JP2020055719A - Calcined product containing calcium oxide - Google Patents

Calcined product containing calcium oxide Download PDF

Info

Publication number
JP2020055719A
JP2020055719A JP2018188537A JP2018188537A JP2020055719A JP 2020055719 A JP2020055719 A JP 2020055719A JP 2018188537 A JP2018188537 A JP 2018188537A JP 2018188537 A JP2018188537 A JP 2018188537A JP 2020055719 A JP2020055719 A JP 2020055719A
Authority
JP
Japan
Prior art keywords
fired product
primary
firing
product
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018188537A
Other languages
Japanese (ja)
Other versions
JP7215670B2 (en
Inventor
新一 沢田
Shinichi Sawada
新一 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IT SUPPORT CO Ltd
Elzion KK
Plus Lab Co Ltd
Original Assignee
IT SUPPORT CO Ltd
Elzion KK
Plus Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IT SUPPORT CO Ltd, Elzion KK, Plus Lab Co Ltd filed Critical IT SUPPORT CO Ltd
Priority to JP2018188537A priority Critical patent/JP7215670B2/en
Publication of JP2020055719A publication Critical patent/JP2020055719A/en
Application granted granted Critical
Publication of JP7215670B2 publication Critical patent/JP7215670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide a calcined product having a high calcium oxide content, and provide a calcined product that can be easily pulverized to fine powders.SOLUTION: A method of producing a calcined product containing calcium oxide from a calcium carbonate and/or calcium hydroxide-containing starting material, comprises a primary firing step in which the starting material is fired at 1000°C or higher for 4 hours or more to obtain a primary fired product; a pulverization step of finely pulverizing the primary fired product; a secondary firing step in which the primary fired product is fired at 600°C or higher for 1 hour or more to obtain a secondary fired product; and a secondary cooling step in which the secondary fired product is cooled to ambient temperature under a vacuum atmosphere or an inert gas atmosphere.SELECTED DRAWING: None

Description

本発明は、酸化カルシウムを含む焼成物、およびその製造方法等に関する。特に炭酸カルシウムを含む生物材料から得られる酸化カルシウムを含む生物材料焼成物、およびその製造方法等に関する。   The present invention relates to a calcined product containing calcium oxide, a method for producing the same, and the like. In particular, the present invention relates to a burned material of biological material containing calcium oxide obtained from a biological material containing calcium carbonate, a method for producing the same, and the like.

近年、貝殻、卵殻、ウニ殻などの廃棄物の活用方法として、これら焼成物に関する研究が行われている。これら廃棄物の主成分は炭酸カルシウムであり、高温焼成により炭酸カルシウムから二酸化炭素が遊離して生じる酸化カルシウムが焼成物の主成分であると言われている。   In recent years, research on these burned products has been conducted as a method of utilizing waste such as shells, eggshells, and sea urchin shells. The main component of these wastes is calcium carbonate, and it is said that calcium oxide generated by liberation of carbon dioxide from calcium carbonate by high-temperature firing is the main component of the fired product.

石灰石を焼成してできる従来の酸化カルシウム(生石灰)は5質量倍の水と触れると瞬時に接触した水が100℃を超えるほどの高熱を発するのに対し、貝殻などの市販焼成物にはそのような水和発熱反応が見られない。各種工程の間に空気中の水蒸気や二酸化炭素と反応し、酸化カルシウムが減少したことが要因の1つと考えられる。   Conventional calcium oxide (quick lime) produced by calcining limestone, when it comes in contact with 5 times the mass of water, instantaneously comes into contact with the water, which generates a high heat exceeding 100 ° C. No exothermic hydration reaction is observed. It is considered that one of the factors is that calcium oxide was reduced by reacting with water vapor and carbon dioxide in the air during various processes.

従来の石灰石由来水酸化カルシウム(消石灰)は非常に強い毒性を有するのに対して、貝殻などの生物材料の焼成物に由来する水酸化カルシウムは肌刺激性が弱いなど安全性が高く食品添加剤として認可されている。他方、貝殻などの生物材料の焼成物に由来する水酸化カルシウムには、有機毒物吸着効果、殺菌効果、ウイルス不活化効果などがあることが報告されている(例えば特許文献1〜4)。このように、貝殻、卵殻、ウニ殻などの焼成物に由来する水酸化カルシウムは衛生環境に対処する素材としてすでに報告・市販されている。   Conventional calcium hydroxide derived from limestone (slaked lime) has extremely high toxicity, whereas calcium hydroxide derived from burned materials of biological materials such as shells is a highly safe food additive with weak skin irritation. Approved as. On the other hand, it has been reported that calcium hydroxide derived from calcined products of biological materials such as shells has an organic poisoning substance adsorption effect, a bactericidal effect, a virus inactivating effect, and the like (for example, Patent Documents 1 to 4). As described above, calcium hydroxide derived from calcined products such as shells, eggshells and sea urchin shells has already been reported and marketed as a material for dealing with sanitary environments.

特開2001−233720号公報JP 2001-233720 A 特開2008−179555号公報JP 2008-179555 A 特開2012−062257号公報JP 2012-062257 A 特許第5019123号公報Japanese Patent No. 5019123

従来では、貝殻などの焼成物については水酸化カルシウムの利用を意図しており、また水酸化カルシウムを多く含む焼成物の微粉末を得ることは可能であった。他方、酸化カルシウムが主体の焼成物は、強アルカリ特性に加えて、酸化・還元・ラジカル反応等の新規特性が期待できる。しかし、このような酸化カルシウムが主体の焼成物は実際には製造できていなかった。   Conventionally, calcium hydroxide is intended to be used for calcined products such as shells, and it has been possible to obtain fine powder of calcined products containing a large amount of calcium hydroxide. On the other hand, a calcined product mainly composed of calcium oxide can be expected to have novel properties such as oxidation, reduction, and radical reactions in addition to strong alkaline properties. However, such a calcined product mainly composed of calcium oxide has not been actually produced.

本発明は、以上の背景によりなされたものである。第1の目的は酸化カルシウム含有割合の多い焼成物を提供することである。第2の目的は容易に微粉末に粉砕することが可能な前記焼成物を提供することである。   The present invention has been made based on the above background. A first object is to provide a calcined product having a high calcium oxide content. A second object is to provide the fired product which can be easily pulverized into fine powder.

本発明者らは、鋭意研究した結果、本発明を完成させた。   The present inventors have made intensive studies and completed the present invention.

本発明の第1の態様によれば、炭酸カルシウムおよび/または水酸化カルシウムを含有する開始材料から酸化カルシウムを含有する焼成物を製造する方法であって、
開始材料を1000℃以上で4時間以上焼成して一次焼成物を得る一次焼成工程と、
一次焼成物を微粉砕する微粉砕工程と、
一次焼成物を600℃以上で1時間以上焼成して二次焼成物を得る二次焼成工程と、
二次焼成物を真空雰囲気下または不活性ガス雰囲気下にて外気温まで冷却させる二次冷却工程と、
を含む方法が提供される。
According to a first aspect of the present invention, there is provided a method for producing a calcined product containing calcium oxide from a starting material containing calcium carbonate and / or calcium hydroxide,
A primary firing step of firing the starting material at 1000 ° C. or higher for 4 hours or more to obtain a primary fired product;
A fine grinding step of finely grinding the primary fired product,
A secondary firing step of firing the primary fired product at 600 ° C. or higher for 1 hour or more to obtain a secondary fired product;
A secondary cooling step of cooling the secondary fired product to an outside temperature under a vacuum atmosphere or an inert gas atmosphere,
Are provided.

