JP2020057504A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2020057504A
JP2020057504A JP2018186894A JP2018186894A JP2020057504A JP 2020057504 A JP2020057504 A JP 2020057504A JP 2018186894 A JP2018186894 A JP 2018186894A JP 2018186894 A JP2018186894 A JP 2018186894A JP 2020057504 A JP2020057504 A JP 2020057504A
Authority
JP
Japan
Prior art keywords
secondary battery
heat absorbing
absorbing member
separator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018186894A
Other languages
Japanese (ja)
Other versions
JP2020057504A5 (en
JP7168405B2 (en
Inventor
賢治 上田
Kenji Ueda
賢治 上田
神谷 正人
Masato Kamiya
正人 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2018186894A priority Critical patent/JP7168405B2/en
Publication of JP2020057504A publication Critical patent/JP2020057504A/en
Publication of JP2020057504A5 publication Critical patent/JP2020057504A5/ja
Application granted granted Critical
Publication of JP7168405B2 publication Critical patent/JP7168405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a secondary battery that can exhibit good heat dissipation while using a separator with a shutdown function.SOLUTION: A secondary battery includes a winding electrode body 10 and an electrolyte. In the winding electrode body 10, a positive electrode 11 and a negative electrode 15 are overlapped with each other via a separator 19 having a shutdown function, and are wound around a shaft core 30. The shaft core 30 of the winding electrode body 10 includes a heat absorbing member 40 and a thermal expansion member 50. The heat absorbing member 40 absorbs the heat generated by the secondary battery. The thermal expansion member expands due to the heat generated by the secondary battery. Even when the separator 19 shuts down and contracts, and the thermal expansion member 50 expands, thereby suppressing the formation of a gap between the electrodes.SELECTED DRAWING: Figure 3

Description

本発明は、捲回電極体を備えた二次電池に関する。   The present invention relates to a secondary battery provided with a wound electrode body.

リチウムイオン二次電池等の二次電池は、誤操作等によって所定以上の電流が供給されると、通常使用時の電圧を超えて過充電となることがある。過充電が進行すると、活物質(典型的には正極活物質)の発熱や電解液の分解等が顕著となる。その結果、電池内部の温度が過度に上昇して、電池自体に不具合を生じることがあり得る。過充電の進行を停止する安全機構の一例として、所謂シャットダウン機能を有するセパレータが知られている。かかるセパレータでは、電池内部の温度がシャットダウン温度まで上昇すると、構成材料が軟化(溶融)あるいは熱収縮(以下、纏めて「収縮」という場合もある)して、微細孔が閉塞する。その結果、正負極間の電荷担体の移動が遮断されて、充放電反応が停止する。   When a rechargeable battery such as a lithium ion rechargeable battery is supplied with a predetermined current or more due to an erroneous operation or the like, the rechargeable battery may exceed the voltage in normal use and may be overcharged. As the overcharge progresses, heat generation of the active material (typically, the positive electrode active material), decomposition of the electrolytic solution, and the like become significant. As a result, the temperature inside the battery may rise excessively, causing a problem in the battery itself. As an example of a safety mechanism for stopping the progress of overcharging, a separator having a so-called shutdown function is known. In such a separator, when the temperature inside the battery rises to the shutdown temperature, the constituent material is softened (melted) or thermally contracted (hereinafter sometimes collectively referred to as “shrinkage”), and the micropores are closed. As a result, the movement of the charge carriers between the positive and negative electrodes is blocked, and the charge / discharge reaction stops.

また、特許文献1に記載されている二次電池は、捲回電極体の軸芯に、セパレータのシャットダウン温度以上であって正極の熱分解温度よりも低い温度域で吸熱反応を生じる金属材料を備える。特許文献1の二次電池では、セパレータのシャットダウン後の温度上昇が、金属材料の吸熱反応によって抑制される。   Further, the secondary battery described in Patent Literature 1 uses a metal material that causes an endothermic reaction in a temperature range equal to or higher than the shutdown temperature of the separator and lower than the thermal decomposition temperature of the positive electrode, on the axis of the wound electrode body. Prepare. In the secondary battery of Patent Literature 1, the temperature rise after the shutdown of the separator is suppressed by the endothermic reaction of the metal material.

特開2016−152071号公報JP-A-2006-152071

前述したように、セパレータの温度がシャットダウン温度まで上昇すると、セパレータの構成材料は収縮する。本願の発明者は、セパレータがシャットダウンして収縮することで、電極間に隙間が生じて電極体内部の放熱経路が減少し、電極体の放熱性が低下するという課題を見出した。二次電池の不具合を抑制するためには、セパレータのシャットダウン後の放熱性の低下もより適切に抑制できることが望ましい。   As described above, when the temperature of the separator rises to the shutdown temperature, the constituent material of the separator contracts. The inventor of the present application has found a problem that a gap is generated between the electrodes due to the shutdown and contraction of the separator, the heat radiation path inside the electrode body is reduced, and the heat radiation property of the electrode body is reduced. In order to suppress the malfunction of the secondary battery, it is desirable that the heat radiation property after the shutdown of the separator can be suppressed more appropriately.

本発明の典型的な目的は、シャットダウン機能を有するセパレータを使用しつつ、良好な放熱性を発揮することが可能なリチウムイオン二次電池等の二次電池を提供することである。   A typical object of the present invention is to provide a secondary battery such as a lithium ion secondary battery that can exhibit good heat dissipation while using a separator having a shutdown function.

