WO2012099123A1 - Light guide plate, surface light source device, and transmissive image display device - Google Patents

Light guide plate, surface light source device, and transmissive image display device Download PDF

Info

Publication number
WO2012099123A1
WO2012099123A1 PCT/JP2012/050859 JP2012050859W WO2012099123A1 WO 2012099123 A1 WO2012099123 A1 WO 2012099123A1 JP 2012050859 W JP2012050859 W JP 2012050859W WO 2012099123 A1 WO2012099123 A1 WO 2012099123A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
guide plate
emitted
light guide
Prior art date
Application number
PCT/JP2012/050859
Other languages
French (fr)
Japanese (ja)
Inventor
寛史 太田
健太郎 百田
関口 泰広
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012099123A1 publication Critical patent/WO2012099123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the present invention relates to a light guide plate, a surface light source device, and a transmissive image display device.
  • a transmissive image display device such as a liquid crystal display device is generally disposed on the back side of a transmissive image display unit such as a liquid crystal display panel.
  • the transmissive image display device includes a surface light source device that supplies a backlight to the transmissive image display unit.
  • a surface light source device an edge light type surface light source device is known (see, for example, Patent Document 1).
  • the edge-light type surface light source device includes a light-transmitting light guide plate and a light source that is disposed on the side of the light guide plate and supplies light to the side surface of the light guide plate.
  • White dots for reflecting light are provided on the back side of the light guide plate.
  • the light output from the light source enters the light guide plate from the side surface of the light guide plate facing the light source.
  • the light incident on the light guide plate propagates while totally reflecting inside the light guide plate. Since a plurality of white dots are formed on the back side of the light guide plate (see, for example, Patent Document 1), the light reflected by the white dots is emitted from the exit surface on the transmissive image display unit side of the light guide plate.
  • a transmissive image display device a light guide plate, a transmissive image display unit, A prism plate is arranged between the two.
  • a prism plate there is one in which a plurality of prism portions are arranged in parallel on the surface on the transmissive image display portion side.
  • an object of the present invention is to provide a light guide plate capable of improving luminance in the front direction, a surface light source device including the light guide plate, and a transmissive image display device.
  • the light guide plate according to the present invention is a prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions extending from the prism portion.
  • the light guide plate is provided on the back side opposite to the one side with respect to the prism plates arranged in parallel in a direction substantially orthogonal to the direction.
  • the light guide plate intersects the first surface located on the prism portion side, the second surface located on the opposite side of the first surface, and the first and second surfaces, and light is incident thereon.
  • An incident surface and a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface.
  • Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%.
  • the first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface
  • the second light quantity is emitted light emitted from the one point to a predetermined region.
  • the predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ⁇ 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
  • the surface light source device is a prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions being prism portions.
  • This is a surface light source device that supplies light to a surface opposite to one surface of a prism plate arranged in parallel in a direction substantially orthogonal to the extending direction.
  • the surface light source device (1) (1a) intersects the first surface located on the prism portion side, the second surface located opposite to the first surface, and the first and second surfaces.
  • a plate-like main body having an incident surface on which the incident light is incident; and (1b) a guide having a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface.
  • a light plate and (2) a light source unit that is disposed on the side of the incident surface of the light guide plate and supplies light to the incident surface.
  • Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%.
  • the first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface, and the second light quantity is emitted light emitted from the one point to a predetermined region.
  • the predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ⁇ 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
  • the transmissive image display device is (A) a prism plate having a plurality of prism portions formed on one side, and each of the plurality of prism portions extends in one direction, A prism plate in which a plurality of prism portions are arranged in parallel in a direction substantially orthogonal to the extending direction of the prism portion, and (B) a light guide plate provided on the back side opposite to one side with respect to the prism plate, (B1) A first surface located on the prism portion side, a second surface located on the opposite side of the first surface, and an incident surface that intersects the first and second surfaces and receives light.
  • a light guide plate having a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface, and (C) a light guide plate A light source unit that supplies light to the incident surface, and (D) on one side of the prism plate.
  • Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%.
  • the first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface
  • the second light quantity is emitted light emitted from the one point to a predetermined region.
  • the predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ⁇ 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
  • the surface of the prism plate that faces the light guide plate (the surface opposite to the one surface) is referred to as the back surface.
  • the light incident from the incident surface of the light guide plate propagates while being totally reflected in the light guide plate.
  • the light propagating in the light guide plate enters the lens unit provided on the second surface, the light propagating in the light guide plate is reflected by the lens unit under a condition different from the total reflection condition. Therefore, the light reflected by the lens unit is emitted from the first surface of the main body unit. In this way, the light emitted from the first surface is formed in a shape satisfying the above-described conditions, so that each of the plurality of lens portions formed on the second surface is 25 ° to 35 °. It is easy to be emitted with an emission angle in the range.
  • the light guide plate Since the light guide plate is provided on the back surface side of the prism plate, the light emitted from the light guide plate enters the prism plate from the back surface of the prism plate.
  • the incident angle of the light to the prism plate is substantially equal to the outgoing angle of the light from the light guide plate. Therefore, the incident angle of the emitted light from the first surface to the prism plate tends to be in the range of 25 ° to 35 °.
  • the light incident at such an incident angle is emitted from the prism portion, more light is emitted in the front direction. As a result, the luminance in the front direction is improved.
  • the transmissive image display unit is provided on the prism plate, the transmissive image display unit is illuminated with light having higher luminance in the front direction. As a result, it is possible to improve the luminance of the image displayed on the transmissive image display unit.
  • a light guide plate capable of improving luminance in the front direction, a surface light source device including the light guide plate, and a transmissive image display device can be provided.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a transmissive image display device to which an embodiment of a light guide plate according to the present invention is applied.
  • FIG. 2 is a plan view when the light guide plate shown in FIG. 1 is viewed from the back side.
  • FIG. 3 is a diagram for explaining the shape of the lens unit
  • FIG. 3A is a diagram showing a setting state of a local coordinate system on the exit surface
  • FIG. 3 is a drawing for explaining a method for defining an angle from the z-axis and the x-axis in the coordinate system shown in FIG. 3A
  • FIG. 3C is a drawing for explaining a predetermined region.
  • FIG. 4 is a diagram for explaining an example of the outer shape of the lens unit.
  • FIG. 4 is a diagram for explaining an example of the outer shape of the lens unit.
  • FIG. 5 is a chart showing conditions for defining the outer shape of the lens portion.
  • 6 is a partially enlarged view of the transmissive image display device shown in FIG.
  • FIG. 7 is a schematic diagram illustrating an example of the configuration of a light guide plate in which a plurality of white dots are formed on the back surface.
  • Figure 8 is a graph showing the results of measuring the intensity distribution of the emitted light with respect to emission angle theta o.
  • FIG. 9 is a schematic diagram showing a simulation model.
  • FIG. 10 is a drawing showing the outer shape of the lens unit used in the simulation.
  • FIG. 11 is a chart showing the relationship between the lens shape used in the simulation and the light quantity ratio.
  • FIG. 12 is a chart showing the relationship between the lens shape used in the simulation and the light quantity ratio.
  • Figure 12 is a table showing the k a and aspect ratio [h a / w a] and de determined lens radius of curvature r of the tip to the width w a of the shape shown in FIG. 11.
  • Figure 14 is a table showing the k a and aspect ratio [h a / w a] and de determined lens radius of curvature r of the tip to the width w a of the shape shown in FIG. 12.
  • Figure 15 is a table showing the bottom angle of the lens shape determined out with k a and an aspect ratio shown in FIG. 11 [h a / w a] .
  • Figure 16 is a table showing the bottom angle of the lens shape determined out with k a and aspect ratio [h a / w a] shown in FIG. 12.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a transmissive image display device to which an embodiment of a light guide plate according to the present invention is applied.
  • the cross-sectional configuration of the transmissive image display device 10 is shown in an exploded manner.
  • light is schematically shown as light rays.
  • the transmissive image display device 10 can be suitably used as a display device for a mobile phone or various electronic devices, or a television device.
  • the transmissive image display device 10 includes a transmissive image display unit 20, a surface light source device 30 that outputs planar light to be supplied to the transmissive image display unit 20, a transmissive image display unit 20, and a surface light source device. 30 and a prism plate 40 disposed between them.
  • a Z direction the direction in which the prism plate 40 and the transmissive image display unit 20 are arranged with respect to the surface light source device 30
  • X direction and Y direction Two directions orthogonal to the Z direction.
  • the X direction and the Y direction are orthogonal.
  • the transmissive image display unit 20 displays an image by being illuminated with planar light emitted from the light guide plate 50.
  • An example of the transmissive image display unit 20 is a liquid crystal display panel as a polarizing plate bonding body in which linear polarizing plates 22 and 23 are arranged on both surfaces of a liquid crystal cell 21.
  • the transmissive image display device 10 is a liquid crystal display device (or a liquid crystal television).
  • the liquid crystal cell 21 and the polarizing plates 22 and 23 those used in a transmissive image display device such as a conventional liquid crystal display device can be used.
  • Examples of the liquid crystal cell 21 are a TFT type liquid crystal cell and an STN type liquid crystal cell.
  • the prism plate 40 is used to collect light emitted from the light guide plate 50 in the front direction.
  • the prism plate 40 is an optical sheet in which a plurality of prism portions 41 are formed on a surface 40a that is one surface on the transmission image display unit 20 side.
  • the plan view shape of the prism plate 40 is substantially rectangular.
  • the prism portion 41 extends in one direction (Y direction in FIG. 1).
  • the plurality of prism portions 41 are arranged in parallel in the extending direction of the prism portion 41.
  • the prism portion 41 has a triangular prism shape, and the cross-sectional shape orthogonal to the extending direction of the prism portion 41 is a right triangle whose apex angle ⁇ is substantially a right angle.
  • the apex angle ⁇ may be an angle within the range of 80 ° to 100 °.
  • the apex angle ⁇ is more preferably 80 ° or greater and 90 ° or less, and even more preferably 90 °.
  • the cross-sectional shape of the prism portion 41 is preferably a right isosceles triangle.
  • the shape of the top portion 41a of the prism portion 41 may be a curved shape that is caused by a manufacturing error or the like.
  • the prism plate 40 is made of a translucent material (or a transparent material).
  • Examples of the refractive index of the translucent material are 1.46 to 1.62.
  • Examples of the translucent material are a translucent resin material and a translucent glass material.
  • Examples of the translucent resin material include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index).
  • the back surface 40b of the prism plate 40 is usually a smooth surface. However, the back surface 40b may be a rough surface having a roughness that does not significantly impair the light collecting function of the prism plate 40. When the back surface 40b is the rough surface described above, for example, when another optical member is disposed between the prism plate 40 and the light guide plate 50, the optical member and the prism plate 40 can be prevented from sticking to each other. .
  • the thickness of the prism plate 40 may be the distance between the top 41a of the prism portion 41 and the substantially flat back surface 40b (surface opposite to the front surface 40a) of the prism plate 40.
  • An example of the thickness of the prism plate 40 is 0.1 mm or more and 5 mm or less.
  • the surface light source device 30 is an edge light type backlight unit that supplies a backlight to the transmissive image display unit 20.
  • the surface light source device 30 includes a light guide plate 50 and light source units 60 and 60 disposed on the side surfaces 50a and 50b of the light guide plate 50 facing each other.
  • the light source units 60 and 60 have a plurality of point light sources 61 arranged in a line (in FIG. 1, arranged in the Y direction).
  • An example of the point light source 61 is a light emitting diode.
  • the light source unit 60 may include a reflector as a reflection unit that reflects light on the side opposite to the light guide plate 50 in order to efficiently make light incident on the light guide plate 50.
  • the light source unit 60 including the plurality of point light sources 61 is illustrated, but the light source unit 60 may be a linear light source such as a fluorescent lamp.
  • the surface light source device 30 may include a reflecting unit 70 located on the opposite side of the transmissive image display unit 20 with respect to the light guide plate 50.
  • the reflection unit 70 is for causing the light emitted from the light guide plate 50 to the reflection unit 70 side to enter the light guide plate 50 again.
  • the reflection part 70 may be a sheet-like thing as FIG. 1 shows.
  • the reflection unit 70 may be a bottom surface of the housing of the surface light source device 30 that accommodates the light guide plate 50 and that is mirror-finished.
  • FIG. 2 is a plan view when the light guide plate 50 shown in FIG. 1 is viewed from the back side.
  • the light guide plate 50 may have a substantially rectangular shape in plan view.
  • the light guide plate 50 includes a plate-shaped main body 51 and a plurality of lens portions 52 formed on the main body 51.
  • the main body 51 is made of a translucent material (or a transparent material). Examples of the refractive index of the translucent material are 1.46 to 1.62. Examples of the translucent material are a translucent resin material and a translucent glass material. Examples of the translucent resin material include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index).
  • the main body 51 has an emission surface (first surface) 51a and a back surface (second surface) 51b that face each other in the thickness direction.
  • the emission surface 51a and the back surface 51b are substantially flat.
  • the main body 51 has four side surfaces 51c, 51d, 51e, and 51f that intersect the emission surface 51a and the back surface 51b.
  • two side surfaces 51c and 51d that face each other in the X direction are shown.
  • the side surface 51 c and the side surface 51 d are also the side surface 50 a and the side surface 50 b facing the light source unit 60.
  • the remaining two side surfaces 51e, 51f see FIG.
  • FIG. 1 shows a state in which the side surface 51c and the side surface 51d are substantially orthogonal to the output surface 51a and the back surface 51b as an example of the arrangement relationship between the side surface 51c and the side surface 51d and the output surface 51a and the back surface 51b.
  • the other side surfaces 51e and 51f of the main body 51 are also orthogonal to the emission surface 51a and the back surface 51b will be described.
  • the plurality of lens portions 52 are formed on the back surface 51b.
  • the lens part 52 is transparent and is for emitting light propagating through the light guide plate 50 from the emission surface 51a side.
  • the outer shape of each lens portion 52 is a dome shape.
  • each lens part 52 will be described. For simplification of description, a mode in which the sizes of the plurality of lens units 52 are the same will be described.
  • the lens unit 52 When light is emitted from an arbitrary point (one point) p on the emission surface 51a, the lens unit 52 has a ratio (ratio) of the second light quantity to the first light quantity emitted from the point p that is the emission position.
  • the outer shape is larger than 0.252%.
  • the first light amount is an amount per unit time of all emitted light emitted from the point p.
  • the second light amount is an amount per unit time of the emitted light emitted from the point p to the predetermined area.
  • the predetermined region is a region where the angle range with respect to the normal line of the emission surface 51a at the point p is 25 ° or more and 35 ° or less, and the angular width around the normal line is ⁇ 5 ° with respect to the X direction.
  • the shape of the lens unit 52 will be described more specifically with reference to FIG.
  • FIG. 3 is a drawing for explaining the shape of the lens portion 52.
  • FIG. 3A is a diagram showing a local coordinate system setting state on the emission surface 51a.
  • FIG. 3B is a diagram for explaining a method for defining angles from the z-axis and the x-axis in the coordinate system shown in FIG.
  • FIG. 3C is a diagram for explaining the predetermined area.
  • a local xyz coordinate system with an arbitrary point p on the emission surface 51a as the origin is set, and a unit sphere with the origin as the center is assumed.
  • the z axis is orthogonal to the exit surface 51a. That is, the z-axis axis corresponds to the normal line of the exit surface 51a.
  • the x axis is substantially parallel to the X direction. That is, the x-axis is a direction substantially orthogonal to the side surfaces 51c and 51d that are incident surfaces.
  • the y axis substantially coincides with the Y direction.
  • the x-axis, y-axis, and z-axis correspond to the X direction, the Y direction, and the Z direction as well in FIGS. 3B and 3C. *
  • the angle (deflection angle) formed between the direction of the emitted light emitted from the point p and the z axis is ⁇
  • the angle formed between the direction of the emitted light and the x axis is ⁇
  • the range of the angle with respect to the normal line of the exit surface 51a at the point p corresponds to the angle range of ⁇ that is a declination from the z-axis
  • the angle width around the normal line is an angle range that ⁇ satisfies Corresponds to the width.
  • the first light amount that is the amount per unit time of all the light emitted in the range of 0 ° ⁇ ⁇ ⁇ 90 ° and 0 ° ⁇ ⁇ ⁇ 360 ° (the upper hemisphere of the sphere shown in FIG. 3) is obtained.
  • Q 2 be the second light amount that is the amount of light emitted per unit time per unit time.
  • the outer shape of the lens unit 52 is: 0.252 (%) ⁇ Q It is a shape satisfying.
  • FIG. 4 is a diagram for explaining an example of the outer shape of the lens unit 52.
  • FIG. 4 is a schematic diagram of a cross-sectional configuration of the light guide plate 50 including the central axis C of the lens unit 52.
  • the top of the lens unit 52 located on the opposite side of the back surface 51b is referred to as the tip 52a of the lens unit 52, and the back surface 51b side of the lens unit 52 is referred to as the bottom 52b of the lens unit 52.
  • the shape of the lens portion 52 is a shape in which the cross-sectional shape shown in FIG. 4 is rotated about the central axis C as the rotation axis. Therefore, the shape of the lens portion 52 is bilaterally symmetric in an arbitrary cross section including the central axis C.
  • the lens portion 52 has an outer shape such that the angle formed between the tangential plane in contact with the lens portion 52 and the back surface 51b monotonously decreases from the bottom 52b side to the tip end portion 52a side of the lens portion 52.
