JP7302785B2 - Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds - Google Patents

Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds Download PDF

Info

Publication number
JP7302785B2
JP7302785B2 JP2019108932A JP2019108932A JP7302785B2 JP 7302785 B2 JP7302785 B2 JP 7302785B2 JP 2019108932 A JP2019108932 A JP 2019108932A JP 2019108932 A JP2019108932 A JP 2019108932A JP 7302785 B2 JP7302785 B2 JP 7302785B2
Authority
JP
Japan
Prior art keywords
pseudomonas aeruginosa
wound
firing
shell
fired product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019108932A
Other languages
Japanese (ja)
Other versions
JP2020200278A (en
Inventor
新一 沢田
孝一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELLZION CO., LTD.
Plus Lab Co Ltd
Original Assignee
ELLZION CO., LTD.
Plus Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELLZION CO., LTD., Plus Lab Co Ltd filed Critical ELLZION CO., LTD.
Priority to JP2019108932A priority Critical patent/JP7302785B2/en
Publication of JP2020200278A publication Critical patent/JP2020200278A/en
Application granted granted Critical
Publication of JP7302785B2 publication Critical patent/JP7302785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

本発明は、緑膿菌感染創の消毒剤又は創傷治癒剤に関する。 The present invention relates to an antiseptic or wound healing agent for Pseudomonas aeruginosa infected wounds.

緑膿菌は、病院や家庭内において深刻な感染を惹き起こす原因菌として知られている。この緑膿菌をコンロールするために、o-フェニルフェノールやtert-アルキルアンモニウム塩のような殺菌成分が特に用いられているが、これらの成分でも緑膿菌を十分に阻害することができない。このような課題を踏まえ、例えば、特許文献1では、(a)アナカルド酸、リモネン、β-ピネン、ファルネソール、β-シトロネロール、松脂及びヒノキチオールよりなる群から選ばれる少なくとも1種の天然由来物質並びに(b)該天然由来物質1重量部当たり0.2乃至100重量部のインドールを有効成分として含有する抗緑膿菌剤が提案されている。 Pseudomonas aeruginosa is known as a causative bacterium that causes serious infections in hospitals and homes. Antiseptic ingredients such as o-phenylphenol and tert-alkylammonium salts are specifically used to control this Pseudomonas aeruginosa, but even these ingredients are not sufficient to inhibit P. aeruginosa. In view of such problems, for example, in Patent Document 1, (a) at least one naturally occurring substance selected from the group consisting of anacardic acid, limonene, β-pinene, farnesol, β-citronellol, pine resin and hinokitiol and ( b) An anti-pseudomonas aeruginosa agent containing 0.2 to 100 parts by weight of indole per 1 part by weight of the naturally-derived substance as an active ingredient has been proposed.

先行特許文献Prior patent documents

特開平5-271073号公報JP-A-5-271073

本発明は、従来の有機系とは異なる、無機系材料を主体とした、新規な緑膿菌感染創の消毒剤又は創傷治癒剤を提供することを課題とする。 An object of the present invention is to provide a novel antiseptic agent or wound healing agent for Pseudomonas aeruginosa-infected wounds, which is mainly composed of inorganic materials, unlike conventional organic materials.

本発明(1)は、
炭酸カルシウム及び/又は水酸化カルシウムを含有する開始材料を焼成して一次焼成物を得る一次焼成工程と、
一次焼成物を微粉砕する微粉砕工程と、
一次焼成物を再度焼成して二次焼成物を得る二次焼成工程と、
二次焼成物を真空雰囲気下又は不活性ガス雰囲気下にて外気温まで冷却させる二次冷却工程と、
により得られた酸化カルシウム含有焼成物である
ことを特徴とする、緑膿菌感染創の消毒剤又は創傷治癒剤である。
本発明(2)は、
前記開始材料が貝殻である、前記発明(1)の緑膿菌感染創の消毒剤又は創傷治癒剤である。
本発明(3)は、
前記貝殻がホタテ貝殻又はカキ貝殻である、前記発明(2)の緑膿菌感染創の消毒剤又は創傷治癒剤である。
本発明(4)は、
繭状の緻密な粒子表面構造を有し、
示差熱熱重量分析(TG-DTA)で測定される酸化カルシウム含有率が95重量%以上であり、また水酸化カルシウム含有率が5重量%以下であり、
蛍光X線分析法(XRF)で測定されるカルシウム元素含有率が95atom%以上であり、
X線回折分析法(XRD)で測定される酸化カルシウム含有率が95質量%以上であり、
平均粒径が20μm以下であり、
BET比表面積が0.5m/g以上3.0m/g以下である、貝殻を焼成して得られた酸化カルシウム含有焼成物である
ことを特徴とする緑膿菌感染創の消毒剤又は創傷治癒剤である。
本発明(5)は、
前記貝殻がホタテ貝殻又はカキ貝殻である、前記発明(4)の緑膿菌感染創の消毒剤又は創傷治癒剤である。
The present invention (1) is
a primary firing step of firing a starting material containing calcium carbonate and/or calcium hydroxide to obtain a primary fired product;
A fine pulverization step of finely pulverizing the primary fired product;
A secondary firing step of re-firing the primary fired product to obtain a secondary fired product;
A secondary cooling step of cooling the secondary fired product to the outside temperature in a vacuum atmosphere or an inert gas atmosphere;
It is a disinfectant or wound healing agent for Pseudomonas aeruginosa-infected wounds, characterized by being a calcium oxide-containing baked product obtained by.
The present invention (2) is
The antiseptic or wound healing agent for Pseudomonas aeruginosa-infected wounds according to the invention (1), wherein the starting material is a shell.
The present invention (3) is
The disinfectant or wound healing agent for Pseudomonas aeruginosa-infected wounds according to the invention (2), wherein the shell is a scallop shell or an oyster shell.
The present invention (4) is
It has a dense cocoon-like particle surface structure,
The calcium oxide content measured by differential thermal thermogravimetric analysis (TG-DTA) is 95% by weight or more, and the calcium hydroxide content is 5% by weight or less,
The calcium element content measured by X-ray fluorescence spectroscopy (XRF) is 95 atom% or more,
Calcium oxide content measured by X-ray diffraction analysis (XRD) is 95% by mass or more,
The average particle size is 20 μm or less,
Disinfectant for Pseudomonas aeruginosa-infected wounds, characterized by being a calcium oxide-containing baked product obtained by baking shells having a BET specific surface area of 0.5 m 2 /g or more and 3.0 m 2 /g or less, or It is a wound healing agent.
The present invention (5) is
The disinfectant or wound healing agent for Pseudomonas aeruginosa-infected wounds according to the invention (4), wherein the shell is a scallop shell or an oyster shell.

本発明によれば、従来の有機系とは異なる、無機系材料を主体とした、新規な緑膿菌感染創の消毒剤又は創傷治癒剤を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel antiseptic or wound healing agent for Pseudomonas aeruginosa-infected wounds, which is mainly composed of an inorganic material, which is different from conventional organic materials.