かかる目的を実現するべく、ここに開示される一態様の二次電池は、シャットダウン機能を有するセパレータを介して正極および負極が重ね合わされ軸芯の周りに捲回された電極体と、電解質と、を備えた二次電池であって、上記軸芯は、二次電池の発熱を吸熱する吸熱部材と、二次電池の発熱によって膨張する熱膨張部材と、を備えたことを特徴とする。   In order to achieve such an object, the secondary battery of one embodiment disclosed herein has an electrode body in which a positive electrode and a negative electrode are stacked and wound around an axis through a separator having a shutdown function, and an electrolyte. Wherein the shaft core includes a heat absorbing member that absorbs heat generated by the secondary battery and a thermal expansion member that expands due to heat generated by the secondary battery.

上記構成の二次電池では、軸芯に設けられた吸熱部材によって、電極体の温度上昇が抑制される。さらに、電極体の温度が上昇し、セパレータがシャットダウンして収縮した場合でも、軸芯に設けられた熱膨張部材が膨張することで、電極間に隙間が生じることが抑制される。その結果、電極体内部の放熱経路が減少することが抑制される。よって、電極体の放熱性が良好に発揮される。   In the secondary battery having the configuration described above, the temperature increase of the electrode body is suppressed by the heat absorbing member provided on the shaft core. Furthermore, even when the temperature of the electrode body rises and the separator shuts down and contracts, the expansion of the thermal expansion member provided on the shaft core suppresses generation of a gap between the electrodes. As a result, a decrease in the heat radiation path inside the electrode body is suppressed. Therefore, the heat dissipation of the electrode body is favorably exhibited.

本実施形態の二次電池1の内部構成を模式的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing an internal configuration of the secondary battery 1 of the embodiment. 図1におけるA−A線矢視方向断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 図2に示す捲回電極体10の、厚み方向の中央部Oの近傍の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the wound electrode body 10 shown in FIG. 2 in the vicinity of a central portion O in a thickness direction. 本実施形態の吸熱部材に用いられる部材のDSC測定結果を示すチャートである。6 is a chart showing DSC measurement results of a member used for the heat absorbing member of the embodiment. 過充電試験の結果を示すグラフである。It is a graph which shows the result of an overcharge test.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。   Hereinafter, one of exemplary embodiments of the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for the implementation can be understood as design matters of those skilled in the art based on conventional techniques in the field. The present invention can be implemented based on the contents disclosed in this specification and common technical knowledge in the field. In the following drawings, members / parts having the same function are denoted by the same reference numerals. The dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

図1に示す二次電池1は、捲回電極体10、電解質(ここでは電解液)29、および電池ケース20を備えた密閉型のリチウムイオン二次電池である。電池ケース20は、捲回電極体10および電解液29を内部に密閉した状態で収容する。本実施形態における電池ケース20の形状は、扁平な箱型、即ち直方体形状(いわゆる角形形状)である。具体的には、本実施形態に係る電池ケース20は、一端に開口部を有する箱型の本体22と、該本体22の開口部を塞ぐ板状の蓋体24を備える。電池ケース20(詳細には蓋体24)には、外部接続用の正極端子26および負極端子28が設けられている。電池ケース20の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。ただし、電池ケースの構成を変更することも可能である。例えば、電池ケースとして、可撓性を有するラミネートが用いられてもよい。また、電池ケースの形状は、角形以外の形状(例えば円筒状等)であってもよい。   The secondary battery 1 illustrated in FIG. 1 is a sealed lithium ion secondary battery including a wound electrode body 10, an electrolyte (here, an electrolyte) 29, and a battery case 20. The battery case 20 accommodates the wound electrode body 10 and the electrolyte solution 29 in a sealed state. The shape of the battery case 20 in the present embodiment is a flat box shape, that is, a rectangular parallelepiped shape (so-called square shape). Specifically, the battery case 20 according to the present embodiment includes a box-shaped main body 22 having an opening at one end, and a plate-shaped lid 24 closing the opening of the main body 22. The battery case 20 (specifically, the lid 24) is provided with a positive terminal 26 and a negative terminal 28 for external connection. As a material of the battery case 20, for example, a lightweight metal material having good heat conductivity such as aluminum is used. However, the configuration of the battery case can be changed. For example, a flexible laminate may be used as the battery case. Further, the shape of the battery case may be a shape other than a square shape (for example, a cylindrical shape).

捲回電極体10の構造は、正極11および負極15(図3参照)がセパレータ19(図3参照)を介して重ね合わされて(積層されて)、軸芯30の周りに捲回された構造である。典型的には、長尺状の正極シートと長尺状の負極シートが、長尺状のセパレータシートを介して重ね合わされて、軸芯30の周りに長尺方向に捲回されている。図1および図2に示すように、本実施形態の捲回電極体10の全体および軸芯30の形状は、扁平形状である。換言すると、図2に示すように、捲回軸に直交する断面における捲回電極体10の全体および軸芯30の形状は、略角丸長方形状である。軸芯30は、捲回電極体10の厚み方向(図2における左右方向)の中央部Oの近傍に位置する。軸芯30の詳細については後述する。   The structure of the wound electrode body 10 is such that the positive electrode 11 and the negative electrode 15 (see FIG. 3) are overlapped (laminated) via the separator 19 (see FIG. 3) and wound around the shaft core 30. It is. Typically, a long positive electrode sheet and a long negative electrode sheet are overlapped via a long separator sheet, and are wound around the shaft core 30 in the long direction. As shown in FIGS. 1 and 2, the whole wound electrode body 10 of the present embodiment and the shape of the shaft core 30 are flat. In other words, as shown in FIG. 2, the entire wound electrode body 10 and the shape of the shaft core 30 in a cross section orthogonal to the winding axis are substantially rounded rectangular shapes. The shaft core 30 is located near the center O in the thickness direction (the left-right direction in FIG. 2) of the wound electrode body 10. Details of the shaft core 30 will be described later.

