JP2020051812A - Measuring method of heat expansion coefficient of concrete - Google Patents

Measuring method of heat expansion coefficient of concrete Download PDF

Info

Publication number
JP2020051812A
JP2020051812A JP2018179363A JP2018179363A JP2020051812A JP 2020051812 A JP2020051812 A JP 2020051812A JP 2018179363 A JP2018179363 A JP 2018179363A JP 2018179363 A JP2018179363 A JP 2018179363A JP 2020051812 A JP2020051812 A JP 2020051812A
Authority
JP
Japan
Prior art keywords
specimen
concrete
length change
length
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018179363A
Other languages
Japanese (ja)
Other versions
JP7178225B2 (en
Inventor
拓也 大野
Takuya Ono
拓也 大野
裕二 三谷
Yuji Mitani
裕二 三谷
大佑 小亀
Daisuke Kogame
大佑 小亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018179363A priority Critical patent/JP7178225B2/en
Publication of JP2020051812A publication Critical patent/JP2020051812A/en
Application granted granted Critical
Publication of JP7178225B2 publication Critical patent/JP7178225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a method capable of easily and accurately measuring a heat expansion coefficient of concrete in a short period.SOLUTION: In a measuring method of a heat expansion coefficient of concrete, using a length change measuring apparatus Eor E, the length change of a concrete specimen per unit temperature change is measured, and a heat expansion coefficient of concrete is acquired.<Length change measuring apparatus E>is a length change measuring apparatus that at least includes one or more laser displacement gauges, a pedestal for supporting a specimen for length change measurement, and a positioning tool of the specimen.<Length change measuring apparatus E>is a length change measuring apparatus that at least includes two or more laser displacement gauges, three or more support members for supporting a specimen for length change measurement, and a pedestal in which a part of the support members is buried.SELECTED DRAWING: Figure 9

Description

本発明は、コンクリートの熱膨張係数を短期間で簡易に精度よく測定する方法に関する。   The present invention relates to a method for easily and accurately measuring the thermal expansion coefficient of concrete in a short period of time.

コンクリートの線膨張係数は、コンクリートに温度変化を与えた際に生じる長さ変化を測定して、単位温度変化あたりの長さ変化に換算して得られるコンクリートの特性値である。現在、コンクリートの線膨張係数の測定方法は規格化されていないため、多くの測定方法が提案されている(非特許文献1)。これらの中で、従来、行われているコンクリートの線膨張係数の測定方法は、乾燥収縮が収束した10cm×10cm×40cmのコンクリート供試体をアルミ製テープで封緘して恒温槽に入れ、温度履歴を与えて、試験体中の埋込型ひずみ計によりコンクリートの長さ変化を測定し、単位温度変化あたりのコンクリートの長さ変化を算出する方法である(以下「従来法」という。)。しかし、この方法では、温度ひび割れを防止するため、試験体の昇温および降温速度が1℃/時と極めて遅く、また、コンクリートの内部と表層の温度を均一にするため、図1に示すように、5℃の昇温および降温の度に5時間その温度を保持しなければならず、測定に長時間を要する。
また非特許文献2では、レーザー変位計を用いてコンクリートの弱材齢線膨張係数等を測定している。しかし、供試体は10×100×400mmと大きく、また、セメントペーストと模擬コンクリート(実際はモルタル)しか測定できず、しかも、供試体を水中に浸漬した状態で、水温を変えながら長さを測定するという特殊な方法と装置を用いるため、装置1台につき1水準の供試体しか測定できない。
The linear expansion coefficient of concrete is a characteristic value of concrete obtained by measuring a length change occurring when a temperature change is given to concrete and converting the length change per unit temperature change. At present, methods for measuring the coefficient of linear expansion of concrete have not been standardized, and thus many methods have been proposed (Non-Patent Document 1). Among these, the conventional method of measuring the coefficient of linear expansion of concrete is as follows. A concrete specimen of 10 cm × 10 cm × 40 cm, in which drying shrinkage has converged, is sealed with an aluminum tape, placed in a thermostat, and subjected to temperature history. And measuring the change in the length of the concrete with an embedded strain gauge in the specimen, and calculating the change in the length of the concrete per unit temperature change (hereinafter, referred to as “conventional method”). However, in this method, the rate of temperature rise and fall of the specimen is extremely low at 1 ° C./hour in order to prevent temperature cracks, and in order to make the temperature inside the concrete and the surface layer uniform, as shown in FIG. In addition, each time the temperature is raised and lowered by 5 ° C., the temperature must be maintained for 5 hours, and the measurement requires a long time.
In Non-Patent Document 2, the linear expansion coefficient and the like of weak material age of concrete are measured using a laser displacement meter. However, the specimen is as large as 10 × 100 × 400 mm, and can measure only cement paste and simulated concrete (actually, mortar). In addition, the length is measured while changing the water temperature while the specimen is immersed in water. Therefore, only one standard specimen can be measured per apparatus.

「マスコンクリートのひび割れ制御に関する研究委員会報告書」、日本混コンクリート工学協会建築学会 編集、91頁(表−3.3.2)、2006年2月22日発行"Research Committee Report on Crack Control of Mass Concrete", Edited by the Japan Society of Mixed Concrete Engineers, Architectural Institute of Japan, 91 pages (Table-3.3.2), published February 22, 2006 寺本ら、「超高強度コンクリートの若材齢線膨張係数に関する研究」、コンクリート工学年次論文集、Vol.29、No.1、pp.633−638、2007Teramoto et al., “Study on the Young's Age Linear Expansion Coefficient of Ultra-High Strength Concrete”, Annual Journal of Concrete Engineering, Vol. 29, no. 1, pp. 633-638, 2007

そこで、本発明は、コンクリートの熱膨張係数を短期間で簡易に精度よく測定できる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of easily and accurately measuring the thermal expansion coefficient of concrete in a short period of time.

本発明者は、前記目的にかなう測定方法を検討した結果、特定の長さ変化測定装置を用いて単位温度変化あたりのコンクリートの長さ変化を測定すれば、前記目的を達成できることを見出し、本発明を完成させた。
すなわち、本発明は、下記の構成を有するコンクリートの熱膨張係数の測定方法である。
The present inventor has studied a measurement method that meets the above-described object, and as a result, has found that the above object can be achieved by measuring a change in the length of concrete per unit temperature change using a specific length change measurement device. Completed the invention.
That is, the present invention is a method for measuring the thermal expansion coefficient of concrete having the following configuration.