前記方法は、二次冷却工程後に焼成物を粉砕する工程を含まなくともよい。   The method may not include a step of pulverizing the fired product after the secondary cooling step.

前記開始材料の一部または全部が貝殻でもよい。また貝殻の一部または全部がホタテ貝殻でもよい。   Some or all of the starting material may be a shell. Some or all of the shells may be scallop shells.

本発明の第2の態様によれば、前記方法によって製造された焼成物が提供される。この焼成物の平均粒径は2μm以下であってもよい。この焼成物の示差熱熱重量分析によって測定される30〜1000℃における重量減少割合は1%以下であってもよい。この焼成物のBET比表面積は0.5m/g以上3.0m/g以下であってもよい。 According to a second aspect of the present invention, there is provided a fired product produced by the above method. The average particle size of the fired product may be 2 μm or less. The weight loss ratio of this calcined product at 30 to 1000 ° C. measured by differential thermogravimetric analysis may be 1% or less. The BET specific surface area of the fired product may be 0.5 m 2 / g or more and 3.0 m 2 / g or less.

本発明の第3の態様によれば、前記焼成物を水性媒体に懸濁させた懸濁液が提供される。   According to a third aspect of the present invention, there is provided a suspension in which the calcined product is suspended in an aqueous medium.

本発明の第4の態様によれば、前記焼成物を真空雰囲気下または不活性ガス雰囲気下にて保存する方法が提供される。   According to a fourth aspect of the present invention, there is provided a method of storing the fired product under a vacuum atmosphere or an inert gas atmosphere.

本発明の焼成物は酸化カルシウム含有率が非常に高い。またこの焼成物は平均粒径の小さい微粉末である。そしてこの焼成物を実際に使用したところ、従来品よりも優れた効果を得ることが可能であった。   The calcined product of the present invention has a very high calcium oxide content. This fired product is a fine powder having a small average particle size. When this fired product was actually used, it was possible to obtain an effect superior to the conventional product.

潤滑油を対象とした吸着除去効果評価の試験結果を示す。The test result of the adsorption removal effect evaluation for lubricating oil is shown. 臭気を対象とした吸着除去効果評価の試験結果を示す。The test result of the adsorption removal effect evaluation for odors is shown. 殺菌効果評価の試験結果を示す。The test result of a bactericidal effect evaluation is shown.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

<<用語の定義>> << Definition of terms >>

本発明において、用語「外気温」とは、焼成を行う装置(焼成炉)が置かれている周囲環境の気温を意味する。一律に定義できないが、100℃未満、80℃未満、60℃未満または50℃未満の温度と解釈してもよい。   In the present invention, the term “outside air temperature” means the temperature of the surrounding environment in which an apparatus for firing (a firing furnace) is placed. Although not uniformly defined, a temperature of less than 100 ° C, less than 80 ° C, less than 60 ° C or less than 50 ° C may be interpreted.

本発明において、用語「不活性ガス」とは、100℃以下の温度において酸化カルシウムと反応しない気体を意味する。窒素ガス、ヘリウムやアルゴンなどの貴ガスの他、酸素も含まれる。   In the present invention, the term “inert gas” means a gas that does not react with calcium oxide at a temperature of 100 ° C. or less. In addition to nitrogen gas, noble gases such as helium and argon, oxygen is also included.

本発明において、用語「酸性領域」とは、pHが6以下の領域を意味する。用語「中性領域」とは、pHが6超8未満の領域を意味する。「アルカリ性領域」とは、pHが8以上の領域を意味する。pHが10以上の領域を「強アルカリ性領域」、pHが8以上10未満の領域を「弱アルカリ性領域」と表現することもある。なお、本発明においてpHは25℃において測定される値である。   In the present invention, the term “acid region” means a region having a pH of 6 or less. The term "neutral region" means a region where the pH is greater than 6 and less than 8. The “alkaline region” means a region having a pH of 8 or more. A region having a pH of 10 or more is sometimes referred to as a “strongly alkaline region”, and a region having a pH of 8 or more and less than 10 is sometimes referred to as a “weakly alkaline region”. In the present invention, the pH is a value measured at 25 ° C.

<<開始材料>>
本発明の方法では、炭酸カルシウムおよび/または水酸化カルシウムを含む材料を開始材料として使用する。炭酸カルシウム、水酸化カルシウムは強熱することで酸化カルシウムに変化する。
<<< Starting material >>>
In the method of the invention, a material comprising calcium carbonate and / or calcium hydroxide is used as starting material. Calcium carbonate and calcium hydroxide change into calcium oxide when heated.

本発明では、特に、炭酸カルシウムを含む生物材料を開始材料として使用する。このような生物由来開始材料としては、例えば貝殻、卵殻、ウニ殻、珊瑚、甲殻が挙げられる。入手容易性、操作性および加工性の観点から貝殻、卵殻および甲殻が好ましく、貝殻が特に好ましい。   In the present invention, in particular, a biological material containing calcium carbonate is used as starting material. Such biological starting materials include, for example, shells, eggshells, sea urchin shells, corals, crustaceans. Shells, eggshells and shells are preferred from the viewpoints of availability, operability and processability, and shells are particularly preferred.

貝殻とは、炭酸カルシウムを含む貝の外殻を指す。貝は一般的に一枚貝、二枚貝、巻貝といった分類に分けられる。構造が簡単であり洗浄が容易なので二枚貝の貝殻が好ましい。一枚貝としてはアワビなどが挙げられる。二枚貝としてはホタテ、カキ、シジミ、ハマグリ、アサリなどが挙げられる。巻貝としてはサザエなどが挙げられる。貝殻の中でもホタテ貝殻とカキ貝殻が特に好ましく、ホタテ貝殻が最も好ましい。   A shell refers to the shell of a shell containing calcium carbonate. Shellfish are generally categorized into single clams, bivalves, and snails. Bivalve shells are preferred because of their simple structure and easy cleaning. Abalones and the like can be mentioned as single shellfish. Bivalves include scallops, oysters, clams, clams, clams and the like. Conch shells include turban shells. Among the shells, scallop shells and oyster shells are particularly preferred, and scallop shells are most preferred.

卵殻とは、炭酸カルシウムを含む卵の外殻を指す。鳥類などの卵生生物が作り出す材料である。入手容易性の観点から鶏や鶉の卵殻が好ましい。   Eggshell refers to the outer shell of an egg containing calcium carbonate. It is a material produced by egg organisms such as birds. Chicken and quail eggshells are preferred from the viewpoint of availability.

甲殻とは、炭酸カルシウムを含む甲殻類の外殻を指す。甲殻類としてはエビ、カニ、フジツボなどが挙げられる。洗浄が容易なのでカニの甲殻が好ましい。   Crustacean refers to the crustacean shell containing calcium carbonate. Crustaceans include shrimp, crabs and barnacles. Crab shells are preferred because they are easy to clean.

<<方法>>
本発明の第1の態様では、以下に説明する方法が提供される。
<< method >>
According to a first aspect of the present invention, there is provided a method described below.

(一次焼成工程)
本発明の方法は上述した開始材料を焼成炉にて焼成する一次焼成工程を含む。
(Primary firing step)
The method of the present invention includes a primary firing step of firing the above-described starting material in a firing furnace.