正極11は、典型的には、長尺状の正極集電体12と、正極集電体12の表面に形成された正極活物質層を備える。正極集電体12としては、良好な導電性を有する金属材(例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等)を採用できる。正極活物質層は、典型的には、正極集電体12の表面に長尺方向に沿って所定の幅で(帯状に)形成されている。正極集電体12の長手方向に直交する幅方向の一方の端部は、正極活物質層が形成されていない正極活物質層非形成部分13となっている。正極活物質層非形成部分13には正極集電板14が電気的に接続され、正極集電板14には正極端子26が電気的に接続されている。正極活物質層の正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)が挙げられる。正極活物質層は、正極活物質と必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN−メチル−2−ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体12の表面に付与し、乾燥することによって形成することができる。
なお、ここに開示される二次電池がリチウムイオン二次電池以外の二次電池の場合は、それぞれの電池に適する正極活物質が用いられる。例えば、ナトリウムイオン二次電池の場合はナトリウム遷移金属複合酸化物、マグネシウム二次電池の場合はマグネシウム遷移金属複合酸化物、硫化物等が用いられる。
The positive electrode 11 typically includes a long positive electrode current collector 12 and a positive electrode active material layer formed on the surface of the positive electrode current collector 12. As the positive electrode current collector 12, a metal material having good conductivity (for example, aluminum, nickel, titanium, stainless steel, or the like) can be employed. The positive electrode active material layer is typically formed on the surface of the positive electrode current collector 12 with a predetermined width (in a strip shape) along the longitudinal direction. One end in the width direction orthogonal to the longitudinal direction of the positive electrode current collector 12 is a positive electrode active material layer non-formed portion 13 where no positive electrode active material layer is formed. A positive electrode current collector 14 is electrically connected to the portion 13 where the positive electrode active material layer is not formed, and a positive electrode terminal 26 is electrically connected to the positive electrode current collector 14. As the positive electrode active material of the positive electrode active material layer, for example, a lithium composite metal oxide having a layered structure or a spinel structure (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4 and the like. The positive electrode active material layer is formed by dispersing the positive electrode active material and materials (conductive material, binder, and the like) used as needed in an appropriate solvent (for example, N-methyl-2-pyrrolidone: NMP) and forming a paste (or slurry). ), A suitable amount of the composition is applied to the surface of the positive electrode current collector 12, and the composition is dried.
When the secondary battery disclosed herein is a secondary battery other than a lithium ion secondary battery, a positive electrode active material suitable for each battery is used. For example, in the case of a sodium ion secondary battery, a sodium transition metal composite oxide is used, and in the case of a magnesium secondary battery, a magnesium transition metal composite oxide, sulfide, or the like is used.

負極15は、典型的には、長尺状の負極集電体16と、負極集電体16の表面に形成された負極活物質層を備える。負極集電体16としては、良好な導電性を有する金属材(例えば、銅、ニッケル等)を採用できる。負極活物質層は、典型的には、負極集電体16の表面に、長尺方向に沿って正極活物質層よりも広い幅で(帯状に)形成されている。負極集電体16における幅方向の両端部のうち、正極活物質層非形成部分13が位置する側と反対側の端部は、負極活物質層が形成されていない負極活物質層非形成部分17となっている。負極活物質層非形成部分17には負極集電板18が電気的に接続され、負極集電板18には負極端子28が電気的に接続されている。負極活物質層の負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物、リチウム遷移金属複合窒化物等が挙げられる。負極活物質層は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体16の表面に付与し、乾燥することによって形成することができる。なお、ここに開示される二次電池がリチウムイオン二次電池以外の二次電池の場合は、それぞれの電池に適する負極活物質が用いられる。   The negative electrode 15 typically includes a long negative electrode current collector 16 and a negative electrode active material layer formed on the surface of the negative electrode current collector 16. As the negative electrode current collector 16, a metal material having good conductivity (for example, copper, nickel, or the like) can be used. The negative electrode active material layer is typically formed on the surface of the negative electrode current collector 16 with a wider width (in a strip shape) than the positive electrode active material layer along the longitudinal direction. Of the both ends in the width direction of the negative electrode current collector 16, the end opposite to the side where the positive electrode active material layer non-formed portion 13 is located is a negative electrode active material layer non-formed portion where no negative electrode active material layer is formed. It is 17. A negative electrode current collector 18 is electrically connected to the negative electrode active material layer non-formed portion 17, and a negative electrode terminal 28 is electrically connected to the negative electrode current collector 18. As the negative electrode active material of the negative electrode active material layer, for example, a particulate (or spherical or flaky) carbon material containing a graphite structure (layer structure) at least in part, a lithium transition metal composite oxide, a lithium transition metal composite nitride Objects and the like. The negative electrode active material layer is prepared by dispersing a negative electrode active material and a material (such as a binder) used as necessary in a suitable solvent (for example, ion-exchanged water) to prepare a paste-like (or slurry-like) composition; The composition can be formed by applying an appropriate amount of the composition to the surface of the negative electrode current collector 16 and drying. When the secondary battery disclosed herein is a secondary battery other than a lithium ion secondary battery, a negative electrode active material suitable for each battery is used.