[1]下記長さ変化測定装置EまたはEを用いて、単位温度変化あたりのコンクリート供試体の長さ変化を測定してコンクリートの熱膨張係数を得る、コンクリートの熱膨張係数の測定方法。
<長さ変化測定装置E
1個以上のレーザー変位計、長さ変化測定用の供試体を載置するための台座、および、該供試体の位置決め治具、を少なくとも含む長さ変化測定装置
<長さ変化測定装置E
2個以上のレーザー変位計、長さ変化測定用の供試体を支持するための3点以上の支持部材、および、該支持部材の一部を埋設してなる台座、を少なくとも含む長さ変化測定装置
[2]前記供試体は、乾燥収縮が終了したコンクリートの供試体で、かつ、全面を封緘した供試体である、前記[1]に記載のコンクリートの熱膨張係数の測定方法。
[3]前記供試体が、直径10〜30cm、および厚さ5〜20mmの円板状供試体、または、1辺の長さが10〜30cm、および厚さが5〜20mmの四角板状供試体である、前記[1]または[2]に記載のコンクリートの熱膨張係数の測定方法。
[1] below with reference to the length change measuring device E 1 or E 2, to obtain a thermal expansion coefficient of the concrete by measuring the length change of the concrete specimen per unit temperature change, method of measuring the thermal expansion coefficient of the concrete .
<Length change measuring device E 1 >
A length change measuring device including at least one or more laser displacement gauges, a pedestal for mounting a specimen for measuring a length change, and a jig for positioning the specimen <Length change measuring device E 2 >
Length change measurement including at least two or more laser displacement gauges, three or more support members for supporting a specimen for length change measurement, and a pedestal having a part of the support member embedded therein. Apparatus [2] The method for measuring the thermal expansion coefficient of concrete according to [1], wherein the specimen is a specimen of concrete that has been dried and shrunk, and is a specimen whose entire surface is sealed.
[3] The specimen is a disk-shaped specimen having a diameter of 10 to 30 cm and a thickness of 5 to 20 mm, or a square plate having a length of one side of 10 to 30 cm and a thickness of 5 to 20 mm. The method for measuring the thermal expansion coefficient of concrete as described in [1] or [2] above, which is a sample.

本発明のコンクリートの熱膨張係数の測定方法は、コンクリートの熱膨張係数を短期間で簡易に精度よく測定できる。   The method for measuring the thermal expansion coefficient of concrete according to the present invention can easily and accurately measure the thermal expansion coefficient of concrete in a short period of time.

(A)は従来法における温度履歴(昇温および降温)のパターンを示す図であり、(B)は従来法で測定した、普通ポルトランドセメントを用いたコンクリートの温度と供試体の長さ変化率の関係を示す図である。(A) is a figure which shows the pattern of the temperature history (temperature rise and temperature fall) in the conventional method, (B) is the temperature of the concrete using ordinary Portland cement and the rate of change of the length of the specimen measured by the conventional method. FIG. 1個のレーザー変位計を有する長さ変化測定装置Eの上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。On the one length change measuring device E 1 having a laser displacement meter, a schematic diagram showing an example of a state of mounting the specimen, a plan view of the left figure the measuring device, the right diagram FIG. 2 is a side view of the measuring device. 2個のレーザー変位計を有する長さ変化測定装置Eの上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。On the length change measuring device E 1 with two laser displacement meter, a schematic diagram showing an example of a state of mounting the specimen, a plan view of the left figure the measuring device, the right diagram FIG. 2 is a side view of the measuring device. 支持部材の下部の一部を、台座に埋め込んだ状態で設置してなる長さ変化測定装置Eの支持部材の上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。ただし、図4では、レーザー変位計の記載は省略した。Some of the lower portion of the support member, on a support member of length change measuring device E 1 formed by installing a state embedded in the pedestal, a schematic diagram showing an example of a state of mounting the specimen, The left drawing is a plan view of the measuring device, and the right drawing is a side view of the measuring device. However, the description of the laser displacement meter is omitted in FIG. 2個のレーザー変位計を、対向して配置してなる長さ変化測定装置Eの一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。Two laser displacement meter, a schematic diagram showing an example of formed by arranging opposite length change measuring device E 2, plan view of the left figure the measuring device, the right figure the measuring device FIG. 2個のレーザー変位計を、該レーザー変位計から照射されたレーザーが90°の角度で交差するように配置してなる、長さ変化測定装置Eの一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。ただし、紙面に対し後方に位置するレーザー変位計の記載は省略した。FIG. 9 is a schematic diagram showing an example of a length change measuring device E2 in which two laser displacement meters are arranged so that lasers emitted from the laser displacement meters intersect at an angle of 90 °. Is a plan view of the measuring device, and the right diagram is a side view of the measuring device. However, the description of the laser displacement meter located behind the paper is omitted. 4個のレーザー変位計を、該レーザー変位計から照射されたレーザーが90°の角度で交差するように配置してなる、長さ変化測定装置Eの一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。ただし、紙面に対し前方および後方に位置するレーザー変位計は省略した。Four laser displacement meter, a laser irradiated from the laser displacement meter is arranged so as to intersect at an angle of 90 °, a schematic diagram showing an example of length change measuring device E 2, left Is a plan view of the measuring device, and the right diagram is a side view of the measuring device. However, the laser displacement gauges located forward and backward with respect to the paper surface are omitted. 長さ変化測定装置Eに、供試体を載置した様子を示す写真である。なお、(A)の台座の中心にあるピンは支持部材ではなく、台座を固定するためのネジである。The length change measuring device E 2, is a photograph showing a state of mounting the specimen. Note that the pin at the center of the pedestal in (A) is not a supporting member but a screw for fixing the pedestal. (A)および(B)はそれぞれ、実施例1および2における温度と供試体の長さ変化率の関係を示す図である。また、各図中の回帰係数は線膨張係数を表す。(A) and (B) are diagrams illustrating the relationship between the temperature and the rate of change of the length of the test sample in Examples 1 and 2, respectively. Also, the regression coefficients in each figure represent the linear expansion coefficients. (C)および(D)はそれぞれ、実施例3および4における温度と供試体の長さ変化率の関係を示す図である。また、各図中の回帰係数は線膨張係数を表す。(C) and (D) are diagrams showing the relationship between the temperature and the rate of change of the length of the test sample in Examples 3 and 4, respectively. Also, the regression coefficients in each figure represent the linear expansion coefficients. (E)および(F)はそれぞれ、実施例5および6における温度と供試体の長さ変化率の関係を示す図である。また、各図中の回帰係数は線膨張係数を表す。(E) and (F) are diagrams showing the relationship between the temperature and the rate of change of the length of the test sample in Examples 5 and 6, respectively. Also, the regression coefficients in each figure represent the linear expansion coefficients. (G)は、実施例7における温度と供試体の長さ変化率の関係を示す図である。また、各図中の回帰係数は線膨張係数を表す。(G) is a diagram showing the relationship between the temperature and the rate of change of the length of the test piece in Example 7. Also, the regression coefficients in each figure represent the linear expansion coefficients.