焼成炉内の雰囲気は任意であるが酸素含有雰囲気が好ましい。酸素含有雰囲気とは、酸素を1体積%以上、3体積%以上、5体積%以上、10体積%以上、20体積%以上含む雰囲気であればよい。通常は空気(大気雰囲気)である。燃焼除去効率を高めるため、酸素を30体積%以上、40体積%以上、50体積%以上、60体積%以上、70体積%以上、80体積%以上、90体積%以上含む雰囲気でもよいし、純粋な酸素ガス雰囲気(すなわち酸素含有率100%の雰囲気)を使用してもよい。   The atmosphere in the firing furnace is arbitrary, but an oxygen-containing atmosphere is preferred. The oxygen-containing atmosphere may be an atmosphere containing oxygen in an amount of 1% by volume or more, 3% by volume or more, 5% by volume or more, 10% by volume or more, and 20% by volume or more. Usually, it is air (atmospheric atmosphere). In order to improve the combustion removal efficiency, an atmosphere containing 30% by volume or more, 40% by volume or more, 50% by volume or more, 60% by volume or more, 70% by volume or more, 80% by volume or more, 90% by volume or more may be used. An oxygen gas atmosphere (that is, an atmosphere having an oxygen content of 100%) may be used.

一次焼成工程において、開始材料に含まれる炭酸カルシウム/水酸化カルシウムの全部または一部が熱分解して酸化カルシウムに変化する。生物由来材料の場合、タンパク質などの有機物を含む場合がある。本工程において、これら有機物に由来する多くの元素は熱分解や燃焼によりガスとなって除去される。   In the first firing step, all or a part of the calcium carbonate / calcium hydroxide contained in the starting material is thermally decomposed to change to calcium oxide. In the case of a biological material, it may contain an organic substance such as a protein. In this step, many elements derived from these organic substances are removed as gas by thermal decomposition or combustion.

一次焼成工程の焼成温度は1000℃以上、1050℃以上、1100℃以上、1150℃以上、1200℃以上、1250℃以上、1300℃以上、1350℃以上、1400℃以上、1450℃以上である。これら温度以上で焼成することで充分に有機物を除去でき焼成物の純度が高くなる。一次焼成工程の焼成温度は約2600℃(酸化カルシウムの融点)以下であり、2000℃以下、1800℃以下、1600℃以下が好ましい。   The firing temperature in the primary firing step is 1000 ° C or higher, 1050 ° C or higher, 1100 ° C or higher, 1150 ° C or higher, 1200 ° C or higher, 1250 ° C or higher, 1300 ° C or higher, 1350 ° C or higher, 1400 ° C or higher, 1450 ° C or higher. By firing at a temperature higher than these temperatures, organic substances can be sufficiently removed, and the purity of the fired product increases. The firing temperature in the primary firing step is about 2600 ° C. (the melting point of calcium oxide) or lower, preferably 2000 ° C. or lower, 1800 ° C. or lower, and 1600 ° C. or lower.

一次焼成工程の昇温速度に特に制限はないが、1〜20℃/分、3〜18℃/分、5〜16℃/分、7〜14℃/分、9〜12℃/分が好ましい。   The rate of temperature rise in the primary firing step is not particularly limited, but is preferably 1 to 20 ° C / minute, 3 to 18 ° C / minute, 5 to 16 ° C / minute, 7 to 14 ° C / minute, and 9 to 12 ° C / minute. .

一次焼成工程の焼成時間は4時間以上、4.5時間以上、5時間以上、5.5時間以上、6時間以上である。これら時間以上で焼成することで充分に有機物を除去でき焼成物の純度が高くなる。他方、焼成時間の上限は特に制限はなく、10時間以下、9時間以下、8時間以下が好ましい。   The firing time in the primary firing step is 4 hours or more, 4.5 hours or more, 5 hours or more, 5.5 hours or more, 6 hours or more. By firing for more than these times, organic substances can be sufficiently removed and the purity of the fired product can be increased. On the other hand, the upper limit of the firing time is not particularly limited, and is preferably 10 hours or less, 9 hours or less, and 8 hours or less.

当然のことながら、焼成温度は上記の焼成温度範囲であれば一定でも変動してもよい。また焼成時間とは、焼成炉内の温度が上記の焼成温度範囲になっている合計時間を意味する。   As a matter of course, the firing temperature may be constant or may be varied within the above firing temperature range. The firing time means the total time during which the temperature in the firing furnace is within the above-described firing temperature range.

(一次冷却工程)
本発明の方法は上述した一次焼成工程によって得られる一次焼成物を冷却する一次冷却工程を含んでもよい。
(Primary cooling process)
The method of the present invention may include a primary cooling step of cooling the primary fired product obtained by the primary firing step described above.

冷却目標温度は任意であるが、通常は後の操作のために焼成物を外気温まで冷却させる。   Although the cooling target temperature is arbitrary, the fired product is usually cooled to the outside temperature for the subsequent operation.

冷却速度は任意に設定することができる。任意の冷却手段を用いて急激に冷却してもよいし、放熱によって自然冷却させてもよい。   The cooling rate can be set arbitrarily. It may be cooled rapidly using any cooling means, or may be naturally cooled by heat radiation.

一次冷却工程は任意の雰囲気下で行ってよい。焼成工程と同じ雰囲気下でも異なる雰囲気下でもよい。例えば、不活性ガス雰囲気下で行ってもよく、大気雰囲気下で行ってもよい。   The primary cooling step may be performed under any atmosphere. It may be in the same atmosphere as the firing step or in a different atmosphere. For example, the treatment may be performed in an inert gas atmosphere or in an air atmosphere.

一次冷却工程は焼成炉内で行ってもよいし、焼成炉外に取り出して行ってもよいし、一部を焼成炉内で行い残りを焼成炉外で行ってもよい。   The primary cooling step may be performed in a baking furnace, may be taken out of the baking furnace, or may be partially performed in the baking furnace and the remaining may be performed outside the baking furnace.

(予備粉砕工程)
本発明の方法は一次焼成物を粉砕する予備粉砕工程を含んでもよい。
(Preliminary grinding step)
The method of the present invention may include a preliminary grinding step of grinding the primary fired product.

予備粉砕工程は、一次焼成物を微粉砕する前に一次焼成物を粉砕する任意の工程である。特に生物由来材料であれば含まれていた有機物が消失しているため、一次焼成物は極めて脆弱である。このため、容易に粉砕することができる。予備粉砕工程には任意の装置および手段が使用され得る。予備粉砕工程は必須工程ではないが、一次焼成物を予め粉砕しておくことで、後述する微粉砕工程の効率が向上し最終製品の品質の安定化および微粉末化に繋がる。   The preliminary pulverization step is an optional step of pulverizing the primary fired product before finely pulverizing the primary fired product. In particular, the primary fired material is extremely fragile, since the organic matter contained in the case of a biological material has disappeared. Therefore, it can be easily crushed. Any equipment and means can be used for the pre-milling step. The preliminary grinding step is not an essential step, but by grinding the primary fired product in advance, the efficiency of the later-described fine grinding step is improved, leading to the stabilization of the quality of the final product and the fine powdering.

予備粉砕工程は任意の雰囲気下で行ってよい。他の工程の雰囲気下と同じでも異なっていてもよい。   The preliminary pulverization step may be performed under any atmosphere. It may be the same as or different from the atmosphere in the other steps.

