JP2020056665A - Ultraviolet sensor and ultraviolet amount measurement device - Google Patents

Ultraviolet sensor and ultraviolet amount measurement device Download PDF

Info

Publication number
JP2020056665A
JP2020056665A JP2018187014A JP2018187014A JP2020056665A JP 2020056665 A JP2020056665 A JP 2020056665A JP 2018187014 A JP2018187014 A JP 2018187014A JP 2018187014 A JP2018187014 A JP 2018187014A JP 2020056665 A JP2020056665 A JP 2020056665A
Authority
JP
Japan
Prior art keywords
light
ultraviolet
sensitivity
incident angle
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018187014A
Other languages
Japanese (ja)
Other versions
JP7224620B2 (en
Inventor
川瀬 信雄
Nobuo Kawase
信雄 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018187014A priority Critical patent/JP7224620B2/en
Publication of JP2020056665A publication Critical patent/JP2020056665A/en
Application granted granted Critical
Publication of JP7224620B2 publication Critical patent/JP7224620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an ultraviolet sensor and an ultraviolet amount measurement device which, by suppressing incident angle dependence of sensitivity in the ultraviolet sensor, uniformalize difference in the sensitivity due to difference in incident angle.SOLUTION: An ultraviolet sensor 10 includes a light receiving element 12 capable of receiving an ultraviolet ray, and attenuates or shields at least a part of the ultraviolet ray which travels approximately orthogonally to a light receiving surface of the light receiving element 12. The ultraviolet sensor 10 includes: a light attenuation/shielding part 20; and a light diffusion part 16 for diffusing the ray traveling toward the light receiving element 12. The light attenuation/shielding part 20 is provided in a manner to completely or partially cover the ultraviolet sensor 10 in a planar view.SELECTED DRAWING: Figure 3

Description

本発明は、紫外線を受光するための紫外線センサおよび紫外線量測定装置に関する。   The present invention relates to an ultraviolet sensor for receiving ultraviolet light and an ultraviolet light amount measuring device.

紫外線センサによる紫外線量を計測する技術が提案されている(特許文献1参照)。紫外線センサとして、たとえば、ビタミンD生成量を推定したり、紫外線による皮膚への過度なダメージを防ぐために、紫外線量をモニタリングするために、紫外線センサが用いられている。   A technique for measuring the amount of ultraviolet light by an ultraviolet sensor has been proposed (see Patent Document 1). As an ultraviolet sensor, for example, an ultraviolet sensor is used to estimate the amount of vitamin D produced or to monitor the amount of ultraviolet light in order to prevent excessive damage to the skin due to ultraviolet light.

特開2012−146706号公報JP 2012-146706 A

本発明の目的は、紫外線センサにおける感度の入射角度依存性を抑え、入射角度の違いによる感度の違いの均一化を図った紫外線センサおよび紫外線量測定装置を提供することにある。   SUMMARY OF THE INVENTION It is an object of the present invention to provide an ultraviolet sensor and an ultraviolet light amount measuring device which suppress the dependency of the sensitivity of an ultraviolet sensor on the incident angle and make the difference in sensitivity uniform due to the difference in the incident angle.

1.紫外線センサ
(1)第1の紫外線センサ
本発明の第1の紫外線センサは、
紫外線を受光し得る受光素子を含み、
前記受光素子の受光面に対してほぼ垂直に向かって進む紫外線の少なくとも一部を減衰又は遮光するための減衰又は遮光部と、
前記受光素子に向かって進む光を拡散するための光拡散部とを含む。
1. Ultraviolet sensor (1) First ultraviolet sensor The first ultraviolet sensor of the present invention comprises:
Including a light receiving element that can receive ultraviolet light,
An attenuation or light-shielding portion for attenuating or shielding at least a part of ultraviolet light that travels substantially perpendicular to the light-receiving surface of the light-receiving element,
A light diffusion unit for diffusing light traveling toward the light receiving element.

本発明において、
前記受光素子が、前記紫外線センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、前記受光素子の感度f(x)の特性を有する場合において、
前記紫外線の入射角度xを横軸とし、前記感度f1(x)を縦軸としたときに、前記感度f1(x)のグラフは上に凸の形状を有し、
前記f1(x)のグラフの凸の形状部分の最高感度I1maxに対して、前記最高感度I1maxに対応する入射角度における前記減衰又は遮光部及び光拡散部の減衰割合D1maxを乗じて得た感度I1Emaxとし、
前記受光素子の受光面に対して前記グラフの半値幅の入射角度x1/2の方向からの紫外線における前記受光素子の感度I11/2に対して、前記減衰又は遮光部における前記半値幅に対応する入射角度x1/2における前記減衰又は遮光部及び光拡散部の減衰割合D11/2を乗じて得た感度I1E1/2とが、以下の式を満たす態様をとることができる。
(式1)
(|I1Emax−I1E1/2|/I1E1/2)×100≦50
I1Emax=I1max×D1max
I1E 1/2=I11/2×D11/2
本発明において、
平面的にみて、前記受光素子の中央部分における前記減衰又は遮光部が被覆する面積の密度が、前記受光素子の中央部分より外側における前記減衰又は遮光部が被覆する面積の密度よりも大きい態様をとることができる。
In the present invention,
The incident angle of the ultraviolet ray when the incident angle of the ultraviolet ray incident on the light receiving surface of the ultraviolet ray sensor from the perpendicular direction is 0 ° is x, and the characteristic of the sensitivity f (x) of the light receiving element is x If you have
When the incident angle x of the ultraviolet rays is on the horizontal axis and the sensitivity f1 (x) is on the vertical axis, the graph of the sensitivity f1 (x) has an upwardly convex shape,
The maximum sensitivity I1 max of the convex portion of the graph of f1 (x) is obtained by multiplying the attenuation or the attenuation ratio D1 max of the light shielding portion and the light diffusion portion at the incident angle corresponding to the maximum sensitivity I1 max. Sensitivity I1 Emax ,
With respect to the sensitivity I11 / 2 of the light receiving element with respect to ultraviolet rays from the direction of the incident angle x 1/2 of the half width of the graph with respect to the light receiving surface of the light receiving element, sensitivity I1 E1 / 2 obtained by multiplying the attenuation ratio D1 1/2 of the attenuation or shielding portion and a light diffusing portion at a corresponding incident angle x 1/2 is able to take as to satisfy the following equation.
(Equation 1)
(| I1 Emax −I1 E1 / 2 | / I1 E1 / 2 ) × 100 ≦ 50
I1 Emax = I1 max × D1 max
I1 E 1/2 = I1 1/2 × D1 1/2
In the present invention,
In a plan view, the density of the area covered by the attenuation or light shielding portion in the central portion of the light receiving element is larger than the density of the area covered by the attenuation or light shielding portion outside the central portion of the light receiving element. Can be taken.

本発明において、前記減衰又は遮光部は、金属蒸着膜または塗布膜であることができる。   In the present invention, the attenuating or light shielding unit may be a metal deposition film or a coating film.