  • the width (diameter) of the lens portion 52 is w a ( ⁇ m), and the maximum height of the lens portion 52 is h a ( ⁇ m).
  • the outer shape of the lens unit 52 to light quantity ratio Q (%) satisfies the above range is the aspect ratio and h a / w a is the ratio of the maximum height h a for (I) the width w a, (II) Lens If the radius of curvature of the tip portion 52a of the part 52 is the r ([mu] m), a width w a ratio of radius of curvature r is the r / w a relative, and, (III) back 51b of the bottom portion 52b of the lens unit 52 Where h a / w a , r / w a and ⁇ are defined by any of the combinations in the chart shown in FIG. 5 when the angle with respect to (hereinafter referred to as the bottom angle) is ⁇ (°).
  • the shape can be made.
  • Curvature radius w a of the tip portion 52a represents the curvature of the tip portion 52a of the top portion of the lens portion 52.
  • the radius of curvature of the distal end portion 52a is a radius of a circle when a circle that is in contact with the distal end portion 52a (a circle indicated by a broken line in FIG. 4) is assumed.
  • the bottom angle is an angle formed between the tangential plane P of the lens unit 52 and the back surface 51b at the intersection of the contour line of the lens unit 52 and the back surface 51b in a cross section passing through the central axis C.
  • the bottom angle ⁇ corresponds to a contact angle when the lens unit 52 is regarded as a droplet.
  • the bottom of the tip 52a is also the bottom of the lens 52.
  • the bottom angle is also the skirt angle.
  • Width w a is a 5 ⁇ m to 1mm, preferably is 10 ⁇ m or more 500 ⁇ m or less.
  • the lens unit 52 having such a size is a so-called microlens.
  • the width w a is the maximum width corresponding lens portion 52.
  • h a is the thickness at the position of the tip portion 52a of the lens unit 52. Therefore, the aspect ratio [h a / w a ] is the thickness (or height) of the lens part 52 at the position of the tip part 52a with respect to the maximum width of the lens part 52, that is, the [thickness at the tip part position]. ] / [Maximum lens width].
  • the thickness of the lens portion 52 at the position of the tip portion 52a is the maximum, and therefore the thickness of the lens portion 52 at the position of the tip portion 52a is also the maximum thickness of the lens portion 52.
  • the ratio described in (II) corresponds to the ratio between the radius of curvature r and the maximum width of the lens portion 52, that is, [curvature radius] / [maximum width of the lens portion].
  • the material of the lens part 52 may be the same material as that of the main body part 51.
  • the material of the lens part 52 may be different from the material of the main body part 51 as long as it is a transparent material.
  • the main body 51 of the light guide plate 50 configured as described above may be a single-layer plate-like body made of a single translucent material, or layers made of different translucent materials are laminated. A plate-like body having a multilayer structure may be used.
  • the light guide plate 50 is a plate-like body made of a single translucent material.
  • an ultraviolet absorber when a translucent resin material is used as the translucent material constituting the main body 51 and the lens unit 52, an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, Additives such as flame retardants and lubricants may be added. These additives may be used alone or in combination of two or more.
  • the ultraviolet absorber is added to the light guide plate 50, the light guide plate 50 can be prevented from being deteriorated by the ultraviolet rays when the light output from the light source unit 60 includes a lot of ultraviolet rays. It is preferable to add an ultraviolet absorber to the.
  • UV absorbers examples include benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, malonic acid ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. Can be mentioned.
  • Preferred examples of the ultraviolet absorber are a benzotriazole ultraviolet absorber and a triazine ultraviolet absorber.
  • the translucent resin material is usually used without adding a light diffusing agent as an additive, but within a range that does not depart from the spirit of the present invention, that is, in a slight amount that does not impair the purpose of the present invention. If present, a light diffusing agent may be added to the translucent resin material.
  • the light diffusing agent a powder having a refractive index different from that of the transparent material as described above, which mainly forms the light guide plate 50, specifically, the main body 51 and the lens 52, is used. Used by dispersing in.
  • the light diffusing agent for example, organic particles such as styrene resin particles and methacrylic resin particles, and inorganic particles such as potassium carbonate particles and silica particles are used, and the particle diameter is usually 0.8 ⁇ m to 50 ⁇ m.
  • the exit surface 51a is preferably flat. However, the emission surface 51a may have a slight surface layer diffusion function in order to reduce moire.
  • the light guide plate 50 including the lens unit 52 can be manufactured by ink jet printing (ink jet method), photopolymer method, extrusion molding, injection molding, or the like.
  • an ultraviolet curable resin can be used as the material of the lens portion 52.
  • an acrylic ultraviolet curable resin can be used as the ultraviolet curable resin.
  • the main body 51 as a plate-like body is formed by extrusion molding or injection molding.
  • an ultraviolet curable resin is dropped (printed) onto the surface to be the back surface 51b of the main body 51 while operating the ink jet head.
  • the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin, so that the dropped ultraviolet curable resin becomes the lens portion 52.
  • An example of the ultraviolet curable resin when the lens portion 52 is formed from an ultraviolet curable resin is, for example, an acrylic ultraviolet curable resin.
  • the manufacturing method by ink jet printing is exemplified, but as described above, the light guide plate 50 in which the lens portion 52 is directly formed may be manufactured by extrusion molding, injection molding, or the like.
  • the material of the lens part 52 is the same as the material of the main body part 51.
  • FIG. 6 is a partially enlarged view of the transmissive image display apparatus 10 shown in FIG.
  • the side surface 50a (side surface 51c) side is shown enlarged in FIG.
  • the point light source 61 included in the light source unit 60 emits light
  • the light from the point light source 61 enters the light guide plate 50 from the side surface 50 a of the light guide plate 50 facing the point light source 61.
  • the light incident on the light guide plate 50 propagates in the light guide plate 50 while being totally reflected in the light guide plate 50.
  • the lens unit 52 When light propagating in the light guide plate 50 enters the lens unit 52, the light is reflected in the lens unit 52 under conditions other than the total reflection condition. Therefore, the reflected light is emitted from the emission surface 51a.
  • the lens unit 52 Since the lens unit 52 has a shape in which the light quantity ratio Q is larger than 0.252%, the emission angle ⁇ o of the light emitted from the emission surface 51a is about 30 °, more specifically, 25 ° to 35 °. It tends to be in the range below °. As a result, the brightness of light emitted to the transmissive image display unit 20 through the prism plate 40 is improved.
  • FIG. 7 is a schematic diagram showing an example of the configuration of the light guide plate 80 in which a plurality of white dots 81 are formed on the back surface 51b.
  • the point light source 61 and the prism plate 40 are also shown for the sake of explanation.
  • the configuration of the light guide plate 80 is the same as that of the light guide plate 50 except that white dots 81 are formed on the back surface 51b instead of the lens portion 52.
  • Elements of the light guide plate 80 that are the same as those of the light guide plate 50 are denoted by the same reference numerals.
  • the light output from the point light source 61 and entering the light guide plate 80 propagates in the light guide plate 80 while being totally reflected in the light guide plate 80.
  • the light propagating in the light guide plate 80 is reflected at the position of the white dot 81, the light reflected under conditions other than the total reflection condition is also generated. Therefore, the light reflected by the white dots 81 is emitted from the emission surface 51a.
  • the emission angle ⁇ o tends to be around 60 °.
  • Figure 8 is a graph showing the results of measuring the intensity distribution of the emitted light with respect to emission angle theta o. The horizontal axis of FIG.
  • the outgoing angle ⁇ o of the outgoing light from the outgoing face 51a is the outgoing angle ⁇ o of the outgoing light from the outgoing face 51a, and the vertical axis is the luminous intensity (cd).
  • Light emitted from the light guide plate 80 is incident on the prism plate 40 at approximately the same angle and the emission angle theta o. Therefore, the outgoing light emitted at the outgoing angle ⁇ o of about 60 ° enters the prism plate 40 at the incident angle ⁇ i of about 60 °.
  • the light incident on the prism plate 40 when the incident angle ⁇ i is around 60 ° is emitted from the prism portion 41, it is likely to be emitted in a direction away from the Z direction as shown in FIG. As a result, the light incident on the transmissive image display unit 20 tends to be reduced.
  • the light guide plate 50 light is easily emitted at an emission angle ⁇ o within a range of 30 ° ⁇ 5 ° (that is, 25 ° or more and 35 ° or less).
  • light enters the prism plate 40 at an incident angle ⁇ i of 30 ° ⁇ 5 °. If the incident angle theta i vicinity 30 ° of the light into the prism plate 40, the light emitted from the prism unit 41, as shown in FIG. 6, likely to be emitted in the thickness direction (Z-direction). In other words, more light emitted from the light guide plate 50 is collected in the front direction, which is the thickness direction.
  • the pair of side surfaces 42a and 42b constituting the prism portion 41 light emitted from one surface 42a is emitted in the plate thickness direction, while light emitted from the other surface 42b is emitted in the plate thickness direction. You may be away from However, since the light is easily emitted from the one side surface 42a in the thickness direction, the amount of light emitted toward the transmissive image display unit 20 is larger than when the incident angle ⁇ i is about 60 °. Therefore, the brightness in the front direction is improved, and as a result, a brighter image can be displayed on the transmissive image display unit 20.
  • FIG. 9 is a schematic diagram showing a simulation model.
  • the M components corresponding to components shown in FIG. 1 is described are denoted by the M as a light guide plate 50 M.
  • the point light sources 61 M and 61 M are disposed on the sides of the side surface 50 M a and the side surface 50 M b.
  • the point light sources 61 M and 61 M are located in the center of the short side direction in the short side direction of the light guide plate 50 M.
  • the simulation conditions are as follows.
  • -Constituent material of light guide plate 50 M main body 51 M and lens portion 52 M both assume PMMA (refractive index: 1.49)-shape of light guide plate 50 M in plan view (shape viewed from plate thickness direction): Rectangular / light guide plate 50 M long side length W1: 500mm ⁇
  • Reflector 70 M Assuming a mirror (100% reflectance)
  • Point light source 61 M Point light source, assuming isotropic emission Wavelength of light emitted from point light source 61 M : Assuming 550 nm -Distance between point light source 61 M and light guide plate 50 M : 0.1 mm Incidentally, assuming periodic boundary conditions in the body
  • the contour of the lens portion 52 M is represented by conic.
  • uv coordinate system is set, the cross-sectional shape of the lens portion 52 M is defined by the conic v (u) represented by the formula (1).
  • uv coordinate system v axis corresponds to the center axis C of the lens unit 52 M in FIG.
  • the u axis corresponds to the X direction shown in FIG.
  • k a is a parameter indicating the kurtosis how conic represented by the formula (1) represents the kurtosis how tip 52 M a of the lens portion 52 M.
  • the outer shape of the lens unit 52 M becomes parabolic
  • the outer shape of the lens unit 52 M becomes prism shape
  • the lens portion 52 M The outer shape is a shape obtained by cutting an ellipse in half.
  • a plurality of lens portions 52 M to the rear 51 M b of the main body portion 51 M are arranged at regular intervals.
  • a square lattice having a plurality of square are arrayed is set to the back 51 M b, one lens portion 52 M in each square there is arranged in the structural units of the square lattice.
  • Square lens unit 52 M occupancy for the structural units of the lattice was 78.5%.
  • the lens unit 52 M having a contour defined by the formula (1) is designed.
  • Relative designed lens portion 52 light guide plate 50 having a M M assuming that the light from the point light sources 61 M incident, emitting position of the light in the central portion of the emission surface 51 M a of the light guide plate 50 M
  • the point p is as follows, the radiance of the emitted light when the light is emitted from the point p was calculated.
  • the light quantity Q 1 and the light quantity Q 2 is calculated.
  • the range of 0 ° ⁇ ⁇ ⁇ 90 ° and 0 ° ⁇ ⁇ ⁇ 360 ° (z of the spherical surfaces of the unit sphere shown in FIG. 3B)
  • the radiance of the emitted light emitted to the hemisphere in the region of ⁇ 0 was calculated at a plurality of points on the hemisphere. Thereafter, based on the calculated radiance, the total radiant flux of the entire hemisphere and the radiant flux of a predetermined region were calculated.
  • the plurality of points at which the radiance is calculated are set in increments of 5 ° in the ⁇ direction and in increments of 10 ° in the ⁇ direction so as to include points within a predetermined region. Calculation of total radiant flux and radiant flux from radiance was carried out as follows.
  • the radiance at each calculation point was converted into a radiant flux per unit solid angle. 1 / 4 ⁇ was set as the unit solid angle.
  • each radiant flux was converted into a radiant flux per surface element on the unit sphere.
  • the total radiant flux was calculated by numerically integrating the radiant flux per surface element on the unit sphere over the entire hemisphere.
  • the radiant flux was calculated by numerically integrating the radiant flux per surface element on the unit spherical surface in the range of 25 ° ⁇ ⁇ ⁇ 35 ° and ⁇ 5 ° ⁇ ⁇ ⁇ 5 °.
  • a radiant flux that is a physical quantity is calculated, and the radiant flux corresponds to a so-called psychophysical quantity of light flux (amount of light per unit time).
  • the ratio of the radiant flux in the predetermined area to the calculated total radiant flux corresponds to the ratio of the luminous flux (light quantity per unit time) in the predetermined area to the total luminous flux (total light quantity per unit time). Therefore, the [radiant flux in a predetermined area] / [total radiant flux] was set to the light quantity ratio Q.
  • a light quantity ratio Q based on actual measurement values was obtained using a light guide plate 80 provided with white dots 81.
  • the backlight unit used in “UN46B8000” manufactured by Samsung Electronics Co., Ltd. is taken out, and the light guide plate of the backlight unit is used as the light guide plate 80. Used. And while using the light-guide plate 80 and the light source of a backlight unit, and providing the silver vapor deposition reflective film in the back side of the light-guide plate 80, the structure similar to the structure of FIG. 9 was implement
  • the light guide plate 80 used for the comparison experiment was provided with white dots 81.
  • the comparative experiment as in the simulation model shown in FIG.
  • the luminance from the position was measured.
  • the measurement was performed using a luminance meter (“Color luminance meter BM-5AS” manufactured by TOPCOM). Specifically, the luminance was measured at each of a plurality of measurement points in the hemisphere corresponding to the region of z ⁇ 0 in the spherical surface shown in FIG. The plurality of measurement points were set so as to correspond to the simulation radiance calculation points.
  • the total luminous flux and the luminous flux in a predetermined area were calculated in the same manner as in the simulation. That is, the luminance at each measurement point was converted into a luminous flux per unit solid angle. 1 / 4 ⁇ was set as the unit solid angle. Next, each light beam was converted into a light beam per surface element on the unit spherical surface. Thereafter, the total luminous flux was calculated by numerically integrating the luminous flux per surface element on the unit sphere over the entire hemisphere.
  • the luminous flux per predetermined area was calculated by numerically integrating the luminous flux per surface element on the unit spherical surface in the range of 25 ° ⁇ ⁇ ⁇ 35 ° and ⁇ 5 ° ⁇ ⁇ ⁇ 5 °. Since light beams corresponding to the amount of light per unit time, the total luminous flux corresponding to the quantity Q 1, light flux of a predetermined region corresponding to the light quantity Q 2. Therefore, by dividing the light quantity Q 2 in the amount of light Q 1, the light quantity ratio Q was calculated. The light quantity ratio Q when the white dots 81 were provided was 0.252%.
  • the simulation results are as shown in the charts shown in FIGS. 11 and FIG. 12 is a table showing the relationship between k a and aspect ratio [h a / w a] a de defined by the lens shape and the light quantity ratio Q in the formula (1).
  • 11 k a is shows the range of 0 to 0.9
  • FIG. 12 k a indicates a and -0.1 below the range of -0.9.
  • FIGS. 15 and 16 is a chart of the bottom angle of the lens shape determined out with k a and an aspect ratio shown in FIGS. 11 and 12 [h a / w a] .
  • the light quantity ratio Q that is larger than the value (0.252%) of the light quantity ratio Q calculated for the white dot 81 is underlined. 13 and 15 corresponding to FIG. 11 and FIGS. 14 and 16 corresponding to FIG. 12, the front end portion 52a with respect to the width w a of the lens portion 52 realizing the light quantity ratio Q underlined in FIGS. Is underlined with the radius of curvature [r / w a ] and the bottom angle ⁇ .
  • the aspect ratio [h a / w a ], the radius of curvature [r / w a ] with respect to the width w a, and the bottom angle ⁇ that define the shape of the lens portion 52 M at the underlined portion in FIGS. Is within the range shown in the chart shown in FIG.
  • the light guide plate 50 includes a lens portion 52 defined by combinations shown in r / w and gamma, 35 ° or less emission angle theta o is 25 ° or more It becomes easy to become. Therefore, as described above, by employing the light guide plate 50 according to the present embodiment, the transmissive image display unit 20 can be illuminated with higher luminance in the transmissive image display device 10 including the prism plate 40. As a result, the luminance of the image displayed on the transmissive image display unit 20 is improved.
  • the plurality of lens portions 52 formed on the back surface 51b have been described as having a shape such that the light quantity ratio Q is greater than 0.252%.
  • at least half or more of the lens units formed on the back surface 51b may be the lens unit 52 described in the above embodiment.
  • half of the first lens portion as the lens portion 52 and the other half do not satisfy the conditions described in the above embodiment.
  • You may comprise from a lens part.
  • the ratio of the number of first lens portions as the lens portions 52 to the number of the second lens portions may be 6: 4.
  • the shape of the lens unit 52 has a shape in which the angle formed between the tangential plane of the lens unit 52 and the back surface 51 b monotonously decreases from the bottom side to the front end side of the lens unit 52.
  • the lens unit 52 has a shape defined by a combination indicated by h a / w a , r / w, and ⁇ shown in FIG. 5, and the light quantity ratio Q becomes larger than 0.252%. If it has such a shape, it does not need to be monotonously decreasing toward the front end portion 52a side of the angle formed between the tangential plane of the lens portion 52 and the back surface 51b.
  • the number of light source units 60 is not limited to two.
  • the light source unit 60 may be three or more.
  • the light source unit 60 may be further provided on at least one of the side surfaces 51e and 51f of the main body unit 51.
  • One light source unit 60 may be provided for the light guide plate.
  • the light source unit 60 is disposed on one of the side surface 51c and the side surface 51d shown in FIG.
  • another optical member may be disposed between the light guide plate 50 and the prism plate 40 as long as the object of the present invention is not impaired.
  • Another optical member may be disposed between the transmissive image display unit 10.
  • Another example of the optical member provided between the light guide plate 50 and the prism plate 40 is a light diffusion sheet or a microlens sheet having a light diffusion characteristic that does not impair the object of the present invention.
  • Examples of other optical members provided between the prism plate 40 and the transmissive image display unit 10 are a reflective polarization separation sheet, a light diffusion sheet, or a microlens sheet.
  • SYMBOLS 10 ... Transmission-type image display apparatus, 20 ... Transmission-type image display part, 30 ... Surface light source device, 40 ... Prism plate, 40a ... Front surface (one side of a prism plate), 40b ... Back surface (surface on the opposite side to one side of a prism plate) , 41... Prism portion, 50... Light guide plate, 51... Body portion, 51 a... Exit surface (first surface), 51 b... Back surface (second surface), 51 c. (Incident surface), 52... Lens portion, 52a... Tip portion, 52b.