例1のSEM写真である。1 is an SEM photograph of Example 1; 実施例における、消毒剤の緑膿菌に対するin vitro 殺菌活性を示す。ここで、緑膿菌をそれぞれの濃度のBisCaO懸濁液、次亜塩素酸水、ポピドンヨード溶液と5分間反応させた。生存菌数が、それぞれの消毒液の有効最低濃度を検証するために計測された (N=6)。The in vitro bactericidal activity of the disinfectant against Pseudomonas aeruginosa in the examples is shown. Here, Pseudomonas aeruginosa was reacted with each concentration of BisCaO suspension, hypochlorous acid water, and povidone-iodine solution for 5 minutes. Viable counts were taken to verify the lowest effective concentration of each disinfectant (N=6). 実施例における、消毒剤の緑膿菌感染創に対するin vivo除菌活性を示す。ここで、ヘアレスラットにおける緑膿菌感染創は毎日5回3mLのそれぞれの消毒液で当初の3日間、ガーゼで丁寧に擦りながら洗浄し、その後CNFSで被覆した。引き続いて、days4~9の間毎日生理食塩水のみで洗浄し、感染創をCNFSで被覆した。それぞれの消毒液での洗浄前(days1,2,3,6,9)、感染創から一片の滅菌ガーゼを用いたふき取り試験により、生存菌数を計測した。データは平均値 ± 標準偏差(SD)(N=7)を示す。尚、図中のBisCaOは、実施例に係る懸濁液を意味する(以下も同様)。In the examples, the in vivo disinfection activity of the disinfectant against Pseudomonas aeruginosa-infected wounds is shown. Pseudomonas aeruginosa-infected wounds in hairless rats were washed with 3 mL of each antiseptic 5 times daily for the first 3 days while gently rubbing with gauze, and then covered with CNFS. Subsequently, from days 4 to 9, the infected wounds were washed with saline only and covered with CNFS. Before washing with each antiseptic solution (days 1, 2, 3, 6, 9), the number of surviving bacteria was measured by a wiping test using a piece of sterile gauze from the infected wound. Data represent mean±standard deviation (SD) (N=7). In addition, BisCaO in the figure means the suspension according to the example (the same applies hereinafter). 実施例における、感染創開放部のデジタル写真を示す。ここで、ヘアレスラットにおける緑膿菌感染創を毎日それぞれの消毒液又は生理食塩水で洗浄し、CNFSで被覆した。指定された日で洗浄前のそれぞれの感染開放創(N=7) は写真撮影され、開放率が計測された。1 shows a digital photograph of an open infected wound in an example. Here, Pseudomonas aeruginosa-infected wounds in hairless rats were washed daily with the respective antiseptic solution or saline and covered with CNFS. On the indicated days, each infected open wound (N=7) before irrigation was photographed and the percent open was measured. 実施例における、開放創の率(パーセンテージ)を示す。ここで、Day1での開放創面積を100とし、図3のデジタル写真を用いてそれぞれの開放創のパーセンテージを計算した。データは、平均値 ± 標準偏差(SD)(N=7);P<0.05(Student‘s t-test)を示す。Figure 3 shows the percentage of open wounds in the examples. Here, the open wound area on Day 1 was taken as 100, and the percentage of each open wound was calculated using the digital photographs of FIG. Data represent mean±standard deviation (SD) (N=7); * P<0.05 (Student's t-test). 実施例における、Day9での肉芽組織と新生血管形成についての組織学的試験を示す。ここで、それぞれの消毒液洗浄群の創部を含んだ周辺の皮膚をDay9に切除し、ヘマキシリン・エオジン(H&E)染色してスライド固定した。その組織スライドの顕微鏡写真(×100)観察により、それぞれの組織における肉芽組織形成及び血管新生が評価された (N=7)。実線は肉芽組織幅、矢印は新生血管を示す。提示した写真は、それぞれの群の代表的なものである。これらの顕微鏡写真は、表2の作製に使われた。Fig. 3 shows histological examination of granulation tissue and neovascularization on Day 9 in the Examples. Here, the surrounding skin including the wound site of each disinfectant-washed group was excised on Day 9, stained with hemaxillin and eosin (H&E), and fixed on slides. Granulation tissue formation and angiogenesis in each tissue were assessed by micrograph (×100) observation of the tissue slides (N=7). The solid line indicates the granulation tissue width, and the arrow indicates neovascularization. Pictures presented are representative of each group. These photomicrographs were used to generate Table 2.

本発明に係る緑膿菌感染創の消毒剤又は創傷治癒剤は、特定の酸化カルシウム焼成物を含む。以下、当該焼成物、当該焼成物の製造方法、当該焼成物の用途(緑膿菌感染創の消毒剤又は創傷治癒剤)、の順で説明する。 The antiseptic or wound healing agent for Pseudomonas aeruginosa-infected wounds according to the present invention contains a specific calcined calcium oxide. Hereinafter, the baked product, the method for producing the baked product, and the use of the baked product (disinfectant or wound healing agent for Pseudomonas aeruginosa-infected wounds) will be described in this order.

≪焼成物≫
本発明に係る焼成物を製造する開始材料は、貝殻である。貝殻とは、一般に貝と呼称される生物やこれに類する生物(多くは貝殻亜門に属する)が外殻として形成する、炭酸カルシウムを含む材料を指す。
≪Baked goods≫
The starting material for producing the calcined product according to the invention is shells. Seashells refer to materials containing calcium carbonate that are formed as outer shells by organisms commonly referred to as shellfish and similar organisms (mostly belonging to the subphylum Stelura).

貝は、一般的に一枚貝、二枚貝、巻貝といった分類に分けられる。一枚貝としては、アワビ、トコブシなどが挙げられ、二枚貝としては、ホタテ、カキ、シジミ、ハマグリ、アサリなどが挙げられ、巻貝としては、サザエ、ツブ、カタツムリなどが挙げられる。いずれの貝の貝殻も開始材料として使用可能であるが、洗浄が容易で不純物の混入リスクを低減できることから二枚貝の貝殻が好ましい。二枚貝の貝殻の中でもホタテ貝殻とカキ貝殻がより好ましく、ホタテ貝殻が特に好ましい。 Shellfish are generally classified into monovalves, bivalves, and snails. Examples of monovalves include abalone and Tokobushi, examples of bivalves include scallops, oysters, clams, clams, short-necked clams, and examples of snails include turban shells, whelks, and snails. Although any mussel shell can be used as a starting material, bivalve shells are preferred due to their ease of cleaning and reduced risk of contamination. Among bivalve shells, scallop shells and oyster shells are more preferred, and scallop shells are particularly preferred.

本発明に係る焼成物の平均粒径は、好適には、20.0μm以下、15.0μm以下、10.0μm以下、8.0μm以下、6.0μm以下、5.0μm以下、又は2.0μm以下である。 The average particle diameter of the fired product according to the present invention is preferably 20.0 μm or less, 15.0 μm or less, 10.0 μm or less, 8.0 μm or less, 6.0 μm or less, 5.0 μm or less, or 2.0 μm It is below.

本発明に係る焼成物の平均粒径は、粒度分布測定装置を用いて測定すればよい。このような装置として、例えば、CILAS(株式会社アイシンナノテクノロジーズ)が挙げられる。また、本発明の焼成物の形状や表面構造は、2000倍~10000倍の任意の倍率のSEM画像から求めることができる。 The average particle size of the baked product according to the present invention may be measured using a particle size distribution analyzer. An example of such a device is CILAS (Aisin Nano Technologies Co., Ltd.). Further, the shape and surface structure of the fired product of the present invention can be obtained from an SEM image at any magnification of 2000 to 10000 times.

焼成物の波長分散型の蛍光X線分析法(XRF)によって測定可能な元素に占めるカルシウム元素の割合は、90atom%以上、91atom%以上、92atom%以上、93atom%以上、94atom%以上、95atom%以上、96atom%以上、97atom%以上、98atom%以上、99atom%以上としてもよい。 The ratio of calcium element to the elements measurable by wavelength dispersive X-ray fluorescence spectroscopy (XRF) of the fired product is 90 atom% or more, 91 atom% or more, 92 atom% or more, 93 atom% or more, 94 atom% or more, 95 atom% Above, it may be 96 atom % or more, 97 atom % or more, 98 atom % or more, or 99 atom % or more.

蛍光X線分析(XRF)により、カルシウム以外にもカリウム、硫黄、リン、マグネシウム、ナトリウム、アルミニウム、ケイ素、ストロンチウムなどの微量な含有率も測定できる。尚、波長分散型の蛍光X線分析法(XRF)では炭素や酸素は測定されない。 By X-ray fluorescence spectroscopy (XRF), in addition to calcium, trace amounts of contents such as potassium, sulfur, phosphorus, magnesium, sodium, aluminum, silicon, and strontium can also be measured. Carbon and oxygen are not measured by wavelength dispersive X-ray fluorescence spectroscopy (XRF).

波長分散型蛍光X線分析法(XRF)の装置として、RIX3100(理学電機工業株式会社製)が挙げられる。 RIX3100 (manufactured by Rigaku Denki Kogyo Co., Ltd.) is exemplified as an apparatus for wavelength dispersive X-ray fluorescence spectroscopy (XRF).

本発明に係る焼成物の酸化カルシウム、水酸化カルシウム、及び炭酸カルシウム含有割合は、示差熱熱量重量分析装置を用いて推定される。示差熱熱量重量分析により、300℃前後の重量変化から水分の含有を推定し、350℃前後の重量変化から水酸化カルシウムの含量を推定し、600℃前後の重量変化から炭酸カルシウムの含量を推定できる。 The contents of calcium oxide, calcium hydroxide, and calcium carbonate in the baked product according to the present invention are estimated using a differential thermal calorimetric analyzer. By differential thermal calorimetric analysis, the water content is estimated from the weight change around 300°C, the calcium hydroxide content is estimated from the weight change around 350°C, and the calcium carbonate content is estimated from the weight change around 600°C. can.

本発明に係る焼成物の示差熱熱量重量分析(TG-DTA)によって測定される30~1000℃における重量維持割合(酸化カルシウム含有割合とも表現する)は、好適には、75.0重量%以上、80.0重量%以上、85.0重量%以上、90.0重量%以上、95.0重量%以上、99.0重量%以上、99.3重量%以上、又は99.5重量%以上である。重量維持割合とは、30℃時点における重量に対する1000℃時点における重量の百分率である。 The weight retention ratio (also expressed as calcium oxide content ratio) at 30 to 1000 ° C. measured by differential thermal calorimetric analysis (TG-DTA) of the baked product according to the present invention is preferably 75.0% by weight or more. , 80.0% by weight or more, 85.0% by weight or more, 90.0% by weight or more, 95.0% by weight or more, 99.0% by weight or more, 99.3% by weight or more, or 99.5% by weight or more is. The weight retention rate is the percentage of the weight at 1000°C to the weight at 30°C.

示差熱熱重量分析(TG-DTA)の装置として、例えば、TGA851e(メトラー・トレド社製)が挙げられる。示差熱熱重量分析の測定は、窒素100mL/min気流中、10℃/分の昇温速度にて30℃から1000℃まで昇温して行う。 An apparatus for differential thermal thermogravimetric analysis (TG-DTA) includes, for example, TGA851e (manufactured by Mettler Toledo). Differential thermal thermogravimetric analysis is performed by heating from 30° C. to 1000° C. at a rate of 10° C./min in a nitrogen stream of 100 mL/min.