本発明において、
前記減衰又は遮光部は、複数の減衰または遮蔽機能を有する構成要素から構成され、
前記構成要素は、平面的にみて方形および円形の少なくとも一方の形状を有し、所定のパターンで配置されていることができる。
In the present invention,
The attenuating or light-shielding portion is configured by components having a plurality of attenuating or shielding functions,
The components have at least one of a square shape and a circular shape in plan view, and may be arranged in a predetermined pattern.

(2)第2の紫外線センサ
本発明の第2の紫外線センサは、
紫外線を受光し得る受光素子を含み、
前記受光素子の受光面に対してほぼ垂直に向かって進む紫外線を屈折させて前記受光面に導くための光案内部を含み、
前記光案内部は、光透過体と、前記光透過体を通過した光を拡散させるための光拡散部とを含む。
(2) Second ultraviolet sensor The second ultraviolet sensor of the present invention comprises:
Including a light receiving element that can receive ultraviolet light,
Including a light guide for refracting ultraviolet light that travels substantially perpendicular to the light receiving surface of the light receiving element and guiding the ultraviolet light to the light receiving surface,
The light guide unit includes a light transmitting body and a light diffusing unit for diffusing light passing through the light transmitting body.

本発明において、
前記受光素子が、前記紫外線センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、前記受光素子の感度f2(x)の特性を有する場合において、
前記紫外線の入射角度xを横軸とし、前記感度f2(x)を縦軸としたときに、前記感度f2(x)のグラフは上に凸の形状を有し、
前記f2(x)のグラフの凸の形状部分の最高感度I2maxに対して、前記最高感度I2maxに対応する入射角度における前記光案内部の減衰割合D2maxを乗じて得た感度I2Emaxとし、
前記受光素子の受光面に対して前記グラフの半値幅の入射角度x1/2の方向からの紫外線における前記受光素子の感度I21/2に対して、前記減衰又は遮光部における前記半値幅に対応する入射角度x1/2における前記光案内部の減衰割合D21/2を乗じて得た感度I2E1/2とが、以下の式を満たす態様をとることができる。
(式2)
(|I2Emax−I2E1/2|/I2E1/2)×100≦50
I2Emax=I2max×D2max
I2E1/2=I21/2×D21/2
In the present invention,
The incident angle of the ultraviolet ray when the incident angle of the ultraviolet ray incident on the light receiving surface of the ultraviolet ray sensor from the perpendicular direction is 0 ° is x, and the characteristic of the sensitivity f2 (x) of the light receiving element is x If you have
When the incident angle x of the ultraviolet rays is set on the horizontal axis and the sensitivity f2 (x) is set on the vertical axis, the graph of the sensitivity f2 (x) has an upwardly convex shape,
The sensitivity I2 Emax is obtained by multiplying the maximum sensitivity I2 max of the convex portion of the graph of f2 (x) by the attenuation ratio D2 max of the light guide portion at an incident angle corresponding to the maximum sensitivity I2 max. ,
With respect to the sensitivity I21 / 2 of the light receiving element with respect to ultraviolet rays from the direction of the incident angle x1 / 2 of the half width of the graph with respect to the light receiving surface of the light receiving element, sensitivity I2 E1 / 2 obtained by multiplying the attenuation ratio D2 1/2 of the light guiding unit at a corresponding incident angle x 1/2 is able to take as to satisfy the following equation.
(Equation 2)
(| I2 Emax -I2 E1 / 2 | / I2 E1 / 2 ) × 100 ≦ 50
I2 Emax = I2 max × D2 max
I2 E1 / 2 = I2 1/2 × D2 1/2

本発明において、前記光透過体は、10%以上の透過割合を有することができる。   In the present invention, the light transmitting body may have a transmission ratio of 10% or more.

本発明において、前記光透過体は、凸レンズ状、凸レンズの上の部分を切り欠いた形状または平板状であることができる。   In the present invention, the light transmitting body may have a convex lens shape, a shape in which a portion above the convex lens is cut away, or a flat shape.

第1および第2の紫外線センサにおいて、前記紫外線は、太陽光の紫外線であることができる。   In the first and second ultraviolet sensors, the ultraviolet light may be ultraviolet light of sunlight.

第1および第2の紫外線センサにおいて、
所定の入射角度の紫外線との関係における前記受光素子の感度と、前記所定の入射角度の紫外線との関係における減衰又は遮光部の透過率とを乗じて得た値を実効感度とした場合に、前記センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときに紫外線の入射角度が−45°〜45°の範囲において、各入射角度のセンサの実効感度の平均値は、光の入射角度が−45°〜45°の範囲の平均値の±50%以内とすることができる。
In the first and second ultraviolet sensors,
When the sensitivity obtained by multiplying the sensitivity of the light receiving element in relation to the ultraviolet light at a predetermined incident angle and the transmittance of the attenuation or light shielding portion in the relation to the ultraviolet light at the predetermined incident angle, The average value of the effective sensitivities of the sensors at each incident angle in the range of -45 ° to 45 ° when the incident angle of the ultraviolet light incident from the perpendicular direction to the light receiving surface of the sensor is 0 °. Can be within ± 50% of the average value of the light incident angle in the range of −45 ° to 45 °.

2.紫外線量測定装置
本発明の紫外線量測定装置は、本発明の紫外線センサを含む。
2. Ultraviolet light amount measuring device The ultraviolet light amount measuring device of the present invention includes the ultraviolet light sensor of the present invention.

本発明によれば、紫外線センサにおける感度の入射角度依存性を抑え、入射角度の違いによる感度の違いの均一化を図った紫外線センサおよび紫外線量測定装置を実現することができる。   According to the present invention, it is possible to realize an ultraviolet sensor and an ultraviolet light amount measuring device in which the dependency of the sensitivity of the ultraviolet sensor on the incident angle is suppressed and the difference in sensitivity due to the difference in the incident angle is made uniform.