Abstract

Provided are a light guide plate capable of improving the brightness in the front direction, a surface light source device containing said light guide plate, and a transmissive image display device. A light guide plate (50) disposed on the rear side of a prism plate (40) of which one surface is arranged, in parallel, with a plurality of prism units (41) extending in one direction, the light guide plate being provided with: a main body (51) having a first and second surface (51a, 51b) facing one another and an incidence surface intersecting with the first and second surface; and a plurality of lens units (52) formed on the second surface. Each lens unit has an outer shape such that the ratio of the amount of light entering a predetermined region from a given point on the first surface relative to the entire amount of light emitted from the aforementioned given point is greater than 0.252%. The predetermined region has an angular range between 25° and 35° in relation to the normal line of the first surface and has an angular width of 10° around the normal line.

Description

導光板、面光源装置及び透過型画像表示装置Light guide plate, surface light source device, and transmissive image display device
 本発明は、導光板、面光源装置及び透過型画像表示装置に関する。 The present invention relates to a light guide plate, a surface light source device, and a transmissive image display device.
 液晶表示装置等の透過型画像表示装置は、一般に、液晶表示パネルといった透過型画像表示部の背面側に配置される。透過型画像表示装置は、透過型画像表示部にバックライトを供給する面光源装置を有する。このような面光源装置としてエッジライト型の面光源装置が知られている(例えば、特許文献1参照)。 A transmissive image display device such as a liquid crystal display device is generally disposed on the back side of a transmissive image display unit such as a liquid crystal display panel. The transmissive image display device includes a surface light source device that supplies a backlight to the transmissive image display unit. As such a surface light source device, an edge light type surface light source device is known (see, for example, Patent Document 1).
 エッジライト型の面光源装置は、透光性を有する導光板と、導光板の側方に配置され、導光板の側面に光を供給するための光源とを備える。導光板の背面側には、光を反射させるための白色ドットが設けられている。この構成では、光源から出力された光は、光源と対向する導光板の側面から導光板内に入射される。導光板内に入射された光は、導光板内を全反射しながら伝搬する。導光板の背面側には、白色ドットが複数形成されている(例えば、特許文献1参照)ので、白色ドットで反射した光は導光板の透過型画像表示部側の出射面から出射される。 The edge-light type surface light source device includes a light-transmitting light guide plate and a light source that is disposed on the side of the light guide plate and supplies light to the side surface of the light guide plate. White dots for reflecting light are provided on the back side of the light guide plate. In this configuration, the light output from the light source enters the light guide plate from the side surface of the light guide plate facing the light source. The light incident on the light guide plate propagates while totally reflecting inside the light guide plate. Since a plurality of white dots are formed on the back side of the light guide plate (see, for example, Patent Document 1), the light reflected by the white dots is emitted from the exit surface on the transmissive image display unit side of the light guide plate.
 従来、透過型画像表示装置では、導光板の出射面から出射された光を正面方向に集光することで透過型画像表示部に効率的に入射させるため、導光板と透過型画像表示部との間にプリズム板を配置している。このようなプリズム板としては、透過型画像表示部側の面に複数のプリズム部が並列配置されたものがある。 2. Description of the Related Art Conventionally, in a transmissive image display device, a light guide plate, a transmissive image display unit, A prism plate is arranged between the two. As such a prism plate, there is one in which a plurality of prism portions are arranged in parallel on the surface on the transmissive image display portion side.
特開2005-38768号公報JP 2005-38768 A
 しかしながら、白色ドットを有する導光板に対して、上記のように導光板と反対側の面にプリズム部が形成されたプリズム板を配置した場合、正面方向の輝度の向上が十分に図ることができないことがあった。 However, when the prism plate having the prism portion formed on the surface opposite to the light guide plate as described above is arranged with respect to the light guide plate having white dots, the luminance in the front direction cannot be sufficiently improved. There was a thing.
 そこで、本発明は、正面方向の輝度の向上を図ることができる導光板並びにその導光板を含む面光源装置及び透過型画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a light guide plate capable of improving luminance in the front direction, a surface light source device including the light guide plate, and a transmissive image display device.
 本発明に係る導光板は 片面に形成された複数のプリズム部を有するプリズム板であり、複数の前記プリズム部の各々は一方向に延在しており、複数のプリズム部がプリズム部の延在方向に略直交する方向に並列配置されたプリズム板に対して上記片面と反対側である背面側に設けられる導光板である。この導光板は、プリズム部側に位置する第1の面と、第1の面と反対側に位置する第2の面と、第1及び第2の面に交差しており光が入射される入射面と、第2の面に形成されており、第1の面と反対側に凸である複数のレンズ部と、を備える。複数のレンズ部の各々は、入射面から入射され第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、第1の光量は、第1の面の一点から出射される全出射光の単位時間あたりの量であり、第2の光量は、上記一点から所定領域に出射される出射光の単位時間あたりの量であり、所定領域は、25°以上35°以下の第1の面の法線に対する角度範囲を有すると共に、プリズム部の延在方向に略直交する方向に対して±5°の法線回りの角度幅を有する。 The light guide plate according to the present invention is a prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions extending from the prism portion. The light guide plate is provided on the back side opposite to the one side with respect to the prism plates arranged in parallel in a direction substantially orthogonal to the direction. The light guide plate intersects the first surface located on the prism portion side, the second surface located on the opposite side of the first surface, and the first and second surfaces, and light is incident thereon. An incident surface and a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface. Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%. The first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface, and the second light quantity is emitted light emitted from the one point to a predetermined region. The predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ± 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
 本発明に係る面光源装置は、片面に形成された複数のプリズム部を有するプリズム板であり、複数の前記プリズム部の各々は一方向に延在しており、複数のプリズム部がプリズム部の延在方向に略直交する方向に並列配置されたプリズム板の片面と反対側の面に光を供給する面光源装置である。面光源装置は、(1)(1a)プリズム部側に位置する第1の面と、第1の面と反対側に位置する第2の面と、第1及び第2の面に交差しており光が入射される入射面とを有する板状の本体部と、(1b)第2の面に形成されており、第1の面と反対側に凸である複数のレンズ部とを有する導光板と、(2)導光板の入射面の側方に配置されており入射面に光を供給する光源部とを備える。複数のレンズ部の各々は、入射面から入射され第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、第1の光量は、第1の面の一点から出射される全出射光の単位時間あたりの量であり、第2の光量は、上記一点から所定領域に出射される出射光の単位時間あたりの量であり、所定領域は、25°以上35°以下の第1の面の法線に対する角度範囲を有すると共に、プリズム部の延在方向に略直交する方向に対して±5°の法線回りの角度幅を有する。 The surface light source device according to the present invention is a prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions being prism portions. This is a surface light source device that supplies light to a surface opposite to one surface of a prism plate arranged in parallel in a direction substantially orthogonal to the extending direction. The surface light source device (1) (1a) intersects the first surface located on the prism portion side, the second surface located opposite to the first surface, and the first and second surfaces. A plate-like main body having an incident surface on which the incident light is incident; and (1b) a guide having a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface. A light plate; and (2) a light source unit that is disposed on the side of the incident surface of the light guide plate and supplies light to the incident surface. Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%. The first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface, and the second light quantity is emitted light emitted from the one point to a predetermined region. The predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ± 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
 また、本発明に係る透過型画像表示装置は、(A)片面に形成された複数のプリズム部を有するプリズム板であって、複数の前記プリズム部の各々は一方向に延在しており、複数のプリズム部がプリズム部の延在方向に略直交する方向に並列配置されたプリズム板と、(B)プリズム板に対して片面と反対側である背面側に設けられる導光板であって、(B1)プリズム部側に位置する第1の面と、第1の面と反対側に位置する第2の面と、第1及び第2の面に交差しており光が入射される入射面とを有する板状の本体部と、(B2)第2の面に形成されており、第1の面と反対側に凸である複数のレンズ部とを有する導光板と、(C)導光板の入射面の側方に設けられており入射面に光を供給する光源部と、(D)プリズム板の片面側に設けられており、プリズム板から出射される光により照明され画像を表示する透過型画像表示部と、を備える。複数のレンズ部の各々は、入射面から入射され第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、第1の光量は、第1の面の一点から出射される全出射光の単位時間あたりの量であり、第2の光量は、上記一点から所定領域に出射される出射光の単位時間あたりの量であり、所定領域は、25°以上35°以下の第1の面の法線に対する角度範囲を有すると共に、プリズム部の延在方向に略直交する方向に対して±5°の法線回りの角度幅を有する。 Further, the transmissive image display device according to the present invention is (A) a prism plate having a plurality of prism portions formed on one side, and each of the plurality of prism portions extends in one direction, A prism plate in which a plurality of prism portions are arranged in parallel in a direction substantially orthogonal to the extending direction of the prism portion, and (B) a light guide plate provided on the back side opposite to one side with respect to the prism plate, (B1) A first surface located on the prism portion side, a second surface located on the opposite side of the first surface, and an incident surface that intersects the first and second surfaces and receives light. And (B2) a light guide plate having a plurality of lens portions formed on the second surface and convex on the opposite side of the first surface, and (C) a light guide plate A light source unit that supplies light to the incident surface, and (D) on one side of the prism plate. Vignetting and includes a transmission type image display unit that displays an image is illuminated by light emitted from the prism sheet, a. Each of the plurality of lens portions has an outer shape such that the ratio of the second light amount to the first light amount of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%. The first light quantity is an amount per unit time of all emitted light emitted from one point of the first surface, and the second light quantity is emitted light emitted from the one point to a predetermined region. The predetermined area has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less and ± 5 with respect to a direction substantially orthogonal to the extending direction of the prism portion. It has an angular width around the normal of °.
 以下、プリズム板において導光板と対向する面(上記片面と反対側の面)が裏面と称される。 Hereinafter, the surface of the prism plate that faces the light guide plate (the surface opposite to the one surface) is referred to as the back surface.
 上記構成の導光板、面光源装置及び透過型画像表示装置において、導光板の入射面から入射した光は、導光板内を全反射しながら伝搬する。導光板内を伝搬する光が第2の面上に設けられたレンズ部に入射すると、導光板内を伝搬する光は、レンズ部により全反射条件と異なる条件で反射する。よって、レンズ部で反射した光は本体部の第1の面から出射される。このようにして第1の面から出射される光は、第2の面に形成されている複数のレンズ部の各々が上記条件を満たす形状に形成されているので、25°以上35°以下の範囲の出射角で出射され易い。導光板は、上記プリズム板の裏面側に設けられていることから、導光板から出射された光はプリズム板の裏面からプリズム板に入射される。プリズム板への光の入射角は、導光板からの光の出射角にほぼ等しい。よって、第1の面からの出射光のプリズム板への入射角は25°以上35°以下の範囲になりやすい。このような入射角で入射した光は、プリズム部から出射される際、正面方向により多く出射される。その結果、正面方向の輝度が向上する。そして、本発明に係る透過型画像表示装置では、プリズム板上に透過型画像表示部が設けられているので、正面方向の輝度がより高い光で透過型画像表示部が照明される。その結果、透過型画像表示部で表示される画像の輝度向上が図られ得る。 In the light guide plate, the surface light source device, and the transmissive image display device configured as described above, the light incident from the incident surface of the light guide plate propagates while being totally reflected in the light guide plate. When the light propagating in the light guide plate enters the lens unit provided on the second surface, the light propagating in the light guide plate is reflected by the lens unit under a condition different from the total reflection condition. Therefore, the light reflected by the lens unit is emitted from the first surface of the main body unit. In this way, the light emitted from the first surface is formed in a shape satisfying the above-described conditions, so that each of the plurality of lens portions formed on the second surface is 25 ° to 35 °. It is easy to be emitted with an emission angle in the range. Since the light guide plate is provided on the back surface side of the prism plate, the light emitted from the light guide plate enters the prism plate from the back surface of the prism plate. The incident angle of the light to the prism plate is substantially equal to the outgoing angle of the light from the light guide plate. Therefore, the incident angle of the emitted light from the first surface to the prism plate tends to be in the range of 25 ° to 35 °. When the light incident at such an incident angle is emitted from the prism portion, more light is emitted in the front direction. As a result, the luminance in the front direction is improved. In the transmissive image display device according to the present invention, since the transmissive image display unit is provided on the prism plate, the transmissive image display unit is illuminated with light having higher luminance in the front direction. As a result, it is possible to improve the luminance of the image displayed on the transmissive image display unit.
 本発明によれば、正面方向の輝度の向上を図ることができる導光板並びにその導光板を含む面光源装置及び透過型画像表示装置が提供され得る。 According to the present invention, a light guide plate capable of improving luminance in the front direction, a surface light source device including the light guide plate, and a transmissive image display device can be provided.
図1は、本発明に係る導光板の一実施形態を適用した透過型画像表示装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a transmissive image display device to which an embodiment of a light guide plate according to the present invention is applied. 図2は、図1に示した導光板を背面側からみた場合の平面図である。FIG. 2 is a plan view when the light guide plate shown in FIG. 1 is viewed from the back side. 図3は、レンズ部の形状を説明するための図面であり、図3(a)は、出射面上での局所的な座標系の設定状態を示す図面であり、図3(b)は、図3(a)に示した座標系におけるz軸及びx軸からの角度の規定方法を説明するための図面であり、図3(c)は、所定領域を説明するための図面である。FIG. 3 is a diagram for explaining the shape of the lens unit, FIG. 3A is a diagram showing a setting state of a local coordinate system on the exit surface, and FIG. FIG. 3 is a drawing for explaining a method for defining an angle from the z-axis and the x-axis in the coordinate system shown in FIG. 3A, and FIG. 3C is a drawing for explaining a predetermined region. 図4は、レンズ部の外形形状の例を説明するための図面である。FIG. 4 is a diagram for explaining an example of the outer shape of the lens unit. 図5は、レンズ部の外形形状を規定する条件を示す図表である。FIG. 5 is a chart showing conditions for defining the outer shape of the lens portion. 図6は、図1に示した透過型画像表示装置の一部拡大図である。6 is a partially enlarged view of the transmissive image display device shown in FIG. 図7は、複数の白色ドットが背面に形成された導光板の構成の一例を示す模式図である。FIG. 7 is a schematic diagram illustrating an example of the configuration of a light guide plate in which a plurality of white dots are formed on the back surface. 図8は、出射角θに対する出射光の強度分布の測定結果を示すグラフである。Figure 8 is a graph showing the results of measuring the intensity distribution of the emitted light with respect to emission angle theta o. 図9は、シミュレーションモデルを示す模式図である。FIG. 9 is a schematic diagram showing a simulation model. 図10は、シミュレーションに用いたレンズ部の外形形状を示す図面である。FIG. 10 is a drawing showing the outer shape of the lens unit used in the simulation. 図11は、シミュレーションに使用したレンズ形状と光量比との関係を示す図表である。FIG. 11 is a chart showing the relationship between the lens shape used in the simulation and the light quantity ratio. 図12は、シミュレーションに使用したレンズ形状と光量比との関係を示す図表である。FIG. 12 is a chart showing the relationship between the lens shape used in the simulation and the light quantity ratio. 図12は、図11に示したkとアスペクト比[h/w]とで決まるレンズ形状の幅wに対する先端部の曲率半径rを示す図表である。Figure 12 is a table showing the k a and aspect ratio [h a / w a] and de determined lens radius of curvature r of the tip to the width w a of the shape shown in FIG. 11. 図14は、図12に示したkとアスペクト比[h/w]とで決まるレンズ形状の幅wに対する先端部の曲率半径rを示す図表である。Figure 14 is a table showing the k a and aspect ratio [h a / w a] and de determined lens radius of curvature r of the tip to the width w a of the shape shown in FIG. 12. 図15は、図11に示したkとアスペクト比[h/w]とで決まるレンズ形状の底部角度を示す図表である。Figure 15 is a table showing the bottom angle of the lens shape determined out with k a and an aspect ratio shown in FIG. 11 [h a / w a] . 図16は、図12に示したkとアスペクト比[h/w]とで決まるレンズ形状の底部角度を示す図表である。Figure 16 is a table showing the bottom angle of the lens shape determined out with k a and aspect ratio [h a / w a] shown in FIG. 12.