セパレータ19は、シャットダウン温度で軟化(溶融)あるいは熱収縮(以下、纏めて「収縮」という場合もある)して微細孔が閉塞するシャットダウン機能を有する。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド、ポリイミド等の樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。典型的には、セパレータ19を構成する樹脂の融点は、100℃以上、例えば110℃以上、あるいは120℃以上であり、170℃以下、例えば150℃以下、あるいは140℃以下である。捲回電極体10の内部温度が過度に上昇する前にセパレータ19がシャットダウンすることで、正負極間の充放電反応が停止される。   The separator 19 has a shutdown function of softening (melting) or heat shrinking (hereinafter sometimes collectively referred to as “shrinking”) at a shutdown temperature to close micropores. For example, a porous resin sheet (a film, a nonwoven fabric, or the like) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, polyamide, or polyimide can be used. Typically, the melting point of the resin constituting the separator 19 is 100 ° C. or higher, for example, 110 ° C. or higher, or 120 ° C. or higher, and 170 ° C. or lower, for example, 150 ° C. or lower, or 140 ° C. or lower. By shutting down the separator 19 before the internal temperature of the wound electrode body 10 excessively rises, the charge / discharge reaction between the positive and negative electrodes is stopped.

電解液29は、典型的には溶媒と支持塩を含む。溶媒としては、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の非水溶媒を用いることができる。支持塩としては、種々のリチウム塩を用いることができ、なかでもLiPF、LiBF等のリチウム塩が好適である。なお、ここに開示される二次電池がリチウムイオン二次電池以外の二次電池の場合は、それぞれの電池に適する溶媒と支持塩(例えばナトリウムイオン二次電池の場合はナトリウム塩、マグネシウム二次電池の場合はマグネシウム塩等)が用いられる。なお、電解質としては、上述したような電解液(液体電解質)のほか、所定のポリマーに電解液を含ませてゲル化したポリマー電解質、あるいは電解質が全て固体からなる固体電解質であってもよい。 The electrolyte solution 29 typically contains a solvent and a supporting salt. As the solvent, for example, a non-aqueous solvent such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be used. As the supporting salt, various lithium salts can be used, and among them, lithium salts such as LiPF 6 and LiBF 4 are preferable. When the secondary battery disclosed herein is a secondary battery other than a lithium ion secondary battery, a solvent and a supporting salt suitable for each battery (for example, a sodium salt and a magnesium secondary battery in the case of a sodium ion secondary battery) In the case of a battery, a magnesium salt or the like is used. In addition, as the electrolyte, in addition to the above-described electrolyte solution (liquid electrolyte), a polymer electrolyte obtained by gelling a predetermined polymer with the electrolyte solution, or a solid electrolyte in which the electrolyte is entirely solid may be used.

図3を参照して、捲回電極体10における厚み方向中央部Oの近傍の構成について説明する。前述したように、捲回電極体10では、正極11および負極15がセパレータ19を介して積層された状態で、軸芯30の周りに捲回されている。図3に示す例では、軸芯30に隣接する位置において4つのセパレータ19が重ね合わされて捲回された後、中心部から外側に向けて順に負極15、セパレータ19、正極11、およびセパレータ19が積層されて捲回されている。ただし、軸芯30に隣接する位置におけるセパレータ19の構成を変更することも可能である。   With reference to FIG. 3, the configuration near the center O in the thickness direction of the wound electrode body 10 will be described. As described above, in the wound electrode body 10, the positive electrode 11 and the negative electrode 15 are wound around the shaft core 30 in a state of being stacked with the separator 19 interposed therebetween. In the example illustrated in FIG. 3, after four separators 19 are overlapped and wound at a position adjacent to the shaft core 30, the negative electrode 15, the separator 19, the positive electrode 11, and the separator 19 are sequentially arranged outward from the center. It is laminated and wound. However, the configuration of the separator 19 at a position adjacent to the shaft core 30 can be changed.

軸芯30は、吸熱部材40と熱膨張部材50を備える。吸熱部材40は、二次電池1の発熱を吸熱する。従って、捲回電極体10の温度上昇が抑制される。また、熱膨張部材50は、二次電池1の発熱によって膨張する。捲回電極体10の温度が上昇し、セパレータ19がシャットダウンして収縮した場合でも、熱膨張部材50が膨張することで、電極間(つまり、正極11、負極15、およびセパレータ19の間)に隙間が生じることが抑制される。その結果、捲回電極体10の内部の放熱経路が減少することが抑制されて、放熱性が良好に発揮される。   The shaft core 30 includes a heat absorbing member 40 and a thermal expansion member 50. The heat absorbing member 40 absorbs heat generated by the secondary battery 1. Therefore, the temperature rise of the wound electrode body 10 is suppressed. The thermal expansion member 50 expands due to the heat generated by the secondary battery 1. Even when the temperature of the wound electrode body 10 rises and the separator 19 shuts down and contracts, the thermal expansion member 50 expands, so that the space between the electrodes (that is, between the positive electrode 11, the negative electrode 15, and the separator 19). The generation of a gap is suppressed. As a result, a decrease in the heat radiation path inside the wound electrode body 10 is suppressed, and the heat radiation is sufficiently exhibited.