(純化工程)
本発明の方法は一次焼成物を純化する純化工程を含んでもよい。
(Purification process)
The method of the present invention may include a purification step of purifying the primary fired product.

純化工程は、一次焼成物の粉末ないし微粉末を、例えばエアフィルタ、マイクロミストフィルタ、活性炭フィルタなどから1以上のフィルタを通過させて行ってもよい。   The purification step may be performed by passing the powder or fine powder of the primary fired product through one or more filters from an air filter, a micro mist filter, an activated carbon filter, or the like.

純化工程は任意の雰囲気下で行ってよい。他の工程の雰囲気下と同じでも異なっていてもよい。   The purification step may be performed under any atmosphere. It may be the same as or different from the atmosphere in the other steps.

(微粉砕工程)
本発明の方法は一次焼成物を微粉砕する微粉砕工程を含んでもよい。
(Pulverizing process)
The method of the present invention may include a pulverizing step of pulverizing the primary fired product.

微粉砕工程は、一次焼成物を微粉末の状態にまで微粉砕して一次焼成物の微粉砕を得る工程である。後述する二次焼成を行う前、即ち一次焼成と二次焼成の間に行う。二次焼成前に行うことで、二次焼成後に行うよりも最終産物である焼成物の平均粒径を小さくすることが可能であった。   The fine pulverization step is a step of pulverizing the primary fired product to a fine powder state to obtain finely pulverized primary fired material. It is performed before the secondary firing described below, that is, between the primary firing and the secondary firing. By performing the process before the secondary firing, it was possible to make the average particle size of the fired product as the final product smaller than that after performing the secondary firing.

一次焼成物を微粉砕するための手段は任意の手段が使用できる。例えば特殊コンプレッサーで高圧ガス粒子を加速し、粒子衝突により対象を微粉砕する装置(ナノジェットマイザー;NJ−300−D、株式会社アイシンナノテクノロジーズ製)が挙げられる。ここで高圧ガスとしては、乾燥空気でもよいが、窒素、ヘリウム、アルゴンなどの不活性ガスが好ましい。   Any means can be used as means for finely pulverizing the primary fired product. For example, a device (Nano-jet miser; NJ-300-D, manufactured by Aisin Nano Technologies Co., Ltd.) for accelerating high-pressure gas particles with a special compressor and finely pulverizing the target by particle collision is exemplified. Here, the high-pressure gas may be dry air, but is preferably an inert gas such as nitrogen, helium, or argon.

微粉砕工程は任意の雰囲気下で行ってよい。他の工程の雰囲気下と同じでも異なっていてもよい。   The pulverization step may be performed under any atmosphere. It may be the same as or different from the atmosphere in the other steps.

予備粉砕工程、微粉砕工程、および/または純化工程を行う場合、一次焼成工程の後、かつ、後述する二次焼成工程の前に行う。   When performing the preliminary pulverization step, the fine pulverization step, and / or the purification step, the pre-pulverization step is performed after the primary firing step and before the secondary firing step described later.

(二次焼成工程)
本発明の方法は一次焼成物を焼成炉にて焼成する二次焼成工程を含む。
(Secondary firing step)
The method of the present invention includes a secondary firing step of firing the primary fired product in a firing furnace.

一次焼成工程において残存したり一次焼成後の各工程の間に生じたりした、水酸化カルシウムや炭酸カルシウムを酸化カルシウムに熱分解する。   Calcium hydroxide or calcium carbonate remaining in the primary firing step or generated during each step after the primary firing is thermally decomposed into calcium oxide.

特に言及していない限り、一次焼成工程の記載は本工程にも適用される。   Unless stated otherwise, the description of the primary firing step also applies to this step.

二次焼成工程の焼成温度は600℃以上、700℃以上、800℃以上、850℃以上、900℃以上、950℃以上である。これら温度以上で焼成することで充分に炭酸カルシウムおよび水酸化カルシウムを酸化カルシウムへと変化させることができる。二次焼成工程の焼成温度は約2600℃(酸化カルシウムの融点)以下であり、通常1500℃以下、1200℃以下、1000℃以下である。   The firing temperature in the secondary firing step is 600 ° C or higher, 700 ° C or higher, 800 ° C or higher, 850 ° C or higher, 900 ° C or higher, 950 ° C or higher. Calcination at above these temperatures can sufficiently convert calcium carbonate and calcium hydroxide to calcium oxide. The firing temperature in the secondary firing step is about 2600 ° C. (the melting point of calcium oxide) or lower, and usually 1500 ° C. or lower, 1200 ° C. or lower, and 1000 ° C. or lower.

二次焼成工程の焼成時間は1時間以上、1.5時間以上または2時間以上である。これら温度以上で焼成することで充分に炭酸カルシウムおよび水酸化カルシウムを酸化カルシウムへと変化させることができる。他方、焼成時間の上限は特に制限はない。焼成炉への負荷やエネルギーコストの観点から7時間以下、6時間以下、5時間以下、4時間以下、3時間以下が好ましい。   The firing time in the secondary firing step is 1 hour or more, 1.5 hours or more, or 2 hours or more. Calcination at above these temperatures can sufficiently convert calcium carbonate and calcium hydroxide to calcium oxide. On the other hand, the upper limit of the firing time is not particularly limited. It is preferably 7 hours or less, 6 hours or less, 5 hours or less, 4 hours or less, 3 hours or less from the viewpoint of the load on the firing furnace and energy cost.

(二次冷却工程)
本発明の方法は上述した二次焼成工程によって得られる二次焼成物を真空雰囲気下または不活性ガス雰囲気下にて冷却する二次冷却工程を含む。
(Secondary cooling process)
The method of the present invention includes a secondary cooling step of cooling the secondary fired product obtained by the above-described secondary firing step under a vacuum atmosphere or an inert gas atmosphere.

特に言及していない限り、一次冷却工程の記載は本工程にも適用される。   Unless stated otherwise, the description of the primary cooling step also applies to this step.

真空雰囲気下とは、大気圧(約10万Pa)と比べて十分小さいことを意味する。具体的には1000Pa以下、100Pa以下、10Pa以下、1Pa以下、0.1Pa以下、0.01Pa以下、0.001Pa以下、0.0001Pa以下を意味する。   In a vacuum atmosphere means that the pressure is sufficiently lower than the atmospheric pressure (about 100,000 Pa). Specifically, it means 1000 Pa or less, 100 Pa or less, 10 Pa or less, 1 Pa or less, 0.1 Pa or less, 0.01 Pa or less, 0.001 Pa or less, 0.0001 Pa or less.

不活性ガス雰囲気下とは、上述したような不活性ガスの雰囲気下を意味する。気圧に制限はないが、例えば1万Pa〜20万Pa、5万Pa〜15万Pa、8万Pa〜12万Pa以上としてもよい。   An inert gas atmosphere means an inert gas atmosphere as described above. The pressure is not limited, but may be, for example, 10,000 Pa to 200,000 Pa, 50,000 Pa to 150,000 Pa, or 80,000 Pa to 120,000 Pa or more.