本発明は、前記長さ変化測定装置EまたはEを用いて、単位温度変化あたりのコンクリートの長さ変化を測定してコンクリートの熱膨張係数を得る、コンクリートの熱膨張係数の測定方法である。
以下、本発明について、長さ変化測定装置、およびコンクリートの熱膨張係数の測定方法に分けて詳細に説明する。
The present invention is, using said length change measuring device E 1 or E 2, to obtain a thermal expansion coefficient of the concrete by measuring the length change of concrete per unit temperature change, the measuring method of the coefficient of thermal expansion of the concrete is there.
Hereinafter, the present invention will be described in detail with respect to a length change measuring device and a method for measuring the coefficient of thermal expansion of concrete.

1.長さ変化測定装置E
長さ変化測定装置Eは、図2〜4に例示するとおり、1個以上のレーザー変位計4、長さ変化測定用の供試体を載置するための台座2、および、該供試体1の位置決め治具3を少なくとも含む装置である。
前記レーザー変位計は、特に制限されず、反射型や透過型等の市販のレーザー変位計が挙げられる。本発明では、レーザー変位計の数を増やせばデータ数が増え、その分、測定精度は向上するが、装置はコスト高になるため、レーザー変位計の数は、好ましくは1〜4個、より好ましくは2〜4個である。前記レーザー変位計は、台座上に載置した円板状(図2〜4)または四角板状の供試体の中心に向けてレーザーを照射できるように設置する。レーザー変位計の設置位置は、例えば、図2や図3に示す位置が挙げられる。
1. Change the length measuring device E 1
As illustrated in FIGS. 2 to 4, the length change measuring device E 1 includes one or more laser displacement meters 4, a pedestal 2 on which a test piece for measuring a length change is mounted, and the test piece 1. It is a device including at least the positioning jig 3 of FIG.
The laser displacement meter is not particularly limited, and examples thereof include a commercially available laser displacement meter such as a reflection type or a transmission type. In the present invention, if the number of laser displacement meters is increased, the number of data is increased, and the measurement accuracy is improved accordingly, but the cost of the apparatus is high. Therefore, the number of laser displacement meters is preferably 1 to 4, more preferably. Preferably, the number is 2 to 4. The laser displacement meter is installed so as to be able to irradiate a laser toward the center of a disk-shaped (FIGS. 2 to 4) or square-plate-shaped specimen placed on a base. The installation position of the laser displacement meter is, for example, the position shown in FIGS. 2 and 3.

また、台座2は、長さ変化測定用の供試体を載置するために用いる。台座の形状は、特に限定されず、例えば、図2〜4に示す正方形の板状や、円板状である。また、測定精度の向上のために、台座は水平に保たれていることが好ましい。
さらに、当該台座は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。また、台座は、供試体を支持するための支持部材5を設置してもよい。支持部材を設置すると、供試体と台座の間の熱の移動を遮断または低減できるため、長さ変化の測定精度が向上する。
支持部材の形状は、特に制限されず、図4に示すような球状(図4では、支持部材の下部の一部が、台座に埋め込まれている。)や柱状等が挙げられる。なお、支持部材を柱状にする場合は、供試体と点で接触するように、好ましくは、供試体に接する支持部材の面を半球状にする。
支持部材の数は、供試体を安定して載置できるため3点以上が好ましい。なお、支持部材を多くすると装置の製造に手間がかかるため、支持部材の数は3個または4個がより好ましい。また、前記支持部材は、供試体を安定して載置するためには、正三角形または正方形を形成するように設置するのが好ましい。図4は、支持部材が正方形を形成するように設置した例である。さらに、支持部材は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
The pedestal 2 is used for mounting a specimen for measuring a change in length. The shape of the pedestal is not particularly limited, and is, for example, a square plate shape or a disk shape shown in FIGS. Further, it is preferable that the pedestal be kept horizontal to improve the measurement accuracy.
Further, the pedestal is preferably manufactured using an Invar steel material in order to prevent deformation due to heat or impact. Further, the pedestal may be provided with a support member 5 for supporting the specimen. When the support member is provided, the transfer of heat between the specimen and the pedestal can be cut off or reduced, so that the measurement accuracy of the length change is improved.
The shape of the support member is not particularly limited, and examples thereof include a spherical shape as shown in FIG. 4 (in FIG. 4, a part of the lower portion of the support member is embedded in the pedestal), a columnar shape, and the like. When the support member is formed in a columnar shape, preferably, the surface of the support member in contact with the specimen is made hemispherical so as to come into contact with the specimen at a point.
The number of the support members is preferably three or more so that the specimen can be stably mounted. It should be noted that if the number of support members is increased, it takes time and effort to manufacture the apparatus. Therefore, the number of support members is preferably three or four. In addition, it is preferable that the support member is installed so as to form an equilateral triangle or a square in order to stably mount the specimen. FIG. 4 shows an example in which the support members are installed so as to form a square. Further, the support member is preferably manufactured using an Invar steel material in order to prevent deformation due to heat or impact.

位置決め治具3は、供試体の長さ変化を測定する際に、供試体の載置位置を決めて固定するために用いるもので、例えば、図2や図3に示すように、台座上に倒立した状態で設置してなる2本のピン等が挙げられる。図2や図3では、円板状の供試体を台座に載置した場合、円板状の供試体の中心と台座の中心が一致するように、位置決め治具は円板状の供試体の周囲の側面と接触する位置に設置する。なお、当該位置決め治具は、台座上のほかに台座の外側に設置してもよい。さらに、当該位置決め治具は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
また、長さ変化測定装置(E)は、レーザー変位計、台座、および位置決め治具を、基盤を用いて一体化して構成することが好ましい。レーザー変位計、台座、位置決め治具、および、これらを設置するために用いる基盤は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
The positioning jig 3 is used to determine and fix the mounting position of the specimen when measuring the length change of the specimen. For example, as shown in FIG. 2 and FIG. For example, two pins or the like which are installed in an inverted state are exemplified. In FIGS. 2 and 3, when the disk-shaped specimen is placed on the pedestal, the positioning jig of the disk-shaped specimen is adjusted so that the center of the disk-shaped specimen coincides with the center of the pedestal. Install in a position where it comes into contact with the surrounding side surface. In addition, the said positioning jig may be installed in the outer side of a pedestal other than on a pedestal. Further, the positioning jig is preferably manufactured using an Invar steel material in order to prevent deformation due to heat or impact.
Further, it is preferable that the length change measuring device (E 1 ) is configured by integrally integrating the laser displacement meter, the pedestal, and the positioning jig using the base. The laser displacement meter, the pedestal, the positioning jig, and the base used to install them are preferably manufactured using invar steel to prevent deformation due to heat or impact.