吸熱部材40および熱膨張部材50を備えた軸芯30の全体、または軸芯30の表面は、耐電解液性および絶縁性を有する部材(例えば、樹脂またはセラミック等)によって形成されている。従って、捲回電極体10の内部に組み込まれる軸芯30は、充放電および電池寿命に影響を与え難い。本実施形態では、吸熱部材40および熱膨張部材50自体が耐電解液性および絶縁性を有する。以下、本実施形態における吸熱部材40および熱膨張部材50について詳細に説明する。   The entire shaft core 30 including the heat absorbing member 40 and the thermal expansion member 50 or the surface of the shaft core 30 is formed of a member having an electrolytic solution resistance and an insulating property (for example, resin or ceramic). Therefore, the shaft core 30 incorporated in the wound electrode body 10 hardly affects the charge / discharge and the battery life. In the present embodiment, the heat absorbing member 40 and the thermal expansion member 50 themselves have an electrolytic solution resistance and an insulating property. Hereinafter, the heat absorbing member 40 and the thermal expansion member 50 in the present embodiment will be described in detail.

本実施形態の吸熱部材40は、吸熱反応を生じる温度域が互いに異なる複数の吸熱部材を備えている。詳細には、本実施形態の吸熱部材40は、第1吸熱部材42と第2吸熱部材44を備える。   The heat-absorbing member 40 of the present embodiment includes a plurality of heat-absorbing members having different temperature ranges in which an endothermic reaction occurs. Specifically, the heat absorbing member 40 of the present embodiment includes a first heat absorbing member 42 and a second heat absorbing member 44.

第1吸熱部材42が吸熱反応を生じる温度域には、セパレータ19のシャットダウン温度が含まれる。従って、第1吸熱部材42が吸熱することで、セパレータ19がシャットダウンするタイミングを遅延させることができる。より詳細には、第1吸熱部材42における吸熱のピーク温度は、セパレータ19のシャットダウン温度未満である。従って、第1吸熱部材における吸熱のピーク温度がシャットダウン温度以上である場合に比べて、より効率良くシャットダウンのタイミングが遅延される。   The temperature range in which the first heat absorbing member 42 generates an endothermic reaction includes the shutdown temperature of the separator 19. Therefore, the timing at which the separator 19 shuts down can be delayed by the first heat absorbing member 42 absorbing heat. More specifically, the peak temperature of heat absorption in the first heat absorbing member 42 is lower than the shutdown temperature of the separator 19. Therefore, the shutdown timing is more efficiently delayed than in the case where the peak temperature of heat absorption in the first heat absorbing member is equal to or higher than the shutdown temperature.

第2吸熱部材44が吸熱反応を生じる温度域には、第1吸熱部材42が吸熱反応を生じる温度域よりも高い温度域が含まれる。詳細には、第2吸熱部材44における吸熱のピーク温度は、セパレータ19のシャットダウン温度以上である。従って、第2吸熱部材44が吸熱することで、セパレータ19のシャットダウン後における捲回電極体10の温度上昇が適切に抑制される。   The temperature range in which the second heat absorbing member 44 generates an endothermic reaction includes a temperature range higher than the temperature range in which the first heat absorbing member 42 generates an endothermic reaction. Specifically, the peak temperature of heat absorption in the second heat absorbing member 44 is equal to or higher than the shutdown temperature of the separator 19. Therefore, the second heat absorbing member 44 absorbs heat, so that the temperature rise of the wound electrode body 10 after the shutdown of the separator 19 is appropriately suppressed.

図3に示すように、第2吸熱部材44は、第1吸熱部材42よりも軸芯30における内側に設けられている。つまり、吸熱反応を生じる温度域が互いに異なる複数の吸熱部材が用いられる場合、吸熱反応を生じる温度域が高い吸熱部材は、吸熱反応を生じる温度域が低い吸熱部材よりも内側に配置されることが望ましい。この場合、軸芯30よりも外側で発生する熱は、吸熱反応を生じる温度域が低い吸熱部材に伝導された後、吸熱反応を生じる温度域が高い吸熱部材に伝導される。従って、複数の吸熱部材の吸熱反応が、徐々に上昇する温度に応じて効率よく発揮される。つまり、本実施形態では、シャットダウンのタイミングが第1吸熱部材42によって遅延された後に、シャットダウン後における温度上昇が効率よく第2吸熱部材44によって抑制される。ただし、複数種類の吸熱部材の配置を変更することも可能である。   As shown in FIG. 3, the second heat absorbing member 44 is provided on the shaft core 30 inside the first heat absorbing member 42. In other words, when a plurality of endothermic members having different endothermic reaction temperature ranges are used, the endothermic member having a higher endothermic reaction temperature range is disposed inside the endothermic member having a lower endothermic reaction temperature range. Is desirable. In this case, heat generated outside the shaft core 30 is conducted to a heat absorbing member having a lower temperature range in which an endothermic reaction occurs, and then to a heat absorbing member having a higher temperature range in which an endothermic reaction occurs. Therefore, the endothermic reaction of the plurality of endothermic members is efficiently exhibited according to the gradually increasing temperature. That is, in the present embodiment, after the shutdown timing is delayed by the first heat absorbing member 42, the temperature rise after the shutdown is efficiently suppressed by the second heat absorbing member 44. However, it is also possible to change the arrangement of a plurality of types of heat absorbing members.