本発明に係る焼成物のX線回折分析法(XRD)によって測定される純度は、好適には、90.0質量%以上、92質量%以上、94質量%以上、96質量%以上、98質量%以上、99質量%以上、又は99.5質量%以上である。 Purity measured by X-ray diffraction analysis (XRD) of the fired product according to the present invention is preferably 90.0% by mass or more, 92% by mass or more, 94% by mass or more, 96% by mass or more, 98% by mass % or more, 99 mass % or more, or 99.5 mass % or more.

X線回折分析法(XRD)の装置として、例えば、X’Pert-PRO(Philips)が挙げられる。 X-ray diffraction analysis (XRD) equipment includes, for example, X'Pert-PRO (Philips).

本発明に係る焼成物のBET比表面積は、好適には、0.2m/g以上、0.3m/g以上、0.4m/g以上、0.5m/g以上、0.6m/g以上、0.7m/g以上、0.8m/g以上、0.9m/g以上、又は1.0m/g以上である。他方、好適には、3.0m/g以下、2.8m/g以下、2.6m/g以下、2.4m/g以下、2.2m/g以下、又は2.0m/g以下である。 The BET specific surface area of the fired product according to the present invention is preferably 0.2 m 2 /g or more, 0.3 m 2 /g or more, 0.4 m 2 /g or more, 0.5 m 2 /g or more, 0.5 m 2 /g or more, 6 m 2 /g or more, 0.7 m 2 /g or more, 0.8 m 2 /g or more, 0.9 m 2 /g or more, or 1.0 m 2 /g or more. On the other hand, it is preferably 3.0 m 2 /g or less, 2.8 m 2 /g or less, 2.6 m 2 /g or less, 2.4 m 2 /g or less, 2.2 m 2 /g or less, or 2.0 m 2 /g or less.

BET比表面積を解析する装置として、例えば、Quantachrome社製ChemBET3000が挙げられる。BET比表面積の測定方法は特に制限されず通常使用される条件で測定してよい。 An example of an apparatus for analyzing the BET specific surface area is ChemBET3000 manufactured by Quantachrome. The method for measuring the BET specific surface area is not particularly limited, and the measurement may be carried out under commonly used conditions.

本発明に係る焼成物を水蒸気等と水和反応させると、表面化から水酸化カルシウムの形成による結晶の微細化、裂け目と細孔の形成による表面構造の変化が生じ、親水性が向上した特性変化が生じる。実際に、X線回折分析法(XRD)で測定される酸化カルシウム含有率が99%以上、平均粒径が5μm以下の貝殻焼成物は、X線回折分析法(XRD)で測定される酸化カルシウム含有率が75~95%、水酸化カルシウム含有率が5~20%、平均粒径が5μm以下である貝殻焼成物と比べ、水を添加した当初は親水性、水懸濁性が悪く、より多量の沈殿を生じる。 When the calcined product according to the present invention is subjected to a hydration reaction with water vapor or the like, the surface changes to micronize crystals due to the formation of calcium hydroxide, and the surface structure changes due to the formation of cracks and pores. occurs. Actually, the calcium oxide content measured by X-ray diffraction analysis (XRD) is 99% or more, and the average particle size is 5 μm or less. Compared to baked shells with a content of 75 to 95%, a calcium hydroxide content of 5 to 20%, and an average particle size of 5 μm or less, hydrophilicity and water suspension properties are poor at the beginning of water addition, and more A large amount of precipitate is produced.

≪焼成物の製造方法≫
上述の焼成物を製造するための方法の1例を以下説明する。当然のことながら、以下の方法を改変した方法や全く異なる方法によって上述の焼成物を製造してもよい。
≪Manufacturing method of fired product≫
An example of a method for producing the fired product described above is described below. Naturally, the fired product described above may be produced by a method modified from the following method or by a completely different method.

当該製造方法は、以下の工程(1)~(6)を記載した順に実行する。
(1)貝殻を焼成する一次焼成工程、
(2)焼成された一次焼成物を外気温まで自然冷却させる工程、
(3)一次焼成物を各フィルター(エアフィルター、マイクロミストフィルター、活性炭フィルター)を通して不純物を除去し、乾式超微粉砕システム(ナノジェットマイザー)及び/又はバグ又はサイクロン集塵装置により、高圧ガスとして大気を乾燥させた空気の他、不活性ガスの窒素ガスやアルゴンガスを注入して二酸化炭素及び水蒸気を置換除去しながら均一微粉砕化及び集塵する工程、
(4)一次焼成物を二次焼成する二次焼成工程、
(5)二次焼成物を気圧10Pa以下の低気圧条件下、及び/又は、不活性ガス雰囲気条件下で外気温まで自然冷却させる工程、
(6)焼成炉開閉扉を窒素ガス又はアルゴンガス雰囲気下内(焼成炉開閉扉の外側もアルゴンガス雰囲気下にする。)で冷却焼成物を搬出し、真空及び/又は窒素ガス又はアルゴンガス充填包装する工程
In the manufacturing method, the following steps (1) to (6) are performed in the order described.
(1) Primary firing step of firing shells,
(2) a step of naturally cooling the fired primary fired product to the ambient temperature;
(3) Impurities are removed from the primary fired product through each filter (air filter, micromist filter, activated carbon filter), and the dry ultrafine pulverization system (nano jetmizer) and/or bag or cyclone dust collector is used to convert it into high-pressure gas. A step of uniform fine pulverization and dust collection while replacing and removing carbon dioxide and water vapor by injecting nitrogen gas or argon gas, which is an inert gas, in addition to dried air,
(4) a secondary firing step of secondary firing the primary fired product;
(5) A step of naturally cooling the secondary fired product to ambient temperature under low pressure conditions of 10 3 Pa or less and/or under inert gas atmosphere conditions;
(6) Carry out the cooled baked product in a nitrogen gas or argon gas atmosphere with the firing furnace opening and closing door (the outside of the firing furnace opening and closing door is also under an argon gas atmosphere), and fill with vacuum and / or nitrogen gas or argon gas. packaging process

以下、各工程について、貝殻としてホタテ貝を用いた場合を例に採り説明する。 Hereinafter, each step will be described by taking the case of using a scallop shell as an example.

尚、本発明において「外気温」とは、焼成を行う装置(焼成炉)が置かれている周囲環境の気温を意味する。焼成炉が配される地域や場所並びに時刻や季節によって周囲環境の気温は変動するものであり、一律に定義することはできないが、100℃未満、80℃未満、60℃未満又は50℃未満の温度と解釈してもよい。 In the present invention, the "outside temperature" means the temperature of the ambient environment in which the firing device (firing furnace) is placed. The temperature of the surrounding environment fluctuates depending on the region and place where the kiln is arranged, as well as the time and season, and it cannot be uniformly defined, but it is less than 100°C, less than 80°C, less than 60°C, or less than 50°C. May be interpreted as temperature.

工程(1)は、開始材料を一次焼成する工程である。この焼成において開始材料に含まれるタンパク質などに由来する炭素や水素が放出され、主成分の炭酸カルシウムは酸化カルシウムへと変質する。 Step (1) is a step of primary firing of the starting material. During this baking, carbon and hydrogen derived from proteins and the like contained in the starting material are released, and calcium carbonate, which is the main component, is transformed into calcium oxide.

焼成温度は、好適には、1200℃以上、1400℃以上、又は1600℃以上である。これら温度以上にすることで充分に有機物を除去でき酸化カルシウムの純度が高くなる。他方、焼成温度の上限については酸化カルシウムの融点(約2600℃)以下であれば特に制限はないが、焼成炉への負荷やエネルギーコストの観点から、1650℃以下、1600℃以下、1550℃以下、又は1500℃以下が好ましい。当然のことながら、焼成工程に亘って、上記範囲内である限り、焼成温度は一定でも変動してもよい。 The firing temperature is preferably 1200° C. or higher, 1400° C. or higher, or 1600° C. or higher. By setting the temperature above these temperatures, the organic substances can be sufficiently removed and the purity of calcium oxide is increased. On the other hand, the upper limit of the firing temperature is not particularly limited as long as it is below the melting point of calcium oxide (approximately 2600°C). , or 1500° C. or lower. Of course, throughout the firing process, the firing temperature may be constant or may vary, as long as it remains within the above ranges.

焼成時間は、好適には、3時間以上、4時間以上、又は5時間以上である。他方、焼成時間の上限は8時間以下、7.5時間以下、7時間以下、又は6.5時間以下が好ましい。 The firing time is preferably 3 hours or longer, 4 hours or longer, or 5 hours or longer. On the other hand, the upper limit of the firing time is preferably 8 hours or less, 7.5 hours or less, 7 hours or less, or 6.5 hours or less.

工程(1)は有機物の除去を行うため酸素含有雰囲気下(通常は大気雰囲気下)で実行する。タンパク質などに含まれる炭素や水素は酸素と反応し、二酸化炭素や水となって開始材料から遊離する。 Step (1) is carried out in an oxygen-containing atmosphere (usually in an air atmosphere) to remove organic matter. Carbon and hydrogen contained in proteins and the like react with oxygen to form carbon dioxide and water, which are liberated from the starting materials.