2.長さ変化測定装置Eを用いた長さ変化の測定方法
該測定方法は、長さ変化測定装置Eの台座上に、円板状または四角板状の供試体を、該供試体の周囲の側面が位置決め治具と接触するように載置した後、レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の長さ変化を測る方法である。
供試体が円板状の場合、供試体の直径は、10〜30cmであれば、供試体の製造は容易で、また、後述するように、恒温槽内に静置した供試体の内部と表面の温度は、短時間で均一になる。なお、供試体の直径は、より好ましくは10〜20cmである。また、供試体の厚さは、5〜20mmであれば供試体は割れ難く、また、恒温槽内に静置した供試体の内部と表面の温度は、短時間で均一になる。なお、供試体の厚さは、より好ましくは6〜18mm、さらに好ましくは7〜15mm、特に好ましくは8〜12mmである。
また、供試体が四角板状の場合、四角板の1辺の長さは、好ましくは10〜30cm、より好ましくは10〜20cmであり、さらに好ましくは、1辺の長さが10〜30cmの正方形、特に好ましくは、1辺の長さが10〜20cmの正方形である。1辺の長さが10〜30cmの正方形であれば、供試体の製造は容易で、また、恒温槽内に静置した供試体の内部と表面の温度は、短時間で均一になる。また、四角板状の供試体の厚さは、好ましくは5〜20mm、より好ましくは6〜18mm、さらに好ましくは7〜15mm、特に好ましくは8〜12mmである。供試体の厚さが5〜20mmであれば、供試体は割れ難く、また、恒温槽内に静置した供試体の内部と表面の温度は、短時間で均一になる。
なお、長さ変化測定装置Eの台座に支持部材が設置されている場合、該支持部材上に、円板状または四角板状の供試体の周囲の側面が位置決め治具と接触するように、該供試体を載置する。
2. Measurement method The method of measuring the length change with length change measuring device E 1 has, on a length change measuring device E 1 base, a specimen of the disk-shaped or rectangular plate, surrounding該供piece After placing it so that the side of the sample comes in contact with the positioning jig, irradiate the laser to the side surface around the specimen using a laser displacement meter, and measure the distance between the laser displacement meter and the side surface around the sample. This is a method of measuring the change in the length of the test sample by measuring.
When the specimen has a disk shape, if the diameter of the specimen is 10 to 30 cm, the production of the specimen is easy, and, as described later, the inside and the surface of the specimen which is left standing in a thermostat. Temperature becomes uniform in a short time. The diameter of the specimen is more preferably 10 to 20 cm. Further, if the thickness of the specimen is 5 to 20 mm, the specimen is unlikely to be broken, and the temperature of the inside and the surface of the specimen which is left in a constant temperature bath becomes uniform in a short time. The thickness of the test piece is more preferably 6 to 18 mm, further preferably 7 to 15 mm, and particularly preferably 8 to 12 mm.
When the specimen is a square plate, the length of one side of the square plate is preferably 10 to 30 cm, more preferably 10 to 20 cm, and still more preferably 10 to 30 cm. It is a square, particularly preferably a square having a side length of 10 to 20 cm. If the length of one side is 10 to 30 cm square, the production of the specimen is easy, and the temperature of the inside and the surface of the specimen which is left in the constant temperature bath becomes uniform in a short time. Further, the thickness of the square plate-shaped specimen is preferably 5 to 20 mm, more preferably 6 to 18 mm, still more preferably 7 to 15 mm, and particularly preferably 8 to 12 mm. If the thickness of the test piece is 5 to 20 mm, the test piece is hard to crack, and the temperature of the inside and the surface of the test piece that is left standing in the thermostat becomes uniform in a short time.
Incidentally, when the support member to the length change measuring device E 1 seat is installed, on the support member, as the side surface of the periphery of the specimen of the disk-shaped or rectangular plate is in contact with the positioning jig Then, the specimen is placed.

前記測定方法では、例えば、供試体を恒温槽内に静置した後、恒温槽内を30℃→50℃→70℃→50℃→30℃の順にそれぞれ1〜3時間、好ましくは1.5〜2.5時間保持して、前記各温度における保持時間の終了時に供試体の長さ変化を測定し、長さ変化率を求める。また、前記供試体は乾燥収縮の影響を排除するため、好ましくは、乾燥収縮が終了(飽和)した供試体で、かつ、全面を封緘した供試体である。供試体の封緘は、例えば、アルミ製テープで被覆する等で行うことができる。
そして、長さ変化の測定精度を向上させるため、好ましくは、供試体は円板状であり、該供試体を時計回りまたは反時計回りに回転して、該供試体の周囲の側面が位置決め治具と接触した状態で、レーザー変位計と供試体の周囲の側面の間の距離を、2回以上、好ましくは3〜5回測る。例えば、図1に示す供試体の点aを測定した後、供試体を時計回りに90°回転して点bを測定し、さらに時計回りに90°回転して点cを測定して、3点の平均値を長さ変化として求める。
In the measurement method, for example, after the specimen is allowed to stand in a constant temperature bath, the inside of the constant temperature bath is 30 ° C. → 50 ° C. → 70 ° C. → 50 ° C. → 30 ° C. in the order of 1 to 3 hours, preferably 1.5 ° C. The sample is held for up to 2.5 hours, and at the end of the holding time at each temperature, the change in the length of the test sample is measured to determine the rate of change in the length. Further, in order to eliminate the influence of drying shrinkage, the sample is preferably a sample whose drying shrinkage has been completed (saturated) and whose entire surface is sealed. The test specimen can be sealed, for example, by covering it with an aluminum tape.
Then, in order to improve the measurement accuracy of the change in length, the specimen is preferably disk-shaped, and the specimen is rotated clockwise or counterclockwise, and the side surface around the specimen is positioned. While in contact with the tool, measure the distance between the laser displacement meter and the peripheral side surface of the specimen twice or more, preferably 3 to 5 times. For example, after measuring the point a of the specimen shown in FIG. 1, the specimen is rotated 90 ° clockwise to measure the point b, and further rotated clockwise 90 ° to measure the point c. The average value of the points is determined as a change in length.

また、本発明の測定方法は、長さ変化をより正確に測定するために、供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の側面の間の距離(L)を測定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の側面の間の距離(L)を測定し、LとLの差(L−L)に基づき長さ変化を求める方法である。
また、前記測定した距離が画面上に表示される測定装置を用いる場合、本発明の測定方法は、供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の側面の間の距離を測定し、該距離(の表示)をゼロに設定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の側面の間の距離を測定し、長さ変化を求める方法である。
前記金属板(基長板)は、温度の変化による長さの変化が同じになるよう、好ましくは台座と同じ材質の金属であり、熱や衝撃による変形を防止するため、より好ましくはインバー鋼材である。
Further, in order to more accurately measure the change in length, the measuring method of the present invention places a metal plate (base plate) having the same shape and dimensions as the specimen on the pedestal, and uses a laser displacement meter. After measuring the distance (L 1 ) between the side surfaces of the metal plate, the specimen is placed on a pedestal instead of the metal plate, and the distance (L 1 ) between the laser displacement meter and the side surface of the specimen is measured. 2 ) is measured, and a change in length is obtained based on the difference (L 1 −L 2 ) between L 1 and L 2 .
In addition, when using a measuring device in which the measured distance is displayed on a screen, the measuring method of the present invention includes placing a metal plate (base plate) having the same shape and dimensions as the specimen on a pedestal. After measuring the distance between the laser displacement meter and the side surface of the metal plate, setting the distance (indicated by zero) to zero, placing the specimen on a pedestal in place of the metal plate, This method measures the distance between the displacement meter and the side surface of the specimen to determine the change in length.
The metal plate (base plate) is preferably a metal of the same material as the pedestal so that the change in length due to a change in temperature is the same, and in order to prevent deformation due to heat or impact, more preferably an invar steel material It is.