吸熱部材40の材質には種々の材質を採用できる。本実施形態では、耐電解液性、絶縁性、および適切な吸熱性を有する樹脂材料が、吸熱部材40として用いられている。詳細には、本実施形態では、第1吸熱部材42には高密度ポリエチレンが使用されている。また、第2吸熱部材44には、ポリプロピレンおよびセルロースの少なくともいずれかが使用されている。ただし、吸熱部材40の材質はこれに限定されない。例えば、吸熱部材として、インジウム等の低融点金属材料が使用されてもよい。この場合、前述したように、吸熱部材のうち、少なくとも軸芯30の表面に位置する部分が、耐電解液性および絶縁性を有する材料によって覆われていてもよい。   Various materials can be adopted as the material of the heat absorbing member 40. In the present embodiment, a resin material having resistance to electrolyte, insulation, and appropriate heat absorption is used as the heat absorbing member 40. Specifically, in the present embodiment, high-density polyethylene is used for the first heat absorbing member 42. The second heat absorbing member 44 is made of at least one of polypropylene and cellulose. However, the material of the heat absorbing member 40 is not limited to this. For example, a low melting point metal material such as indium may be used as the heat absorbing member. In this case, as described above, at least a portion of the heat absorbing member located on the surface of the shaft core 30 may be covered with a material having an electrolytic solution resistance and an insulating property.

図4に示すチャートは、本実施形態の吸熱部材40(第1吸熱部材42および第2吸熱部材44)に用いられる部材の、DSC(Differential Scanning Calorimetry:示差走査熱量測定)による測定結果を示す。図4に示すチャートでは、横軸が温度、縦軸が熱量を示す。また、高密度ポリエチレンおよびポリプロピレンは電解液を含まない状態で測定され、セルロースは電解液を含む状態で測定されている。   The chart shown in FIG. 4 shows the measurement results of the members used for the heat absorbing member 40 (the first heat absorbing member 42 and the second heat absorbing member 44) of the present embodiment by DSC (Differential Scanning Calorimetry). In the chart shown in FIG. 4, the horizontal axis represents temperature, and the vertical axis represents heat quantity. In addition, high-density polyethylene and polypropylene are measured without an electrolyte, and cellulose is measured with an electrolyte.

図4に示すように、高密度ポリエチレンが吸熱反応を生じる温度域には、シャットダウン温度が含まれている。また、高密度ポリエチレンにおける吸熱のピーク温度は、セパレータ19のシャットダウン温度未満である。従って、高密度ポリエチレンは、第1吸熱部材42の材質として適している。   As shown in FIG. 4, the temperature range in which the high-density polyethylene causes an endothermic reaction includes the shutdown temperature. Further, the peak temperature of endothermic heat of the high-density polyethylene is lower than the shutdown temperature of the separator 19. Therefore, high-density polyethylene is suitable as the material of the first heat absorbing member 42.

ポリプロピレンが吸熱反応を生じる温度域には、第1吸熱部材42(本実施形態では高密度ポリエチレン)が吸熱反応を生じる温度域よりも高い温度域が含まれている。また、ポリプロピレンにおける吸熱のピーク温度は、セパレータ19のシャットダウン温度以上であり、且つ、捲回電極体10の上限温度以下である。従って、ポリプロピレンは、第2吸熱部材44の材質として適している。   The temperature range in which the polypropylene generates an endothermic reaction includes a temperature range higher than the temperature range in which the first heat absorbing member 42 (high-density polyethylene in the present embodiment) generates an endothermic reaction. The endothermic peak temperature of the polypropylene is equal to or higher than the shutdown temperature of the separator 19 and equal to or lower than the upper limit temperature of the wound electrode body 10. Therefore, polypropylene is suitable as the material of the second heat absorbing member 44.

セルロースが吸熱反応を生じる温度域には、第1吸熱部材42(本実施形態では高密度ポリエチレン)が吸熱反応を生じる温度域よりも高い温度域が含まれている。また、セルロースは、高温で溶解して消滅するのではなく、炭化して残存し、その後熱容量として機能する。従って、セルロースの吸熱ピーク量はポリプロピレンの吸熱ピーク量よりも小さいが、セルロースも第2吸熱部材44の材質として適している。   The temperature range in which cellulose causes an endothermic reaction includes a temperature range higher than the temperature range in which first endothermic member 42 (high-density polyethylene in the present embodiment) causes an endothermic reaction. In addition, cellulose does not dissolve and disappear at a high temperature, but remains after being carbonized, and thereafter functions as a heat capacity. Therefore, although the endothermic peak amount of cellulose is smaller than the endothermic peak amount of polypropylene, cellulose is also suitable as the material of the second endothermic member 44.

熱膨張部材50について説明する。本実施形態では、熱膨張部材50自身が耐電解液性および絶縁性を有している。熱膨張部材50には種々の部材を採用できる。熱膨張部材50は、自身が膨張してもよいし、膨張するフィラー等を含有していてもよい。例えば、ダイフォームV(登録商標)、マツモトマイクロスフェアー(登録商標)、クレハマイクロスフェアー(登録商標)、Expancel(登録商標)等、液体または液状ガスを内包する熱膨張マイクロカプセル等が、熱膨張部材50として使用されてもよい。   The thermal expansion member 50 will be described. In the present embodiment, the thermal expansion member 50 itself has an electrolytic solution resistance and an insulating property. Various members can be adopted as the thermal expansion member 50. The thermal expansion member 50 may expand itself, or may contain an expanding filler or the like. For example, thermal expansion microcapsules containing a liquid or a liquid gas, such as Dyform V (registered trademark), Matsumoto microsphere (registered trademark), Kureha microsphere (registered trademark), and Expancel (registered trademark), are used. It may be used as the expansion member 50.