外気温から先の焼成温度に昇温する速度に特に制限はないが、通常は100~500℃/時間、150~450℃/時間、200~400℃/時間又は250~350℃/時間である。 There is no particular limitation on the rate at which the temperature is raised from the ambient temperature to the previous firing temperature, but it is usually 100 to 500°C/hour, 150 to 450°C/hour, 200 to 400°C/hour, or 250 to 350°C/hour. .

工程(2)は、工程(1)によって焼成された一次焼成物を冷却する工程である。積極的に冷却させるのではなく、加熱を停止させ放熱によって外気温まで自然冷却させる。工程(2)に要する時間は外気温の温度や開始材料によって左右されると考えられるが、凡そ、10時間以上、15時間以上、20時間以上である。 Step (2) is a step of cooling the primary fired product fired in step (1). Instead of actively cooling, the heating is stopped and heat is released to naturally cool to the outside temperature. The time required for step (2) is considered to depend on the temperature of the outside air and the starting material, but is generally 10 hours or more, 15 hours or more, or 20 hours or more.

工程(2)は、任意の雰囲気下で行ってよい。例えば、不活性ガス(ヘリウムや窒素ガスなど)雰囲気下でもよいし、大気雰囲気下でもよい。また工程(1)の雰囲気下と同じでも異なっていてもよい。水和反応を防ぐため、低湿度環境で冷却することが好ましい。 Step (2) may be performed under any atmosphere. For example, an inert gas (helium, nitrogen gas, etc.) atmosphere or an air atmosphere may be used. Moreover, the atmosphere may be the same as or different from that in step (1). Cooling in a low-humidity environment is preferred to prevent hydration reactions.

緩やかに自然冷却させる過程において、酸化カルシウムが高い結晶性を維持したまま冷却されるものと解される。 It is understood that in the process of slow natural cooling, calcium oxide is cooled while maintaining high crystallinity.

工程(3)において、粉末状態になった焼成物をエアフィルター、マイクロミストフィルター、活性炭フィルター等のフィルターを通じて不純物を除去し、特殊コンプレッサーで非常に乾燥された高圧ガスエネルギーで粒子を加速し、粒子衝突により超微粉砕を実現できる装置(ナノジェットマイザー;NJ-300-D)を使用して微粉砕する。高圧ガスとして大気を乾燥させた空気の他、不活性ガスの窒素ガスやアルゴンガスの使用も可能である。 In step (3), impurities are removed from the powdered calcined product through filters such as air filters, micromist filters, activated carbon filters, etc., and the particles are accelerated with high-pressure gas energy that has been extremely dried by a special compressor. It is pulverized using a device capable of achieving ultra-fine pulverization by collision (Nano Jet Mizer; NJ-300-D). As the high-pressure gas, it is possible to use nitrogen gas or argon gas, which is an inert gas, in addition to air obtained by drying the air.

工程(4)は、焼成物を更に焼成する二次焼成工程である。一次焼成物焼成後において、大気中の水蒸気や焼成による生成ガスである二酸化炭素と反応することにより酸化カルシウムの割合が減少すると考えられる。このため、酸化カルシウムの純度を維持、向上させるため、再焼成を行う。 Step (4) is a secondary firing step of further firing the fired product. After firing the primary fired product, it is thought that the ratio of calcium oxide decreases by reacting with water vapor in the atmosphere and carbon dioxide, which is a gas generated by firing. Therefore, re-firing is performed to maintain and improve the purity of calcium oxide.

二次焼成工程の焼成温度は、好適には、600℃以上、700℃以上、800℃以上、850℃以上、900℃以上、950℃以上である。これら温度以上で焼成することで充分に炭酸カルシウム、水酸化カルシウムを酸化カルシウムへと変化させることができる。二次焼成工程の焼成温度は、約2600℃(酸化カルシウムの融点)以下であり、通常1500℃以下、1200℃以下、1000℃以下である。 The baking temperature in the secondary baking step is preferably 600° C. or higher, 700° C. or higher, 800° C. or higher, 850° C. or higher, 900° C. or higher, 950° C. or higher. Firing at these temperatures or higher can sufficiently convert calcium carbonate and calcium hydroxide into calcium oxide. The firing temperature in the secondary firing step is about 2600° C. (melting point of calcium oxide) or less, and usually 1500° C. or less, 1200° C. or less, or 1000° C. or less.

二次焼成工程の焼成時間は、好適には、1時間以上、1.5時間以上又は2時間以上である。他方、焼成炉への負荷やエネルギーコストの観点から7時間以下、6時間以下、5時間以下、4時間以下、3時間以下が好ましい。 The firing time of the secondary firing step is preferably 1 hour or longer, 1.5 hours or longer, or 2 hours or longer. On the other hand, it is preferably 7 hours or less, 6 hours or less, 5 hours or less, 4 hours or less, or 3 hours or less from the viewpoint of the load on the firing furnace and the energy cost.

工程(5)は、二次焼成後の冷却工程である。二次焼成物中の酸化カルシウム含有割合を維持するため、気圧10Pa以下の低気圧条件下、及び/又は、不活性ガス条件下で自然冷却を行う。 Step (5) is a cooling step after secondary firing. In order to maintain the content of calcium oxide in the secondary fired product, natural cooling is performed under low pressure conditions of 10 3 Pa or less and/or under inert gas conditions.

工程(6)では、焼成炉内に不活性ガスを注入し、焼成炉開閉扉を行う。この場合は観音開き状態の扉ではなく、引き戸の扉が望ましい。不活性ガス雰囲気下内状態のカバーが容易である。更にこの不活性ガス雰囲気下で焼成物を真空包装する。 In step (6), an inert gas is injected into the firing furnace, and the firing furnace door is opened and closed. In this case, it is preferable to use a sliding door instead of a double-opening door. It is easy to cover the inner state under an inert gas atmosphere. Furthermore, the baked product is vacuum-packaged under this inert gas atmosphere.

本発明における不活性ガスとしては、酸化カルシウムと反応性を有しないガスであれば特に制限はなく、例えばヘリウムガス、アルゴンガス、窒素ガス、酸素ガスが挙げられる。 The inert gas in the present invention is not particularly limited as long as it is not reactive with calcium oxide, and examples thereof include helium gas, argon gas, nitrogen gas and oxygen gas.

尚、上述したものはあくまで1例であり、例えば、工程(5)は、工程(2)に代えて実行してもよい。工程(5)は省略して、工程(3)そして工程(6)を引き続いて実行してもよい。 In addition, what was mentioned above is only an example, and for example, step (5) may be executed instead of step (2). Step (5) may be omitted and step (3) and step (6) may be performed successively.

≪焼成物の用途≫
本発明に係る緑膿菌感染創の消毒剤又は創傷治癒剤は、前記焼成物を含む。ここで、本発明に係る緑膿菌感染創の消毒剤又は創傷治癒剤を製剤化する場合には、特に限定されることなく、公知の方法を用いることができる。例えば、その目的や用途に応じて、液剤(水懸濁剤及び油剤を含む)、分散剤、ペースト剤、粉剤、粒剤、マイクロカプセル等の公知の種々の剤型を挙げることができる。これらのうち、例えば、液剤として製剤化する場合には、前記焼成物を適宜溶剤に分散すればよい。より具体的には、例えば、液剤中に、前記焼成物が0.1~99重量%(好ましくは、1~80重量%、より好ましくは、5~50重量%)となる割合で配合し、分散させればよい。
≪Usage of calcined product≫
The disinfectant or wound-healing agent for Pseudomonas aeruginosa-infected wounds according to the present invention includes the baked product. Here, when formulating the disinfectant or wound healing agent for Pseudomonas aeruginosa-infected wounds according to the present invention, known methods can be used without particular limitation. For example, various known dosage forms such as liquids (including water suspensions and oils), dispersants, pastes, powders, granules, and microcapsules can be used depending on the purpose and application. Among these, for example, when formulating as a liquid agent, the baked product may be appropriately dispersed in a solvent. More specifically, for example, the fired product is blended in the liquid agent at a ratio of 0.1 to 99% by weight (preferably 1 to 80% by weight, more preferably 5 to 50% by weight), It should be dispersed.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

≪酸化カルシウム焼成体の製造≫
(例1)
ホタテ貝殻を1450℃で6時間焼成し、外気温まで自然冷却させた。これをエアフィルター、マイクロミストフィルター、活性炭フィルターを通して不純物を除去し、乾式超微粉砕システム(ナノジェットマイザー)により微粉砕した。その後、950℃で2時間焼成した。この二次焼成物を低気圧条件下(10-4Pa以下)にて外気温まで自然冷却させた。
≪Production of calcined calcium oxide≫
(Example 1)
The scallop shells were baked at 1450° C. for 6 hours and allowed to cool naturally to ambient temperature. Impurities were removed from this through an air filter, a micromist filter, and an activated carbon filter, and finely pulverized by a dry ultrafine pulverization system (nanojetmizer). After that, it was baked at 950° C. for 2 hours. This secondary fired product was naturally cooled to the outside temperature under low pressure conditions (10 −4 Pa or less).