図1(A)は紫外線センサの感度を説明するためのである。図1(B)は、入射角度と紫外線の減衰率Dのグラフを示す。図1(C)は、紫外線センサの感度IEmaxと、感度IE1/2の関係図を示す。FIG. 1A is for explaining the sensitivity of the ultraviolet sensor. FIG. 1B shows a graph of the incident angle and the ultraviolet light attenuation rate D. FIG. 1C shows a relationship diagram between the sensitivity I Emax of the ultraviolet sensor and the sensitivity I E1 / 2 . 入射角度を説明するための図である。It is a figure for explaining an incident angle. 第1の実施の形態に係る紫外線センサを模式的に示す図である。It is a figure showing typically an ultraviolet sensor concerning a 1st embodiment. 第1の実施の形態に係る紫外線センサを模式的に示す図である。It is a figure showing typically an ultraviolet sensor concerning a 1st embodiment. 第1の実施の形態に係る紫外線センサを模式的に示す図である。It is a figure showing typically an ultraviolet sensor concerning a 1st embodiment. 第1の実施の形態に係る紫外線センサを模式的に示す図である。It is a figure showing typically an ultraviolet sensor concerning a 1st embodiment. 減衰又は遮光部と受光素子との平面的関係を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a planar relationship between an attenuation or light shielding unit and a light receiving element. 減衰又は遮光部の平面形状を模式的に示す図である。It is a figure which shows the planar shape of an attenuation or light shielding part typically. 図9(A)は受光素子12の感度曲線(f1(x))を模式的に示したものと、紫外線が光拡散部16を通過した場合の受光素子の感度曲線(f1a(x))を模式的に示したものとを示す。図9(B)は、減衰又は遮光部及び光拡散部の減衰特性を模式的に示したものである。FIG. 9A schematically shows a sensitivity curve (f1 (x)) of the light receiving element 12 and a sensitivity curve (f1a (x)) of the light receiving element when the ultraviolet light passes through the light diffusion section 16. This is shown schematically. FIG. 9B schematically shows the attenuation or attenuation characteristics of the light shielding part and the light diffusion part. 受光素子の感度に対して、減衰又は遮光部及び光拡散部の減衰割合を乗じて得たグラフを模式的に示す。5 is a graph schematically showing a graph obtained by multiplying the sensitivity of the light receiving element by the attenuation or the attenuation ratio of the light shielding part and the light diffusion part. 第2の実施の形態に係る紫外線センサを模式的に示す図である。FIG. 9 is a diagram schematically illustrating an ultraviolet sensor according to a second embodiment. 図12(A)は、受光素子の入射角度依存感度特性を模式的に示す。図12(B)は光案内部の入射角度依存減衰率を模式的に示す。FIG. 12A schematically shows the incident angle dependent sensitivity characteristics of the light receiving element. FIG. 12B schematically shows the incident angle dependent attenuation rate of the light guide. 図13(A)は、受光素子の感度に対して、光案内部の減衰割合を乗じて得たグラフを模式的に示す。図13(B)は、図13(A)の感度を増幅したものである。FIG. 13A schematically shows a graph obtained by multiplying the sensitivity of the light receiving element by the attenuation ratio of the light guide. FIG. 13B is an amplification of the sensitivity of FIG. 実施の形態に係る紫外線量測定装置を模式的に示す図であり、図14(B)は図14(A)のA1−A1線に沿った断面を模式的に示す図である。It is a figure which shows typically the ultraviolet-rays measuring device which concerns on embodiment, FIG.14 (B) is a figure which shows typically the cross section along the A1-A1 line of FIG.14 (A).

以下、本発明の好適な実施の形態について図面を参照しながら説明する。
1.基本原理説明
本発明者は、紫外線センサ100が受光面に対して垂直方向を中心として一定の方向から紫外線の受光感度が特異的に大きいことを考慮し、その垂直方向を中心として一定の方向から紫外線を減衰または遮光することで、紫外線センサ100の向きに応じた異常感度を抑えることができることを見出した。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1. Basic principle explanation The present inventor considers that the ultraviolet light sensor 100 has a specific large sensitivity to ultraviolet light from a certain direction centered on the light receiving surface in a direction perpendicular to the light receiving surface. It has been found that by attenuating or shielding ultraviolet rays, abnormal sensitivity according to the direction of the ultraviolet sensor 100 can be suppressed.

また、本発明者は、紫外線センサ100の感度が入射角度依存の特性を有しており、その入射角度依存性に応じて紫外線を遮光または減衰させることで、紫外線センサ100の実効感度を均一化し、紫外線センサ100の異常感度を抑えることができることを見出した。より具体的には、紫外線の入射角度をx軸とし、紫外線センサ100の感度をy軸としたときに得られるグラフを第1のグラフとした場合に、入射角度をx軸とし、紫外線の減衰度合をy軸として得られるグラフがx軸で反転したような形状を有するような紫外線量の減衰を行うことが特に好ましい。つまり、紫外線センサ100の感度に紫外線量の減衰割合を乗じて得たものを紫外線センサ100の実効感度とした場合に、その実効感度が均一になるようにすることで、紫外線センサ100の向きに応じた異常感度を抑えることができる。   In addition, the present inventor has made the sensitivity of the ultraviolet sensor 100 uniform at the effective sensitivity of the ultraviolet sensor 100 by blocking or attenuating the ultraviolet light according to the incident angle dependence. It has been found that the abnormal sensitivity of the ultraviolet sensor 100 can be suppressed. More specifically, when the graph obtained when the incident angle of the ultraviolet ray is the x axis and the sensitivity of the ultraviolet sensor 100 is the y axis is the first graph, the incident angle is the x axis, and the attenuation of the ultraviolet ray is It is particularly preferable to attenuate the amount of ultraviolet rays so that the graph obtained with the degree on the y-axis has a shape inverted from the x-axis. That is, when the sensitivity obtained by multiplying the sensitivity of the ultraviolet sensor 100 by the attenuation ratio of the amount of ultraviolet light is used as the effective sensitivity of the ultraviolet sensor 100, by making the effective sensitivity uniform, the orientation of the ultraviolet sensor 100 The corresponding abnormal sensitivity can be suppressed.

図1(A)に示すように、受光素子12が、紫外線センサ100の受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、受光素子12の感度f(x)の特性を有する場合を考える。紫外線の入射角度xを横軸とし、感度f(x)を縦軸としたときに、感度f(x)のグラフは上に凸の形状(たとえばガウシアン分布曲線)を有し、f(x)のグラフの凸の形状部分の最高感度Imaxに対して、最高感度IEmaxに対応する入射角度における紫外線の減衰割合Dmaxを乗じて得た感度IEmaxとし、受光素子12の受光面に対して前記グラフの半値幅の入射角度x1/2の方向からの紫外線における前記受光素子12の感度I1/2に対して、半値幅に対応する入射角度x1/2における紫外線の減衰割合D1/2を乗じて得た感度IE1/2とが、以下の式を満たすような構成とすることができる。
(式1)
(|IEmax−IE1/2|/I2E1/2)×100≦50
Emax=Imax×Dmax
E1/2=I1/2×D1/2
ここで、減衰割合は透過率で示される。
As shown in FIG. 1A, when the light receiving element 12 sets the incident angle of the ultraviolet ray incident on the light receiving surface of the ultraviolet sensor 100 from the perpendicular direction to 0 °, the incident angle of the ultraviolet ray is x, and the light receiving element 12 is Consider a case having twelve sensitivity f (x) characteristics. When the incident angle x of ultraviolet rays is set on the horizontal axis and the sensitivity f (x) is set on the vertical axis, the graph of the sensitivity f (x) has an upwardly convex shape (for example, a Gaussian distribution curve), and f (x) against most sensitive I max shape portion of the convex graph, and maximum sensitivity I Emax sensitivity obtained by multiplying the attenuation rate D max of UV at the incident angle corresponding to the I Emax, to the light receiving surface of the light receiving element 12 With respect to the sensitivity I 1/2 of the light receiving element 12 in the ultraviolet ray from the direction of the incident angle x 1/2 of the half value width of the graph, the attenuation ratio D of the ultraviolet ray at the incident angle x 1/2 corresponding to the half value width D The sensitivity I E1 / 2 obtained by multiplying by 満 た す may satisfy the following expression.
(Equation 1)
(| I Emax -I E1 / 2 | / I2 E1 / 2 ) × 100 ≦ 50
I Emax = I max × D max
I E1 / 2 = I 1/2 × D 1/2
Here, the attenuation ratio is indicated by the transmittance.

