concentration of the additive, and the current density during plating were varied to vary the grain size of the crystal grains appearing on the surface of the electrogalvanized layer. The material and dimensions of the link (steel) of each sample and the temperature of the plating solution were kept constant. Each sample was not so-called baked.

各サンプルの電気亜鉛めっき層の表面を研磨し、硝酸エタノール(ナイタール)で腐食して観察面(研磨面)の組織を現出させた後、金属顕微鏡を用いて300×400μmの大きさの矩形の視野に現出する結晶粒のうち、外接円の直径が20〜60μmの結晶粒の割合(%)を画像処理により測定した。なお、被めっき部材の表面と観察面との間の距離は、JIS H8501:1999に規定される顕微鏡断面試験方法により、5〜20μmの範囲にあることを確認した。   After polishing the surface of the electrogalvanized layer of each sample and corroding it with ethanolic nitrate (nital) to reveal the structure of the observation surface (polishing surface), using a metallurgical microscope, a rectangle with a size of 300 × 400 μm Among the crystal grains appearing in the field of view, the ratio (%) of the crystal grains having a circumscribed circle diameter of 20 to 60 μm was measured by image processing. In addition, it was confirmed that the distance between the surface of the member to be plated and the observation surface was in the range of 5 to 20 μm by the microscope cross-section test method defined in JIS H8501: 1999.

(耐遅れ破壊特性)
各サンプル(チェーン)の長さ方向の両端をつかんで速度10mm/分の引張力を各サンプルに加える引張試験を行った。引張力を加える負荷時間は最長168時間とした。引張力を加えた168時間の間に破断が生じなかった最大応力を限界応力とし、限界応力と降伏応力との比によって耐遅れ破壊特性を評価した。限界応力/降伏応力が1.00以上のときは耐遅れ破壊特性が優れるとし、1.00未満のときは耐遅れ破壊特性が劣るとした。
(Delayed fracture resistance)
A tensile test was performed by grasping both ends of each sample (chain) in the length direction and applying a tensile force of 10 mm / min to each sample. The maximum loading time for applying tensile force was 168 hours. The maximum stress at which rupture did not occur during 168 hours when tensile force was applied was defined as the critical stress, and the delayed fracture resistance was evaluated by the ratio of the critical stress and the yield stress. When the critical stress / yield stress is 1.00 or more, the delayed fracture resistance is excellent, and when it is less than 1.00, the delayed fracture resistance is inferior.

図6は、300×400μmの視野に現出する結晶粒のうち外接円の直径が20〜60μmの結晶粒の割合(以下、単に「割合」と称す)と限界応力/降伏応力との相関図である。図6に示すように割合が0%のサンプルは、限界応力/降伏応力が0.86(1.00未満)であった。割合が0%のサンプルは、観察面に現出する結晶粒の粒径が1μm以下であった。   FIG. 6 is a correlation diagram of a ratio of crystal grains having a circumscribed circle diameter of 20 to 60 μm (hereinafter, simply referred to as “proportion”) and a limit stress / yield stress among crystal grains appearing in a visual field of 300 × 400 μm. Is. As shown in FIG. 6, the sample having a ratio of 0% had a critical stress / yield stress of 0.86 (less than 1.00). In the sample of 0%, the grain size of the crystal grains appearing on the observation surface was 1 μm or less.

一方、視野内に外接円の直径が20〜60μmの結晶粒が存在したサンプル(割合>0%)は、限界応力/降伏応力が1.00以上であった。よって、外接円の直径が20〜60μmの結晶粒が視野内に現出することにより、遅れ破壊を抑制できることが明らかになった。   On the other hand, the critical stress / yield stress of the sample (ratio> 0%) in which the crystal grains having a circumscribed circle diameter of 20 to 60 μm existed in the visual field was 1.00 or more. Therefore, it was revealed that the delayed fracture can be suppressed by the appearance of the crystal grains having the circumscribed circle diameter of 20 to 60 μm in the visual field.

なお、割合が増加するにつれて限界応力/降伏応力が大きくなる傾向が見られた。特に割合が60%以上100%以下では、限界応力/降伏応力が1.20以上であった。限界応力/降伏応力が1.20以上のときは引張力が加わるとサンプルが著しく変形する(伸びる)ので、脆性的な破壊(遅れ破壊)ではなくなる。従って、割合が60%以上のときは、遅れ破壊を抑制する効果が著しく高いことが明らかになった。   In addition, there was a tendency that the limit stress / yield stress increased as the ratio increased. Particularly, when the ratio was 60% or more and 100% or less, the critical stress / yield stress was 1.20 or more. When the limit stress / yield stress is 1.20 or more, the sample is significantly deformed (stretched) when a tensile force is applied, so that it is not a brittle fracture (delayed fracture). Therefore, it was revealed that the effect of suppressing delayed fracture is remarkably high when the ratio is 60% or more.