(例2)
ホタテ貝殻を1450℃で6時間焼成し、外気温まで自然冷却させた。これをエアフィルター、マイクロミストフィルター、活性炭フィルターを通して不純物を除去し、乾式超微粉砕システム(ナノジェットマイザー)により不活性ガスの窒素ガスやアルゴンガスを注入して二酸化炭素及び水蒸気を置換除去しながら微粉砕した。
(Example 2)
The scallop shells were baked at 1450° C. for 6 hours and allowed to cool naturally to ambient temperature. Impurities are removed from this through an air filter, micromist filter, and activated carbon filter, and inert gas such as nitrogen gas or argon gas is injected using a dry ultrafine pulverization system (nano jetmizer) to replace and remove carbon dioxide and water vapor. pulverized.

(例3)
ホタテ貝殻を1100℃で4時間焼成し、外気温まで自然冷却させた。
(Example 3)
The scallop shells were baked at 1100° C. for 4 hours and allowed to cool naturally to ambient temperature.

(平均粒径)
各粉体の平均粒径は、粒度分布測定装置(CILAS;株式会社アイシンナノテクノロジーズ)を用いて測定した。
(Average particle size)
The average particle size of each powder was measured using a particle size distribution analyzer (CILAS; Aisin Nano Technologies Co., Ltd.).

(カルシウム元素含有割合)
各粉体のカルシウム元素含有割合は、蛍光X線分析装置(RIX3100;理学電機株式会社製)を用いて測定した。
(Calcium element content ratio)
The calcium element content of each powder was measured using a fluorescent X-ray analyzer (RIX3100; manufactured by Rigaku Denki Co., Ltd.).

(酸化カルシウム含有割合)
各粉体の酸化カルシウム含有割合及び水酸化カルシウム含有割合は、示差熱熱量重量分析装置(TGA851e;メトラー・トレド社)及びX線回折装置(X’Pert-PRO(Philips))を用いて測定した。
(Calcium oxide content ratio)
The calcium oxide content and calcium hydroxide content of each powder were measured using a differential thermal calorimetric analyzer (TGA851e; Mettler Toledo) and an X-ray diffractometer (X'Pert-PRO (Philips)). .

(BET比表面積)
例1~例3のBET比表面積は、Quantachrome社製ChemBET3000を用いて測定した。
(BET specific surface area)
The BET specific surface areas of Examples 1 to 3 were measured using ChemBET3000 manufactured by Quantachrome.

Figure 0007302785000001
Figure 0007302785000001

(電子顕微鏡観察)
上記焼成物について、ネオオスミウムコータ(Neoc-STB;メイワフォーシス株式会社、東京)でオスミウム金属被覆後、電界解放射型走査電子顕微鏡(JSM-6340F;日本電子株式会社、東京)を用いた3000倍、10000倍のSEM画像に基づいて乾燥粉末状態の表面形状を解析した。
(Electron microscope observation)
The fired product was coated with osmium metal using a neo-osmium coater (Neoc-STB; Meiwaforsyth Co., Ltd., Tokyo), and then examined using a field emission scanning electron microscope (JSM-6340F; JEOL Ltd., Tokyo) at a magnification of 3000. , the surface morphology of the dry powder state was analyzed based on the 10000-fold SEM image.

例1及び2は、皆繭状の緻密な表面構造が観察されており、そのBET比面積は、粉末の平均粒径と反比例の関係が観察された。また、例1及び例2に係る焼成物は、隣接する粒子同士が固く融着し、繭状の緻密な結晶及び粒子が成長し、細孔の閉塞により反応界面積が減少している様子が観察された(図1)。 In Examples 1 and 2, a dense cocoon-like surface structure was observed, and the BET specific area was observed to be inversely proportional to the average particle size of the powder. In addition, in the fired products according to Examples 1 and 2, adjacent particles are firmly fused to each other, dense cocoon-like crystals and particles grow, and the reaction interface area is reduced due to clogging of pores. observed (Fig. 1).

(実施例に係る緑膿菌感染創の消毒剤又は創傷治癒剤の調製)
例1に係る焼成物(1g) を1Lの純水に加え、回転混合させて1000ppm(0.1重量%)の緑膿菌感染創の消毒剤又は創傷治癒剤を調製し、1時間以内に使用した。
(Preparation of disinfectant or wound-healing agent for Pseudomonas aeruginosa-infected wounds according to Example)
Add the baked product (1 g) according to Example 1 to 1 L of pure water and rotate to mix to prepare a disinfectant or wound healing agent for 1000 ppm (0.1% by weight) of Pseudomonas aeruginosa-infected wounds, and within 1 hour used.

(比較例に係る緑膿菌感染創の消毒剤又は創傷治癒剤の調製)
次亜塩素酸水 (500ppm,pH6.5) を、1/10(vol/vol)の0.5%(5000ppm)次亜塩素酸ソーダ(吉田製薬)を滅菌純水に添加することで調製した。500ppm次亜塩素酸水のpHは、1Nの塩酸を添加して6.5に調整した。次亜塩素酸水の濃度は、残留(遊離)塩素としてClO(HClO及びClO-)選択試験紙 (高濃度測定範囲;25-500ppm、 低濃度測定範囲;1-25ppm、共立理化学研究所(株)、東京) を用いて測定した。
(Preparation of disinfectant or wound-healing agent for Pseudomonas aeruginosa-infected wounds according to Comparative Example)
Hypochlorous acid water (500 ppm, pH 6.5) was prepared by adding 1/10 (vol/vol) 0.5% (5000 ppm) sodium hypochlorite (Yoshida Pharmaceutical) to sterilized pure water. . The pH of the 500 ppm hypochlorous acid water was adjusted to 6.5 by adding 1N hydrochloric acid. The concentration of hypochlorous acid water is determined as residual (free) chlorine by ClO (HClO and ClO-) selection test paper (high concentration measurement range: 25-500 ppm, low concentration measurement range: 1-25 ppm, Kyoritsu Physical and Chemical Research Institute Co., Ltd. ), Tokyo).

(In vitro殺微生物活性)
緑膿菌 (ATCC27853(American Type Culture Collection(ATCC),Manassas,USA)は、50%滅菌グリセロールを含んだルリア-ベルターニ(LB)スープを用いて-80℃で貯蔵・保管した。実験の都度、新たに1.0×106コロニー形成単位 (CFU/mL)に増大させて用いた。様々な濃度の実施例に係る懸濁液、比較例に係る次亜塩素酸水、ポピドンヨードを緑膿菌懸濁液に添加し、15分間室温で培養した。それぞれの緑膿菌懸濁液は、緑膿菌用分離寒天(Neogen Ltd.,Michigan,USA)が入ったペトリ皿(90×15mm)上に塗布し、37℃で24時間培養した。培養後、生成したコロニーをカウントし、それぞれの消毒液のin vitro緑膿菌殺菌活性を評価した。
(In vitro microbicidal activity)
Pseudomonas aeruginosa (ATCC 27853 (American Type Culture Collection (ATCC), Manassas, USA) was stored and stored at −80° C. using Luria-Bertani (LB) broth containing 50% sterile glycerol. The concentration of Pseudomonas aeruginosa was newly increased to 1.0×10 6 colony forming units (CFU/mL), and the suspensions according to the examples with various concentrations, the hypochlorous acid water according to the comparative examples, and the povidone-iodine were used. Each P. aeruginosa suspension was added to a Petri dish (90 x 15 mm) containing Pseudomonas aeruginosa isolate agar (Neogen Ltd., Michigan, USA) and incubated for 15 minutes at room temperature. and cultured for 24 hours at 37° C. After culture, the formed colonies were counted and the in vitro Pseudomonas aeruginosa bactericidal activity of each disinfectant was evaluated.