図1(B)において、入射角度と紫外線の減衰率Dのグラフを示す。図1(C)は、紫外線センサ10の感度IEmaxと、感度IE1/2の関係図を示す。図2は、入射角度を説明するための図である。 FIG. 1B shows a graph of the incident angle and the ultraviolet light attenuation rate D. FIG. 1C shows a relationship between the sensitivity I Emax of the ultraviolet sensor 10 and the sensitivity I E1 / 2 . FIG. 2 is a diagram for explaining the incident angle.

本実施の形態は、感度が高い垂直方向近辺からの光を減衰または遮光することで、感度を均一化し、紫外線量の測定に好適な紫外線センサ100を実現することができるものである。   In the present embodiment, sensitivity can be made uniform by attenuating or blocking light from near the vertical direction with high sensitivity, and the ultraviolet sensor 100 suitable for measuring the amount of ultraviolet light can be realized.

紫外線センサ100は、太陽光の紫外線を測定する際に特に有用である。   The ultraviolet sensor 100 is particularly useful when measuring ultraviolet rays of sunlight.

2.第1の実施の形態
(1)構成例
第1の実施の形態に係る紫外線センサ100は、紫外線を受光し得る受光素子12と、減衰又は遮光部20と、光拡散部16とを含む。
2. 1. First Embodiment (1) Configuration Example The ultraviolet sensor 100 according to the first embodiment includes a light receiving element 12 capable of receiving ultraviolet light, an attenuation or light shielding unit 20, and a light diffusion unit 16.

受光素子12は、公知のフォトダイオードなどの紫外線受光素子12を適用することができる。受光素子12は、図3に示すように、センサパッケージ14内に設けることができる。   As the light receiving element 12, a known ultraviolet light receiving element 12 such as a photodiode can be applied. The light receiving element 12 can be provided in the sensor package 14 as shown in FIG.

減衰又は遮光部20は、受光素子12の受光面に対してほぼ垂直に向かって進む紫外線の少なくとも一部を減衰又は遮光するためのものである。減衰又は遮光部20の材質は、少なくとも紫外線を減衰又は遮光するものであれば特に限定されない。減衰又は遮光部20の材質は、紫外線および可視光を減衰または遮光するものであってもよい。   The attenuating or light shielding unit 20 is for attenuating or shielding at least a part of the ultraviolet light traveling substantially perpendicularly to the light receiving surface of the light receiving element 12. The material of the attenuation or light shielding unit 20 is not particularly limited as long as it at least attenuates or shields ultraviolet light. The material of the attenuation or light shielding unit 20 may be one that attenuates or shields ultraviolet light and visible light.

減衰又は遮光部20は、たとえば、樹脂フィルム、樹脂シート、金属膜、金属シート、金属蒸着膜、金属スパッタ膜、カーボン膜などを挙げることができる。
金属蒸着膜および金属スパッタ膜の材質としては、たとえば、アルミニウム、クロム、ニッケル、モリブデン、金、銀などを挙げることができる。カーボン膜は、たとえば、カーボン蒸着膜、または、ダイヤモンドライクカーボン薄膜などからなることができる。
Examples of the attenuation or light shielding unit 20 include a resin film, a resin sheet, a metal film, a metal sheet, a metal deposition film, a metal sputtering film, and a carbon film.
Examples of the material of the metal deposition film and the metal sputtered film include aluminum, chromium, nickel, molybdenum, gold, and silver. The carbon film can be composed of, for example, a carbon vapor-deposited film or a diamond-like carbon thin film.

減衰又は遮光部20は、塗料を塗布または印刷することにより形成してもよい。   The attenuation or light shielding unit 20 may be formed by applying or printing a paint.

減衰又は遮光部20は、図3〜7に示すように、平面的にみて、受光素子12を覆うように設けてもよい。具体的には、光拡散部16の受光素子12がある側の反対側の面に設ける態様(図4参照)、光拡散部16の受光素子12がある側の面に設ける態様(図5参照)、センサパッケージ14の光拡散部16側の面に設ける態様(図6参照)のいずれかの態様、または、これら態様の組み合わせの態様(図3参照)をとってもよい。減衰又は遮光部20は、図8(A)に示すように、受光素子12を完全に覆うように設けることができる。受光素子12の端と、減衰又は遮光部20の端とを結んだ線と、受光素子12の受光面の垂線とのなす角度α°がたとえば30°〜50°、好ましくは40°〜45°とすることができる。これにより受光面に対して垂直方向からの紫外線を斜め方向からの紫外線と比較して減衰させることができる。   The attenuation or light shielding unit 20 may be provided so as to cover the light receiving element 12 in a plan view, as shown in FIGS. More specifically, a mode in which the light receiving element 12 of the light diffusion unit 16 is provided on the surface opposite to the side where the light receiving element 12 is provided (see FIG. 4), and a mode in which the light receiving element 12 is provided on the surface of the light diffusion unit 16 where the light receiving element 12 is provided (see FIG. ), A mode provided on the surface of the sensor package 14 on the light diffusion section 16 side (see FIG. 6), or a mode of a combination of these modes (see FIG. 3). As shown in FIG. 8A, the attenuation or light shielding unit 20 can be provided so as to completely cover the light receiving element 12. An angle α ° formed between a line connecting the end of the light receiving element 12 and the end of the attenuation or light shielding portion 20 and a perpendicular to the light receiving surface of the light receiving element 12 is, for example, 30 ° to 50 °, preferably 40 ° to 45 °. It can be. This makes it possible to attenuate ultraviolet light from a direction perpendicular to the light receiving surface as compared with ultraviolet light from an oblique direction.

また、図8(B)および図8(C)に示すように、平面的にみて、受光素子12の中央部分における減衰又は遮光部20が被覆する面積の密度が、受光素子12の中央部分より外側における減衰又は遮光部20が被覆する面積の密度よりも大きくすることができる。これにより受光面に対して垂直方向からの紫外線を斜め方向からの紫外線と比較して減衰さえることができる。   Further, as shown in FIGS. 8B and 8C, when viewed in plan, the density of the area covered by the attenuation or light shielding portion 20 in the central portion of the light receiving element 12 is higher than that of the central portion of the light receiving element 12. It can be made larger than the density of the area covered by the attenuation or the light shielding unit 20 on the outside. This makes it possible to attenuate the ultraviolet light from the direction perpendicular to the light receiving surface as compared with the ultraviolet light from the oblique direction.