(水素分析)
10%NaOH水溶液にサンプルを浸漬し、アノード溶解反応を利用して表面のめっきを完全に除去した。次いで、サンプルの長さ方向の中央を切断して、長さ20mmの棒状の試験片を採取した。試験片を採取後、直ちに昇温脱離分析装置を用いて水素分析を行った。分析開始温度は25℃、分析終了温度は400℃、昇温速度は100℃/時間とし、各温度において試験片から放出される水素量である放出水素量(wt.ppm/min)を測定した。常温から300℃未満の間に放出される水素を一般に拡散性水素と称す。この拡散性水素が遅れ破壊の原因とされている。図7は、割合が80%のサンプル(実施例)及び割合が0%のサンプル(比較例)の拡散性水素量の測定結果である。
(Hydrogen analysis)
The sample was immersed in a 10% NaOH aqueous solution, and the plating on the surface was completely removed by utilizing the anodic dissolution reaction. Then, the center of the sample in the length direction was cut to obtain a rod-shaped test piece having a length of 20 mm. Immediately after collecting the test piece, hydrogen analysis was performed using a thermal desorption analyzer. The analysis start temperature was 25 ° C., the analysis end temperature was 400 ° C., and the temperature rising rate was 100 ° C./hour, and the amount of released hydrogen (wt.ppm / min), which is the amount of hydrogen released from the test piece at each temperature, was measured. . Hydrogen released from room temperature to less than 300 ° C. is generally called diffusible hydrogen. This diffusible hydrogen is said to be the cause of delayed fracture. FIG. 7 shows the measurement results of the amount of diffusible hydrogen in the sample having a ratio of 80% (Example) and the sample having a ratio of 0% (Comparative Example).

図7に示すように、実施例は比較例に比べて、常温から300℃の間に放出される水素量を著しく少なくできることがわかった。実施例は比較例に比べて水素原子の吸蔵量が極めて少ないので、実施例は比較例に比べて遅れ破壊を抑制できることが明らかである。   As shown in FIG. 7, it was found that the example can significantly reduce the amount of hydrogen released from room temperature to 300 ° C. as compared with the comparative example. It is clear that the embodiment can suppress delayed fracture as compared with the comparative example because the hydrogen absorption amount of the example is extremely smaller than that of the comparative example.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications are possible without departing from the spirit of the present invention. It can be easily guessed.

実施形態では、O形状(長円状)に形成された環状のリンク(被めっき部材11)を複数つないだチェーンについて説明したが、必ずしもこれに限られるものではない。例えば、リンク同士のもつれを防止するため、リンク(被めっき部材11)に代えて、リンクの中間部をスタッドで連結した略θ形状に形成された環状のスタッドリンクを採用することは当然可能である。   In the embodiment, the chain in which a plurality of annular links (members 11 to be plated) formed in an O shape (elliptical shape) are connected has been described, but the present invention is not limited to this. For example, in order to prevent the links from being entangled with each other, it is naturally possible to replace the link (member to be plated 11) with an annular stud link formed in a substantially θ shape in which the intermediate portion of the link is connected by a stud. is there.

実施形態では、チェーンを例示してめっき部材10を説明したが、必ずしもこれに限られるものではない。例えば鋼製のねじ、ばね、ギヤ、PC棒鋼などに電気亜鉛めっきを施してめっき部材とすることは当然可能である。   In the embodiment, the plated member 10 has been described by taking the chain as an example, but the present invention is not limited to this. For example, it is of course possible to electrogalvanize steel screws, springs, gears, PC steel bars and the like to form plated members.

実施形態では、めっき部材10の表面に電気亜鉛めっき層17が存在する場合について説明したが、必ずしもこれに限られるものではない。例えば、めっき部材10にクロメート処理を施して、電気亜鉛めっき層17の表面にクロメート皮膜を形成することは当然可能である。   In the embodiment, the case where the electrogalvanized layer 17 is present on the surface of the plated member 10 has been described, but the present invention is not limited to this. For example, it is naturally possible to perform a chromate treatment on the plated member 10 to form a chromate film on the surface of the electrogalvanized layer 17.