(In vivo緑膿菌感染創洗浄)
ヘアレスラット(オス、300-350 g)は日本SLC株式会社より購入した。動物は適切な環境下(26℃、湿度55%)で飼育した。本研究でのDay0に、ラットはペントバルビタールナトリウム(大日本住友製薬)の腹腔内注射投与による全身麻酔下、滅菌した8mm真皮パンチ(貝印株式会社)と手術用ハサミを使って、ラット背部に円形全損創を造った。感染創とするために、冷凍保管している緑膿菌保存液(1.0×106CFU/mL)の100μLを上記の全損創上に滴下し、キチンナノファイバーシート(CNFS、脱アセチル化度:30%、ベスキチンW、ニプロ)の断片で覆った。それらのラットは、ケージに戻され24時間飼育し、感染創が形成された。それぞれの感染創は、その後Days1-3の3日間毎日、1cm四方の滅菌ガーゼを使い35-40℃に保温した3mLの殺菌剤や生理食塩水(計15mL)で、5回丁寧に洗浄し、感染創をCNFSの断片で覆った。引き続いて、Days4-9の6日間毎日、1cm四方のガーゼを使い35-40℃に保温した3mLの生理食塩水のみで、5回丁寧に洗浄し、感染創をCNFSの断片で覆った。Days1,2,3,6,9では、感染創洗浄前後で1cm四方の滅菌ガーゼを用いたふき取り試験で付着緑膿菌数を測定した。生じた緑膿菌懸濁液は10倍希釈法により濃度を調整し、緑膿菌用分離寒天ペトリ皿上に塗布し、37℃で24時間培養した。培養後、生成したコロニーをカウントし、緑膿菌数を評価した。尚、顕微鏡を使った菌体の形態観察により、感染創において生成した殆どすべての菌体は、緑膿菌であることを確認している。さらに、Days1,2,3,6,9における各々感染創はデジタル写真をとり、創閉塞率を評価した。また実験期間中、急性炎症、膿瘍形成、血清腫蓄積のような合併症の兆候がない事を確認した。
(In vivo Pseudomonas aeruginosa infected wound cleansing)
Hairless rats (male, 300-350 g) were purchased from SLC Japan. Animals were kept under suitable conditions (26° C., 55% humidity). On Day 0 of this study, rats were placed under general anesthesia by intraperitoneal injection of pentobarbital sodium (Dainippon Sumitomo Pharma), and a circular punch was applied to the back of the rat using a sterile 8 mm dermal punch (Kai) and surgical scissors. Created a total loss. In order to make an infected wound, 100 μL of the frozen Pseudomonas aeruginosa preservation solution (1.0×10 6 CFU/mL) was dropped onto the above total wound, and a chitin nanofiber sheet (CNFS, deacetylated Degree of conversion: 30%, Besquitin W, Nipro) was covered. The rats were returned to their cages and maintained for 24 hours to form an infected wound. After that, each infected wound was carefully washed 5 times with 3 mL of a sterilized gauze of 1 cm square and 3 mL of sterilizing agent or physiological saline (15 mL in total) kept at 35-40 ° C for 3 days from Days 1 to 3. The infected wound was covered with a piece of CNFS. Subsequently, every day for 6 days from Days 4 to 9, the infected wound was carefully washed five times with only 3 mL of physiological saline kept at 35 to 40° C. using a 1 cm square gauze, and the infected wound was covered with a piece of CNFS. On Days 1, 2, 3, 6, and 9, the number of adherent Pseudomonas aeruginosa was measured by a wiping test using a sterile gauze of 1 cm square before and after cleaning the infected wound. The concentration of the resulting Pseudomonas aeruginosa suspension was adjusted by a 10-fold dilution method, spread on a separate agar Petri dish for Pseudomonas aeruginosa, and cultured at 37° C. for 24 hours. After culturing, the generated colonies were counted to evaluate the number of Pseudomonas aeruginosa. By observing the morphology of the cells using a microscope, it was confirmed that almost all the cells generated in the infected wound were Pseudomonas aeruginosa. Furthermore, each infected wound on Days 1, 2, 3, 6, and 9 was digitally photographed to evaluate the wound closure rate. We also ensured that there were no signs of complications such as acute inflammation, abscess formation, or seroma accumulation during the experimental period.

(組織学的試験)
創形成後Day9での創洗浄後、ラットはペントバルビタールナトリウムで全身麻酔をかけた。続いて、感染創を含んだ周辺の皮膚が、組織学的試験に供するために取り出された (N=6)。それぞれの感染創を含んだ周辺の皮膚サンプルは、10%ホルムアルデヒド溶液で固定化、パラフィンで包埋、続いて4μm厚に切片を調製した(大和光機工業)。その切片は、創部表面と前後軸に直角に作られ、およそ10×1.5mmの切片がガラススライドに移し、ヘマキシリン・エオジン(H&E)染色された。カバーガラスが置かれ、組織は顕微鏡観察で評価した。各々の切片(N=8)において、創部を示す顕微鏡視野が写真撮影され、肉芽組織の長さと直径 ≧10μm、あるいは5つ以上の赤血球を含む新生毛細血管数を計測した。
(Histological test)
After wound cleansing on post-wounding Day 9, rats were anesthetized with sodium pentobarbital. Surrounding skin containing infected wounds was subsequently removed for histological examination (N=6). A peripheral skin sample containing each infected wound was fixed with a 10% formaldehyde solution, embedded in paraffin, and then sectioned to a thickness of 4 μm (Daiwakoki Kogyo). The sections were made perpendicular to the wound surface and the anterior-posterior axis, and approximately 10 x 1.5 mm sections were transferred to glass slides and stained with hemaxillin and eosin (H&E). A coverslip was placed and the tissue was evaluated microscopically. In each section (N=8), a microscopic field showing the wound was photographed and the length of granulation tissue and the number of new capillaries with a diameter ≧10 μm or containing 5 or more erythrocytes were counted.

(統計解析)
結果は平均値 ± 標準偏差(means ± SDs)で表した。対応のあるスチューデントt‐検定により有意差の蓋然性は統計ソフトウェアJMP(SAS Institute Inc.)を用いた両側検定として決定した。
(Statistical analysis)
Results are expressed as mean ± standard deviation (means ± SDs). The probability of significant difference was determined by the paired Student's t-test as a two-tailed test using the statistical software JMP (SAS Institute Inc.).

{結果}
(In vitro殺微生物活性)
実施例に係る懸濁液、比較例に係る次亜塩素酸水、ピドンヨード溶液の緑膿菌に対する殺菌試験を、純水や生理食塩水に異なる濃度のそれぞれ殺菌剤で処理した時の細菌コロニーをカウントすることで行った(図2)。緑膿菌は、500ppm以上の実施例に係る懸濁液、比較例に係る次亜塩素酸水、ピドンヨード溶液で完全に殺菌した。250ppmの実施例に係る懸濁液、比較例に係る次亜塩素酸水は完全に殺菌したが、比較例に係るピドンヨード溶液は僅かながら細菌コロニーが残った。125ppm以下では濃度依存的にlog10CFU/mL値は増大した。
{result}
(In vitro microbicidal activity)
Bacterial colonies when the suspension according to the example, the hypochlorous acid water according to the comparative example, and the pidone-iodine solution against Pseudomonas aeruginosa are treated with different concentrations of bactericides in pure water and physiological saline This was done by counting (Fig. 2). Pseudomonas aeruginosa was completely sterilized with the suspension of Examples, the hypochlorous acid water of Comparative Examples, and the pidone-iodine solution of 500 ppm or more. The 250 ppm suspension according to the example and the hypochlorous acid water according to the comparative example were completely sterilized, but the pidone-iodine solution according to the comparative example left a slight bacterial colony. Below 125 ppm, the log 10 CFU/mL value increased in a concentration-dependent manner.

(In vivo緑膿菌感染創洗浄)
ヘアレスラットにおける緑膿菌感染創を、毎日5回3mLの保温した実施例に係る1000ppm懸濁液(pH12.2)、比較例に係る500ppm次亜塩素酸水(HClO;pH6.5)、1000ppmポピドンヨード(Isodine solution)溶液(計15mL)で当初の3日間、ガーゼで丁寧に擦りながら洗浄し、その後CNFSで被覆した。引き続いて、Days4-9の6日間毎日、保温した3mLの生理食塩水のみで5回丁寧に洗浄し、感染創をCNFSの断片で覆った。非洗浄群は、9日間の実験期間創洗浄をせず、CNFSでの被覆のみを実施した。それぞれの消毒液での洗浄前(days1,2,3,6,9)、感染創から一片の滅菌ガーゼを用いたふき取り試験により、生存菌数を計測した(図3)。全ての実験動物は、9日間の実験期間の間、創部での急性炎症、膿瘍形成、血清腫蓄積のような合併症の兆候がなかった。Day1の洗浄前、感染創の拭き取り試験で得た懸濁液には2.0×10CFU以上の緑膿菌が検出された。実施例に係る懸濁液、比較例に係る次亜塩素酸水, ポピドンヨード溶液、生理食塩水での創洗浄後では、生菌数はそれぞれ約1.8×103、1.1×10、1.2×10、7.3×10CFUであった。この結果は、Day1の最初の洗浄から、実施例に係る懸濁液を用いた洗浄は、他のグループと比較して効率的に除菌できることを示している。他方何らかの洗浄もしない群は、Day1で菌数が僅かに増加することが観察された。Day3で実施例に係る懸濁液、次亜塩素酸水、 ポピドンヨード溶液、生理食塩水で創洗浄後の残存菌数は、それぞれ約70、8.5×103、9×103、2.5×10CFUであった。Day6では実施例に係る懸濁液で3日間洗浄した感染創から緑膿菌は完全に除菌されたが、次亜塩素酸水, ポピドンヨード溶液、生理食塩水で洗浄した感染創からそれぞれ7.8×102、1.8×10、2.0×10CFUが検出されたが、3グループ間で統計的有意差はない。さらにday9では、次亜塩素酸水, ポピドンヨード溶液、生理食塩水で洗浄した感染創から緑膿菌は完全に除菌されたが、非洗浄創からは9×10CFUの残存菌が検出された。この結果から消毒液を用いた感染創の洗浄、特に実施例に係る懸濁液での洗浄は、効果的な除菌効果を示すことが分かった。
(In vivo Pseudomonas aeruginosa infected wound cleansing)
Pseudomonas aeruginosa-infected wounds in hairless rats were treated with 3 mL of a warmed 1000 ppm suspension (pH 12.2) according to the example, 500 ppm hypochlorous acid water (HClO; pH 6.5) according to the comparative example, 1000 ppm Washed with povidone-iodine solution (15 mL total) for the first 3 days with gentle gauze rubbing and then covered with CNFS. Subsequently, every day from Days 4 to 9 for 6 days, the infected wounds were carefully washed five times with only 3 mL of warmed physiological saline, and the infected wounds were covered with pieces of CNFS. The no-wash group did not wash the wounds during the 9-day experimental period and only received a CNFS coating. Before washing with each disinfectant (days 1, 2, 3, 6, 9), the number of surviving bacteria was measured by a wiping test using a piece of sterile gauze from the infected wound (Fig. 3). All experimental animals showed no signs of complications such as acute inflammation at the wound site, abscess formation, seroma accumulation during the 9-day experimental period. Before washing on Day 1, 2.0×10 5 CFU or more of Pseudomonas aeruginosa was detected in the suspension obtained from the infected wound wiping test. After washing the wound with the suspension according to the example, the hypochlorous acid water, the povidone-iodine solution, and the physiological saline according to the comparative example, the number of viable bacteria was about 1.8×10 3 and 1.1×10 4 , respectively. , 1.2×10 4 , 7.3×10 4 CFU. This result indicates that from the first washing on Day 1, the washing using the suspension according to the example can sterilize bacteria more efficiently than the other groups. On the other hand, it was observed that the number of bacteria slightly increased on Day 1 in the group without any washing. After washing the wound with the suspension according to the example, hypochlorous acid water, povidone-iodine solution, and physiological saline on Day 3, the number of remaining bacteria was about 70, 8.5×10 3 , 9×10 3 , and 2.5×10 3 , respectively. 5×10 4 CFU. On Day 6, Pseudomonas aeruginosa was completely eradicated from the infected wounds washed with the suspension according to the example for 3 days, but from the infected wounds washed with hypochlorous acid water, povidone-iodine solution, and physiological saline, 7.3. 8×10 2 , 1.8×10 3 , 2.0×10 3 CFU were detected with no statistically significant difference among the three groups. Furthermore, on day 9, Pseudomonas aeruginosa was completely eradicated from the infected wounds washed with hypochlorous acid water, povidone-iodine solution, and physiological saline, but 9×10 3 CFU of residual bacteria were detected from unwashed wounds. rice field. From these results, it was found that washing infected wounds with an antiseptic solution, especially washing with the suspension according to the example, exhibited an effective sterilization effect.