 以下、図面を参照して本発明の実施形態が説明される。図面の説明において、同一要素には同一符号が付され、重複する説明が省略される。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same reference numerals are given to the same elements, and duplicate descriptions are omitted. The dimensional ratios in the drawings do not necessarily match those described.
 図1は、本発明に係る導光板の一実施形態を適用した透過型画像表示装置の概略構成を示す模式図である。図1では、透過型画像表示装置10の断面構成が分解して示されている。図1では、光が光線として模式的に示されている。透過型画像表示装置10は、携帯電話や各種電子機器の表示装置、テレビ装置として好適に利用され得る。 FIG. 1 is a schematic diagram showing a schematic configuration of a transmissive image display device to which an embodiment of a light guide plate according to the present invention is applied. In FIG. 1, the cross-sectional configuration of the transmissive image display device 10 is shown in an exploded manner. In FIG. 1, light is schematically shown as light rays. The transmissive image display device 10 can be suitably used as a display device for a mobile phone or various electronic devices, or a television device.
 透過型画像表示装置10は、透過型画像表示部20と、透過型画像表示部20に供給するための面状の光を出力する面光源装置30と、透過型画像表示部20と面光源装置30との間に配置されるプリズム板40とを備える。以下、説明の便宜のため、図1に示すように、面光源装置30に対して、プリズム板40及び透過型画像表示部20が配列されている方向がZ方向又は正面方向と称される。Z方向に直交する2つの方向がX方向及びY方向と称される。X方向及びY方向は直交する。 The transmissive image display device 10 includes a transmissive image display unit 20, a surface light source device 30 that outputs planar light to be supplied to the transmissive image display unit 20, a transmissive image display unit 20, and a surface light source device. 30 and a prism plate 40 disposed between them. Hereinafter, for convenience of explanation, as shown in FIG. 1, the direction in which the prism plate 40 and the transmissive image display unit 20 are arranged with respect to the surface light source device 30 is referred to as a Z direction or a front direction. Two directions orthogonal to the Z direction are referred to as an X direction and a Y direction. The X direction and the Y direction are orthogonal.
 透過型画像表示部20は、導光板50から出射される面状の光で照明されることによって画像を表示する。透過型画像表示部20の例は、液晶セル21の両面に直線偏光板22,23が配置された偏光板貼合体としての液晶表示パネルである。この場合、透過型画像表示装置10は、液晶表示装置(又は液晶テレビ)である。液晶セル21及び偏光板22,23は、従来の液晶表示装置等の透過型画像表示装置で用いられているものが用いられ得る。液晶セル21の例は、TFT型の液晶セルやSTN型の液晶セル等である。 The transmissive image display unit 20 displays an image by being illuminated with planar light emitted from the light guide plate 50. An example of the transmissive image display unit 20 is a liquid crystal display panel as a polarizing plate bonding body in which linear polarizing plates 22 and 23 are arranged on both surfaces of a liquid crystal cell 21. In this case, the transmissive image display device 10 is a liquid crystal display device (or a liquid crystal television). As the liquid crystal cell 21 and the polarizing plates 22 and 23, those used in a transmissive image display device such as a conventional liquid crystal display device can be used. Examples of the liquid crystal cell 21 are a TFT type liquid crystal cell and an STN type liquid crystal cell.
 プリズム板40は、導光板50から出射された光を正面方向に集光するために用いられる。プリズム板40は、複数のプリズム部41が透過型画像表示部20側の片面である表面40aに形成された光学シートである。プリズム板40の平面視形状は略矩形状である。 The prism plate 40 is used to collect light emitted from the light guide plate 50 in the front direction. The prism plate 40 is an optical sheet in which a plurality of prism portions 41 are formed on a surface 40a that is one surface on the transmission image display unit 20 side. The plan view shape of the prism plate 40 is substantially rectangular.
 プリズム部41は一方向(図1では、Y方向)に延在している。複数のプリズム部41は、プリズム部41の延在方向に並列配置されている。プリズム部41は三角柱状を呈しており、プリズム部41の延在方向に直交する断面の形状は、頂角αが略直角である直角三角形である。頂角αは、80°以上100°以下の範囲内の角度であればよい。頂角αは、80°以上90°以下がより好ましく、90°であることが更に好ましい。プリズム部41の断面形状は、直角二等辺三角形であることが好ましい。プリズム部41の頂部41aの形状は、製造誤差などによって生じる程度の湾曲形状であってもよい。 The prism portion 41 extends in one direction (Y direction in FIG. 1). The plurality of prism portions 41 are arranged in parallel in the extending direction of the prism portion 41. The prism portion 41 has a triangular prism shape, and the cross-sectional shape orthogonal to the extending direction of the prism portion 41 is a right triangle whose apex angle α is substantially a right angle. The apex angle α may be an angle within the range of 80 ° to 100 °. The apex angle α is more preferably 80 ° or greater and 90 ° or less, and even more preferably 90 °. The cross-sectional shape of the prism portion 41 is preferably a right isosceles triangle. The shape of the top portion 41a of the prism portion 41 may be a curved shape that is caused by a manufacturing error or the like.
 プリズム板40は、透光性材料(又は透明材料)からなる。透光性材料の屈折率の例は、1.46~1.62である。透光性材料の例は、透光性樹脂材料、透光性ガラス材料である。透光性樹脂材料の例は、ポリカーボネート樹脂(屈折率:1.59)、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、ポリスチレン樹脂(屈折率:1.59)、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、アクリル系紫外線硬化樹脂(屈折率:1.46~1.58)、ポリメタクリル酸メチル(PMMA)(屈折率:1.49)などである。プリズム板40には、プリズム板40による集光機能を損なわない程度であれば、拡散剤などが添加されていてもよい。プリズム板40の裏面40bは、通常、平滑な面である。しかしながら、裏面40bは、プリズム板40の集光機能を著しく損なわない程度の粗さを有する粗面であってもよい。裏面40bが前述した粗面である場合、例えば、プリズム板40と導光板50との間に他の光学部材が配置された場合に、その光学部材とプリズム板40との貼り付きが防止され得る。 The prism plate 40 is made of a translucent material (or a transparent material). Examples of the refractive index of the translucent material are 1.46 to 1.62. Examples of the translucent material are a translucent resin material and a translucent glass material. Examples of the translucent resin material include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index). Rate: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), acrylic ultraviolet curable resin (refractive index: 1.46 to 1.58), poly And methyl methacrylate (PMMA) (refractive index: 1.49). A diffusion agent or the like may be added to the prism plate 40 as long as the light collecting function of the prism plate 40 is not impaired. The back surface 40b of the prism plate 40 is usually a smooth surface. However, the back surface 40b may be a rough surface having a roughness that does not significantly impair the light collecting function of the prism plate 40. When the back surface 40b is the rough surface described above, for example, when another optical member is disposed between the prism plate 40 and the light guide plate 50, the optical member and the prism plate 40 can be prevented from sticking to each other. .
 プリズム板40の厚さは、プリズム部41の頂部41aとプリズム板40の略平坦な裏面40b(表面40aと反対側の面)との間の距離であり得る。プリズム板40の厚さの例は、0.1mm以上5mm以下である。 The thickness of the prism plate 40 may be the distance between the top 41a of the prism portion 41 and the substantially flat back surface 40b (surface opposite to the front surface 40a) of the prism plate 40. An example of the thickness of the prism plate 40 is 0.1 mm or more and 5 mm or less.
 面光源装置30は、透過型画像表示部20に対するバックライトを供給するエッジライト型のバックライトユニットである。面光源装置30は、導光板50と、導光板50の互いに対向する側面50a及び側面50bの側方に配置された光源部60,60とを備える。 The surface light source device 30 is an edge light type backlight unit that supplies a backlight to the transmissive image display unit 20. The surface light source device 30 includes a light guide plate 50 and light source units 60 and 60 disposed on the side surfaces 50a and 50b of the light guide plate 50 facing each other.
 光源部60,60は、ライン状に配列(図1では、Y方向に配列)された複数の点状光源61を有する。点状光源61の例は、発光ダイオードである。光源部60は、導光板50に光を効率的に入射するために、導光板50と反対側に、光を反射させる反射部としてのリフレクターを備えてもよい。ここでは、複数の点状光源61を有する光源部60が例示されたが、光源部60は、蛍光灯などの線状光源であってもよい。 The light source units 60 and 60 have a plurality of point light sources 61 arranged in a line (in FIG. 1, arranged in the Y direction). An example of the point light source 61 is a light emitting diode. The light source unit 60 may include a reflector as a reflection unit that reflects light on the side opposite to the light guide plate 50 in order to efficiently make light incident on the light guide plate 50. Here, the light source unit 60 including the plurality of point light sources 61 is illustrated, but the light source unit 60 may be a linear light source such as a fluorescent lamp.
 面光源装置30は、導光板50に対して透過型画像表示部20と反対側に位置する反射部70を備えてもよい。反射部70は、導光板50から反射部70側に出射した光を導光板50に再度入射させるためのものである。反射部70は、図1に示されるようにシート状のものであり得る。反射部70は、導光板50を収容する面光源装置30の筐体底面であって、鏡面加工を施された底面であってもよい。 The surface light source device 30 may include a reflecting unit 70 located on the opposite side of the transmissive image display unit 20 with respect to the light guide plate 50. The reflection unit 70 is for causing the light emitted from the light guide plate 50 to the reflection unit 70 side to enter the light guide plate 50 again. The reflection part 70 may be a sheet-like thing as FIG. 1 shows. The reflection unit 70 may be a bottom surface of the housing of the surface light source device 30 that accommodates the light guide plate 50 and that is mirror-finished.
 図1及び図2を参照して、導光板50が説明される。図2は、図1に示された導光板50を背面側からみた場合の平面図である。導光板50の平面視形状は略矩形であり得る。 The light guide plate 50 will be described with reference to FIGS. 1 and 2. FIG. 2 is a plan view when the light guide plate 50 shown in FIG. 1 is viewed from the back side. The light guide plate 50 may have a substantially rectangular shape in plan view.
 導光板50は、板状の本体部51と、本体部51に形成された複数のレンズ部52と、を有する。本体部51は透光性材料(又は透明材料)からなる。透光性材料の屈折率の例は、1.46~1.62である。透光性材料の例は、透光性樹脂材料、透光性ガラス材料である。透光性樹脂材料の例は、ポリカーボネート樹脂(屈折率:1.59)、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、ポリスチレン樹脂(屈折率:1.59)、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、アクリル系紫外線硬化樹脂(屈折率:1.46~1.58)、ポリメタクリル酸メチル(PMMA)(屈折率:1.49)などである。透光性樹脂材料としては、透明性の観点からPMMAがより好ましい。 The light guide plate 50 includes a plate-shaped main body 51 and a plurality of lens portions 52 formed on the main body 51. The main body 51 is made of a translucent material (or a transparent material). Examples of the refractive index of the translucent material are 1.46 to 1.62. Examples of the translucent material are a translucent resin material and a translucent glass material. Examples of the translucent resin material include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index). Rate: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), acrylic ultraviolet curable resin (refractive index: 1.46 to 1.58), poly And methyl methacrylate (PMMA) (refractive index: 1.49). As the translucent resin material, PMMA is more preferable from the viewpoint of transparency.
 図1に示されるように、本体部51は、板厚方向において互いに対向する出射面(第1の面)51aと、背面(第2の面)51bと、を有する。出射面51a及び背面51bは略平坦である。本体部51は、出射面51a及び背面51bに交差する4つの側面51c,51d,51e,51fを有する。図1では、X方向において互いに対向している2つの側面51c及び51dが示されている。側面51c及び側面51dは、光源部60と対向する上記側面50a及び側面50bでもある。本体部51が有する4つの側面51c,51d,51e,51fのうち残りの2つの側面51e,51f(図3参照)はY方向において互いに対向している。図1では、側面51c及び側面51dと、出射面51a及び背面51bと、の配置関係の一例として、側面51c及び側面51dが出射面51a及び背面51bに略直交している状態を示している。本実施形態では、本体部51の他の側面51e,51fも出射面51a及び背面51bと直交している形態が説明される。 As shown in FIG. 1, the main body 51 has an emission surface (first surface) 51a and a back surface (second surface) 51b that face each other in the thickness direction. The emission surface 51a and the back surface 51b are substantially flat. The main body 51 has four side surfaces 51c, 51d, 51e, and 51f that intersect the emission surface 51a and the back surface 51b. In FIG. 1, two side surfaces 51c and 51d that face each other in the X direction are shown. The side surface 51 c and the side surface 51 d are also the side surface 50 a and the side surface 50 b facing the light source unit 60. Of the four side surfaces 51c, 51d, 51e, 51f of the main body 51, the remaining two side surfaces 51e, 51f (see FIG. 3) face each other in the Y direction. FIG. 1 shows a state in which the side surface 51c and the side surface 51d are substantially orthogonal to the output surface 51a and the back surface 51b as an example of the arrangement relationship between the side surface 51c and the side surface 51d and the output surface 51a and the back surface 51b. In the present embodiment, a mode in which the other side surfaces 51e and 51f of the main body 51 are also orthogonal to the emission surface 51a and the back surface 51b will be described.
 図1及び図2に示されるように、複数のレンズ部52は、背面51b上に形成されている。レンズ部52は、透明であり、導光板50内を伝搬する光を出射面51a側から出射するためのものである。各レンズ部52の外形形状はドーム状である。 1 and 2, the plurality of lens portions 52 are formed on the back surface 51b. The lens part 52 is transparent and is for emitting light propagating through the light guide plate 50 from the emission surface 51a side. The outer shape of each lens portion 52 is a dome shape.
 各レンズ部52の形状が説明される。説明の簡略化のため、複数のレンズ部52の大きさは同じである形態が説明される。 The shape of each lens part 52 will be described. For simplification of description, a mode in which the sizes of the plurality of lens units 52 are the same will be described.
 レンズ部52は、出射面51a上の任意の点(一点)pから光が出射される場合、出射位置である点pから出射される第1の光量に対する第2の光量の比(比率)が0.252%より大きくなるような外形形状を有する。第1の光量は、点pから出射される全出射光の単位時間あたりの量である。第2の光量は、点pから所定領域に出射される出射光の単位時間あたりの量である。上記所定領域は、点pにおける出射面51aの法線に対する角度の範囲が25°以上35°以下であり、法線回りの角度幅がX方向を基準として±5°である領域である。図3を参照してレンズ部52の形状がより具体的に説明される。 When light is emitted from an arbitrary point (one point) p on the emission surface 51a, the lens unit 52 has a ratio (ratio) of the second light quantity to the first light quantity emitted from the point p that is the emission position. The outer shape is larger than 0.252%. The first light amount is an amount per unit time of all emitted light emitted from the point p. The second light amount is an amount per unit time of the emitted light emitted from the point p to the predetermined area. The predetermined region is a region where the angle range with respect to the normal line of the emission surface 51a at the point p is 25 ° or more and 35 ° or less, and the angular width around the normal line is ± 5 ° with respect to the X direction. The shape of the lens unit 52 will be described more specifically with reference to FIG.