減衰又は遮光部20は、複数の減衰または遮蔽機能を有する構成要素から構成され、その構成要素は、平面的にみて方形または略方形(図8(B))および円形または略方形(図8(C))の少なくとも一方の形状を有し、所定のパターンで配置されていることができる。中央部分の構成要素の面積は、中央部分の外側の構成要素より、面積を大きくすることができる。より具体的には、中央から外側に向かうにしたがって、構成要素の面積を小さくすることができる。これにより受光面に対して垂直方向からの紫外線を斜め方向からの紫外線と比較して減衰させることができる。   The attenuation or light shielding unit 20 is composed of a plurality of components having an attenuation or shielding function, and the components are square or substantially square (FIG. 8B) and circular or substantially square (FIG. C)), and may be arranged in a predetermined pattern. The area of the components in the central portion can be larger than the components outside the central portion. More specifically, the area of the component can be reduced from the center to the outside. This makes it possible to attenuate ultraviolet light from a direction perpendicular to the light receiving surface as compared with ultraviolet light from an oblique direction.

また、減衰又は遮光部20の構成要素は、同心円状(図8(D))、同心略円状、同心正方形状などの同心方形状(図8(E))、同心略方形状などの同心多角形状としてもよい。   The components of the attenuation or light shielding unit 20 are concentric, such as concentric circles (FIG. 8D), concentric substantially circular shapes, concentric square shapes (FIG. 8E), and concentric substantially rectangular shapes. It may be polygonal.

減衰又は遮光部20の厚さは、その材質が有する減衰又は遮光機能やその形成方法により異なるが、蒸着膜の場合にはたとえば0.5μm〜10μmとすることができ、印刷により形成される場合にはたとえば5〜20μmとすることができる。   The thickness of the attenuation or light-shielding portion 20 varies depending on the attenuation or light-shielding function of the material and the method of forming the material. However, in the case of a vapor-deposited film, the thickness can be, for example, 0.5 μm to 10 μm. Can be, for example, 5 to 20 μm.

光拡散部16は、受光素子12に向かって進む光を拡散するためのものであり、光拡散機能を有するものであれば特に限定されず、たとえばアクリル板またはシクロオレフィン板からなることができる。   The light diffusing unit 16 is for diffusing light traveling toward the light receiving element 12, and is not particularly limited as long as it has a light diffusing function, and can be made of, for example, an acrylic plate or a cycloolefin plate.

(2)特性
紫外線センサ100は、受光素子12が、紫外線センサ100の受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、受光素子12の感度f(x)の特性を有する場合において、紫外線の入射角度xを横軸とし、感度f1(x)を縦軸としたときに、感度f1(x)のグラフは上に凸の形状を有し、f1(x)のグラフの凸の形状部分の最高感度I1maxに対して、最高感度I1maxに対応する入射角度における減衰又は遮光部20及び光拡散部16の減衰割合D1maxを乗じて得た感度I1Emaxとし、受光素子12の受光面に対してグラフの半値幅の入射角度x1/2の方向からの紫外線における受光素子12の感度I11/2に対して、減衰又は遮光部20における半値幅に対応する入射角度x1/2における減衰又は遮光部20及び光拡散部16の減衰割合D11/2を乗じて得た感度I1E1/2とが、以下の式を満たすことができる。
(式1)
(|I1Emax−I1E1/2|/I1E1/2)×100≦50
I1Emax=I1max×D1max
I1E 1/2=I11/2×D11/2
「(|I1Emax−I1E1/2|/I1E1/2)×100」は、好ましくは40以下、より好ましくは30以下である。
(2) Characteristics In the ultraviolet sensor 100, the light receiving element 12 is defined as x when the incident angle of ultraviolet light incident from the perpendicular direction to the light receiving surface of the ultraviolet sensor 100 is 0 °, and the light receiving element 12 is In the case of having the characteristic of the sensitivity f (x), when the incident angle x of the ultraviolet ray is on the horizontal axis and the sensitivity f1 (x) is on the vertical axis, the graph of the sensitivity f1 (x) has an upwardly convex shape. The maximum sensitivity I1 max of the convex portion of the graph of f1 (x) is multiplied by the attenuation at the incident angle corresponding to the maximum sensitivity I1 max or the attenuation ratio D1 max of the light shielding unit 20 and the light diffusion unit 16. The sensitivity I1 Emax obtained by the above is attenuated or shielded from the sensitivity I1 1/2 of the light receiving element 12 in the ultraviolet light from the direction of the incident angle x 1/2 of the half width of the graph with respect to the light receiving surface of the light receiving element 12. In part 20 Kicking and sensitivity I1 E1 / 2 obtained by multiplying the attenuation ratio D1 1/2 of attenuation or shielding portion 20 and the light diffusion portion 16 at an incident angle x 1/2 corresponding to the half value width, to satisfy the following formula it can.
(Equation 1)
(| I1 Emax −I1 E1 / 2 | / I1 E1 / 2 ) × 100 ≦ 50
I1 Emax = I1 max × D1 max
I1 E 1/2 = I1 1/2 × D1 1/2
“(| I1 Emax −I1 E1 / 2 | / I1 E1 / 2 ) × 100” is preferably 40 or less, more preferably 30 or less.

図9(A)は受光素子12の感度曲線(f1(x))を模式的に示したものと、紫外線が光拡散部16を通過した場合の受光素子12の感度曲線(f1a(x))を模式的に示したものとを示す。図9(B)は、減衰又は遮光部20及び光拡散部16の減衰特性を模式的に示したものである。図10は、受光素子12の感度に対して、減衰又は遮光部20及び光拡散部16の減衰割合を乗じて得たグラフを模式的に示す。   FIG. 9A schematically shows the sensitivity curve (f1 (x)) of the light receiving element 12, and the sensitivity curve (f1a (x)) of the light receiving element 12 when the ultraviolet light passes through the light diffusion section 16. Are schematically shown. FIG. 9B schematically shows the attenuation or attenuation characteristics of the light shielding unit 20 and the light diffusion unit 16. FIG. 10 schematically shows a graph obtained by multiplying the sensitivity of the light receiving element 12 by the attenuation or the attenuation ratio of the light shielding unit 20 and the light diffusion unit 16.

3.第2の実施の形態
(1)構成例
第2の実施の形態に係る紫外線センサ100は、図11に示すように、紫外線を受光し得る受光素子12を含み、受光素子12の受光面に対してほぼ垂直に向かって進む紫外線を屈折させて受光面に導くための光案内部30を含む。
3. 2. Second Embodiment (1) Configuration Example As shown in FIG. 11, an ultraviolet sensor 100 according to a second embodiment includes a light receiving element 12 that can receive ultraviolet light. And a light guide portion 30 for refracting ultraviolet light traveling substantially vertically and guiding the ultraviolet light to the light receiving surface.

受光素子12は、公知のフォトダイオードなどの紫外線受光素子12を適用することができる。受光素子12は、図3に示すように、センサパッケージ14内に設けることができる。   As the light receiving element 12, a known ultraviolet light receiving element 12 such as a photodiode can be applied. The light receiving element 12 can be provided in the sensor package 14 as shown in FIG.