3.長さ変化測定装置E
長さ変化測定装置Eは、図5〜8に例示するように、2個以上のレーザー変位計4、長さ変化測定用の供試体を支持するための3点以上の支持部材5、および、該支持部材の一部を埋設してなる台座2を少なくとも含む装置である。
前記レーザー変位計は、長さ変化測定装置Eのレーザー変位計と同じである。また、長さ変化の測定精度が向上するため、レーザー変位計を2個以上設置する。レーザー変位計が1個では、長さ変化の測定精度が低下するおそれがある。また、レーザー変位計を増やせばデータ数が増え、その分、さらに測定精度が向上するが、装置はコスト高になる。したがって、レーザー変位計は、好ましくは2〜6個、より好ましくは2〜4個設置する。
3. Change the length measuring device E 2
Length change measurement unit E 2, as illustrated in Figures 5-8, two or more laser displacement gauge 4, the support member of the above three points for supporting the specimen for length change measurements 5, and And a pedestal 2 in which a part of the support member is embedded.
The laser displacement meter is the same as the laser displacement meter length change measuring device E 1. In addition, two or more laser displacement meters are installed in order to improve the measurement accuracy of the length change. With one laser displacement meter, there is a possibility that the measurement accuracy of the length change is reduced. Further, if the number of laser displacement meters is increased, the number of data is increased, and the measurement accuracy is further improved, but the cost of the apparatus is increased. Therefore, two to six laser displacement meters are preferably installed, and more preferably two to four laser displacement meters are installed.

レーザー変位計は、長さ変化の測定精度が向上し、また、供試体の載置が容易なため、好ましくは、支持部材が形成する正三角形または正方形の中心から等間隔の位置に、レーザー照射面を該中心に向けて設置する。また、長さ変化の測定精度がさらに向上するため、より好ましくは、2〜6個の前記レーザー変位計を、該レーザー変位計から照射されたレーザーが60〜300°の角度で交差するように配置する。
レーザー変位計を設置する態様は、レーザー変位計を2個設置する場合、例えば、図5に示すように、レーザー変位計を対向して設置するか、図6に示すように、レーザーが90°の角度で交差するように設置し、また、レーザー変位計を4個設置する場合、図7に示すように、2組のレーザー変位計を対向して設置する。
Since the laser displacement meter improves the measurement accuracy of the change in length and facilitates the placement of the specimen, it is preferable to irradiate the laser at a position equidistant from the center of the equilateral triangle or square formed by the support member. Place the surface facing the center. Further, in order to further improve the measurement accuracy of the length change, more preferably, two to six of the laser displacement meters, so that the laser emitted from the laser displacement meter intersects at an angle of 60 to 300 °. Deploy.
When two laser displacement meters are installed, for example, when two laser displacement meters are installed, the laser displacement meters are installed facing each other as shown in FIG. 5 or the laser is moved 90 ° as shown in FIG. When four laser displacement meters are installed so as to intersect with each other at two angles, as shown in FIG. 7, two sets of laser displacement meters are installed facing each other.

長さ変化測定装置(E)では、支持部材は必須の治具であり、供試体を台座から離して、供試体と台座の間に空間を設けるために用いる。この空間を設けることにより、長さ変化を測定する際の供試体の温度低下を低減できる。
なお、支持部材の形状、数、配置する形(位置の形状)、および材質は、長さ変化測定装置Eと同じである。
In the length change measuring device (E 2 ), the supporting member is an indispensable jig, and is used to separate the specimen from the pedestal and provide a space between the specimen and the pedestal. By providing this space, it is possible to reduce a decrease in the temperature of the specimen when measuring the change in length.
The shape of the support member, the number, arrangement to form (the shape of the position), and the material is the same as the length change measuring device E 1.

台座は、支持部材の一部(下部)を埋設して固定してなるものである。ちなみに、図5〜7に示す台座は正方形の板状であり、図8に示す台座は円板状である。なお、台座は水平に保たれていることが好ましく、材質はインバー鋼材が好ましいことは、長さ変化測定装置Eと同じである。 The pedestal is formed by burying and fixing a part (lower part) of the support member. Incidentally, the pedestal shown in FIGS. 5 to 7 has a square plate shape, and the pedestal shown in FIG. 8 has a disk shape. Incidentally, it is preferable that the base is kept horizontal, the material it Invar steel is preferable is the same as the length change measuring device E 1.

長さ変化測定装置Eでは、支持部材上への供試体の載置を容易にするため、供試体載置補助治具を用いてもよい。該供試体載置補助治具は、図8に示すような、台座の外側に設置された2本のピンが挙げられる。図8の長さ変化測定装置Eの支持部材の上に、例えば、直径10cmの円板状の供試体を載置する場合、前記2本のピンと接触するように前記供試体を支持部材の上に載置すれば、供試体の中心と支持部材が形成する正方形の中心が一致するように供試体を載置できる。
なお、供試体載置補助治具は、図8に示すように台座の外側に設置するほか、台座上に設置してもよい。また、供試体載置補助治具は、熱や衝撃による変形を防ぐため、好ましくはインバー鋼材を用いて製造する。
In length change measuring device E 2, to facilitate the placement of the specimen onto the supporting member, it may be used specimen mounting-interpolation Sukeji tool. As the test object placing auxiliary jig, there are two pins installed outside the pedestal as shown in FIG. On the length change measuring device E 2 of the support member of FIG. 8, for example, when placing a disc-shaped specimens having a diameter of 10 cm, the supporting member the specimen to contact the two pins By placing the sample on the sample, the sample can be placed so that the center of the sample matches the center of the square formed by the support member.
In addition, as shown in FIG. 8, the test object placing auxiliary jig may be installed on the outside of the pedestal, or may be installed on the pedestal. In addition, the test piece placing auxiliary jig is preferably manufactured using an invar steel material in order to prevent deformation due to heat or impact.