 図3は、レンズ部52の形状を説明するための図面である。図3の(a)は、出射面51a上での局所的な座標系の設定状態を示す図面である。図3の(b)は、図3(a)に示された座標系におけるz軸及びx軸からの角度の規定方法を説明するための図面である。図3の(c)は、所定領域を説明するための図面である。 FIG. 3 is a drawing for explaining the shape of the lens portion 52. FIG. 3A is a diagram showing a local coordinate system setting state on the emission surface 51a. FIG. 3B is a diagram for explaining a method for defining angles from the z-axis and the x-axis in the coordinate system shown in FIG. FIG. 3C is a diagram for explaining the predetermined area.
 図3(a)に示されるように出射面51a上の任意の点pを原点とした局所的なxyz座標系が設定され、原点を中心とした単位球が仮定される。xyz座標系においてz軸は出射面51aに直交している。すなわち、z軸の軸線は出射面51aの法線に対応する。x軸は、X方向に略平行である。すなわち、x軸は、入射面である側面51c,51dに略直交する方向である。この場合、y軸はY方向に略一致する。x軸、y軸及びz軸が、X方向、Y方向及びZ方向に対応していることは、図3(b)及び図3(c)においても同様である。  As shown in FIG. 3A, a local xyz coordinate system with an arbitrary point p on the emission surface 51a as the origin is set, and a unit sphere with the origin as the center is assumed. In the xyz coordinate system, the z axis is orthogonal to the exit surface 51a. That is, the z-axis axis corresponds to the normal line of the exit surface 51a. The x axis is substantially parallel to the X direction. That is, the x-axis is a direction substantially orthogonal to the side surfaces 51c and 51d that are incident surfaces. In this case, the y axis substantially coincides with the Y direction. The x-axis, y-axis, and z-axis correspond to the X direction, the Y direction, and the Z direction as well in FIGS. 3B and 3C. *
 図3(b)に示されるように、点pから出射される出射光の方向とz軸との間のなす角度(偏角)をθとし、出射光の方向とx軸とのなす角度(偏角)をφとする。この設定では、点pにおける出射面51aの法線に対する角度の範囲は、z軸からの偏角であるθの角度範囲に対応し、法線回りの角度幅は、φが満たす角度範囲の角度幅に対応する。更に、0°≦θ≦90°且つ0°≦φ≦360°の範囲(図3に示される球の上半球)に出射されるすべての光の単位時間あたりの量である第1の光量をQとし、図3(c)に示されるように、25°≦θ≦35°且つ-5°≦φ≦5°の範囲としての所定領域(図3に示される球の表面のハッチング領域)に出射される光の単位時間あたりの量である第2の光量をQとする。また、光量Qに対する光量Qの比である光量比をQ(=Q/Q×100)(%)とする。 As shown in FIG. 3B, the angle (deflection angle) formed between the direction of the emitted light emitted from the point p and the z axis is θ, and the angle formed between the direction of the emitted light and the x axis ( The declination is φ. In this setting, the range of the angle with respect to the normal line of the exit surface 51a at the point p corresponds to the angle range of θ that is a declination from the z-axis, and the angle width around the normal line is an angle range that φ satisfies Corresponds to the width. Further, the first light amount that is the amount per unit time of all the light emitted in the range of 0 ° ≦ θ ≦ 90 ° and 0 ° ≦ φ ≦ 360 ° (the upper hemisphere of the sphere shown in FIG. 3) is obtained. Q 1 and, as shown in FIG. 3C, a predetermined region as a range of 25 ° ≦ θ ≦ 35 ° and −5 ° ≦ φ ≦ 5 ° (hatching region on the surface of the sphere shown in FIG. 3) Let Q 2 be the second light amount that is the amount of light emitted per unit time per unit time. Further, a light amount ratio that is a ratio of the light amount Q 2 to the light amount Q 1 is defined as Q (= Q 2 / Q 1 × 100) (%).
 このとき、レンズ部52の外形形状は、
 0.252(%)<Q
を満たす形状である。
At this time, the outer shape of the lens unit 52 is:
0.252 (%) <Q
It is a shape satisfying.
 図4は、レンズ部52の外形形状の例を説明するための図面である。図4は、レンズ部52の中心軸線Cを含む導光板50の断面構成の模式図である。 FIG. 4 is a diagram for explaining an example of the outer shape of the lens unit 52. FIG. 4 is a schematic diagram of a cross-sectional configuration of the light guide plate 50 including the central axis C of the lens unit 52.
 レンズ部52において、背面51bと反対側に位置するレンズ部52の頂部がレンズ部52の先端部52aと称され、レンズ部52の背面51b側がレンズ部52の底部52bと称される。本実施形態では、レンズ部52の形状は、図4に示された断面形状が、中心軸線Cを回転軸として回転された形状であるとする。よって、レンズ部52の形状は、中心軸線Cを含む任意の断面において左右対称である。レンズ部52は、レンズ部52に接する接平面と背面51bとのなす角度が、レンズ部52の底部52b側から先端部52a側にかけて単調に減少するような外形形状を有している。 In the lens unit 52, the top of the lens unit 52 located on the opposite side of the back surface 51b is referred to as the tip 52a of the lens unit 52, and the back surface 51b side of the lens unit 52 is referred to as the bottom 52b of the lens unit 52. In the present embodiment, it is assumed that the shape of the lens portion 52 is a shape in which the cross-sectional shape shown in FIG. 4 is rotated about the central axis C as the rotation axis. Therefore, the shape of the lens portion 52 is bilaterally symmetric in an arbitrary cross section including the central axis C. The lens portion 52 has an outer shape such that the angle formed between the tangential plane in contact with the lens portion 52 and the back surface 51b monotonously decreases from the bottom 52b side to the tip end portion 52a side of the lens portion 52.
 図4を参照して、レンズ部52の外形形状の種々の例が説明される。図4において、レンズ部52の幅(直径)がw(μm)、レンズ部52の最大高さがh(μm)とされる。 With reference to FIG. 4, various examples of the outer shape of the lens unit 52 will be described. In FIG. 4, the width (diameter) of the lens portion 52 is w a (μm), and the maximum height of the lens portion 52 is h a (μm).
 光量比Q(%)が上記範囲を満たすレンズ部52の外形形状は、(I)幅wに対する最大高さhの比であるアスペクト比がh/wとされ、(II)レンズ部52の先端部52aの曲率半径がr(μm)とされた場合、幅wに対する曲率半径rの比がr/wとされ、及び、(III)レンズ部52の底部52bの背面51bに対する角度(以下、底部角度と称す)がγ(°)とされた場合に、h/w、r/w及びγが、図5に示された図表内の組み合わせの何れかによって規定される形状とされ得る。 The outer shape of the lens unit 52 to light quantity ratio Q (%) satisfies the above range is the aspect ratio and h a / w a is the ratio of the maximum height h a for (I) the width w a, (II) Lens If the radius of curvature of the tip portion 52a of the part 52 is the r ([mu] m), a width w a ratio of radius of curvature r is the r / w a relative, and, (III) back 51b of the bottom portion 52b of the lens unit 52 Where h a / w a , r / w a and γ are defined by any of the combinations in the chart shown in FIG. 5 when the angle with respect to (hereinafter referred to as the bottom angle) is γ (°). The shape can be made.
 以下、図5の図表に示されたアスペクト比[h/w]に基づいた場合分けに応じてレンズ部52が満たす形状の条件が具体的に例示される。 Hereinafter, the condition of the shape that the lens unit 52 satisfies according to the case classification based on the aspect ratio [h a / w a ] shown in the chart of FIG. 5 is specifically exemplified.
(1)0.29≦h/w<0.31の場合
 レンズ部52の形状は、r/w及びγが以下の条件の何れかを満たしていればよい。
(1a)0<r/w≦0.23且つ31.57≦γ≦39.63
(1b)0.44≦r/w≦0.48且つ51.66≦γ≦54.72
(1c)0.52≦r/w≦0.56且つ58.03≦γ≦61.59
(1d)0.60≦r/w≦0.79且つ65.41≦γ≦85.24
(1) 0.29 shape ≦ h a / w a <0.31 when the lens unit 52, r / w a and γ may if they meet any of the following conditions.
(1a) 0 <r / w a ≦ 0.23 and 31.57 ≦ γ ≦ 39.63
(1b) 0.44 ≦ r / w a ≦ 0.48 and 51.66 ≦ γ ≦ 54.72
(1c) 0.52 ≦ r / w a ≦ 0.56 and 58.03 ≦ γ ≦ 61.59
(1d) 0.60 ≦ r / w a ≦ 0.79 and 65.41 ≦ γ ≦ 85.24
(2)0.27≦h/w<0.29の場合
 レンズ部52の形状は、r/w及びγが以下の条件の何れかを満たしていればよい。
(2a)0<r/w≦0.290且つ29.83≦γ≦39.70
(2b)0.513≦r/w≦0.848且つ52.84≦γ≦84.90
(2) 0.27 shape ≦ h a / w a <0.29 when the lens unit 52, r / w a and γ may if they meet any of the following conditions.
(2a) 0 <r / w a ≦ 0.290 and 29.83 ≦ γ ≦ 39.70
(2b) 0.513 ≦ r / w a ≦ 0.848 and 52.84 ≦ γ ≦ 84.90
(3)0.25≦h/w<0.27の場合
 レンズ部52の形状は、r/w及びγが以下の条件の何れかを満たしていればよい。
(3a)0<r/w≦0.361且つ28.03≦γ≦39.79
(3b)0.601≦r/w≦0.913且つ54.24≦γ≦84.51
(3) the shape of 0.25 ≦ h a / w a < 0.27 when the lens unit 52, r / w a and γ may if they meet any of the following conditions.
(3a) 0 <r / w a ≦ 0.361 and 28.03 ≦ γ ≦ 39.79
(3b) 0.601 ≦ r / w a ≦ 0.913 and 54.24 ≦ γ ≦ 84.51
(4)0.23≦h/w<0.25の場合
 レンズ部52の形状は、r/w及びγが以下の条件の何れかを満たしていればよい。
(4a)0<r/w≦0.443且つ26.17≦γ≦39.89
(4b)0.755≦r/w≦0.990且つ60.24≦γ≦84.05
(4) The shape of 0.23 ≦ h a / w a < 0.25 when the lens unit 52, r / w a and γ may if they meet any of the following conditions.
(4a) 0 <r / w a ≦ 0.443 and 26.17 ≦ γ ≦ 39.89
(4b) 0.755 ≦ r / w a ≦ 0.990 and 60.24 ≦ γ ≦ 84.05
(5)0.21≦h/w<0.23の場合
 レンズ部52の形状は、r/w及びγが次の条件の何れかを満たしていればよい。
(5a)0<r/w≦0.597且つ24.25≦γ≦42.85
(5b)0.881≦r/w≦1.080且つ62.98≦γ≦83.52
(5) 0.21 shape ≦ h a / w a <0.23 when the lens unit 52, r / w a and γ may if they meet one of the following conditions.
(5a) 0 <r / w a ≦ 0.597 and 24.25 ≦ γ ≦ 42.85
(5b) 0.881 ≦ r / w a ≦ 1.080 and 62.98 ≦ γ ≦ 83.52
(6)0.19≦h/w<0.21の場合
 レンズ部52の形状は、r/w及びγが次の条件の何れかを満たしていればよい。
(6a)0<r/w≦0.719且つ22.27≦γ≦43.32
(6b)0.969≦r/w≦1.031且つ60.71≦γ≦66.44
(6c)1.094≦r/w≦1.188且つ72.70≦γ≦82.87
(6) 0.19 shape ≦ h a / w a <0.21 when the lens unit 52, r / w a and γ may if they meet one of the following conditions.
(6a) 0 <r / w a ≦ 0.719 and 22.27 ≦ γ ≦ 43.32
(6b) 0.969 ≦ r / w a ≦ 1.031 and 60.71 ≦ γ ≦ 66.44
(6c) 1.094 ≦ r / w a ≦ 1.188 and 72.70 ≦ γ ≦ 82.87
(7)0.17≦h/w<0.19の場合
 レンズ部52の形状は、r/w及びγが次の条件の何れかを満たしていればよい。
(7a)0<r/w≦0.868且つ20.23≦γ≦43.90
(7b)1.215≦r/w≦1.285且つ70.93≦γ≦78.28
(7) 0.17 shape ≦ h a / w a <0.19 when the lens unit 52, r / w a and γ may if they meet one of the following conditions.
(7a) 0 <r / w a ≦ 0.868 and 20.23 ≦ γ ≦ 43.90
(7b) 1.215 ≦ r / w a ≦ 1.285 and 70.93 ≦ γ ≦ 78.28
(8)0.15≦h/w<0.17の場合
 レンズ部52の形状は0.586≦r/w≦1.133且つ27.14≦γ≦49.42を満たしていればよい。
(8) When 0.15 ≦ h a / w a <0.17 If the shape of the lens portion 52 satisfies 0.586 ≦ r / w ≦ 1.133 and 27.14 ≦ γ ≦ 49.42 Good.
(9)0.13≦h/w<0.15の場合
 レンズ部52の形状は、0.938≦r/w≦1.473且つ30.57≦γ≦58.14を満たしていればよい。
(9) When 0.13 ≦ h a / w a <0.15 The shape of the lens portion 52 satisfies 0.938 ≦ r / w a ≦ 1.473 and 30.57 ≦ γ ≦ 58.14. Just do it.
(10)0.11≦h/w<0.13の場合
 レンズ部52の形状は、1.302≦r/w≦1.719且つ32.70≦γ≦54.09を満たしていればよい。
(10) When 0.11 ≦ h a / w a <0.13 The shape of the lens portion 52 satisfies 1.302 ≦ r / w a ≦ 1.719 and 32.70 ≦ γ ≦ 54.09. Just do it.
(11)0.09≦h/w<0.11の場合
 レンズ部52の形状は、1.813≦r/w≦2.063且つ36.17≦γ≦49.07を満たしていればよい。
(11) When 0.09 ≦ h a / w a <0.11 The shape of the lens portion 52 satisfies 1.813 ≦ r / w a ≦ 2.063 and 36.17 ≦ γ ≦ 49.07. Just do it.
 先端部52aの曲率半径wは、レンズ部52の頂部としての先端部52aの曲がり具合を表す。例えば、先端部52aの曲率半径は、図4に示されるように、先端部52aに接する円(図4中の破線で示される円)が仮定された場合の円の半径である。底部角度とは、中心軸線Cをとおる断面でのレンズ部52の輪郭線と背面51bとの交点の位置でのレンズ部52の接平面Pと背面51bとの間のなす角度である。この底部角度γは、レンズ部52が液滴とみなされた場合の接触角に対応する。先端部52aに対して底部はレンズ部52の裾部でもある。よって、底部角度は裾部角度でもある。 Curvature radius w a of the tip portion 52a represents the curvature of the tip portion 52a of the top portion of the lens portion 52. For example, as shown in FIG. 4, the radius of curvature of the distal end portion 52a is a radius of a circle when a circle that is in contact with the distal end portion 52a (a circle indicated by a broken line in FIG. 4) is assumed. The bottom angle is an angle formed between the tangential plane P of the lens unit 52 and the back surface 51b at the intersection of the contour line of the lens unit 52 and the back surface 51b in a cross section passing through the central axis C. The bottom angle γ corresponds to a contact angle when the lens unit 52 is regarded as a droplet. The bottom of the tip 52a is also the bottom of the lens 52. Thus, the bottom angle is also the skirt angle.
 幅wは、5μm以上1mm以下であり、好ましくは、10μm以上500μm以下である。このようなサイズのレンズ部52は、いわゆるマイクロレンズである。 Width w a is a 5μm to 1mm, preferably is 10μm or more 500μm or less. The lens unit 52 having such a size is a so-called microlens.
 図4は、レンズ部52の中心軸線Cを含む断面の構成が示されているので、幅wはレンズ部52の最大幅に対応する。hはレンズ部52の先端部52aの位置での厚さである。よって、上記アスペクト比[h/w]は、レンズ部52の最大幅に対する先端部52aの位置でのレンズ部52の厚さ(又は高さ)、すなわち、[先端部位置での厚さ]/[レンズ部の最大幅]に対応する。通常、先端部52aの位置でのレンズ部52の厚さは最大であるので、先端部52aの位置でのレンズ部52の厚さはレンズ部52の最大厚さでもある。上記(II)に記載した比は、曲率半径rとレンズ部52の最大幅との比、すなわち、[曲率半径]/[レンズ部の最大幅]に対応する。 4, since the structure of the section including the center axis C of the lens unit 52 are shown, the width w a is the maximum width corresponding lens portion 52. h a is the thickness at the position of the tip portion 52a of the lens unit 52. Therefore, the aspect ratio [h a / w a ] is the thickness (or height) of the lens part 52 at the position of the tip part 52a with respect to the maximum width of the lens part 52, that is, the [thickness at the tip part position]. ] / [Maximum lens width]. Normally, the thickness of the lens portion 52 at the position of the tip portion 52a is the maximum, and therefore the thickness of the lens portion 52 at the position of the tip portion 52a is also the maximum thickness of the lens portion 52. The ratio described in (II) corresponds to the ratio between the radius of curvature r and the maximum width of the lens portion 52, that is, [curvature radius] / [maximum width of the lens portion].
 レンズ部52の材料は、本体部51と同じ材料とし得る。レンズ部52の材料は、透明材料であれば、本体部51の材料と異なっていてもよい。 The material of the lens part 52 may be the same material as that of the main body part 51. The material of the lens part 52 may be different from the material of the main body part 51 as long as it is a transparent material.
 上記構成の導光板50の本体部51は、単独の透光性材料で構成された単層の板状体であってもよいし、互いに異なる透光性材料で構成された層が積層された多層構造の板状体でもよい。レンズ部52の材料が本体部51と同じである場合は、導光板50は、単独の透光性材料で構成された板状体である。 The main body 51 of the light guide plate 50 configured as described above may be a single-layer plate-like body made of a single translucent material, or layers made of different translucent materials are laminated. A plate-like body having a multilayer structure may be used. When the material of the lens part 52 is the same as that of the main body part 51, the light guide plate 50 is a plate-like body made of a single translucent material.
 更に、本体部51及びレンズ部52を構成する透光性材料として透光性樹脂材料が用いられる場合、この透光性樹脂材料に紫外線吸収剤、帯電防止剤、酸化防止剤、加工安定剤、難燃剤、滑剤等の添加剤が添加されてもよい。これらの添加剤はそれぞれ単独で、又は2種以上が組み合わされて用いられ得る。導光板50に紫外線吸収剤が添加されている形態では、光源部60から出力される光に紫外線が多く含まれている場合などにおいて、紫外線による導光板50の劣化を防止できるため、導光板50に紫外線吸収剤を添加することが好ましい。 Furthermore, when a translucent resin material is used as the translucent material constituting the main body 51 and the lens unit 52, an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, Additives such as flame retardants and lubricants may be added. These additives may be used alone or in combination of two or more. In the form in which the ultraviolet absorber is added to the light guide plate 50, the light guide plate 50 can be prevented from being deteriorated by the ultraviolet rays when the light output from the light source unit 60 includes a lot of ultraviolet rays. It is preferable to add an ultraviolet absorber to the.
 紫外線吸収剤としては、例えばベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。紫外線吸収剤の好ましい例は、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤である。 Examples of UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, malonic acid ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. Can be mentioned. Preferred examples of the ultraviolet absorber are a benzotriazole ultraviolet absorber and a triazine ultraviolet absorber.
 透光性樹脂材料は、通常、添加剤として光拡散剤が添加されることなく用いられるが、本発明の趣旨を逸脱しない範囲であれば、すなわち、本発明の目的を損なわない僅かな量であれば、透光性樹脂材料に光拡散剤が添加されてもよい。 The translucent resin material is usually used without adding a light diffusing agent as an additive, but within a range that does not depart from the spirit of the present invention, that is, in a slight amount that does not impair the purpose of the present invention. If present, a light diffusing agent may be added to the translucent resin material.