実施例では、サンプルを切断して水素分析用の長さ20mmの試験片を採取したが、これに限られるものではない。試験片の長さは、サンプルの大きさに応じて、例えば長さ7〜20mmの範囲で適宜設定できる。   In the example, the sample was cut to obtain a test piece with a length of 20 mm for hydrogen analysis, but the present invention is not limited to this. The length of the test piece can be appropriately set in the range of, for example, 7 to 20 mm depending on the size of the sample.

10 めっき部材
11 被めっき部材
12 曲線部
14 第2直線部(直線部)
15 溶接部
16 被めっき部材の表面
17 電気亜鉛めっき層
20 結晶粒
21 観察面
22 外接円
23 光沢部
24 曇り部
D 距離
S 直径
10 plated member 11 plated member 12 curved portion 14 second straight portion (straight portion)
15 Welded portion 16 Surface of plated member 17 Electrogalvanized layer 20 Crystal grain 21 Observation surface 22 Circumscribing circle 23 Glossy portion 24 Cloudy portion D Distance S Diameter

Claims (5)

鋼製の被めっき部材と、
前記被めっき部材の表面に形成された電気亜鉛めっき層と、を備え、
電気亜鉛めっき層は、前記被めっき部材の前記表面と5〜20μmの距離を隔てて前記電気亜鉛めっき層の厚さ方向に離隔する観察面に、外接円の直径が20〜60μmの結晶粒が現出するめっき部材。
A member to be plated made of steel,
An electrogalvanized layer formed on the surface of the member to be plated,
The electrogalvanized layer has crystal grains with a circumscribed circle diameter of 20 to 60 μm on an observation surface that is separated from the surface of the member to be plated by 5 to 20 μm in the thickness direction of the electrogalvanized layer. The exposed plated parts.
前記観察面において、300×400μmの大きさの視野に現出する結晶粒のうち、外接円の直径が20〜60μmの前記結晶粒の割合は60%以上100%以下である請求項1記載のめっき部材。   The ratio of the crystal grains having a circumscribed circle diameter of 20 to 60 μm is 60% or more and 100% or less among the crystal grains appearing in the visual field of 300 × 400 μm on the observation surface. Plated member. 前記被めっき部材はチェーンである請求項1又は2に記載のめっき部材。   The plated member according to claim 1, wherein the member to be plated is a chain. 前記電気亜鉛めっき層は、光沢部と、前記光沢部よりも相対的に表面の粗さが大きい曇り部と、からなり、
前記光沢部の面積は、前記曇り部の面積よりも広い請求項1から3のいずれかに記載のめっき部材。
The electrogalvanized layer includes a glossy portion and a cloudy portion having a relatively large surface roughness than the glossy portion,
The plated member according to claim 1, wherein an area of the glossy portion is larger than an area of the cloudy portion.
前記被めっき部材は、環状のリンクが複数つなげられたチェーンであり、
前記リンクは、互いに対向する一対の曲線部と、前記曲線部に隣接する直線部と、互いに突き合わされた前記直線部を接合する溶接部と、を備え、
前記曇り部は、前記溶接部と前記直線部との境界に存在する請求項4記載のめっき部材。
The member to be plated is a chain in which a plurality of annular links are connected,
The link includes a pair of curved portions facing each other, a linear portion adjacent to the curved portion, and a welding portion that joins the linear portions that are abutted to each other,
The plated member according to claim 4, wherein the cloudy portion exists at a boundary between the welded portion and the linear portion.
JP2018189650A 2018-10-05 2018-10-05 plated parts Active JP7140624B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018189650A JP7140624B2 (en) 2018-10-05 2018-10-05 plated parts
TW108135521A TWI719658B (en) 2018-10-05 2019-10-01 Plated components
CN201910951099.6A CN111005042A (en) 2018-10-05 2019-10-08 Plated component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189650A JP7140624B2 (en) 2018-10-05 2018-10-05 plated parts

Publications (2)

Publication Number Publication Date
JP2020059865A true JP2020059865A (en) 2020-04-16
JP7140624B2 JP7140624B2 (en) 2022-09-21

Family

ID=70111632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189650A Active JP7140624B2 (en) 2018-10-05 2018-10-05 plated parts

Country Status (3)