図3に示すように、本実施形態では、熱膨張部材50は吸熱部材40よりも内側に設けられている。従って、軸芯30よりも外側で発生する熱は、吸熱部材40に伝導された後に、吸熱部材40から熱膨張部材50に伝導される。この場合、吸熱部材40(特に、第1吸熱部材42)によってセパレータ19のシャットダウンのタイミングが遅延された後に、吸熱部材40よりも内側に設けられた熱膨張部材50が膨張し、シャットダウンによって電極間に隙間が生じることが抑制される。よって、発熱による影響がより効率よく抑制される。ただし、軸芯30における熱膨張部材50および吸熱部材40の配置を変更することも可能である。   As shown in FIG. 3, in this embodiment, the thermal expansion member 50 is provided inside the heat absorbing member 40. Therefore, heat generated outside the shaft core 30 is transmitted to the heat absorbing member 40 and then transmitted from the heat absorbing member 40 to the thermal expansion member 50. In this case, after the timing of shutting down the separator 19 is delayed by the heat absorbing member 40 (particularly, the first heat absorbing member 42), the thermal expansion member 50 provided inside the heat absorbing member 40 expands, and the shutdown causes the gap between the electrodes. A gap is suppressed from being generated. Therefore, the influence of heat generation is more efficiently suppressed. However, it is also possible to change the arrangement of the thermal expansion member 50 and the heat absorbing member 40 in the shaft core 30.

なお、捲回電極体10の製造方法は適宜選択できる。一例として、本実施形態では、吸熱部材40となる部材(例えば樹脂フィルム等)が巻きつけられた捲回軸の表面に、セパレータ19、負極15、および正極11が重ねられた状態で捲回される。次いで、作成された捲回体から捲回軸が引き抜かれた後、中心部への熱膨張部材50の挿入工程、および、捲回体の整形工程が行われることで、捲回電極体10が製造される。ただし、製造方法を変更することも可能である。例えば、熱膨張部材50および吸熱部材40によって形成された捲回軸に、セパレータ19、負極15、および正極11が捲回されてもよい。   In addition, the manufacturing method of the wound electrode body 10 can be appropriately selected. As an example, in the present embodiment, the separator 19, the negative electrode 15, and the positive electrode 11 are wound in a state where the separator 19, the negative electrode 15, and the positive electrode 11 are stacked on a surface of a winding shaft around which a member (for example, a resin film or the like) to be the heat absorbing member 40 is wound. You. Next, after the wound shaft is pulled out from the formed wound body, the step of inserting the thermal expansion member 50 into the center and the step of shaping the wound body are performed, so that the wound electrode body 10 is formed. Manufactured. However, the manufacturing method can be changed. For example, the separator 19, the negative electrode 15, and the positive electrode 11 may be wound around a winding shaft formed by the thermal expansion member 50 and the heat absorbing member 40.

<比較試験>
図5を参照して、上記実施形態の二次電池1の効果を確認するための過充電試験の結果について説明する。図5は、捲回電極体における軸芯の構成が互いに異なり、他の構成は共通する4つの二次電池の各々に対して行われた過充電試験の結果を示すグラフであり、横軸は時間、縦軸は捲回電極体の温度を示す。B1は、吸熱部材および熱膨張部材が共に軸芯に含まれていない従来の二次電池に対する試験結果を示す。B2は、高密度ポリエチレン(上記実施形態における第1吸熱部材42)のみが軸芯に含まれた二次電池に対する試験結果を示す。B3は、高密度ポリエチレンと、ポリプロピレン(上記実施形態における第2吸熱部材44)が軸芯に含まれた二次電池に対する試験結果を示す。B3の試験対象となった二次電池の軸芯には、熱膨張部材は含まれていない。B4は、高密度ポリエチレン、ポリプロピレン、および熱膨張部材が軸芯に含まれた、上記実施形態の二次電池1に対する評価試験を示す。なお、温度CSは、各々の二次電池に用いられていたセパレータのシャットダウン温度を示す。また、捲回電極体の軸芯の構成以外の試験条件は、全て同一である。
<Comparison test>
The results of the overcharge test for confirming the effect of the secondary battery 1 of the above embodiment will be described with reference to FIG. FIG. 5 is a graph showing the results of an overcharge test performed on each of four common secondary batteries in which the configuration of the shaft core in the wound electrode body is different and the other configurations are common. The time and the vertical axis indicate the temperature of the wound electrode body. B1 shows a test result for a conventional secondary battery in which both the heat absorbing member and the thermal expansion member are not included in the shaft core. B2 shows a test result for a secondary battery in which only the high-density polyethylene (the first heat absorbing member 42 in the above embodiment) is included in the shaft core. B3 shows a test result for a secondary battery in which high-density polyethylene and polypropylene (the second heat absorbing member 44 in the above embodiment) are included in the shaft core. The thermal expansion member was not included in the axis of the secondary battery that was tested in B3. B4 shows an evaluation test for the secondary battery 1 of the above embodiment, in which high-density polyethylene, polypropylene, and a thermal expansion member were included in the shaft core. Note that the temperature CS indicates a shutdown temperature of the separator used in each secondary battery. The test conditions other than the configuration of the axis of the wound electrode body are all the same.