 光拡散剤として、通常は、導光板50、具体的には、本体部51及びレンズ部52を主に構成する上述したような透明材料とは屈折率が異なる粉末が用いられ、これを透明材料中に分散させて用いられる。かかる光拡散剤としては、例えばスチレン樹脂粒子、メタクリル樹脂粒子などの有機粒子、炭酸カリウム粒子、シリカ粒子等の無機粒子が用いられ、その粒子径は通常0.8μm~50μmである。 As the light diffusing agent, a powder having a refractive index different from that of the transparent material as described above, which mainly forms the light guide plate 50, specifically, the main body 51 and the lens 52, is used. Used by dispersing in. As the light diffusing agent, for example, organic particles such as styrene resin particles and methacrylic resin particles, and inorganic particles such as potassium carbonate particles and silica particles are used, and the particle diameter is usually 0.8 μm to 50 μm.
 出射面51aは、好ましくは、平坦である。しかしながら、モアレ低減のために出射面51aは、僅かに表層拡散機能を有していてもよい。 The exit surface 51a is preferably flat. However, the emission surface 51a may have a slight surface layer diffusion function in order to reduce moire.
 上記レンズ部52を備えた導光板50は、インクジェット印刷(インクジェット法)、フォトポリマー法、押出成型又は射出成型などにより製造され得る。 The light guide plate 50 including the lens unit 52 can be manufactured by ink jet printing (ink jet method), photopolymer method, extrusion molding, injection molding, or the like.
 インクジェット印刷(インクジェット法)やフォトポリマー法を用いて導光板50を製造する際には、レンズ部52の材料として、紫外線硬化樹脂が利用され得る。この場合、紫外線硬化樹脂としては、アクリル系紫外線硬化樹脂が用いられ得る。 When manufacturing the light guide plate 50 using inkjet printing (inkjet method) or photopolymer method, an ultraviolet curable resin can be used as the material of the lens portion 52. In this case, an acrylic ultraviolet curable resin can be used as the ultraviolet curable resin.
 レンズ部52の材料をアクリル系紫外線硬化樹脂としてインクジェット印刷が利用される場合の導光板50の製造方法の一例が説明される。この場合、板状体としての本体部51が押出成型又は射出成型などにより形成される。次に、本体部51の背面51bとなるべき面に、インクジェットヘッドを操作しながら、紫外線硬化樹脂が滴下(印刷)される。次いで、紫外線を紫外線硬化樹脂に照射して、紫外線硬化樹脂を硬化させることで、滴下された紫外線硬化樹脂がレンズ部52となる。 An example of a method for manufacturing the light guide plate 50 in the case where inkjet printing is used with the material of the lens portion 52 as an acrylic ultraviolet curable resin will be described. In this case, the main body 51 as a plate-like body is formed by extrusion molding or injection molding. Next, an ultraviolet curable resin is dropped (printed) onto the surface to be the back surface 51b of the main body 51 while operating the ink jet head. Next, the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin, so that the dropped ultraviolet curable resin becomes the lens portion 52.
 レンズ部52を紫外線硬化樹脂から形成する場合の紫外線硬化樹脂の例は、例えば、アクリル系紫外線硬化樹脂である An example of the ultraviolet curable resin when the lens portion 52 is formed from an ultraviolet curable resin is, for example, an acrylic ultraviolet curable resin.
 ここでは、インクジェット印刷による製造方法が例示されたが、前述されたように、押出成型や射出成形などによって直接レンズ部52が形成された導光板50が製造されてもよい。この場合、レンズ部52の材料は、本体部51の材料と同じである。 Here, the manufacturing method by ink jet printing is exemplified, but as described above, the light guide plate 50 in which the lens portion 52 is directly formed may be manufactured by extrusion molding, injection molding, or the like. In this case, the material of the lens part 52 is the same as the material of the main body part 51.
 次に、上記導光板50の作用効果が、導光板50が、図1に示されたように面光源装置30の一部として採用され、導光板50が透過型画像表示装置10に適用された場合を例にして説明される。図6は、図1に示された透過型画像表示装置10の一部拡大図である。図6では、図1中において側面50a(側面51c)側を拡大して示している。 Next, the effects of the light guide plate 50 are applied as a part of the surface light source device 30 as shown in FIG. 1 and the light guide plate 50 is applied to the transmissive image display device 10. A case will be described as an example. FIG. 6 is a partially enlarged view of the transmissive image display apparatus 10 shown in FIG. In FIG. 6, the side surface 50a (side surface 51c) side is shown enlarged in FIG.
 光源部60が有する点状光源61が発光されると、点状光源61からの光は、点状光源61に対向する導光板50の側面50aから導光板50に入射する。導光板50に入射された光は、導光板50内を全反射しながら導光板50内を伝搬する。導光板50内を伝搬する光が、レンズ部52に入射すると、レンズ部52内では光が全反射条件以外の条件で反射する。そのため、反射光は出射面51aから出射する。 When the point light source 61 included in the light source unit 60 emits light, the light from the point light source 61 enters the light guide plate 50 from the side surface 50 a of the light guide plate 50 facing the point light source 61. The light incident on the light guide plate 50 propagates in the light guide plate 50 while being totally reflected in the light guide plate 50. When light propagating in the light guide plate 50 enters the lens unit 52, the light is reflected in the lens unit 52 under conditions other than the total reflection condition. Therefore, the reflected light is emitted from the emission surface 51a.
 光量比Qが0.252%より大きくなる形状をレンズ部52が有することから、出射面51aから出射する光の出射角θは、約30°付近、より具体的には、25°以上35°以下の範囲になりやすい。その結果、プリズム板40を経て透過型画像表示部20に出射される光の輝度が向上する。 Since the lens unit 52 has a shape in which the light quantity ratio Q is larger than 0.252%, the emission angle θ o of the light emitted from the emission surface 51a is about 30 °, more specifically, 25 ° to 35 °. It tends to be in the range below °. As a result, the brightness of light emitted to the transmissive image display unit 20 through the prism plate 40 is improved.
 この点が、レンズ部52の代わりに、白色ドット81が背面51bに形成された導光板80の場合を例にして説明される。図7は、複数の白色ドット81が背面51bに形成された導光板80の構成の一例を示す模式図である。図7には、説明のために、点状光源61及びプリズム板40も一緒に示されている。導光板80の構成は、背面51bにレンズ部52の代わりに白色ドット81が形成されている点以外は、導光板50の構成と同様である。導光板80の要素において、導光板50と同様の要素には同じ符号が付されている。 This point will be described by taking as an example the case of a light guide plate 80 in which white dots 81 are formed on the back surface 51b instead of the lens portion 52. FIG. 7 is a schematic diagram showing an example of the configuration of the light guide plate 80 in which a plurality of white dots 81 are formed on the back surface 51b. In FIG. 7, the point light source 61 and the prism plate 40 are also shown for the sake of explanation. The configuration of the light guide plate 80 is the same as that of the light guide plate 50 except that white dots 81 are formed on the back surface 51b instead of the lens portion 52. Elements of the light guide plate 80 that are the same as those of the light guide plate 50 are denoted by the same reference numerals.
 導光板80の場合も、点状光源61から出力され導光板80内に入射した光は、導光板80内を全反射しながら導光板80内を伝搬する。導光板80内を伝搬する光が白色ドット81の位置で反射する場合には、全反射条件以外で反射する光も生じる。そのため、白色ドット81によって反射した光は、出射面51aから出射する。この際、図8に示されるように、出射角θは約60°付近になる傾向がある。図8は、出射角θに対する出射光の強度分布の測定結果を示すグラフである。図8の横軸は、出射面51aからの出射光の出射角θであり、縦軸は光度(cd)である。導光板80から出射された光は、出射角θとほぼ同じ角度でプリズム板40に入射する。従って、約60°の出射角θで出射された出射光は、約60°の入射角θでプリズム板40に入射する。 Also in the case of the light guide plate 80, the light output from the point light source 61 and entering the light guide plate 80 propagates in the light guide plate 80 while being totally reflected in the light guide plate 80. When the light propagating in the light guide plate 80 is reflected at the position of the white dot 81, the light reflected under conditions other than the total reflection condition is also generated. Therefore, the light reflected by the white dots 81 is emitted from the emission surface 51a. At this time, as shown in FIG. 8, the emission angle θ o tends to be around 60 °. Figure 8 is a graph showing the results of measuring the intensity distribution of the emitted light with respect to emission angle theta o. The horizontal axis of FIG. 8 is the outgoing angle θ o of the outgoing light from the outgoing face 51a, and the vertical axis is the luminous intensity (cd). Light emitted from the light guide plate 80 is incident on the prism plate 40 at approximately the same angle and the emission angle theta o. Therefore, the outgoing light emitted at the outgoing angle θ o of about 60 ° enters the prism plate 40 at the incident angle θ i of about 60 °.
 しかしながら、入射角θが60°付近でプリズム板40に入射した光は、プリズム部41から出射される際には、図7に示されるようにZ方向から離れた方向に出射されやすい。その結果、透過型画像表示部20に入射する光が低減する傾向にある。 However, when the light incident on the prism plate 40 when the incident angle θ i is around 60 ° is emitted from the prism portion 41, it is likely to be emitted in a direction away from the Z direction as shown in FIG. As a result, the light incident on the transmissive image display unit 20 tends to be reduced.
 一方、導光板50においては、30°±5°(すなわち、25°以上35°以下)の範囲内の出射角θで光が出射されやすい。この場合、プリズム板40には、30°±5°の入射角θで光が入射する。プリズム板40への光の入射角θが30°近傍の場合、プリズム部41から出射される光は、図6に示されるように、板厚方向(Z方向)に出射されやすい。換言すれば、導光板50から出射された光は、板厚方向である正面方向により多く集光される。 On the other hand, in the light guide plate 50, light is easily emitted at an emission angle θ o within a range of 30 ° ± 5 ° (that is, 25 ° or more and 35 ° or less). In this case, light enters the prism plate 40 at an incident angle θ i of 30 ° ± 5 °. If the incident angle theta i vicinity 30 ° of the light into the prism plate 40, the light emitted from the prism unit 41, as shown in FIG. 6, likely to be emitted in the thickness direction (Z-direction). In other words, more light emitted from the light guide plate 50 is collected in the front direction, which is the thickness direction.
 なお、プリズム部41を構成する一対の側面42a,42bのうち、一方の面42aから出射される光は板厚方向に出射される一方、他方の面42bから出射される光は、板厚方向から離れる場合もある。しかしながら、一方の側面42aから板厚方向に出射されやすいので、入射角θが約60°の場合より、透過型画像表示部20に向けて出射される光量が多くなる。そのため、正面方向の輝度が向上し、結果として、透過型画像表示部20でより明るい画像が表示され得る。 Of the pair of side surfaces 42a and 42b constituting the prism portion 41, light emitted from one surface 42a is emitted in the plate thickness direction, while light emitted from the other surface 42b is emitted in the plate thickness direction. You may be away from However, since the light is easily emitted from the one side surface 42a in the thickness direction, the amount of light emitted toward the transmissive image display unit 20 is larger than when the incident angle θ i is about 60 °. Therefore, the brightness in the front direction is improved, and as a result, a brighter image can be displayed on the transmissive image display unit 20.
 次に、レンズ部52が図5に示された条件を満たす場合に、出射角θが30°近傍である出射光がより多くなる点がシミュレーション結果に基づいて説明される。 Next, when the lens unit 52 satisfies the conditions shown in FIG. 5, the point that the outgoing light having the outgoing angle θ o near 30 ° is increased will be described based on the simulation result.
 図9は、シミュレーションモデルを示す模式図である。説明の便宜のため、図1に示した構成要素に対応する構成要素は、導光板50のようにMを付して記載される。シミュレーションは、図9に示されたように導光板50の側面50a,50bの側方にそれぞれ点状光源61,61が配置されると共に、導光板50の下方に反射部70としての反射シートが配置されたモデルにおいて、光線追跡法を用いて行われた。点状光源61,61は、側面50a及び側面50bの側方に配置された。点状光源61,61は、導光板50の短辺方向において、短辺方向の中央部に位置している。 FIG. 9 is a schematic diagram showing a simulation model. For convenience of explanation, components corresponding to components shown in FIG. 1 is described are denoted by the M as a light guide plate 50 M. Simulation, together with the side surface 50 M a of the light guide plate 50 M, 50 M each point light source 61 M on the side of b, 61 M are arranged as shown in FIG. 9, below the light guide plate 50 M in the reflection sheet is disposed model as a reflective portion 70 M, was performed using a ray tracing method. The point light sources 61 M and 61 M are disposed on the sides of the side surface 50 M a and the side surface 50 M b. The point light sources 61 M and 61 M are located in the center of the short side direction in the short side direction of the light guide plate 50 M.
 シミュレーション条件は、次のとおりである。
・導光板50の構成材料:本体部51及びレンズ部52はいずれもPMMA(屈折率:1.49)を仮定
・導光板50の平面視形状(板厚方向からみた形状):長方形
・導光板50の長辺の長さW1:500mm
・導光板50の短辺の長さW2: 20mm
・本体部51の厚さt:4mm
・導光板50のレンズ部52の先端部52aと反射部70との間の距離:0.1mm
・反射部70:ミラー(反射率100%)を仮定
・点状光源61の特性:点光源とし、等方出射を仮定
・点状光源61から出射される光の波長:550nmを仮定
・点状光源61と導光板50との距離:0.1mm
 なお、本体部51の側面51e及び側面51fでは周期的境界条件を仮定した。すなわち、側面51e及び側面51fでは光はすべて反射し導光板50内に戻るとした。
The simulation conditions are as follows.
-Constituent material of light guide plate 50 M : main body 51 M and lens portion 52 M both assume PMMA (refractive index: 1.49)-shape of light guide plate 50 M in plan view (shape viewed from plate thickness direction): Rectangular / light guide plate 50 M long side length W1: 500mm
· Light guide plate 50 M , short side length W2: 20 mm
-Main body 51 M thickness t: 4 mm
The distance between the lens portion 52 M of the light guide plate 50 M and the tip 52 M a of the M and the reflection portion 70 M : 0.1 mm
Reflector 70 M : Assuming a mirror (100% reflectance) Point light source 61 M : Point light source, assuming isotropic emission Wavelength of light emitted from point light source 61 M : Assuming 550 nm -Distance between point light source 61 M and light guide plate 50 M : 0.1 mm
Incidentally, assuming periodic boundary conditions in the body portion 51 side 51 of M M e and side 51 M f. That was a return to all light in the side surface 51 M e and side 51 M f is reflected guided plate 50.
 シミュレーションでは、図4に示されたようにレンズ部52の中心軸線Cを含むレンズ部52の断面構成において、レンズ部52の輪郭線が円錐曲線で表されている。具体的には、図10に示されるように、uv座標系が設定され、レンズ部52の断面形状が式(1)で示される円錐曲線v(u)によって規定された。uv座標系のv軸は図4におけるレンズ部52の中心軸線Cに対応する。u軸は図4に示すX方向に対応する。
Figure JPOXMLDOC01-appb-M000001
In the simulation, the cross-sectional configuration of the lens unit 52 M containing the center axis C of the lens unit 52 M as shown in FIG. 4, the contour of the lens portion 52 M is represented by conic. Specifically, as shown in FIG. 10, uv coordinate system is set, the cross-sectional shape of the lens portion 52 M is defined by the conic v (u) represented by the formula (1). uv coordinate system v axis corresponds to the center axis C of the lens unit 52 M in FIG. The u axis corresponds to the X direction shown in FIG.
Figure JPOXMLDOC01-appb-M000001
 式(1)において、kは、式(1)で表される円錐曲線のとがり方を示すパラメータであり、レンズ部52の先端部52aのとがり方を表している。例えばkが0のとき、レンズ部52の外形は放物線形状となり、kが1のとき、レンズ部52の外形はプリズム形状となり、kが-1のとき、レンズ部52の外形は楕円を半分に切った形状となる。 In the formula (1), k a is a parameter indicating the kurtosis how conic represented by the formula (1) represents the kurtosis how tip 52 M a of the lens portion 52 M. For example, when k a is 0, the outer shape of the lens unit 52 M becomes parabolic, when k a is 1, the outer shape of the lens unit 52 M becomes prism shape, when k a is -1, the lens portion 52 M The outer shape is a shape obtained by cutting an ellipse in half.
 シミュレーションモデルでは、本体部51の背面51bに複数のレンズ部52が一定間隔で配置された。具体的には、複数の正方形が配列されてなる正方格子が背面51bに対して設定され、正方格子の構成単位である各正方形に一つのレンズ部52が配置された。正方格子の構成単位に対するレンズ部52の占有率(構成単位に対するレンズ部52の被覆率)は78.5%とした。正方格子の構成単位である正方形の一辺の長さは500μmとした。 In the simulation model, a plurality of lens portions 52 M to the rear 51 M b of the main body portion 51 M are arranged at regular intervals. Specifically, a square lattice having a plurality of square are arrayed is set to the back 51 M b, one lens portion 52 M in each square there is arranged in the structural units of the square lattice. Square lens unit 52 M occupancy for the structural units of the lattice (coverage of the lens unit 52 M for constituting units) was 78.5%. The length of one side of the square, which is a structural unit of the square lattice, was 500 μm.