長さ変化測定装置(E)もまた、図5〜8に示すように、2個以上のレーザー変位計、台座、および、必要に応じて、供試体載置補助治具を一体化して構成するのが好ましい。また、台座等の材質はインバー鋼材が好ましいことは、長さ変化測定装置Eと同じである。 As shown in FIGS. 5 to 8, the length change measuring device (E 2 ) also includes two or more laser displacement gauges, a pedestal, and, if necessary, a test object mounting assisting jig. Is preferred. The material of the pedestal such that Invar steel is preferable is the same as the length change measuring device E 1.

4.長さ変化測定装置Eを用いた長さ変化の測定方法
該測定方法は、長さ変化測定装置Eの支持部材上に、円板状または四角柱状の供試体の中心が、前記支持部材が形成する正三角形または正方形の中心と一致するように載置した後、レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の長さ変化を求める方法である。
例えば、図8に示すように、長さ変化測定装置Eの支持部材(台座上の球状の4点)上に、円板状の供試体を、該供試体の中心と支持部材が形成する正方形の中心が一致するように載置した後(図8(B))、レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の長さ変化を測る。
なお、前記供試体の形状、大きさ、および厚さは、長さ変化測定装置(E)を用いた長さ変化の測定方法の場合と同じである。
また、前記測定方法では、例えば、供試体を恒温槽内に静置した後、恒温槽内を30℃→50℃→70℃→50℃→30℃の順にそれぞれ1〜3時間、好ましくは1.5〜2.5時間保持して、前記各温度における保持時間の終了時に供試体の長さ変化を測定し、長さ変化率を求める。また、前記供試体は乾燥収縮の影響を排除するため、好ましくは、乾燥収縮が終了(飽和)した供試体で、かつ、全面を封緘した供試体である。供試体の封緘は、例えば、アルミ製テープで被覆する等で行うことができる。
4. Measurement method The method of measuring the length change with length change measuring device E 2 comprises a support member of the length change measuring device E 2, the center of the disk-shaped or square pillar of the specimen, the support member After placing it so that it coincides with the center of the equilateral triangle or square formed by the laser, irradiate the laser to the side surface around the specimen using a laser displacement meter, and place it between the laser displacement meter and the side surface around the specimen. Is a method of obtaining a change in the length of a test specimen by measuring the distance of the specimen.
For example, as shown in FIG. 8, on the support member length change measuring device E 2 (4 points spherical on the base), the specimen of the disk-shaped, is formed around the support member該供piece After placing so that the centers of the squares coincide (FIG. 8 (B)), a laser is applied to the side surface around the specimen using a laser displacement meter, and the laser displacement meter and the side surface around the specimen are irradiated. By measuring the distance between them, the length change of the specimen is measured.
The shape, size, and thickness of the specimen are the same as those in the case of the method of measuring the length change using the length change measuring device (E 1 ).
In the measurement method, for example, after the specimen is allowed to stand in a constant temperature bath, the inside of the constant temperature bath is 30 ° C. → 50 ° C. → 70 ° C. → 50 ° C. → 30 ° C. in order of 1 to 3 hours, preferably 1 to 3 hours. The sample is held for 0.5 to 2.5 hours, and at the end of the holding time at each of the above temperatures, the change in the length of the specimen is measured, and the rate of change in the length is obtained. Further, in order to eliminate the influence of drying shrinkage, the sample is preferably a sample whose drying shrinkage has been completed (saturated) and whose entire surface is sealed. The test specimen can be sealed, for example, by covering it with an aluminum tape.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント
(i)普通ポルトランドセメント(略号:NC)
(ii)高炉セメントB種(略号:BB)
(iii)中庸熱ポルトランドセメント(略号:MC)
(iv)低熱ポルトランドセメント(略号:LC)
前記セメントは、すべて太平洋セメント社製である。
(2)膨張材(略号:EX)
太平洋ハイパーエクスパン(太平洋マテリアル社製)
(3)収縮低減剤(略号:SR)
テトラガードAS21(太平洋マテリアル社製)
(4)細骨材(略号:S)
山砂、表乾密度2.56g/cm
(5)粗骨材
(i)砂岩砕石、表乾密度2.61g/cm(略号:G1)
(ii)石灰砕石、表乾密度2.71g/cm(略号:G2)
(6)水(略号:W)
水道水
(7)減水剤(略号:LS)
リグニンスルホン酸系AE減水剤、商品名 ポゾリスNo.70[登録商標]、BASF社製
(8)AE剤
商品名 マスターエア404[登録商標]、BASF社製
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
1. Materials used (1) Cement (i) Ordinary Portland cement (abbreviation: NC)
(Ii) Blast furnace cement type B (abbreviation: BB)
(Iii) Moderate heat Portland cement (abbreviation: MC)
(Iv) Low heat Portland cement (abbreviation: LC)
The cements are all manufactured by Taiheiyo Cement Corporation.
(2) Expanding material (abbreviation: EX)
Pacific Hyperexpan (Pacific Materials)
(3) Shrinkage reducing agent (abbreviation: SR)
Tetraguard AS21 (manufactured by Taiheiyo Materials Corporation)
(4) Fine aggregate (abbreviation: S)
Mountain sand, surface dry density 2.56 g / cm 3
(5) Coarse aggregate (i) Crushed sandstone, surface dry density 2.61 g / cm 3 (abbreviation: G1)
(Ii) Lime crushed stone, surface dry density 2.71 g / cm 3 (abbreviation: G2)
(6) Water (abbreviation: W)
Tap water (7) water reducing agent (abbreviation: LS)
Lignin sulfonic acid AE water reducing agent, trade name Pozzolith No. 70 [registered trademark], BASF (8) AE agent Trade name Master Air 404 [registered trademark], manufactured by BASF

2.長さ変化測定用のコンクリートの供試体の作製
表1に示す配合に従い、前記の各材料を容量50リッターのパン型ミキサに一括して投入し、2分間混練した後、混練物を内径10cm、高さ20cmの型枠に打設して成形しコンクリートを得た。なお、AE剤の使用量を調整して、コンクリート中の空気量を4.5%、スランプを15cmにした。
次に、該コンクリートを20℃で1日間湿空養生した後に脱型し、さらに20℃で7日間水中養生した。水中養生した後、コンクリートの高さ方向の中央部付近を切断して、直径10cm、厚さ1cmのコンクリートの円盤を各配合につき各3個、合計で6×3=18個作製した。
さらに、該円盤の乾燥収縮が終了するまで、配合N−SR以外は該円盤を20℃相対湿度60±5%の環境下で56日間乾燥した後、また、配合N−SRは該円盤を20℃相対湿度60±5%の環境下で91日間乾燥した後、該円盤の全面をアルミ製テープで被覆して、長さ変化測定用の供試体を作製した。
2. Preparation of Concrete Specimen for Measurement of Length Change According to the composition shown in Table 1, the above-mentioned materials were collectively charged into a pan-type mixer having a capacity of 50 liters and kneaded for 2 minutes. The concrete was obtained by casting into a mold having a height of 20 cm. The amount of the AE agent was adjusted so that the amount of air in the concrete was 4.5% and the slump was 15 cm.
Next, the concrete was subjected to wet-air curing at 20 ° C. for 1 day, then demolded, and further cured in water at 20 ° C. for 7 days. After curing in water, the vicinity of the center in the height direction of the concrete was cut off, and three concrete disks each having a diameter of 10 cm and a thickness of 1 cm were prepared for each composition, for a total of 6 × 3 = 18.
Until the drying shrinkage of the disk is completed, the disk is dried in an environment of 20 ° C. and a relative humidity of 60 ± 5% for 56 days except for the compound N-SR. After drying in an environment at 60 ° C. and a relative humidity of 60% for 91 days, the entire surface of the disk was covered with an aluminum tape to prepare a specimen for measuring a change in length.