真空雰囲気下または不活性ガス雰囲気下で冷却することで、焼成によって生じた酸化カルシウムを未反応のまま保存することができる。真空雰囲気下の場合、真空化手段によって二次焼成工程において生じた遊離ガスが除去され、焼成物中の酸化カルシウムが保存される。また特に焼成物の粒径が小さくなることがわかった。このため真空雰囲気下の方が好ましい。   By cooling in a vacuum atmosphere or an inert gas atmosphere, calcium oxide generated by firing can be stored without reacting. In the case of a vacuum atmosphere, the free gas generated in the secondary firing step is removed by the vacuuming means, and the calcium oxide in the fired product is preserved. It was also found that the particle size of the fired product was particularly small. For this reason, a vacuum atmosphere is more preferable.

二次冷却工程と後述する密封工程の間で他の工程(例えば粉砕工程など)を含まないことが好ましい。他の工程を行っている間に、焼成物中の酸化カルシウムが変質する恐れがあるからである。   It is preferable that another step (for example, a pulverizing step) is not included between the secondary cooling step and the sealing step described below. This is because calcium oxide in the fired product may be deteriorated while other processes are being performed.

(密封工程)
本発明の方法は得られた二次焼成物を密封用容器に密封する工程を含んでもよい。
(Sealing process)
The method of the present invention may include a step of sealing the obtained secondary fired product in a sealing container.

密封用容器はガスを遮断し対象物を密閉できれば任意のものが使用できる。二次焼成物は真空雰囲気下または不活性ガス雰囲気下にて密封用容器の中に密封される。この結果、密封用容器の内部に二次焼成物が封入されたパッケージが完成する。   Any container can be used as long as it can shut off the gas and seal the object. The secondary fired product is sealed in a sealing container under a vacuum atmosphere or an inert gas atmosphere. As a result, a package in which the secondary fired product is sealed inside the sealing container is completed.

<<焼成物>>
本発明の第2の態様では、第1の態様の方法によって製造された焼成物が提供される。
<< fired product >>
According to a second aspect of the present invention, there is provided a fired product produced by the method of the first aspect.

本発明の焼成物の平均粒径は、通常は、2.0μm以下、1.9μm以下、1.8μm以下である。   The average particle size of the fired product of the present invention is usually 2.0 μm or less, 1.9 μm or less, 1.8 μm or less.

焼成物の平均粒径は、粒度分布測定装置を用いて測定すればよい。このような装置として、例えば、CILAS(株式会社アイシンナノテクノロジーズより入手可能)が挙げられる。   The average particle size of the fired product may be measured using a particle size distribution measuring device. As such an apparatus, for example, CILAS (available from Aisin Nano Technologies Co., Ltd.) can be mentioned.

本発明の焼成物の波長分散型の蛍光X線分析法(XRF)によって測定可能な元素に占めるカルシウム元素の割合は、通常は、99.0atom%以上、99.1atom%以上、99.2atom%以上、99.3atom%以上、99.4atom%以上、99.5atom%以上、99.6atom%以上、99.7atom%以上、99.8atom%以上、99.9atom%以上である。なお、波長分散型の蛍光X線分析法(XRF)では炭素や酸素は測定されない。   The proportion of the calcium element in the element which can be measured by the wavelength dispersive X-ray fluorescence spectroscopy (XRF) of the calcined product of the present invention is usually 99.0 atom% or more, 99.1 atom% or more, and 99.2 atom%. Above, it is 99.3 atom% or more, 99.4 atom% or more, 99.5 atom% or more, 99.6 atom% or more, 99.7 atom% or more, 99.8 atom% or more, 99.9 atom% or more. Note that carbon and oxygen are not measured by the wavelength dispersive X-ray fluorescence spectroscopy (XRF).

これに加えて/これとは別に、本発明の焼成物の蛍光X線分析法(XRF)によって測定されるカルシウム元素以外の元素のピーク強度は、カルシウム元素のピーク強度の1/1000以下、1/1500以下、1/2000以下、1/2500以下、1/3000以下である。   In addition to / besides this, the peak intensity of the element other than calcium element measured by X-ray fluorescence spectroscopy (XRF) of the calcined product of the present invention is 1/1000 or less of the peak intensity of calcium element, / 1500 or less, 1/2000 or less, 1/2500 or less, 1/3000 or less.

波長分散型蛍光X線分析法(XRF)の装置としては、RIX3100(理学電機工業株式会社製)が挙げられる。   As an apparatus for wavelength dispersive X-ray fluorescence spectroscopy (XRF), RIX3100 (manufactured by Rigaku Corporation) can be mentioned.

焼成物の酸化カルシウム、水酸化カルシウム、および炭酸カルシウム含有量は示差熱熱量重量分析装置を用いて推定される。焼成物が水酸化カルシウムを含む場合、200℃〜500℃において重量減少が観測される。焼成物が炭酸カルシウムを含む場合、500℃〜1000℃において重量減少が観測される。示差熱熱重量分析前に前処理は行わなくてよい。   The contents of calcium oxide, calcium hydroxide, and calcium carbonate in the calcined product are estimated using a differential calorimetric gravimetric analyzer. When the calcined product contains calcium hydroxide, a weight loss is observed at 200 ° C to 500 ° C. When the calcined product contains calcium carbonate, a weight loss is observed at 500 ° C to 1000 ° C. No pre-treatment is required before the differential thermogravimetric analysis.

本発明の焼成物の示差熱熱重量分析によって測定される30〜1000℃における重量維持割合は、通常は、99.0%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上である。上限は通常100%以下である。重量維持割合とは、30℃時点における重量に対する1000℃時点における重量の百分率である。   The weight maintenance ratio at 30 to 1000 ° C. of the calcined product of the present invention measured by differential thermogravimetry is usually 99.0% or more, 99.1% or more, 99.2% or more, and 99.3%. Above, it is 99.4% or more, 99.5% or more, 99.6% or more. The upper limit is usually 100% or less. The weight retention ratio is a percentage of the weight at the time of 1000 ° C. with respect to the weight at the time of 30 ° C.

換言すれば、本発明の焼成物の示差熱熱重量分析によって測定される30〜1000℃における重量減少割合は、通常は、1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下である。重量減少割合とは、30℃時点における重量に対する30℃時点から1000℃時点までにおける重量減少の百分率である。   In other words, the weight reduction ratio of the calcined product of the present invention at 30 to 1000 ° C. measured by differential thermogravimetry is usually 1% or less, 0.9% or less, 0.8% or less, and 0.1% or less. 7% or less, 0.6% or less, 0.5% or less, 0.4% or less. The weight loss ratio is the percentage of weight loss from 30 ° C. to 1000 ° C. with respect to the weight at 30 ° C.

このような装置として、例えば、TGA851e(メトラー・トレド社製)が挙げられる。示差熱熱重量分析の測定は、窒素100mL/min気流中、10℃/分の昇温速度にて30℃から1000℃まで昇温して行う。   An example of such an apparatus is TGA851e (manufactured by METTLER TOLEDO). The measurement by the differential thermogravimetric analysis is performed by increasing the temperature from 30 ° C. to 1000 ° C. at a rate of 10 ° C./min in a stream of nitrogen at 100 mL / min.