 シミュレーションでは、まず、式(1)で規定される外形を有するレンズ部52が設計された。設計されたレンズ部52を有する導光板50に対して、点状光源61から光が入射した場合を想定し、導光板50の出射面51aの中央部に光の出射位置としての点pを仮定し、点pから光が出射される場合の出射光の放射輝度が計算された。 In the simulation, first, the lens unit 52 M having a contour defined by the formula (1) is designed. Relative designed lens portion 52 light guide plate 50 having a M M, assuming that the light from the point light sources 61 M incident, emitting position of the light in the central portion of the emission surface 51 M a of the light guide plate 50 M Assuming that the point p is as follows, the radiance of the emitted light when the light is emitted from the point p was calculated.
 そして、図3の(b)及び(c)に示された局所的なxyz座標系を設定し、光量Q及び光量Qが算出された。シミュレーションでは、後述する比較のための実験結果と対比するため、0°≦θ≦90°及び0°≦φ≦360°の範囲(図3(b)に示された単位球の球面のうちz≧0の領域の半球面に相当)に出射された出射光の放射輝度が半球面上の複数の点で算出された。その後、算出された放射輝度に基づいて、半球面全体の全放射束及び所定領域の放射束が算出された。 Then, set the local xyz coordinate system shown in shown in FIG. 3 (b) and (c), the light quantity Q 1 and the light quantity Q 2 is calculated. In the simulation, for comparison with the experimental results for comparison described later, the range of 0 ° ≦ θ ≦ 90 ° and 0 ° ≦ φ ≦ 360 ° (z of the spherical surfaces of the unit sphere shown in FIG. 3B) The radiance of the emitted light emitted to the hemisphere in the region of ≧ 0 was calculated at a plurality of points on the hemisphere. Thereafter, based on the calculated radiance, the total radiant flux of the entire hemisphere and the radiant flux of a predetermined region were calculated.
 放射輝度が算出される上記複数の点は、所定領域内の点を含むように、θ方向に5°刻みで設定されると共に、φ方向に10°刻みで設定された。放射輝度から全放射束及び放射束の算出は次のように実施された。 The plurality of points at which the radiance is calculated are set in increments of 5 ° in the θ direction and in increments of 10 ° in the φ direction so as to include points within a predetermined region. Calculation of total radiant flux and radiant flux from radiance was carried out as follows.
 すなわち、各算出点の放射輝度が、単位立体角あたりの放射束に換算された。単位立体角としては1/4πが設定された。次に、各放射束が単位球面上の面要素あたりの放射束に換算された。その後、単位球面上の面要素あたりの放射束を半球面全体にわたって数値積分することによって全放射束が算出された。単位球面上の面要素あたりの放射束を、25°≦θ≦35°且つ-5°≦φ≦5°の範囲で数値積分することで放射束が算出された。シミュレーションでは、物理量である放射束が算出されているが、放射束は、いわゆる心理物理量の光束(単位時間あたりの光量)に対応する。よって、算出した全放射束に対する所定領域の放射束の比は、全光束(単位時間あたりの全光量)に対する所定領域の光束(単位時間あたりの光量)の比に対応する。従って、[所定領域の放射束]/[全放射束]が光量比Qとされた。 That is, the radiance at each calculation point was converted into a radiant flux per unit solid angle. 1 / 4π was set as the unit solid angle. Next, each radiant flux was converted into a radiant flux per surface element on the unit sphere. Thereafter, the total radiant flux was calculated by numerically integrating the radiant flux per surface element on the unit sphere over the entire hemisphere. The radiant flux was calculated by numerically integrating the radiant flux per surface element on the unit spherical surface in the range of 25 ° ≦ θ ≦ 35 ° and −5 ° ≦ φ ≦ 5 °. In the simulation, a radiant flux that is a physical quantity is calculated, and the radiant flux corresponds to a so-called psychophysical quantity of light flux (amount of light per unit time). Therefore, the ratio of the radiant flux in the predetermined area to the calculated total radiant flux corresponds to the ratio of the luminous flux (light quantity per unit time) in the predetermined area to the total luminous flux (total light quantity per unit time). Therefore, the [radiant flux in a predetermined area] / [total radiant flux] was set to the light quantity ratio Q.
 k及びh/wを変更することによって、設定される複数のレンズ部52の形状に対して上記シミュレーションが実施され、光量比Qが算出された。 By changing k a and h a / w a , the above simulation was performed on the set shapes of the plurality of lens portions 52 M , and the light amount ratio Q was calculated.
 比較のために、白色ドット81を備えた導光板80を用いて実測値に基づく光量比Qが得られた。比較のための実験(以下、「比較実験」と称される)では、三星電子株式会社製「UN46B8000」に使用されているバックライトユニットを取り出し、当該バックライトユニットの導光板が導光板80として使用された。そして、導光板80とバックライトユニットの光源とを使用すると共に、導光板80の背面側に銀蒸着反射フィルムを設けることによって、図9の構成と同様の構成が実現された。比較実験に使用した導光板80は白色ドット81を備えていた。そして、比較実験では、図9に示されたシミュレーションモデルの場合と同様に、導光板80の側面から白色光を導光板80内に供給して、出射面51aの所定位置(導光板80の中央位置)からの輝度が測定された。測定は、輝度計(TOPCOM社製「色彩輝度計BM-5AS」)を用いて行われた。具体的には、図3(b)に示された球面のうちz≧0の領域に相当する半球面内の複数の測定点でそれぞれ輝度が測定された。複数の測定点は、シミュレーションの放射輝度の算出点に対応するように設定された。 For comparison, a light quantity ratio Q based on actual measurement values was obtained using a light guide plate 80 provided with white dots 81. In an experiment for comparison (hereinafter referred to as “comparison experiment”), the backlight unit used in “UN46B8000” manufactured by Samsung Electronics Co., Ltd. is taken out, and the light guide plate of the backlight unit is used as the light guide plate 80. Used. And while using the light-guide plate 80 and the light source of a backlight unit, and providing the silver vapor deposition reflective film in the back side of the light-guide plate 80, the structure similar to the structure of FIG. 9 was implement | achieved. The light guide plate 80 used for the comparison experiment was provided with white dots 81. In the comparative experiment, as in the simulation model shown in FIG. 9, white light is supplied from the side surface of the light guide plate 80 into the light guide plate 80, and a predetermined position (the center of the light guide plate 80 is centered). The luminance from the position) was measured. The measurement was performed using a luminance meter (“Color luminance meter BM-5AS” manufactured by TOPCOM). Specifically, the luminance was measured at each of a plurality of measurement points in the hemisphere corresponding to the region of z ≧ 0 in the spherical surface shown in FIG. The plurality of measurement points were set so as to correspond to the simulation radiance calculation points.
 測定された輝度に基づいて、シミュレーションの場合と同様にして全光束及び所定領域の光束が算出された。すなわち、各測定点の輝度が、単位立体角あたりの光束に換算された。単位立体角として1/4πが設定された。次に、各光束が単位球面上の面要素あたりの光束に換算された。その後、単位球面上の面要素あたりの光束を半球面全体にわたって数値積分することによって全光束が算出された。単位球面上の面要素あたりの光束を、25°≦θ≦35°且つ-5°≦φ≦5°の範囲で数値積分することで所定領域の光束が算出された。光束は単位時間あたりの光量に対応するので、全光束が光量Qに対応し、所定領域の光束が光量Qに対応する。よって、光量Qを光量Qで除することによって、光量比Qが算出された。白色ドット81が設けられた場合の光量比Qは、0.252%であった。 Based on the measured luminance, the total luminous flux and the luminous flux in a predetermined area were calculated in the same manner as in the simulation. That is, the luminance at each measurement point was converted into a luminous flux per unit solid angle. 1 / 4π was set as the unit solid angle. Next, each light beam was converted into a light beam per surface element on the unit spherical surface. Thereafter, the total luminous flux was calculated by numerically integrating the luminous flux per surface element on the unit sphere over the entire hemisphere. The luminous flux per predetermined area was calculated by numerically integrating the luminous flux per surface element on the unit spherical surface in the range of 25 ° ≦ θ ≦ 35 ° and −5 ° ≦ φ ≦ 5 °. Since light beams corresponding to the amount of light per unit time, the total luminous flux corresponding to the quantity Q 1, light flux of a predetermined region corresponding to the light quantity Q 2. Therefore, by dividing the light quantity Q 2 in the amount of light Q 1, the light quantity ratio Q was calculated. The light quantity ratio Q when the white dots 81 were provided was 0.252%.
 シミュレーション結果は、図11及び図12に示された図表のとおりである。図11及び図12は、式(1)におけるkとアスペクト比[h/w]とで規定されるレンズ形状と光量比Qとの関係を示す図表である。図11はkが0以上0.9までの範囲を示しており、図12は、kが-0.9以上且つ-0.1以下の範囲を示している。 The simulation results are as shown in the charts shown in FIGS. 11 and FIG. 12 is a table showing the relationship between k a and aspect ratio [h a / w a] a de defined by the lens shape and the light quantity ratio Q in the formula (1). 11 k a is shows the range of 0 to 0.9, FIG. 12, k a indicates a and -0.1 below the range of -0.9.
 図11及び図12において、光量比Qが大きい方が出射角30°近傍に出射される光が多いことを示している。すなわち、光量比Qが大きい方が、プリズム板40と組み合わせた際に、輝度向上が図れることになる。 11 and 12, it is shown that the larger the light quantity ratio Q is, the more light is emitted in the vicinity of the emission angle 30 °. In other words, towards the light quantity ratio Q is large, when combined with the prism plate 40 M, so that the attained brightness improvement.
 図13及び図14は、図11及び図12に示したkとアスペクト比[h/w]とで決まるレンズ形状の幅wに対する先端部52aの曲率半径rの幅wに対する比[r/w]を示す図表である。また、図15及び図16は、図11及び図12に示したkとアスペクト比[h/w]とで決まるレンズ形状の底部角度を示す図表である。 13 and 14, k a and aspect ratio shown in FIGS. 11 and 12 [h a / w a] a tip portion 52 to the width w a of the lens shape determined de M a width w a radius of curvature r of is a table showing the ratio [r / w a] against. Further, FIGS. 15 and 16 is a chart of the bottom angle of the lens shape determined out with k a and an aspect ratio shown in FIGS. 11 and 12 [h a / w a] .
 図11及び図12に示した図表では、白色ドット81に対して算出された光量比Qの値(0.252%)より大きい光量比Qに下線を付している。図11に対応する図13及び図15、図12に対応する図14及び図16では、図11及び図12において下線を付した光量比Qを実現するレンズ部52の幅wに対する先端部52aの曲率半径[r/w]及び底部角度γに下線を付している。 In the charts shown in FIGS. 11 and 12, the light quantity ratio Q that is larger than the value (0.252%) of the light quantity ratio Q calculated for the white dot 81 is underlined. 13 and 15 corresponding to FIG. 11 and FIGS. 14 and 16 corresponding to FIG. 12, the front end portion 52a with respect to the width w a of the lens portion 52 realizing the light quantity ratio Q underlined in FIGS. Is underlined with the radius of curvature [r / w a ] and the bottom angle γ.
 従って、図11~図16において、下線を付した箇所のh/w、幅wに対する曲率半径[r/w]及び底部角度γで規定されるレンズ部52では、白色ドット81を備える導光板80の場合より大きい光量比Qが実現され得る。 Accordingly, in FIGS. 11 to 16, in the lens portion 52 defined by the underlined portion h a / w a , the radius of curvature [r / w a ] with respect to the width w a, and the bottom portion angle γ, white dots 81 are formed. A larger light quantity ratio Q can be realized in the case of the light guide plate 80 provided.
 そして、図11~図16で下線が付された箇所のレンズ部52の形状を規定するアスペクト比[h/w]、幅wに対する曲率半径[r/w]及び底部角度γは、図5で示された図表で示した範囲内である。 The aspect ratio [h a / w a ], the radius of curvature [r / w a ] with respect to the width w a, and the bottom angle γ that define the shape of the lens portion 52 M at the underlined portion in FIGS. Is within the range shown in the chart shown in FIG.
 よって、図5に示された、h/w、r/w及びγで示された組み合わせで規定されるレンズ部52を備える導光板50では、出射角θが25°以上35°以下になりやすいことになる。そのため、前述されたように、本実施形態における導光板50を採用することで、プリズム板40を備える透過型画像表示装置10において、より高い輝度で透過型画像表示部20が照明され得る。その結果、透過型画像表示部20で表示される画像の輝度向上が図られる。 Therefore, as shown in FIG. 5, h a / w a, the light guide plate 50 includes a lens portion 52 defined by combinations shown in r / w and gamma, 35 ° or less emission angle theta o is 25 ° or more It becomes easy to become. Therefore, as described above, by employing the light guide plate 50 according to the present embodiment, the transmissive image display unit 20 can be illuminated with higher luminance in the transmissive image display device 10 including the prism plate 40. As a result, the luminance of the image displayed on the transmissive image display unit 20 is improved.
 以上、本発明の実施形態が説明されたが、本発明は上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.
 上記実施形態は、背面51b上に形成されている複数のレンズ部52は光量比Qが0.252%より大きくなるような形状を有するとして説明された。しかしながら、背面51b上に形成されている複数のレンズ部のうち、少なくも半分以上のレンズ部が上記実施形態で説明されたレンズ部52であればよい。換言すれば、背面51bに形成される複数のレンズ部は、その半分が上記レンズ部52としての第1のレンズ部と、残りの半分が上記実施形態で説明した条件を満たしていない第2のレンズ部とから構成されていてもよい。レンズ部52としての第1のレンズ部の数と、上記第2のレンズ部との数の比は、6:4でもよい。 In the above embodiment, the plurality of lens portions 52 formed on the back surface 51b have been described as having a shape such that the light quantity ratio Q is greater than 0.252%. However, at least half or more of the lens units formed on the back surface 51b may be the lens unit 52 described in the above embodiment. In other words, among the plurality of lens portions formed on the back surface 51b, half of the first lens portion as the lens portion 52 and the other half do not satisfy the conditions described in the above embodiment. You may comprise from a lens part. The ratio of the number of first lens portions as the lens portions 52 to the number of the second lens portions may be 6: 4.
 レンズ部52の形状は、図4に例示されたように、レンズ部52の接平面と背面51bとのなす角度が、レンズ部52の底部側から先端部側にかけて単調に減少する形状を有することが好ましい。しかしながら、レンズ部52は、図5に示されたh/w、r/w及びγで示された組み合わせで規定される形状を有するなどにより、光量比Qが0.252%より大きくなるような形状を有していれば、レンズ部52の接平面と背面51bとのなす角度との先端部52a側にかけて単調に減少していなくてもよい。 As illustrated in FIG. 4, the shape of the lens unit 52 has a shape in which the angle formed between the tangential plane of the lens unit 52 and the back surface 51 b monotonously decreases from the bottom side to the front end side of the lens unit 52. Is preferred. However, the lens unit 52 has a shape defined by a combination indicated by h a / w a , r / w, and γ shown in FIG. 5, and the light quantity ratio Q becomes larger than 0.252%. If it has such a shape, it does not need to be monotonously decreasing toward the front end portion 52a side of the angle formed between the tangential plane of the lens portion 52 and the back surface 51b.
 更に、光源部60の数は、2つに限定されない。例えば、光源部60は、3つ以上であってもよい。この場合、例えば、本体部51が有する側面51e,51fのうちの少なくとも一つに対して光源部60が更に設けられ得る。光源部60は導光板に対して一つでもよい。この場合、光源部60は、図1に示された側面51c及び側面51dのうちの一方に配置される。 Furthermore, the number of light source units 60 is not limited to two. For example, the light source unit 60 may be three or more. In this case, for example, the light source unit 60 may be further provided on at least one of the side surfaces 51e and 51f of the main body unit 51. One light source unit 60 may be provided for the light guide plate. In this case, the light source unit 60 is disposed on one of the side surface 51c and the side surface 51d shown in FIG.
 図1に示された透過型画像表示装置10において、本発明の目的を損なわなければ、導光板50とプリズム板40との間に他の光学部材が配置されてもよいし、プリズム板40と透過型画像表示部10との間に他の光学部材が配置されてもよい。導光板50とプリズム板40との間に設けられる他の光学部材の例は、本発明の目的を損なわない程度の光拡散特性を有する光拡散シート又はマイクロレンズシートである。プリズム板40と透過型画像表示部10との間に設けられる他の光学部材の例は、反射型偏光分離シート、光拡散シート又はマイクロレンズシートである。 In the transmissive image display device 10 shown in FIG. 1, another optical member may be disposed between the light guide plate 50 and the prism plate 40 as long as the object of the present invention is not impaired. Another optical member may be disposed between the transmissive image display unit 10. Another example of the optical member provided between the light guide plate 50 and the prism plate 40 is a light diffusion sheet or a microlens sheet having a light diffusion characteristic that does not impair the object of the present invention. Examples of other optical members provided between the prism plate 40 and the transmissive image display unit 10 are a reflective polarization separation sheet, a light diffusion sheet, or a microlens sheet.
 10…透過型画像表示装置、20…透過型画像表示部、30…面光源装置、40…プリズム板、40a…表面(プリズム板の片面)、40b…裏面(プリズム板の片面と反対側の面)、41…プリズム部、50…導光板、51…本体部、51a…出射面(第1の面)、51b…背面(第2の面)、51c…側面(入射面)、51d…側面(入射面)、52…レンズ部、52a…先端部、52b…底部、60…光源部。
 