(In vivo感染創洗浄による緑膿菌感染創の治癒)
実施例に係る懸濁液、比較例に係る次亜塩素酸水, ポピドンヨード溶液、生理食塩水、非洗浄群は、days1,2,3,6,9に創傷閉鎖率を測定するため、デジタル写真を撮った(図4)。Days1,2では全ての群で有意な創傷閉鎖の差は観察されなかった。Days3-9においては実施例の洗浄群で他の群に比較して創傷閉鎖の有意な促進が観察された(図5)。Day3での実施例に係る懸濁液、比較例に係る次亜塩素酸水, ポピドンヨード溶液、生理食塩水、非洗浄群の開放創率は、それぞれ68,95,93,98,105%であった。この結果は、感染創に対して実施例に係る懸濁液を適用した洗浄は、Day3以降創傷治癒の遅延を引き起こすことなく、むしろ促進することが明らかになった。
(Healing of Pseudomonas aeruginosa infected wounds by in vivo infected wound cleansing)
The suspension according to the example, the hypochlorous acid water, the povidone-iodine solution, the physiological saline, and the non-washing group according to the comparative example were digital photographs to measure the wound closure rate on days 1, 2, 3, 6, and 9. (Fig. 4). On Days 1 and 2, no significant difference in wound closure was observed in any group. On Days 3-9, significant promotion of wound closure was observed in the wash group of the example compared to the other groups (Fig. 5). On Day 3, the open wound rates of the suspension according to the example, the hypochlorous acid water, the povidone-iodine solution, the physiological saline, and the non-washed group according to the comparative example were 68, 95, 93, 98, and 105%, respectively. rice field. This result revealed that washing with the suspension according to the example applied to the infected wound did not delay wound healing after Day 3, but rather accelerated it.

(組織学的試験)
図6は、H&E染色された組織スライドの顕微鏡写真(×100)観察による組織学的試験は、day9の実施例に係る 懸濁液、比較例に係る次亜塩素酸水、 ポピドンヨード溶液、生理食塩水で洗浄した群と、非洗浄群の代表的顕微鏡写真である。特に非洗浄群の肉芽組織形成は、他の洗浄群と比較して抑制されており(図6)、反対に実施例に係る懸濁液及び比較例に係る次亜塩素酸水洗浄群の肉芽組織形成は、非洗浄群よりも有意に促進されていた(表2)。Day9の実施例に係る懸濁液、比較例に係る次亜塩素酸水、ポピドンヨード溶液、生理食塩水で洗浄した群と、非洗浄群について、同じく組織スライドの顕微鏡写真(×100)観察により、それぞれの組織における血管新生が評価された。おのおの群の創部での血管新生は図6で矢印によって示されている。その結果は、day9の非洗浄群は、実施例に係る懸濁液、比較例に係る次亜塩素酸水、ポピドンヨード溶液、生理食塩水で洗浄した群と比較して血管新生が有意に低下していることが明らかになった。Day9の実施例に係る懸濁液洗浄群は、他の群と比較して、最もよく血管新生が促進されていた。
(Histological test)
Fig. 6 shows micrographs (x 100) of H&E-stained tissue slides for histological examination, day 9, suspension according to Example, hypochlorous acid water according to Comparative Example, povidone-iodine solution, physiological saline Representative photomicrographs of water-washed and non-washed groups. In particular, granulation tissue formation in the non-washed group was suppressed compared to the other washed groups (Fig. 6). Tissue formation was significantly promoted over the non-washed group (Table 2). Regarding the group washed with the suspension according to the example on Day 9, the hypochlorous acid water, the povidone-iodine solution according to the comparative example, and the physiological saline, and the non-washed group, the tissue slide was similarly observed with a micrograph (x 100). Angiogenesis in each tissue was assessed. Angiogenesis at the wound site of each group is indicated by arrows in FIG. As a result, in the non-washed group on day 9, angiogenesis significantly decreased compared to the group washed with the suspension according to the example, the hypochlorous acid water according to the comparative example, the povidone-iodine solution, and the physiological saline. It became clear that The suspension wash group according to the Day 9 example showed the best angiogenesis promotion compared to the other groups.

(考察)
臨床現場で、創傷の緑膿菌感染は主要な合併症である。In vitroでの緑膿菌の殺菌試験では、100ppmの実施例に係る懸濁液、比較例に係る次亜塩素酸水及び500ppmのポピドンヨード溶液は、完全に緑膿菌を殺菌した(図2)。更に、ヘアレスラット背部の緑膿菌感染創の除菌活性と創傷治癒を評価するため、当初の3日間毎日、実施例に係る懸濁液 (1000ppm,pH12.2)での創洗浄とCNFSでの被覆、その後day4以降毎日生理食塩水での創洗浄とCNFSでの被覆を繰り返す実験を実施した。その結果、実施例に係る洗浄群は、比較例に係る次亜塩素水、ポピドンヨード溶液、生理食塩水洗浄群と比較して、in vivoで除菌とともに創傷治癒を有意に促進した(図3、4)。組織学的試験では、3日間毎日、実施例に係る懸濁液で創洗浄することで、感染創部での肉芽組織形成と血管新生が促進された(図6、表2)。加えて、当初の3日間おのおの消毒液で洗浄した全感染創、及びその後のdays4-9の間、実験で用いたヘアレスラットには問題となるような合併症は認められなかった。これらの結果は、当初の3日間に制限した感染創傷の、実施例に係る懸濁液での洗浄は、創傷治癒を遅延することなく、不全患者の慢性創の感染を予防する臨床使用の可能性があることを示唆する。比較例に係る次亜塩素酸水、 ポピドンヨード溶液のような臨床現場で使われている消毒薬は、殺菌活性のために必要な高濃度では、創傷治癒にかかわる細胞に対して細胞毒性があり、正常な創傷治癒を遅延させることが示されている。したがって、創傷治癒を阻害することなく細菌数を減少させる局所殺菌剤の開発が、慢性創傷治療の課題である。
(Discussion)
In clinical practice, Pseudomonas aeruginosa infection of wounds is a major complication. In an in vitro sterilization test of Pseudomonas aeruginosa, 100 ppm of the suspension according to the example, hypochlorous acid water according to the comparative example, and 500 ppm of povidone-iodine solution completely sterilized Pseudomonas aeruginosa (Fig. 2). . Furthermore, in order to evaluate the disinfection activity and wound healing of Pseudomonas aeruginosa-infected wounds on the back of hairless rats, daily for the first 3 days, the wound was washed with the suspension according to the example (1000 ppm, pH 12.2) and CNFS. , followed by repeated wound washing with physiological saline and coating with CNFS every day from day 4 onwards. As a result, compared with the hypochlorite water, povidone-iodine solution, and physiological saline wash groups according to the comparative examples, the wash group according to the example significantly promoted wound healing as well as disinfection in vivo (Fig. 3, 4). In histological examination, daily wound cleansing with the suspension according to the example for 3 days promoted granulation tissue formation and angiogenesis in infected wounds (Fig. 6, Table 2). In addition, no significant complications were observed in the hairless rats used in the experiment during the initial 3 days of all infected wounds washed with antiseptic solution on each occasion and during days 4-9 thereafter. These results demonstrate that irrigation of infected wounds, limited to the initial 3 days, with suspensions according to the Examples is of clinical use to prevent infection of chronic wounds in failing patients without delaying wound healing. suggesting that there is Antiseptics used in clinical settings, such as hypochlorous acid water and povidone-iodine solution according to comparative examples, are cytotoxic to cells involved in wound healing at high concentrations necessary for bactericidal activity. It has been shown to delay normal wound healing. Therefore, the development of topical antiseptics that reduce bacterial counts without inhibiting wound healing is a challenge in treating chronic wounds.