図5に示すように、B1の試験では、時間T1でセパレータがシャットダウンした後も温度が上昇し続けて、短絡が発生した。これに対し、B2の試験では、セパレータのシャットダウン時間T2は、B1の試験におけるシャットダウン時間T1よりも遅延し、且つ、短絡も発生しなかった。これにより、第1吸熱部材42によってセパレータのシャットダウンのタイミングが遅延することが分かる。   As shown in FIG. 5, in the test of B1, the temperature continued to rise even after the separator was shut down at time T1, and a short circuit occurred. On the other hand, in the test of B2, the shutdown time T2 of the separator was longer than the shutdown time T1 of the test of B1, and no short circuit occurred. This indicates that the first heat absorbing member 42 delays the shutdown timing of the separator.

また、B3の試験では、セパレータのシャットダウン後のピーク温度C3が、B2の試験におけるピーク温度C2よりも低くなった。これにより、第2吸熱部材44によって、セパレータのシャットダウン後における捲回電極体の温度上昇が適切に抑制されることが分かる。   Moreover, in the test of B3, the peak temperature C3 after the shutdown of the separator was lower than the peak temperature C2 in the test of B2. Thereby, it turns out that the temperature rise of the wound electrode body after the shutdown of the separator is appropriately suppressed by the second heat absorbing member 44.

また、B4の試験では、セパレータのシャットダウン後のピーク温度C4が、B3の試験におけるピーク温度C3よりもさらに低くなった。これにより、熱膨張部材によって捲回電極体の放熱性がさらに良好に発揮されることが分かる。なお、B4の試験では、セパレータのシャットダウン時間T4も、B3の試験におけるシャットダウン時間T3よりも遅延した。これは、熱膨張部材が吸熱部材としても機能しているためであると考えられる。   Further, in the test of B4, the peak temperature C4 after the shutdown of the separator was further lower than the peak temperature C3 in the test of B3. Thereby, it turns out that the heat dissipation of a wound electrode body is exhibited more favorably by a thermal expansion member. In the test of B4, the shutdown time T4 of the separator was also longer than the shutdown time T3 of the test of B3. It is considered that this is because the thermal expansion member also functions as a heat absorbing member.

上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、上記実施形態では2種類の吸熱部材(第1吸熱部材42および第2吸熱部材44)が用いられた。しかし、3種類以上の吸熱部材が用いられてもよい。また、第1吸熱部材42および第2吸熱部材44のうちの一方のみが用いられてもよい。   The technology disclosed in the above embodiment is merely an example. Therefore, the technology exemplified in the above embodiment can be changed. For example, in the above embodiment, two types of heat absorbing members (the first heat absorbing member 42 and the second heat absorbing member 44) are used. However, three or more types of heat absorbing members may be used. Further, only one of the first heat absorbing member 42 and the second heat absorbing member 44 may be used.

1 二次電池
10 捲回電極体
11 正極
15 負極
19 セパレータ
29 電解液
30 軸芯
40 吸熱部材
50 熱膨張部材

DESCRIPTION OF SYMBOLS 1 Secondary battery 10 Wound electrode body 11 Positive electrode 15 Negative electrode 19 Separator 29 Electrolyte 30 Shaft core 40 Heat absorbing member 50 Thermal expansion member

Claims (1)

シャットダウン機能を有するセパレータを介して正極および負極が重ね合わされ軸芯の周りに捲回された電極体と、電解質と、を備えた二次電池であって、
前記軸芯は、
前記二次電池の発熱を吸熱する吸熱部材と、
前記二次電池の発熱によって膨張する熱膨張部材と、
を備えたことを特徴とする、二次電池。


A secondary battery comprising: an electrode body in which a positive electrode and a negative electrode are stacked via a separator having a shutdown function and wound around an axis, and an electrolyte,
The shaft core is
A heat absorbing member that absorbs heat generated by the secondary battery,
A thermal expansion member that expands due to heat generated by the secondary battery;
A secondary battery, comprising:


JP2018186894A 2018-10-01 2018-10-01 secondary battery Active JP7168405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186894A JP7168405B2 (en) 2018-10-01 2018-10-01 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186894A JP7168405B2 (en) 2018-10-01 2018-10-01 secondary battery

Publications (3)

Publication Number Publication Date
JP2020057504A true JP2020057504A (en) 2020-04-09
JP2020057504A5 JP2020057504A5 (en) 2021-07-26
JP7168405B2 JP7168405B2 (en) 2022-11-09

Family

ID=70107544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186894A Active JP7168405B2 (en) 2018-10-01 2018-10-01 secondary battery

Country Status (1)

Country Link
JP (1) JP7168405B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JP2005259567A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JP2005259567A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7168405B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US10044071B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP6650399B2 (en) Battery pack and power storage unit including a plurality thereof
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
KR101787254B1 (en) Secondary battery
JP2011096539A (en) Lithium secondary battery
KR20160134808A (en) Nonaqueous electrolyte secondary battery
JP2008135374A (en) Sealed secondary battery
JP2012151036A (en) Laminated battery
JP2015138657A (en) secondary battery
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP5909371B2 (en) Lithium ion secondary battery
JP2017174662A (en) Secondary battery
JP2013211156A (en) Lithium ion secondary battery
JP2011134634A (en) Winding square battery
JP7168405B2 (en) secondary battery
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP7045395B2 (en) Electrolyte for lithium-ion secondary battery
JP6299125B2 (en) Lithium ion capacitor
JP2014049388A (en) Power storage device
JP2012190711A (en) Nonaqueous electrolyte secondary battery
JP7189027B2 (en) secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP2016012499A (en) Secondary battery
JP2016058169A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6681017B2 (en) Secondary battery having electrode body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7168405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150