本発明の焼成物のBET比表面積は、通常は、0.2m/g以上、0.3m/g以上、0.4m/g以上、0.5m/g以上、0.6m/g以上、0.7m/g以上、0.8m/g以上、0.9m/g以上、1.0m/g以上、1.1m/g以上、1.2m/g以上、1.3m/g以上、1.5m/g以上、1.7m/g以上、1.9m/g以上、2.0m/g以上である。他方、通常は、3.0m/g以下、2.8m/g以下、2.6m/g以下、2.4m/g以下、2.2m/g以下、2.1m/g以下である。 The BET specific surface area of the fired product of the present invention is usually 0.2 m 2 / g or more, 0.3 m 2 / g or more, 0.4 m 2 / g or more, 0.5 m 2 / g or more, 0.6 m 2 or more. / G or more, 0.7 m 2 / g or more, 0.8 m 2 / g or more, 0.9 m 2 / g or more, 1.0 m 2 / g or more, 1.1 m 2 / g or more, 1.2 m 2 / g It is 1.3 m 2 / g or more, 1.5 m 2 / g or more, 1.7 m 2 / g or more, 1.9 m 2 / g or more and 2.0 m 2 / g or more. On the other hand, usually, 3.0 m 2 / g or less, 2.8 m 2 / g or less, 2.6 m 2 / g or less, 2.4 m 2 / g or less, 2.2 m 2 / g or less, 2.1 m 2 / g or less.

BET比表面積を解析する装置として、例えば、Quantachrome社製ChemBET3000が挙げられる。BET比表面積の測定方法は特に制限されず通常使用される条件で測定してよい。   As an apparatus for analyzing the BET specific surface area, for example, ChemBET3000 manufactured by Quantachrome Co., Ltd. may be mentioned. The method for measuring the BET specific surface area is not particularly limited, and the BET specific surface area may be measured under commonly used conditions.

本発明の焼成物は、優れた吸着能力を有しており、有害物質の吸着に使用可能である。   The calcined product of the present invention has excellent adsorption ability and can be used for adsorption of harmful substances.

本発明の焼成物は、水性媒体に懸濁させて使用することができる。   The fired product of the present invention can be used by suspending it in an aqueous medium.

(水性媒体)
水性媒体の90質量%以上、91質量%以上、92質量%以上、93質量%以上、94質量%以上、95質量%以上、96質量%以上、97質量%以上、98質量%以上、99質量%以上は水である。当然ながら、水性媒体の100質量%が水でも良い(即ち水性媒体は純水でもよい)。
(Aqueous medium)
90% by mass or more, 91% by mass or more, 92% by mass or more, 93% by mass or more, 94% by mass or more, 95% by mass or more, 96% by mass or more, 97% by mass or more, 98% by mass or more, 99% by mass of the aqueous medium More than% is water. Of course, 100% by weight of the aqueous medium may be water (ie, the aqueous medium may be pure water).

水以外の媒体としては、水に可溶な液体であれば特に制限はない。典型的にはメタノール、エタノール、プロパノール、ブチルアルコールなどのアルコールが挙げられる。   The medium other than water is not particularly limited as long as it is a liquid soluble in water. Typically, alcohols such as methanol, ethanol, propanol, butyl alcohol and the like can be mentioned.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

(開始材料)
ホタテ貝殻を開始材料として使用した。
(Starting material)
Scallop shells were used as starting material.

(実施例)
開始材料を1450℃で6時間一次焼成した。焼成後の一次焼成物を放置して外気温まで自然冷却させた。外気温まで冷えた一次焼成物を予備粉砕し、撹拌して均一化させた。この一次焼成物をエアフィルタ、マイクロミストフィルタ、活性炭フィルタを通した後、乾式超微粉砕システム(ナノジェットマイザー)によって微粉砕した。その後、焼成物を950℃の条件で2時間二次焼成した。焼成完了後、真空化手段を用いて真空雰囲気下(10−4Pa以下)で二次焼成物を放置して外気温まで自然冷却させた。こうして実施例の粉末状の焼成物を得た。
(Example)
The starting material was first fired at 1450 ° C. for 6 hours. The primary fired product after firing was left to cool naturally to the outside temperature. The primary fired material cooled to the outside temperature was pre-ground and stirred to be homogenized. The primary fired product was passed through an air filter, a micro mist filter, and an activated carbon filter, and then finely pulverized by a dry ultrafine pulverizing system (nano jet miser). Thereafter, the fired product was secondarily fired at 950 ° C. for 2 hours. After the completion of the firing, the secondary fired product was allowed to cool naturally to the outside temperature by leaving it in a vacuum atmosphere (10 −4 Pa or less) using a vacuuming means. Thus, a powdered fired product of the example was obtained.

(比較例1)
開始材料を1450℃で6時間一次焼成した。焼成後の一次焼成物を放置して外気温まで自然冷却させた。外気温まで冷えた一次焼成物を予備粉砕し、撹拌して均一化させた。この焼成物を1450℃の条件で4時間二次焼成した。この二次焼成物を放置して外気温まで自然冷却させた。二次冷却後、実施例と同様に微粉砕した。こうして比較例1の粉末状の焼成物を得た。
(Comparative Example 1)
The starting material was first fired at 1450 ° C. for 6 hours. The primary fired product after firing was left to cool naturally to the outside temperature. The primary fired material cooled to the outside temperature was pre-ground and stirred to be homogenized. The fired product was secondarily fired at 1450 ° C. for 4 hours. This secondary fired product was left to cool naturally to the outside temperature. After secondary cooling, it was pulverized in the same manner as in the example. Thus, a powdered fired product of Comparative Example 1 was obtained.

(比較例2)
開始材料を1450℃で6時間一次焼成した。焼成後の一次焼成物を放置して外気温まで自然冷却させた。外気温まで冷えた一次焼成物を予備粉砕し、撹拌して均一化させた。こうして比較例2の粉末状の焼成物を得た。
(Comparative Example 2)
The starting material was first fired at 1450 ° C. for 6 hours. The primary fired product after firing was left to cool naturally to the outside temperature. The primary fired material cooled to the outside temperature was pre-ground and stirred to be homogenized. Thus, a powdered fired product of Comparative Example 2 was obtained.

(比較例3)
開始材料を1100℃で4時間一次焼成した。焼成後の一次焼成物を放置して外気温まで自然冷却させた。外気温まで冷えた一次焼成物を予備粉砕し、撹拌して均一化させた。こうして比較例3の粉末状の焼成物を得た。
(Comparative Example 3)
The starting material was first fired at 1100 ° C. for 4 hours. The primary fired product after firing was left to cool naturally to the outside temperature. The primary fired material cooled to the outside temperature was pre-ground and stirred to be homogenized. Thus, a powdered fired product of Comparative Example 3 was obtained.

なお、特段の記載がない限り、いずれの工程も大気雰囲気下、大気圧下で実行した。また焼成工程における昇温速度はいずれも10℃/分に設定した。   Unless otherwise specified, all the steps were performed in an air atmosphere and an atmospheric pressure. The rate of temperature rise in the firing step was set at 10 ° C./min.

(比較例4)
比較例4の粉末として、市販のホタテ貝殻焼成物を使用した。
(Comparative Example 4)
As the powder of Comparative Example 4, a commercially available fired scallop shell was used.

<<粉末の評価>>
実施例および比較例の粉末に関して以下に説明する測定方法によって測定した。
<< Powder evaluation >>
The powders of Examples and Comparative Examples were measured by the measurement method described below.

(粒径)
粒度分布測定装置(CILAS)を使用して、各粉末の平均粒径を測定した。測定結果を表1に示す。
(Particle size)
The average particle size of each powder was measured using a particle size distribution analyzer (CILAS). Table 1 shows the measurement results.