DESCRIPTION OF SYMBOLS 10 ... Transmission-type image display apparatus, 20 ... Transmission-type image display part, 30 ... Surface light source device, 40 ... Prism plate, 40a ... Front surface (one side of a prism plate), 40b ... Back surface (surface on the opposite side to one side of a prism plate) , 41... Prism portion, 50... Light guide plate, 51... Body portion, 51 a... Exit surface (first surface), 51 b... Back surface (second surface), 51 c. (Incident surface), 52... Lens portion, 52a... Tip portion, 52b.

Claims (3)

  1.  片面に形成された複数のプリズム部を有するプリズム板であり、複数の前記プリズム部の各々は一方向に延在しており、複数の前記プリズム部が前記プリズム部の延在方向に略直交する方向に並列配置された前記プリズム板に対して前記片面と反対側である背面側に設けられる導光板であって、
     前記プリズム部側に位置する第1の面と、前記第1の面と反対側に位置する第2の面と、前記第1及び第2の面に交差しており光が入射される入射面とを有する板状の本体部と、
     前記第2の面に形成されており、前記第1の面と反対側に凸である複数のレンズ部と、
    を備え、
     複数の前記レンズ部の各々は、
     前記入射面から入射され前記第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、
     前記第1の光量は、前記第1の面の一点から出射される全出射光の単位時間あたりの量であり、
     前記第2の光量は、前記一点から所定領域に出射される出射光の量であり、
     前記所定領域は、25°以上35°以下の前記第1の面の法線に対する角度範囲を有すると共に、前記プリズム部の延在方向に略直交する方向に対して±5°の前記法線回りの角度幅を有する、
    導光板。
    A prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions being substantially orthogonal to the extending direction of the prism portion. A light guide plate provided on the back side opposite to the one side with respect to the prism plates arranged in parallel in a direction,
    A first surface located on the prism portion side, a second surface located on the opposite side of the first surface, and an incident surface intersecting the first and second surfaces and receiving light. A plate-like main body having
    A plurality of lens portions formed on the second surface and convex to the opposite side of the first surface;
    With
    Each of the plurality of lens portions is
    It has an outer shape such that the ratio of the second light quantity to the first light quantity of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%,
    The first light amount is an amount per unit time of all emitted light emitted from one point of the first surface,
    The second light amount is an amount of emitted light emitted from the one point to a predetermined area,
    The predetermined region has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less, and around the normal line of ± 5 ° with respect to a direction substantially orthogonal to the extending direction of the prism portion. Having an angular width of,
    Light guide plate.
  2.  片面に形成された複数のプリズム部を有するプリズム板であり、複数の前記プリズム部の各々は一方向に延在しており、複数の前記プリズム部が前記プリズム部の延在方向に略直交する方向に並列配置された前記プリズム板の前記片面と反対の面に光を供給する面光源装置であって、
     前記プリズム部側に位置する第1の面と、前記第1の面と反対側に位置する第2の面と、前記第1及び第2の面に交差しており光が入射される入射面とを有する板状の本体部と、前記第2の面に形成されており、前記第1の面と反対側に凸である複数のレンズ部とを有する導光板と、
     前記導光板の前記入射面の側方に配置されており前記入射面に光を供給する光源部と、
    を備え、
     複数の前記レンズ部の各々は、
     前記入射面から入射され前記第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、
     前記第1の光量は、前記第1の面の一点から出射される全出射光の単位時間あたりの量であり、
     前記第2の光量は、前記一点から所定領域に出射される出射光の単位時間あたりの量であり、
     前記所定領域は、25°以上35°以下の前記第1の面の法線に対する角度範囲を有すると共に、前記プリズム部の延在方向に略直交する方向に対して±5°の前記法線回りの角度幅を有する、
    面光源装置。
    A prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions being substantially orthogonal to the extending direction of the prism portion. A surface light source device that supplies light to a surface opposite to the one surface of the prism plate arranged in parallel in a direction,
    A first surface located on the prism portion side, a second surface located on the opposite side of the first surface, and an incident surface intersecting the first and second surfaces and receiving light. A light guide plate having a plate-like main body portion and a plurality of lens portions formed on the second surface and convex to the opposite side of the first surface;
    A light source unit disposed on the side of the incident surface of the light guide plate and supplying light to the incident surface;
    With
    Each of the plurality of lens portions is
    It has an outer shape such that the ratio of the second light quantity to the first light quantity of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%,
    The first light amount is an amount per unit time of all emitted light emitted from one point of the first surface,
    The second light amount is an amount per unit time of emitted light emitted from the one point to a predetermined region,
    The predetermined region has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less, and around the normal line of ± 5 ° with respect to a direction substantially orthogonal to the extending direction of the prism portion. Having an angular width of,
    Surface light source device.
  3.  片面に形成された複数のプリズム部を有するプリズム板であって、複数の前記プリズム部の各々は一方向に延在しており、複数の前記プリズム部が前記プリズム部の延在方向に略直交する方向に並列配置されたプリズム板と、
     前記プリズム板に対して前記片面と反対側である背面側に設けられる導光板であって、前記プリズム部側に位置する第1の面と、前記第1の面と反対側に位置する第2の面と、前記第1及び第2の面に交差しており光が入射される入射面とを有する板状の本体部と、前記第2の面に形成されており、前記第1の面と反対側に凸である複数のレンズ部とを有する導光板と、
     前記導光板の前記入射面の側方に設けられており前記入射面に光を供給する光源部と、
     前記プリズム板の前記片面側に設けられており、前記プリズム板から出射される光により照明され画像を表示する透過型画像表示部と、
    を備え、
     複数の前記レンズ部の各々は、
     前記入射面から入射され前記第1の面から出射される光である出射光の第1の光量に対する第2の光量の比が0.252%より大きくなるような外形を有しており、
     前記第1の光量は、前記第1の面の一点から出射される全出射光の単位時間あたりの量であり、
     前記第2の光量は、前記一点から所定領域に出射される出射光の単位時間あたりの量であり、
     前記所定領域は、25°以上35°以下の前記第1の面の法線に対する角度範囲を有すると共に、前記プリズム部の延在方向に略直交する方向に対して±5°の前記法線回りの角度幅を有する、
    透過型画像表示装置。
     
    A prism plate having a plurality of prism portions formed on one side, each of the plurality of prism portions extending in one direction, and the plurality of prism portions being substantially orthogonal to the extending direction of the prism portion. A prism plate arranged in parallel in the direction to
    A light guide plate provided on a back surface side opposite to the one surface with respect to the prism plate, a first surface located on the prism portion side and a second surface located on the opposite side to the first surface. And a plate-shaped main body having an incident surface that intersects the first and second surfaces and is incident with light, and the first surface. A light guide plate having a plurality of lens portions that are convex on the opposite side, and
    A light source unit provided on a side of the incident surface of the light guide plate and supplying light to the incident surface;
    A transmissive image display unit that is provided on the one side of the prism plate and is illuminated by light emitted from the prism plate to display an image;
    With
    Each of the plurality of lens portions is
    It has an outer shape such that the ratio of the second light quantity to the first light quantity of the emitted light that is incident from the incident surface and emitted from the first surface is greater than 0.252%,
    The first light amount is an amount per unit time of all emitted light emitted from one point of the first surface,
    The second light amount is an amount per unit time of emitted light emitted from the one point to a predetermined region,
    The predetermined region has an angle range with respect to the normal line of the first surface of 25 ° or more and 35 ° or less, and around the normal line of ± 5 ° with respect to a direction substantially orthogonal to the extending direction of the prism portion. Having an angular width of,
    Transmission type image display device.
PCT/JP2012/050859 2011-01-21 2012-01-17 Light guide plate, surface light source device, and transmissive image display device WO2012099123A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-011324 2011-01-21
JP2011011324 2011-01-21
JP2011-191889 2011-09-02
JP2011191889 2011-09-02

Publications (1)

Publication Number Publication Date
WO2012099123A1 true WO2012099123A1 (en) 2012-07-26

Family

ID=46515746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050859 WO2012099123A1 (en) 2011-01-21 2012-01-17 Light guide plate, surface light source device, and transmissive image display device

Country Status (3)

Country Link
JP (1) JP5930729B2 (en)
TW (1) TW201235718A (en)
WO (1) WO2012099123A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416474B1 (en) 2012-09-04 2014-08-06 피에스케이 주식회사 Apparatus and method for manufacturing light guiding plate
JP6127347B2 (en) * 2013-09-06 2017-05-17 パナソニックIpマネジメント株式会社 lighting equipment
WO2020099181A1 (en) * 2018-11-12 2020-05-22 Signify Holding B.V. Optical structure for edge-lit luminaire
JP7352949B2 (en) 2019-10-22 2023-09-29 デルタ工業株式会社 seat suspension mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078795A (en) * 2008-09-25 2010-04-08 Panasonic Corp Liquid crystal display device
JP2010135326A (en) * 2008-12-05 2010-06-17 Qinghua Univ Light guide plates, and backlight module
JP2010282911A (en) * 2009-06-08 2010-12-16 Victor Co Of Japan Ltd Backlight device and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145933A (en) * 1995-11-27 1997-06-06 Hitachi Ltd Liquid crystal display device
WO2008038754A1 (en) * 2006-09-29 2008-04-03 Toray Industries, Inc. Surface light source and liquid crystal display device using the same
JP4391511B2 (en) * 2006-10-18 2009-12-24 日本ライツ株式会社 Light guide plate and flat illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078795A (en) * 2008-09-25 2010-04-08 Panasonic Corp Liquid crystal display device
JP2010135326A (en) * 2008-12-05 2010-06-17 Qinghua Univ Light guide plates, and backlight module
JP2010282911A (en) * 2009-06-08 2010-12-16 Victor Co Of Japan Ltd Backlight device and image display device

Also Published As

Publication number Publication date
TW201235718A (en) 2012-09-01
JP5930729B2 (en) 2016-06-08
JP2013065539A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5380580B2 (en) Light guide plate
JP5343752B2 (en) Light guide plate, light guide plate manufacturing method, surface light source device, and liquid crystal display device
WO2015046439A1 (en) Prism sheet, area light source device, image source unit, and liquid crystal display device
KR20090115163A (en) Optical sheet, surface light source device and transmissive display device
JP4423933B2 (en) Optical sheet and backlight unit and display using the same
WO2013035791A1 (en) Light guide plate, surface light source device, and transmissive image display device
JP5930729B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP5784428B2 (en) Light guide plate unit
JP6042650B2 (en) Light guide plate
WO2012147741A1 (en) Optical sheet
JP2012089304A (en) Surface light source device and liquid crystal display device
JP2017004637A (en) Light guide plate, surface light source device, transmission type display device
JP5363541B2 (en) Light guide plate unit
JP2013068834A (en) Liquid crystal display device
JP2013254592A (en) Light guide plate unit
JP6068851B2 (en) Light guide plate
JP2017198974A (en) Optical unit, surface light source device, video source unit, and liquid crystal display
JP6110826B2 (en) Prism sheet, surface light source device, video source unit, and liquid crystal display device
JP2013054961A (en) Light guide plate
JP2013171677A (en) Light guide plate
JP2023550917A (en) Self-aligning backlight reflector
JP2014146468A (en) Light guide plate
JP2013161583A (en) Light guide plate
JP2018194795A (en) Display
JP2015132845A (en) Deflecting optical sheet laminate, surface light source device, image source module, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736943

Country of ref document: EP

Kind code of ref document: A1