光案内部30は、光拡散部36と、所定の透過割合を有する光透過体32とを含むことができる。紫外線センサ100は、受光素子12、光拡散部36、光透過体32の順に配置することができる。   The light guide unit 30 may include a light diffusion unit 36 and a light transmitting body 32 having a predetermined transmission ratio. The ultraviolet sensor 100 can be arranged in the order of the light receiving element 12, the light diffusion section 36, and the light transmitting body 32.

光拡散部36は、受光素子12に向かって進む光を拡散するためのものであり、光拡散機能を有するものであれば特に限定されない。光透過体の材質は、たとえば、紫外線透過ガラス、アクリル樹脂やシクロオレフィンポリマーなどのプラスチックなどからなることができる。   The light diffusion section 36 is for diffusing light traveling toward the light receiving element 12, and is not particularly limited as long as it has a light diffusion function. The material of the light transmitting body can be made of, for example, ultraviolet transmitting glass, plastic such as acrylic resin or cycloolefin polymer, or the like.

また、光透過体は、光拡散機能は、少なくとも、紫外線を遮蔽する材質を遮断する材質の微小粉末(たとえばチタンオキサイドやカーボンや金属粉末など)をフィラーとして混ぜ込んでもよい。   The light transmitting body may have a light diffusion function in which at least a fine powder (for example, titanium oxide, carbon, metal powder, or the like) of a material that blocks ultraviolet light is used as a filler.

光透過体の表面は、所定の粗さを有していてもよい。その表面の粗さとしては、表面粗さをRaでいうと、たとえば、Ra5〜25μmとすることができる。   The surface of the light transmitting body may have a predetermined roughness. The surface roughness may be, for example, Ra 5 to 25 μm in terms of surface roughness Ra.

光透過体32の透過割合は、たとえば、10%以上、好ましくは、10〜80%とすることができる。光透過体32は、図11に示すように、凸レンズ状(図11(A))、凸レンズの上の部分を切り欠いた形状(図11(B))または平板状(図11(C))とすることができる。   The transmission ratio of the light transmitting body 32 can be, for example, 10% or more, preferably 10 to 80%. As shown in FIG. 11, the light transmitting body 32 has a convex lens shape (FIG. 11A), a shape in which a portion above the convex lens is cut off (FIG. 11B), or a flat plate shape (FIG. 11C). It can be.

(2)特性
紫外線センサ100は、受光素子12が、紫外線センサ100の受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、受光素子12の感度f2(x)の特性を有する場合において、紫外線の入射角度xを横軸とし、感度f2(x)を縦軸としたときに、感度f2(x)のグラフは上に凸の形状を有し、f2(x)のグラフの凸の形状部分の最高感度I2maxに対して、最高感度I2maxに対応する入射角度における光案内部30の減衰割合D2maxを乗じて得た感度I2Emaxとし、受光素子12の受光面に対してグラフの半値幅の入射角度x1/2の方向からの紫外線における受光素子12の感度I21/2に対して、減衰又は遮光部20における半値幅に対応する入射角度x1/2における光案内部30の減衰割合D21/2を乗じて得た感度I2E1/2とが、以下の式を満たすことができる。
(式2)
(|I2Emax−I2E1/2|/I2E1/2)×100≦50
I2Emax=I2max×D2max
I2E1/2=I21/2×D21/2
ここで、「(|I2Emax−I2E1/2|/I2E1/2)×100」は、好ましくは40以下、より好ましくは30以下である。
(2) Characteristics In the ultraviolet sensor 100, the light receiving element 12 is defined as x when the incident angle of ultraviolet light incident from the perpendicular direction to the light receiving surface of the ultraviolet sensor 100 is 0 °, and the light receiving element 12 is When the sensitivity f2 (x) has the characteristic of f2 (x), the graph of the sensitivity f2 (x) has an upward convex shape when the incident angle x of the ultraviolet ray is the horizontal axis and the sensitivity f2 (x) is the vertical axis. The sensitivity I2 Emax obtained by multiplying the maximum sensitivity I2 max of the convex portion of the graph of f2 (x) by the attenuation ratio D2 max of the light guide 30 at an incident angle corresponding to the maximum sensitivity I2 max. In relation to the sensitivity I2 1/2 of the light receiving element 12 with respect to the ultraviolet rays from the direction of the incident angle x 1/2 of the half value width of the graph with respect to the light receiving surface of the light receiving element 12, Corresponding The sensitivity I2E1 / 2 obtained by multiplying the attenuation ratio D21 / 2 of the light guide unit 30 at the incident angle x1 / 2 can satisfy the following expression.
(Equation 2)
(| I2 Emax -I2 E1 / 2 | / I2 E1 / 2 ) × 100 ≦ 50
I2 Emax = I2 max × D2 max
I2 E1 / 2 = I2 1/2 × D2 1/2
Here, “(| I2 Emax −I2 E1 / 2 | / I2 E1 / 2 ) × 100” is preferably 40 or less, more preferably 30 or less.

図12(A)は、受光素子12の入射角度依存感度特性を模式的に示す。図12(B)は光案内部30の入射角度依存減衰率を模式的に示す。図13(A)は、受光素子12の感度に対して、光案内部30の減衰割合を乗じて得たグラフを模式的に示す。図13(B)は、図13(A)の感度を増幅したものである。   FIG. 12A schematically shows the incident angle dependent sensitivity characteristics of the light receiving element 12. FIG. 12B schematically shows the incident angle dependent attenuation rate of the light guide 30. FIG. 13A schematically shows a graph obtained by multiplying the sensitivity of the light receiving element 12 by the attenuation ratio of the light guide unit 30. FIG. 13B is an amplification of the sensitivity of FIG.

4.応用例
紫外線量測定装置100は、図14に示すように、筐体40と、実施の形態に係る紫外線センサ100と含む。紫外線センサ100は、筐体40に複数設けてもよく、紫外線センサ100を複数設けることで、より広角で紫外線量を測定することができる。紫外線センサ100の向く方向のなす角度は、たとえば70°〜90°とすることができる。具体的には、図14(A)に示すように、4つの紫外線センサ100を紫外線量測定装置に設けることができる。図14(A)の各矢印は、受光素子12の受光面の垂直方向を示す。図14(B)に示すように、紫外線量測定装置100の上下の面に紫外線センサ100を設けてもよい。複数の紫外線センサ100を配置することで、あらゆる方向からの紫外線を受光することができる。
4. Application Example As shown in FIG. 14, the ultraviolet ray amount measuring apparatus 100 includes a housing 40 and the ultraviolet ray sensor 100 according to the embodiment. A plurality of ultraviolet sensors 100 may be provided in the housing 40. By providing a plurality of ultraviolet sensors 100, the amount of ultraviolet light can be measured at a wider angle. The angle formed by the direction in which the ultraviolet sensor 100 faces can be, for example, 70 ° to 90 °. Specifically, as shown in FIG. 14A, four ultraviolet sensors 100 can be provided in the ultraviolet ray amount measuring device. Each arrow in FIG. 14A indicates the vertical direction of the light receiving surface of the light receiving element 12. As shown in FIG. 14B, ultraviolet sensors 100 may be provided on the upper and lower surfaces of the ultraviolet light amount measuring device 100. By arranging a plurality of ultraviolet sensors 100, ultraviolet rays from all directions can be received.