(酸化カルシウム含有量)
示差熱熱量重量分析装置(TGA851e)を使用して、各粉末の酸化カルシウム含有量を測定した(解析温度は30℃〜1000℃)。200〜500℃までの重量減少(%)を水酸化カルシウム含有量(%)とし、30℃〜1000℃で維持された重量(%)を酸化カルシウム含有量(%)とした。測定結果を表1に示す。
(Calcium oxide content)
The calcium oxide content of each powder was measured using a differential calorimetric gravimetric analyzer (TGA851e) (analysis temperature was 30 ° C. to 1000 ° C.). The weight loss (%) from 200 to 500 ° C was defined as calcium hydroxide content (%), and the weight (%) maintained at 30 to 1000 ° C was defined as calcium oxide content (%). Table 1 shows the measurement results.

(BET比表面積の測定)
各粉末のBET比表面積は、Quantachrome社製ChemBET3000を用いて測定した。測定結果を表1に示す。
(Measurement of BET specific surface area)
The BET specific surface area of each powder was measured using ChemBET3000 manufactured by Quantachrome. Table 1 shows the measurement results.

Figure 2020055719
Figure 2020055719

実施例の粉末の純度は極めて高い。また実施例の焼成物は比較例の焼成物と比べて平均粒径が有意に小さかった。したがって、本発明の方法によって酸化カルシウム純度が極めて高い微粉末を得ることができた。   The purity of the powders of the examples is extremely high. Moreover, the average particle diameter of the fired product of the example was significantly smaller than that of the fired product of the comparative example. Therefore, a fine powder having extremely high calcium oxide purity could be obtained by the method of the present invention.

さらに以下に説明する評価方法にて各粉末を評価した。   Further, each powder was evaluated by the evaluation method described below.

(吸着性能:潤滑油)
潤滑油を濃度が1体積%となるよう純水に加え、撹拌して潤滑油懸濁液を調製した(潤滑油懸濁液は淡黄色であった)。この潤滑油懸濁液100質量部に対して、各粉末を0.04質量部、0.2質量部、1質量部添加して懸濁した。その後、3000rpm、10分間の遠心分離によって粉末を沈殿させ、上清の濁度を濁度計(Turbidimeter、TR−55、笠原理化工業株式会社製)を用いて計測した。濁度が小さいほど、潤滑油が除去されたことを意味する。結果を図1Aに示す。図から明らかな通り、実施例の粉末が最も優れていることがわかった。
(Adsorption performance: lubricating oil)
Lubricating oil was added to pure water so as to have a concentration of 1% by volume, and stirred to prepare a lubricating oil suspension (the lubricating oil suspension was pale yellow). To 100 parts by mass of the lubricating oil suspension, 0.04 parts by mass, 0.2 parts by mass, and 1 part by mass of each powder were added and suspended. Thereafter, the powder was precipitated by centrifugation at 3000 rpm for 10 minutes, and the turbidity of the supernatant was measured using a turbidimeter (Turbidimeter, TR-55, manufactured by Kasagi Rika Kogyo Co., Ltd.). Smaller turbidity means that the lubricating oil has been removed. The results are shown in FIG. 1A. As is clear from the figure, the powder of the example was found to be the most excellent.

純水100質量部に対して各粉末を0.04質量部、0.2質量部、1質量部配合して得られた上清についても同様の試験を行った。結果を図1Bに示す。図から明らかな通り、実施例の粉末の上清が最も優れていることがわかった。   The same test was performed on the supernatant obtained by mixing 0.04 parts by mass, 0.2 parts by mass, and 1 part by mass of each powder with respect to 100 parts by mass of pure water. The results are shown in FIG. 1B. As is clear from the figure, it was found that the supernatant of the powder of the example was the best.

(吸着性能:臭気1)
豚挽肉10gを、純水100質量部に対して各粉末を0.04質量部、0.2質量部、1質量部配合して得られた上清5mLとともに密封し、37℃で3日間放置した。3日後の臭気を臭度計(Handheld Odor Meter、OMX−SR、神栄テクノロジー株式会社製)を使用して測定した。結果を図2Aに示す。図から明らかな通り、実施例の粉末の上清が最も優れていることがわかった。
(Adsorption performance: odor 1)
10 g of ground pork is sealed with 5 mL of supernatant obtained by mixing 0.04 parts by mass, 0.2 parts by mass, and 1 part by mass of each powder with respect to 100 parts by mass of pure water, and left at 37 ° C. for 3 days. did. The odor after 3 days was measured using an odor meter (Handheld Odor Meter, OMX-SR, manufactured by Shinei Technology Co., Ltd.). The results are shown in FIG. 2A. As is clear from the figure, it was found that the supernatant of the powder of the example was the best.

(吸着性能:臭気2)
消臭対象としてラット飼育使用済のおが屑を準備した。このおが屑10gに各粉末0.04g、0.2g、1gをよく混ぜて30分間放置した。30分後の臭気を前記臭気計を使用して測定した。結果を図2Bに示す。図から明らかな通り、実施例の粉末が最も優れていることがわかった。
(Adsorption performance: odor 2)
Sawdust that had been reared and used in rats was prepared as an object for deodorization. 0.04 g, 0.2 g, and 1 g of each powder were mixed well with 10 g of the sawdust and allowed to stand for 30 minutes. The odor after 30 minutes was measured using the odor meter. The results are shown in FIG. 2B. As is clear from the figure, the powder of the example was found to be the most excellent.

(殺菌性能)
各粉末の質量濃度が1600ppm、800ppm、400ppm、200ppm、100ppmである純水懸濁液を調製した。この懸濁液の殺菌性能を評価した。
(Sterilization performance)
Pure water suspensions in which the mass concentration of each powder was 1600 ppm, 800 ppm, 400 ppm, 200 ppm, and 100 ppm were prepared. The sterilization performance of this suspension was evaluated.

池の濁水に2%のDMEM培地(D5796,Sigma Life Science、Sigma−Aldorich Japan、Tokyo)を添加し、室温で18時間放置して、殺菌対象の一般生菌群および大腸菌群を培養した。一般生菌群の菌数および大腸菌群の菌数は、それぞれ4.6および4.2(Log10CFU/mL)であった。 A 2% DMEM medium (D5796, Sigma Life Science, Sigma-Aldrich Japan, Tokyo) was added to the turbid water in the pond, and the mixture was allowed to stand at room temperature for 18 hours to culture the general live bacteria and Escherichia coli to be sterilized. The number of bacteria in the general live bacteria group and the number of bacteria in the Escherichia coli group were 4.6 and 4.2 (Log 10 CFU / mL), respectively.

上記一般生菌および大腸菌群を含んだ液体100体積部に上記水懸濁液100体積部を添加、よく撹拌した後、室温で30分放置した。一般生菌群および大腸群数測定用培地キット(それぞれコンパクトドライ「ニッスイ」TC及びCF、日水製薬株式会社製)を使用して一般生菌数および大腸菌群数を測定した。一般生菌数の結果を図3Aに、大腸菌群数の結果を図3Bに示す(横軸は粉末の最終濃度である)。図から明らかな通り、実施例の粉末の懸濁液が最も優れていることがわかった。

100 parts by volume of the aqueous suspension was added to 100 parts by volume of the liquid containing the general viable bacteria and coliforms, and the mixture was stirred well, and then left at room temperature for 30 minutes. The number of general viable bacteria and the number of coliforms were measured using a medium kit for measuring the number of general viable bacteria and colon colony (compact dry “Nissui” TC and CF, respectively, manufactured by Nissui Pharmaceutical Co., Ltd.). The results of the number of general viable bacteria are shown in FIG. 3A, and the results of the number of coliforms are shown in FIG. 3B (the horizontal axis is the final concentration of the powder). As is clear from the figure, the suspension of the powder of the example was found to be the best.