Country Link
JP (1) JP7140624B2 (en)
CN (1) CN111005042A (en)
TW (1) TWI719658B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854343A (en) * 1971-11-13 1973-07-31
JPH0633213A (en) * 1992-07-17 1994-02-08 Kobe Steel Ltd Ultrahigh strength galvanized steel sheet free from generation of hydrogen embrittlement
JPH0776794A (en) * 1993-09-08 1995-03-20 Nippon Steel Corp Electrogalvanized steel sheet excellent in uniform appearance
JP2003239100A (en) * 2002-02-18 2003-08-27 Washizu Mekki Kogyosho:Kk Plating treatment method for preventing hydrogen brittleness
JP2018507320A (en) * 2014-12-23 2018-03-15 ポスコPosco Plated steel sheet having excellent adhesion and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515456A1 (en) * 1995-04-27 1996-10-31 Guv Ges Fuer Umweltvertraeglic Zinc@ plating steel workpieces
CN1255578C (en) * 2003-10-16 2006-05-10 上海交通大学 Nano Multi-layer zinc film electroplating preparation method
KR101823286B1 (en) * 2014-03-28 2018-01-29 신닛테츠스미킨 카부시키카이샤 Plated steel sheet containing quasicrystal
JP3198288U (en) * 2015-04-14 2015-06-25 株式会社エフ.イー.シーチェーン chain
DE102016008333A1 (en) * 2015-11-12 2017-05-18 Liebherr-Aerospace Lindenberg Gmbh Process for the low-hydrogen zinc-nickel coating of a high-strength tempered steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854343A (en) * 1971-11-13 1973-07-31
JPH0633213A (en) * 1992-07-17 1994-02-08 Kobe Steel Ltd Ultrahigh strength galvanized steel sheet free from generation of hydrogen embrittlement
JPH0776794A (en) * 1993-09-08 1995-03-20 Nippon Steel Corp Electrogalvanized steel sheet excellent in uniform appearance
JP2003239100A (en) * 2002-02-18 2003-08-27 Washizu Mekki Kogyosho:Kk Plating treatment method for preventing hydrogen brittleness
JP2018507320A (en) * 2014-12-23 2018-03-15 ポスコPosco Plated steel sheet having excellent adhesion and method for producing the same

Also Published As

Publication number Publication date
TW202014558A (en) 2020-04-16
CN111005042A (en) 2020-04-14
JP7140624B2 (en) 2022-09-21
TWI719658B (en) 2021-02-21

Similar Documents

Publication Publication Date Title
CN104073678B (en) Cu Ti series copper alloys sheet materials and its manufacture method and energization part
KR101302291B1 (en) HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF
US20190249275A1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
US10040270B2 (en) Galvannealed steel sheet and manufacturing method thereof
WO2022230400A1 (en) Steel sheet and plated steel sheet
WO2020137887A1 (en) Ni-plated steel sheet and method for manufacturing ni-plated steel sheet
JP3566262B2 (en) Hot-dip Al-Zn alloy plated steel sheet excellent in workability and method for producing the same
EP2843078B1 (en) Method for manufacturing a galvanized steel tube
JP5532086B2 (en) Hot-dip galvanized steel pipe
JPWO2020213680A1 (en) Plated steel
JP2020059865A (en) Plated member
WO2019106815A1 (en) Aluminum-clad steel wire and method of producing same
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JP2013127104A (en) Steel material superior in spalling resistance for rolling roll for galvanized steel sheet, and rolling roll for galvanized steel sheet
JP3563063B2 (en) Lubricant-coated hot-dip Al-Zn alloy-plated steel sheet excellent in workability and corrosion resistance and method for producing the same
JP6168826B2 (en) Steel with Mn layer
JP5825295B2 (en) Hot-dip galvanized steel pipe and method for producing hot-dip galvanized steel pipe
WO2022230399A1 (en) Steel sheet and plated steel sheet
WO2023135981A1 (en) Hot stamp molded article
WO2022230401A1 (en) Steel sheet and plated steel sheet
JP2011208247A (en) HIGH-STRENGTH STEEL SHEET HAVING TENSILE STRENGTH 1,180 MPa OR MORE EXCELLENT IN DELAYED FRACTURE RESISTANCE
WO2022230402A1 (en) Alloyed hot-dip galvanized steel sheet
JPS6126747A (en) Aluminum alloy material having superior suitability to chemical galvanizing and its manufacture
JPS6013062B2 (en) Ferritic stainless steel with excellent melt plating and brazing properties
JP5723231B2 (en) Rolling roll for galvanized steel sheet with excellent spalling resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7140624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150