Figure 0007302785000002
データは平均値 ± 標準偏差(SD)を示す。肉芽組織形成では、*P < 0.05vs.saline, **P < 0.01 vs.no cleansing(n=7),血管新生では、*P < 0.05vs.saline, **P < 0.01 vs.no cleansing and providone-iodine(n=7).

Figure 0007302785000002
Data represent mean±standard deviation (SD). In granulation tissue formation, *P < 0.05 vs. saline, **P<0.01 vs. *P<0.05 vs. no cleaning (n=7), angiogenesis. saline, **P<0.01 vs. no cleaning and providedone-iodine (n=7).

Claims (4)

炭酸カルシウム及び/又は水酸化カルシウムを含有する貝殻を焼成して一次焼成物を得る一次焼成工程と、
一次焼成物を微粉砕する微粉砕工程と、
一次焼成物を再度焼成して二次焼成物を得る二次焼成工程と、
二次焼成物を真空雰囲気下又は不活性ガス雰囲気下にて外気温まで冷却させる却工程と、
を有することを特徴とする、酸化カルシウム含有焼成物を含む、緑膿菌感染創の消毒剤又は創傷治癒剤の製造方法
A primary firing step of firing a shell containing calcium carbonate and/or calcium hydroxide to obtain a primary fired product;
A fine pulverization step of finely pulverizing the primary fired product;
A secondary firing step of re-firing the primary fired product to obtain a secondary fired product;
A cooling step of cooling the secondary fired product to the outside temperature in a vacuum atmosphere or an inert gas atmosphere;
A method for producing a disinfectant or a wound-healing agent for Pseudomonas aeruginosa -infected wounds, comprising a calcium oxide-containing baked product .
前記貝殻がホタテ貝殻又はカキ貝殻である、請求項記載の製造方法2. The production method according to claim 1 , wherein the shell is a scallop shell or an oyster shell. 差熱熱重量分析(TG-DTA)で測定される酸化カルシウム含有率が95重量%以上であり、また水酸化カルシウム含有率が5重量%以下であり、
蛍光X線分析法(XRF)で測定されるカルシウム元素含有率が95atom%以上であり、
X線回折分析法(XRD)で測定される酸化カルシウム含有率が95質量%以上であり、
平均粒径が20μm以下であり、
BET比表面積が0.5m/g以上3.0m/g以下である、貝殻を焼成して得られた酸化カルシウム含有焼成物である
ことを特徴とする緑膿菌感染創の消毒剤又は創傷治癒剤。
The calcium oxide content measured by differential thermal thermogravimetric analysis (TG-DTA) is 95% by weight or more, and the calcium hydroxide content is 5% by weight or less,
The calcium element content measured by X-ray fluorescence spectroscopy (XRF) is 95 atom% or more,
Calcium oxide content measured by X-ray diffraction analysis (XRD) is 95% by mass or more,
The average particle size is 20 μm or less,
Disinfectant for Pseudomonas aeruginosa-infected wounds, characterized by being a calcium oxide-containing baked product obtained by baking shells having a BET specific surface area of 0.5 m 2 /g or more and 3.0 m 2 /g or less, or Wound healing agent.
前記貝殻がホタテ貝殻又はカキ貝殻である、請求項記載の緑膿菌感染創の消毒剤又は創傷治癒剤。 The antiseptic or wound healing agent for Pseudomonas aeruginosa-infected wounds according to claim 3 , wherein the shell is a scallop shell or an oyster shell.
JP2019108932A 2019-06-11 2019-06-11 Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds Active JP7302785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108932A JP7302785B2 (en) 2019-06-11 2019-06-11 Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108932A JP7302785B2 (en) 2019-06-11 2019-06-11 Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds

Publications (2)

Publication Number Publication Date
JP2020200278A JP2020200278A (en) 2020-12-17
JP7302785B2 true JP7302785B2 (en) 2023-07-04

Family

ID=73742437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108932A Active JP7302785B2 (en) 2019-06-11 2019-06-11 Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds

Country Status (1)

Country Link
JP (1) JP7302785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037505A1 (en) * 2021-09-10 2023-03-16 株式会社プラスラボ Alkaline aqueous solution with excellent bactericidal and deodorant properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026508A (en) 1999-03-17 2001-01-30 Ion Corporation Kk Antimicrobial agent comprising shell, cleaning of water using the antimicrobial agent and washing of field crop using the antimicrobial agent
WO2009104670A1 (en) 2008-02-19 2009-08-27 東京ナノ・バイオテクノロジー株式会社 Antimicrobial and antiviral agent and method for use thereof
WO2016194284A1 (en) 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide
JP2019006660A (en) 2017-06-26 2019-01-17 バイオシェル株式会社 Calcined calcium and production method thereof
JP2019077648A (en) 2017-10-25 2019-05-23 バイオシェル株式会社 Bactericidal/sorbent composition in which calcium oxide is dispersed in water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026508A (en) 1999-03-17 2001-01-30 Ion Corporation Kk Antimicrobial agent comprising shell, cleaning of water using the antimicrobial agent and washing of field crop using the antimicrobial agent
WO2009104670A1 (en) 2008-02-19 2009-08-27 東京ナノ・バイオテクノロジー株式会社 Antimicrobial and antiviral agent and method for use thereof
WO2016194284A1 (en) 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide
JP2019006660A (en) 2017-06-26 2019-01-17 バイオシェル株式会社 Calcined calcium and production method thereof
JP2019077648A (en) 2017-10-25 2019-05-23 バイオシェル株式会社 Bactericidal/sorbent composition in which calcium oxide is dispersed in water

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Health Science,2000年,Vol.46, No.2,p.98-103
富山大学看護学会誌,2008年,第7巻2号,p.39-49

Also Published As

Publication number Publication date
JP2020200278A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
Mohamed et al. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria
Lim et al. Effect of silver content on the antibacterial and bioactive properties of silver‐substituted hydroxyapatite
Yu et al. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial
AU2005251570B2 (en) Anti-microbial activity of biologically stabilized silver nano particles
Batebi et al. Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate
Kangwansupamonkon et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications
US10172361B2 (en) Doped metal oxide nanoparticles of and uses thereof
Honda et al. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route
Medina-Cruz et al. Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods
Kung et al. Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems
CN102361717A (en) Nanostructured calcium-silver phosphate composite powder, method for obtaining same, and bactericidal and fungicidal uses thereof
Guo et al. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens
JP7302785B2 (en) Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds
Pham et al. Green synthesis and antibacterial activity of HAp@ Ag nanocomposite using Centella asiatica (L.) urban extract and eggshell
Bee et al. Green biosynthesis of hydroxyapatite-silver nanoparticle nanocomposite using aqueous Indian curry leaf (Murraya koengii) extract and its biological properties
Govindasamy et al. Effect of calcination temperature on physicochemical and antimicrobial properties of green synthesised ZnO/C/Ca nanocomposites using Calotropis gigantea leaves
Zhao et al. An in situ synthesis of silver nanoparticle-loaded genetically engineered polypeptide nanogels for antibacterial and wound healing applications
Dassanayake et al. An aluminum lining to the dark cloud of silver resistance: Harnessing the power of potent antimicrobial activity of γ-alumina nanoparticles
Shang et al. Enhanced antibacterial activity of Ag nanoparticle-decorated ZnO nanorod arrays
Sumathi et al. A new insight into biomedical applications of an apatite like oxyphosphate–BiCa4 (PO4) 3O
JP2022103202A (en) Alkaline aqueous solution with excellent sterilization and deodorant properties
Nagaraj et al. Biomimetic of hydroxyapatite with Tridax procumbens leaf extract and investigation of antibiofilm potential in Staphylococcus aureus and Escherichia coli
Sethuraman et al. Fabrication and Characterization of Chitin Hydrogel Nano Silver Fused Scaffold for Wound Dressing Applications
Xu et al. Effects of CeO2 Nanomaterial on Pseudomonas Aeruginosa Mediated Bronchiectasis Inflammation Response
JP2022034389A (en) Alkali aqueous solution having superior performance of sterilization, deodorization and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R150 Certificate of patent or registration of utility model

Ref document number: 7302785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150