3.長さ変化測定装置Eを用いた供試体の長さ変化の測定
前記供試体を20℃で1時間静置した後、該供試体の周囲の側面が、図2に示す長さ変化測定装置Eの位置決め治具3と接触するように、前記供試体1を台座2に載置した状態で、レーザー変位計4を用いて、レーザー変位計と供試体の周囲の側面の間の距離(基長)を測定した。次に、該供試体を恒温槽内に静置した後、恒温槽内を30℃→50℃→70℃→50℃→30℃の順にそれぞれ2時間保持して、前記と同様に、供試体の長さ変化を測定し、長さ変化率を求めた。なお、本実施例では、1個の供試体に対して3箇所(図2の点a、点b、および点c)でレーザー変位計と供試体の周囲の側面の間の距離を測定して、この平均値を当該供試体の長さ変化として算出し、さらに、この3個の供試体の長さ変化(平均値)を平均して、実施例1〜7の線膨張係数(単位温度あたりの供試体の長さ変化率)を求めた。
また、比較のため、従来法を用いて、乾燥収縮が収束した供試体(10cm×10cm×40cm)をアルミ製テープで封緘して恒温槽に入れ、図1(A)に掲載の温度履歴を与えて、供試体中の埋込型ひずみ計により供試体の長さ変化を測定し、単位温度変化あたりの供試体の長さ変化を算出して、比較例1〜7の線膨張係数を求めた。
これらの結果を表2および図9〜12に示す。
3. After the specimen with length change measuring device E 1 measuring the specimen length change allowed to stand for 1 hour at 20 ° C., the side surface surrounding the該供specimen is, length change measuring apparatus shown in FIG. 2 so as to contact the positioning jig 3 of E 1, while placing the specimen 1 to the base 2, using a laser displacement gauge 4, the distance between the peripheral side surface of the specimen with a laser displacement meter ( Base length) was measured. Next, after the specimen was allowed to stand in a thermostat, the interior of the thermostat was maintained in the order of 30 ° C. → 50 ° C. → 70 ° C. → 50 ° C. → 30 ° C. for 2 hours, respectively. Was measured and the rate of change in length was determined. In this example, the distance between the laser displacement gauge and the side surface around the test sample was measured at three places (points a, b, and c in FIG. 2) for one test sample. The average value was calculated as a change in the length of the test sample, and the changes in the length (average value) of the three test samples were averaged to obtain the linear expansion coefficients (per unit temperature) of Examples 1 to 7. Of the specimen).
For comparison, a specimen (10 cm × 10 cm × 40 cm) whose drying shrinkage had converged was sealed with an aluminum tape and placed in a thermostat using a conventional method, and the temperature history shown in FIG. Given, measure the change in length of the specimen using an embedded strain gauge in the specimen, calculate the change in length of the specimen per unit temperature change, and determine the linear expansion coefficients of Comparative Examples 1 to 7. Was.
The results are shown in Table 2 and FIGS.

表2に示すように、コンクリートの線膨張係数は、本発明の熱膨張係数の測定方法と従来法とでは、誤差が3.9%以下と極めて小さく、ほぼ同じ値が得られる。また、長さ変化率の測定時間は、従来法では、図1(A)に示すように7日間要するが、本発明では、18時間(=30℃→50℃→70℃→50℃→30℃の順にそれぞれ2時間保持と、恒温槽の昇温および降温に8時間(昇温および降温速度10℃/hr))と極めて短時間で済む。
また、従来法では、測定に7日間も要するため、測定開始時から終了時までに、コンクリートの水和が進行してコンクリートの物性が変化し、図1(B)に示すように、昇温過程と降温過程では異なる直線が得られ、熱膨張係数(直線の傾き)に差が生じる。これに対し、本発明では測定時間が12時間と短いため、熱膨張係数の差は小さい。
As shown in Table 2, the linear expansion coefficient of the concrete is very small at 3.9% or less between the method of measuring the thermal expansion coefficient of the present invention and the conventional method, and almost the same value is obtained. In the conventional method, the measurement time of the length change rate requires 7 days as shown in FIG. 1A, but in the present invention, it is 18 hours (= 30 ° C. → 50 ° C. → 70 ° C. → 50 ° C. → 30 ° C.). The temperature is maintained for 2 hours in the order of ° C., and the temperature rise and fall of the constant temperature bath is completed in an extremely short time of 8 hours (rate of temperature rise and fall of 10 ° C./hr).
In addition, in the conventional method, since the measurement requires seven days, from the start to the end of the measurement, the hydration of the concrete progresses, and the physical properties of the concrete change, and as shown in FIG. A different straight line is obtained in the process and the cooling process, and a difference occurs in the coefficient of thermal expansion (the slope of the straight line). On the other hand, in the present invention, since the measurement time is as short as 12 hours, the difference in the coefficient of thermal expansion is small.

1 供試体
2 台座
3 位置決め治具
4 レーザー変位計(ただし、黒色の矢印はレーザーを示す。)
5 支持部材
1 Specimen 2 Pedestal 3 Positioning jig 4 Laser displacement meter (However, black arrow indicates laser.)
5 Supporting members

Claims (3)