上記の実施の形態は、本発明の要旨の範囲内で種々の変更が可能である。   The above embodiment can be variously modified within the scope of the present invention.

10 紫外線センサ
12 受光素子
14 センサパッケージ
16 光拡散部
20 減衰又は遮光部
30 光案内部
32 光透過体
36 光拡散部
40 筐体
100 紫外線測定装置


DESCRIPTION OF SYMBOLS 10 Ultraviolet sensor 12 Light receiving element 14 Sensor package 16 Light diffusing part 20 Attenuation or light shielding part 30 Light guide part 32 Light transmitting body 36 Light diffusing part 40 Housing 100


Claims (12)

紫外線を受光し得る受光素子を含み、
前記受光素子の受光面に対してほぼ垂直に向かって進む紫外線の少なくとも一部を減衰又は遮光するための減衰又は遮光部と、
前記受光素子に向かって進む光を拡散するための光拡散部とを含む紫外線センサ。
Including a light receiving element that can receive ultraviolet light,
An attenuation or light-shielding portion for attenuating or shielding at least a part of ultraviolet light that travels substantially perpendicular to the light-receiving surface of the light-receiving element,
A light diffusion unit for diffusing light traveling toward the light receiving element.
請求項1において、
前記受光素子が、前記紫外線センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、前記受光素子の感度f(x)の特性を有する場合において、
前記紫外線の入射角度xを横軸とし、前記感度f1(x)を縦軸としたときに、前記感度f1(x)のグラフは上に凸の形状を有し、
前記f1(x)のグラフの凸の形状部分の最高感度I1maxに対して、前記最高感度I1maxに対応する入射角度における前記減衰又は遮光部及び光拡散部の減衰割合D1maxを乗じて得た感度I1Emaxとし、
前記受光素子の受光面に対して前記グラフの半値幅の入射角度x1/2の方向からの紫外線における前記受光素子の感度I11/2に対して、前記減衰又は遮光部における前記半値幅に対応する入射角度x1/2における前記減衰又は遮光部及び光拡散部の減衰割合D11/2を乗じて得た感度I1E1/2とが、以下の式を満たす紫外線センサ。
(式1)
(|I1Emax−I1E1/2|/I1E1/2)×100≦50
I1Emax=I1max×D1max
I1E 1/2=I11/2×D11/2
In claim 1,
The incident angle of the ultraviolet ray when the incident angle of the ultraviolet ray incident on the light receiving surface of the ultraviolet ray sensor from the perpendicular direction is 0 ° is x, and the characteristic of the sensitivity f (x) of the light receiving element is x If you have
When the incident angle x of the ultraviolet rays is on the horizontal axis and the sensitivity f1 (x) is on the vertical axis, the graph of the sensitivity f1 (x) has an upwardly convex shape,
The maximum sensitivity I1 max of the convex portion of the graph of f1 (x) is obtained by multiplying the attenuation or the attenuation ratio D1 max of the light shielding portion and the light diffusion portion at the incident angle corresponding to the maximum sensitivity I1 max. Sensitivity I1 Emax ,
With respect to the sensitivity I11 / 2 of the light receiving element with respect to ultraviolet rays from the direction of the incident angle x 1/2 of the half width of the graph with respect to the light receiving surface of the light receiving element, corresponding the incident angle sensitivity obtained by multiplying the attenuation ratio D1 1/2 of the attenuation or shielding portion and a light diffusing portion in the x 1/2 I1 E1 / 2 is, the ultraviolet sensor that satisfies the following expression.
(Equation 1)
(| I1 Emax −I1 E1 / 2 | / I1 E1 / 2 ) × 100 ≦ 50
I1 Emax = I1 max × D1 max
I1 E 1/2 = I1 1/2 × D1 1/2
請求項1または2において、
平面的にみて、前記受光素子の中央部分における前記減衰又は遮光部が被覆する面積の密度が、前記受光素子の中央部分より外側における前記減衰又は遮光部が被覆する面積の密度よりも大きい紫外線センサ。
In claim 1 or 2,
As viewed in plan, the density of the area covered by the attenuation or light-shielding portion in the central portion of the light-receiving element is larger than the density of the area covered by the attenuation or light-shielding portion outside the central portion of the light-receiving element. .
請求項1〜3のいずれかにおいて、
前記減衰又は遮光部は、金属蒸着膜または塗布膜である紫外線センサ。
In any one of claims 1 to 3,
The ultraviolet sensor, wherein the attenuating or light shielding unit is a metal deposition film or a coating film.
請求項1〜4のいずれかにおいて、
前記減衰又は遮光部は、複数の減衰または遮蔽機能を有する構成要素から構成され、
前記構成要素は、平面的にみて方形および円形の少なくとも一方の形状を有し、所定のパターンで配置されている紫外線センサ。
In any one of claims 1 to 4,
The attenuating or light-shielding portion is configured by components having a plurality of attenuating or shielding functions,
The ultraviolet sensor, wherein the constituent elements have at least one of a square shape and a circular shape in plan view, and are arranged in a predetermined pattern.
紫外線を受光し得る受光素子を含み、
前記受光素子の受光面に対してほぼ垂直に向かって進む紫外線を屈折させて前記受光面に導くための光案内部を含み、
前記光案内部は、光透過体と、前記光透過体を通過した光を拡散させるための光拡散部とを含む紫外線センサ。
Including a light receiving element that can receive ultraviolet light,
Including a light guide for refracting ultraviolet light that travels substantially perpendicular to the light receiving surface of the light receiving element and guiding the ultraviolet light to the light receiving surface,
The ultraviolet sensor, wherein the light guide unit includes a light transmitting body and a light diffusing unit for diffusing light passing through the light transmitting body.
請求項6において、
前記受光素子が、前記紫外線センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときの紫外線の入射角度をxとし、前記受光素子の感度f2(x)の特性を有する場合において、
前記紫外線の入射角度xを横軸とし、前記感度f2(x)を縦軸としたときに、前記感度f2(x)のグラフは上に凸の形状を有し、
前記f2(x)のグラフの凸の形状部分の最高感度I2maxに対して、前記最高感度I2maxに対応する入射角度における前記光案内部の減衰割合D2maxを乗じて得た感度I2Emaxとし、
前記受光素子の受光面に対して前記グラフの半値幅の入射角度x1/2の方向からの紫外線における前記受光素子の感度I21/2に対して、前記減衰又は遮光部における前記半値幅に対応する入射角度x1/2における前記光案内部の減衰割合D21/2を乗じて得た感度I2E1/2とが、以下の式を満たす紫外線センサ。
(式2)
(|I2Emax−I2E1/2|/I2E1/2)×100≦50
I2Emax=I2max×D2max
I2E1/2=I21/2×D21/2
In claim 6,
The incident angle of the ultraviolet ray when the incident angle of the ultraviolet ray incident on the light receiving surface of the ultraviolet ray sensor from the perpendicular direction is 0 ° is x, and the characteristic of the sensitivity f2 (x) of the light receiving element is x If you have
When the incident angle x of the ultraviolet rays is set on the horizontal axis and the sensitivity f2 (x) is set on the vertical axis, the graph of the sensitivity f2 (x) has an upwardly convex shape,
The sensitivity I2 Emax is obtained by multiplying the maximum sensitivity I2 max of the convex portion of the graph of f2 (x) by the attenuation ratio D2 max of the light guide portion at an incident angle corresponding to the maximum sensitivity I2 max. ,
With respect to the sensitivity I21 / 2 of the light receiving element with respect to ultraviolet rays from the direction of the incident angle x1 / 2 of the half width of the graph with respect to the light receiving surface of the light receiving element, corresponding sensitivity I2 E1 / 2 obtained by multiplying the attenuation ratio D2 1/2 of the light guiding portion at an incident angle x 1/2 is UV sensor that satisfies the following expression.
(Equation 2)
(| I2 Emax -I2 E1 / 2 | / I2 E1 / 2 ) × 100 ≦ 50
I2 Emax = I2 max × D2 max
I2 E1 / 2 = I2 1/2 × D2 1/2
請求項6または7において、
前記光透過体は、10%以上の透過割合を有する紫外線センサ。
In claim 6 or 7,
The light transmitting body is an ultraviolet sensor having a transmission ratio of 10% or more.
請求項6〜8のいずれかにおいて、
前記光透過体は、凸レンズ状、凸レンズの上の部分を切り欠いた形状または平板状である紫外線センサ。
In any one of claims 6 to 8,
An ultraviolet sensor in which the light transmitting body has a convex lens shape, a shape in which a portion above the convex lens is cut away, or a flat plate shape.
請求項1〜9のいずれかにおいて、
前記紫外線は、太陽光の紫外線である紫外線センサ。
In any one of claims 1 to 9,
An ultraviolet sensor, wherein the ultraviolet light is ultraviolet light of sunlight.
請求項1〜10のいずれかにおいて、
所定の入射角度の紫外線との関係における前記受光素子の感度と、前記所定の入射角度の紫外線との関係における減衰又は遮光部の透過率とを乗じて得た値を実効感度とした場合に、前記センサの受光面に対して垂直方向から入射する紫外線の入射角度を0°としたときに紫外線の入射角度が−45°〜45°の範囲において、各入射角度のセンサの実効感度の平均値は、光の入射角度が−45°〜45°の範囲の平均値の±50%以内にある紫外線センサ。
In any one of claims 1 to 10,
When the sensitivity obtained by multiplying the sensitivity of the light receiving element in relation to the ultraviolet light at a predetermined incident angle and the transmittance of the attenuation or light shielding portion in the relation to the ultraviolet light at the predetermined incident angle, The average value of the effective sensitivities of the sensors at each incident angle in the range of -45 ° to 45 ° when the incident angle of the ultraviolet light incident from the perpendicular direction to the light receiving surface of the sensor is 0 °. Is an ultraviolet sensor having an incident angle of light within ± 50% of an average value in a range of −45 ° to 45 °.
請求項1〜11のいずれかの紫外線センサを含む紫外線量測定装置。