Claims (7)

炭酸カルシウムおよび/または水酸化カルシウムを含有する開始材料から酸化カルシウムを含有する焼成物を製造する方法であって、
開始材料を1000℃以上で4時間以上焼成して一次焼成物を得る一次焼成工程と、
一次焼成物を微粉砕する微粉砕工程と、
一次焼成物を600℃以上で1時間以上焼成して二次焼成物を得る二次焼成工程と、
二次焼成物を真空雰囲気下または不活性ガス雰囲気下にて外気温まで冷却させる二次冷却工程と、
を含む方法。
A method for producing a calcined product containing calcium oxide from a starting material containing calcium carbonate and / or calcium hydroxide,
A primary firing step of firing the starting material at 1000 ° C. or higher for 4 hours or more to obtain a primary fired product;
A fine grinding step of finely grinding the primary fired product,
A secondary firing step of firing the primary fired product at 600 ° C. or higher for 1 hour or more to obtain a secondary fired product;
A secondary cooling step of cooling the secondary fired product to an outside temperature under a vacuum atmosphere or an inert gas atmosphere,
A method that includes
二次冷却工程後に焼成物を粉砕する工程を含まない、請求項1に記載の方法。   The method according to claim 1, wherein the method does not include a step of pulverizing the fired product after the secondary cooling step. 開始材料の一部または全部が貝殻である請求項1〜2のいずれか1項に記載の方法。   3. The method according to any one of claims 1 to 2, wherein part or all of the starting material is a shell. 貝殻の一部または全部がホタテ貝殻である請求項3に記載の方法。   4. The method according to claim 3, wherein part or all of the shell is a scallop shell. 請求項1〜4いずれか1項に記載の方法によって製造された焼成物。   A fired product produced by the method according to claim 1. 請求項5に記載の焼成物を水性媒体に懸濁させた懸濁液。   A suspension in which the calcined product according to claim 5 is suspended in an aqueous medium. 請求項5に記載の焼成物を真空雰囲気下または不活性ガス雰囲気下にて保存する方法。

A method for storing the fired product according to claim 5 in a vacuum atmosphere or an inert gas atmosphere.

JP2018188537A 2018-10-03 2018-10-03 Firing products containing calcium oxide Active JP7215670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188537A JP7215670B2 (en) 2018-10-03 2018-10-03 Firing products containing calcium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188537A JP7215670B2 (en) 2018-10-03 2018-10-03 Firing products containing calcium oxide

Publications (2)

Publication Number Publication Date
JP2020055719A true JP2020055719A (en) 2020-04-09
JP7215670B2 JP7215670B2 (en) 2023-01-31

Family

ID=70106372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188537A Active JP7215670B2 (en) 2018-10-03 2018-10-03 Firing products containing calcium oxide

Country Status (1)

Country Link
JP (1) JP7215670B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023820A (en) * 2021-03-25 2021-06-25 韩玉 Low-cost and efficient municipal sewage treatment method
JP7092965B2 (en) 2020-02-21 2022-06-29 株式会社プラスラボ Alkaline aqueous solution with excellent sterilization and deodorant properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139991A (en) * 1999-11-18 2001-05-22 Chafflose Corporation:Kk Detergent
WO2004089092A1 (en) * 2003-04-09 2004-10-21 Idemitsu Technofine Co., Ltd. Deodorant antibacterial powder preparation, process for producing the same and product using the powder preparation
JP2005120013A (en) * 2003-10-16 2005-05-12 Shinji Koyama Periodontosis therapeutic agent
JP2009234807A (en) * 2008-03-25 2009-10-15 Yamagata Three Top:Kk Shell calcium powder and method for producing the same
JP2011207779A (en) * 2010-03-29 2011-10-20 Success Ltd Method for producing antimicrobial agent, the antimicrobial agent and antimicrobial aqueous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139991A (en) * 1999-11-18 2001-05-22 Chafflose Corporation:Kk Detergent
WO2004089092A1 (en) * 2003-04-09 2004-10-21 Idemitsu Technofine Co., Ltd. Deodorant antibacterial powder preparation, process for producing the same and product using the powder preparation
JP2005120013A (en) * 2003-10-16 2005-05-12 Shinji Koyama Periodontosis therapeutic agent
JP2009234807A (en) * 2008-03-25 2009-10-15 Yamagata Three Top:Kk Shell calcium powder and method for producing the same
JP2011207779A (en) * 2010-03-29 2011-10-20 Success Ltd Method for producing antimicrobial agent, the antimicrobial agent and antimicrobial aqueous solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092965B2 (en) 2020-02-21 2022-06-29 株式会社プラスラボ Alkaline aqueous solution with excellent sterilization and deodorant properties
CN113023820A (en) * 2021-03-25 2021-06-25 韩玉 Low-cost and efficient municipal sewage treatment method

Also Published As

Publication number Publication date
JP7215670B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP5019123B2 (en) Antifungal / antibacterial agent consisting of two-stage fired shell powder
CN1050030C (en) Antimicrobial agent and method for sustaning freshness of food
JP2019006660A (en) Calcined calcium and production method thereof
JP6439994B2 (en) Method for producing hydrogen anion-containing material
JP7215670B2 (en) Firing products containing calcium oxide
JP2019077648A (en) Bactericidal/sorbent composition in which calcium oxide is dispersed in water
JPWO2009104670A1 (en) Antibacterial antiviral agent and method of using the same
Kalaycıoğlu et al. Green synthesis of cerium oxide nanoparticles from turmeric and kinds of honey: characterisations, antioxidant and photocatalytic dye degradation activities
Rizzotto et al. Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application
Li et al. Antibacterial property improvement of nano-MgO prepared by lithium doping under nitrogen calcination
Kim et al. Manufacturing of anti-viral inorganic materials from colloidal silver and titanium oxide
Sadeghi et al. Oyster shell disposal: potential as a novel ecofriendly antimicrobial agent for packaging: a mini review
Abou Zeid et al. Antibacterial and Photocatalytic Properties of ZnO Nanostructure Decorated Coatings
JP2022103202A (en) Alkaline aqueous solution with excellent sterilization and deodorant properties
JP2020063178A (en) Dispersion of calcined product comprising calcium oxide
JP2009234807A (en) Shell calcium powder and method for producing the same
JP2020196676A (en) Low-temperature disinfecting or deodorizing agent, and ice or sherbet having the agent added thereto
KR100270228B1 (en) Process for producing calcium oxide
JP7302785B2 (en) Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds
TWI725835B (en) Antibacterial plastic chopping board containing discarded oyster shell layer-structure modified micron powder, and the producing method thereof
CN105886159A (en) Food stage aerobic detergent
JP2003081728A (en) Additive
JP2018024617A (en) Scallop burned powder, mixed liquid thereof, manufacturing method and preservation method
WO2023037505A1 (en) Alkaline aqueous solution with excellent bactericidal and deodorant properties
JP2021031334A (en) Dispersion liquid of calcined product containing calcium oxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7215670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150