下記長さ変化測定装置EまたはEを用いて、単位温度変化あたりのコンクリート供試体の長さ変化を測定してコンクリートの熱膨張係数を得る、コンクリートの熱膨張係数の測定方法。
<長さ変化測定装置E
1個以上のレーザー変位計、長さ変化測定用の供試体を載置するための台座、および、該供試体の位置決め治具、を少なくとも含む長さ変化測定装置
<長さ変化測定装置E
2個以上のレーザー変位計、長さ変化測定用の供試体を支持するための3点以上の支持部材、および、該支持部材の一部を埋設してなる台座、を少なくとも含む長さ変化測定装置
Using the following length change measuring device E 1 or E 2, to obtain a thermal expansion coefficient of the concrete by measuring the length change of the concrete specimen per unit temperature change, method of measuring the thermal expansion coefficient of the concrete.
<Length change measuring device E 1 >
A length change measuring device including at least one or more laser displacement gauges, a pedestal for mounting a specimen for measuring a length change, and a jig for positioning the specimen <Length change measuring device E 2 >
Length change measurement including at least two or more laser displacement gauges, three or more support members for supporting a specimen for length change measurement, and a pedestal having a part of the support member embedded therein. apparatus
前記供試体は、乾燥収縮が終了したコンクリートの供試体で、かつ、全面を封緘した供試体である、請求項1に記載のコンクリートの熱膨張係数の測定方法。   The method for measuring the thermal expansion coefficient of concrete according to claim 1, wherein the specimen is a concrete specimen whose drying and shrinkage has been completed, and a specimen whose entire surface is sealed. 前記供試体が、直径10〜30cm、および厚さ5〜20mmの円板状供試体、または、1辺の長さが10〜30cm、および厚さが5〜20mmの四角板状供試体である、請求項1または2に記載のコンクリートの熱膨張係数の測定方法。   The specimen is a disk-shaped specimen having a diameter of 10 to 30 cm and a thickness of 5 to 20 mm, or a square plate-shaped specimen having a length of one side of 10 to 30 cm and a thickness of 5 to 20 mm. The method for measuring the coefficient of thermal expansion of concrete according to claim 1 or 2.
JP2018179363A 2018-09-25 2018-09-25 How to measure the coefficient of thermal expansion of concrete Active JP7178225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018179363A JP7178225B2 (en) 2018-09-25 2018-09-25 How to measure the coefficient of thermal expansion of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018179363A JP7178225B2 (en) 2018-09-25 2018-09-25 How to measure the coefficient of thermal expansion of concrete

Publications (2)

Publication Number Publication Date
JP2020051812A true JP2020051812A (en) 2020-04-02
JP7178225B2 JP7178225B2 (en) 2022-11-25

Family

ID=69996615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018179363A Active JP7178225B2 (en) 2018-09-25 2018-09-25 How to measure the coefficient of thermal expansion of concrete

Country Status (1)

Country Link
JP (1) JP7178225B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537551A (en) * 2020-05-06 2020-08-14 湖北三江航天万峰科技发展有限公司 High temperature resistant material thermal expansion coefficient detection device
CN114002261A (en) * 2021-11-29 2022-02-01 广西交科集团有限公司 Asphalt mixture linear shrinkage coefficient measuring device and using method thereof
CN114526686A (en) * 2022-04-25 2022-05-24 南京康斯智信工程科技有限公司 Anti-cracking and crack-control online monitoring system for long and large structural concrete solid member
CN117092158A (en) * 2023-08-23 2023-11-21 佛山市陶瓷研究所检测有限公司 Thermal expansion coefficient detection equipment and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118430A (en) * 1997-10-08 1999-04-30 Japan Science & Technology Corp Non-contact type concrete length testing machine and mortar specimen receiving base used therefor
JP2000121321A (en) * 1998-08-10 2000-04-28 Fpk Kk Length change testing method and apparatus for concrete
JP2008116352A (en) * 2006-11-06 2008-05-22 Ishikawajima Constr Materials Co Ltd Laser type displacement measurement device and dimension variation measurement method using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118430A (en) * 1997-10-08 1999-04-30 Japan Science & Technology Corp Non-contact type concrete length testing machine and mortar specimen receiving base used therefor
JP2000121321A (en) * 1998-08-10 2000-04-28 Fpk Kk Length change testing method and apparatus for concrete
JP2008116352A (en) * 2006-11-06 2008-05-22 Ishikawajima Constr Materials Co Ltd Laser type displacement measurement device and dimension variation measurement method using it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宮澤伸吾: "コンクリートの熱膨張係数", コンクリート工学, vol. 56, no. 5, JPN7022002743, 2018, JP, pages 368 - 372, ISSN: 0004798005 *
石関 浩輔、他2名: "収縮低減剤による若材齢線膨張係数の抑制効果", コンクリート工学年次論文集, vol. 33, no. 1, JPN7022002742, 2011, JP, pages 485 - 490, ISSN: 0004798004 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537551A (en) * 2020-05-06 2020-08-14 湖北三江航天万峰科技发展有限公司 High temperature resistant material thermal expansion coefficient detection device
CN114002261A (en) * 2021-11-29 2022-02-01 广西交科集团有限公司 Asphalt mixture linear shrinkage coefficient measuring device and using method thereof
CN114002261B (en) * 2021-11-29 2024-02-20 广西交科集团有限公司 Asphalt mixture line shrinkage coefficient measuring device and using method thereof
CN114526686A (en) * 2022-04-25 2022-05-24 南京康斯智信工程科技有限公司 Anti-cracking and crack-control online monitoring system for long and large structural concrete solid member
CN117092158A (en) * 2023-08-23 2023-11-21 佛山市陶瓷研究所检测有限公司 Thermal expansion coefficient detection equipment and detection method

Also Published As

Publication number Publication date
JP7178225B2 (en) 2022-11-25

Similar Documents

Publication Publication Date Title
JP2020051812A (en) Measuring method of heat expansion coefficient of concrete
JP6943740B2 (en) Dry shrinkage strain measuring device, dry shrinkage strain measuring method, and drying shrinkage strain estimation method
JP6986323B2 (en) Method for predicting dry shrinkage strain of concrete and method for predicting dry shrinkage stress of concrete
JP6893451B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
JP7226913B2 (en) Drying shrinkage strain estimation method
Parrott Factors influencing relative humidity in concrete
JP2021156843A (en) Expansion strain measuring method and expansion strain measuring device
Lepage et al. Early shrinkage development in a high performance concrete
CN103162604A (en) Real-time testing device and method for volume deformation of cement-based composite material after hardening
JP2012103057A (en) Method for predicting drying shrinkage strain of concrete
JP6933930B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
JP7106373B2 (en) Method for Predicting Drying Shrinkage Strain of Concrete
Emmons et al. Performance Criteria for Concrete Repair Materials: Phase I
JP6512960B2 (en) Concrete evaluation method
Medeiros et al. Test methodology for determining the mechanical properties of concrete blocks at high temperatures
JP2021056178A (en) Measuring method for relative humidity, dry shrinkage strain, and relative moisture content inside concrete
JP7365127B2 (en) How to estimate drying shrinkage strain
Autiero et al. Experimental analysis of lime putty and pozzolan-based mortar for interventions in archaeological sites
JP7270423B2 (en) Method for estimating drying shrinkage strain
JP7282627B2 (en) Method for measuring carbonation shrinkage strain
CN113391056A (en) Method for improving shrinkage cracking performance of cement-based grouting material
Vlachakis et al. 3D printed smart repairs for civil infrastructure
CN109458925B (en) Dynamic deformation testing method for cement-based material in thermal curing process
JP7245046B2 (en) Method for measuring relative humidity inside concrete
Yatagan The Investigation of the Relationship between drying and restrained shrinkage in view of the development of micro cracks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7178225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150