An ultraviolet ray measuring device including the ultraviolet ray sensor according to claim 1.


JP2018187014A 2018-10-01 2018-10-01 UV sensor and UV dose measuring device Active JP7224620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187014A JP7224620B2 (en) 2018-10-01 2018-10-01 UV sensor and UV dose measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187014A JP7224620B2 (en) 2018-10-01 2018-10-01 UV sensor and UV dose measuring device

Publications (2)

Publication Number Publication Date
JP2020056665A true JP2020056665A (en) 2020-04-09
JP7224620B2 JP7224620B2 (en) 2023-02-20

Family

ID=70107055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187014A Active JP7224620B2 (en) 2018-10-01 2018-10-01 UV sensor and UV dose measuring device

Country Status (1)

Country Link
JP (1) JP7224620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519070B1 (en) * 2022-07-11 2023-04-07 주식회사 루트센서 Optical sensor and electronic device including thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940480U (en) * 1972-07-07 1974-04-09
JPS50115084U (en) * 1974-02-28 1975-09-19
JPS52129251U (en) * 1976-03-27 1977-10-01
JPH07280643A (en) * 1993-11-12 1995-10-27 Heraeus Ind Gmbh Ultraviolet sensor
JP2012146706A (en) * 2011-01-06 2012-08-02 Kobe Steel Ltd Ultraviolet sensor element
JP2013195338A (en) * 2012-03-22 2013-09-30 Algan Kk Uv index measuring apparatus and measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940480U (en) * 1972-07-07 1974-04-09
JPS50115084U (en) * 1974-02-28 1975-09-19
JPS52129251U (en) * 1976-03-27 1977-10-01
JPH07280643A (en) * 1993-11-12 1995-10-27 Heraeus Ind Gmbh Ultraviolet sensor
JP2012146706A (en) * 2011-01-06 2012-08-02 Kobe Steel Ltd Ultraviolet sensor element
JP2013195338A (en) * 2012-03-22 2013-09-30 Algan Kk Uv index measuring apparatus and measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519070B1 (en) * 2022-07-11 2023-04-07 주식회사 루트센서 Optical sensor and electronic device including thereof

Also Published As

Publication number Publication date
JP7224620B2 (en) 2023-02-20

Similar Documents

Publication Publication Date Title
CN109212825B (en) Optical film and display module
CN1175286C (en) Light-changeable attenuator
JP4818721B2 (en) Optical member
JP2011516844A5 (en)
JP2011090117A (en) Optical image-forming device and optical image-forming method using the same
JP5454675B2 (en) Optical system for measurement, and color luminance meter and color meter using the same
JP7224620B2 (en) UV sensor and UV dose measuring device
KR20220004709A (en) Screen fingerprint recognition assembly and terminal equipment
US10613267B2 (en) Light guide assembly, backlight source and display device
JP5676929B2 (en) Diffractive optical element, optical system and optical instrument
WO2011024573A1 (en) Imaging device
CN110662989A (en) Diffractive optical element, projection device, and measurement device
JP6668689B2 (en) Lighting modules and large lighting devices
CN106569360A (en) Light guide sheet, backlight apparatus and liquid crystal display apparatus
JP2011257663A (en) Diffraction optical element, optical system and optical equipment
WO2012099123A1 (en) Light guide plate, surface light source device, and transmissive image display device
JP6981074B2 (en) Optical element
JPWO2019093146A1 (en) Diffractive optical element
WO2015190296A1 (en) Diffraction grating and displacement measurement device
TW202028842A (en) Lens and electronic device having the same
JP2016181394A (en) Surface light source device
JP5410473B2 (en) Optical member
EP3279707A1 (en) Anti-reflective structure
KR20200101722A (en) Optical structures for light emitting diode device and light emitting diode device for lighting having the same
US9606295B1 (en) Lens assembly for fiber-optic communication system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7224620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150