JP2020050946A - Ni-BASED SUPERALLOY - Google Patents

Ni-BASED SUPERALLOY Download PDF

Info

Publication number
JP2020050946A
JP2020050946A JP2019045429A JP2019045429A JP2020050946A JP 2020050946 A JP2020050946 A JP 2020050946A JP 2019045429 A JP2019045429 A JP 2019045429A JP 2019045429 A JP2019045429 A JP 2019045429A JP 2020050946 A JP2020050946 A JP 2020050946A
Authority
JP
Japan
Prior art keywords
alloy
temperature
phase
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019045429A
Other languages
Japanese (ja)
Inventor
良 佐々木
Ryo Sasaki
良 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2020050946A publication Critical patent/JP2020050946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

To provide an Ni-based superalloy capable of being used as a high-temperature member for a coal-fired power-generating plant, the steam temperature of which is 700°C or more, and capable of producing a large-sized ingot while hardly causing defects of macrosegregation.SOLUTION: An Ni-based superalloy comprises, by mass, C:0.001-0.1%, Cr:15-20%, Co:15-25%, Al:3.0-6.0%, Mo:5.0-14.0%, Mg:0.01% or less, B:0.03 or less, Zr:0.03% or less, and the balance comprising Ni or inevitable impurities.SELECTED DRAWING: Figure 1

Description

本発明は、Ni基超耐熱合金に関するものである。   The present invention relates to a Ni-based super heat-resistant alloy.

石炭火力発電に用いられるタービンの高効率化には蒸気温度を上昇させることが有効である。このため更なる高効率化を目指し、蒸気温度の上昇が試みられている。しかし、現在多くの石炭火力発電プラントにおいてタービン部やロータ部の部品に用いられている12Cr系のフェライト系耐熱鋼の耐熱温度は、高いものでも650℃とされており、650℃より高温の環境では強度が不足するため使用できないと考えられる。したがって、700℃以上の蒸気を使用する高効率石炭火力発電プラントの高温部材として、フェライト系耐熱鋼よりも高温強度が優れるNi基超耐熱合金を適用することが検討されている。
ところで700℃級の石炭火力発電プラントの高温部材としての適用を検討されているNi基超耐熱合金としてWO2010/038680パンフレット(特許文献1)に示される合金が知られている。
Increasing the steam temperature is effective for increasing the efficiency of a turbine used for coal-fired power generation. For this reason, an attempt has been made to increase the steam temperature in order to achieve higher efficiency. However, the heat resistance temperature of 12Cr ferritic heat-resistant steel currently used for turbine and rotor parts in many coal-fired power plants is set to 650 ° C at most, and the temperature is higher than 650 ° C. Therefore, it is considered that it cannot be used because of insufficient strength. Therefore, as a high-temperature member of a high-efficiency coal-fired power plant using steam of 700 ° C. or higher, application of a Ni-based super heat-resistant alloy having higher high-temperature strength than ferritic heat-resistant steel has been studied.
Meanwhile, an alloy disclosed in WO 2010/0386680 (Patent Document 1) is known as a Ni-based super heat-resistant alloy which is being studied for application as a high-temperature member of a 700 ° C.-class coal-fired power plant.

WO2010/038680パンフレットWO 2010/0386680 pamphlet

前述の特許文献1で示されるNi基超耐熱合金は、700℃程度の環境で使用可能な高温強度を有し、かつ凝固時の偏析が発生しにくい合金組成となっており、高温強度と大型インゴットの製造しやすさが両立された優れた合金である。この大型インゴットの製造しやすさを維持しながら、700℃程度の環境で優れた高温強度が実現できるようになると発電効率の向上に大きく寄与することができる。
高温環境で用いられるNi基超耐熱合金は高温強度に優れており、種々の耐熱部品として使用されている。Ni基超耐熱合金はAl、Ti、Nb、Taなどのγ’相析出強化元素やCo、Mo、Taなどの固溶強化元素を添加することで高温強度を実現している。
凝固の際、これらの析出強化元素や固溶強化元素はNi基超耐熱合金の初晶であるγ相と液相にそれぞれの分配係数に応じて偏析する。この偏析によって発生する濃化液相と母液相では密度が異なるため、濃化液相は重力を駆動力として流動し、ひも状の流路を形成する。この現象で形成されたひも状の流路では、濃化液相からγ相と異なる相が密集して晶出し、凝固欠陥のひとつであるマクロ偏析欠陥となる。なお、本発明でいう「濃化液相」とは固液共存領域の中の液体部分を指し、「母液相」とは固液共存領域ではない液体部分を指し、この両者を含むものを「液相」と言うものとする。
The Ni-base superalloy disclosed in Patent Document 1 described above has an alloy composition that has a high-temperature strength that can be used in an environment of about 700 ° C. and that hardly causes segregation during solidification. It is an excellent alloy that is compatible with ingot manufacturing. If excellent high-temperature strength can be realized in an environment of about 700 ° C. while maintaining the ease of manufacture of this large ingot, it can greatly contribute to improvement in power generation efficiency.
A Ni-base super heat-resistant alloy used in a high-temperature environment has excellent high-temperature strength and is used as various heat-resistant components. The Ni-base superalloy achieves high-temperature strength by adding a γ′-phase precipitation strengthening element such as Al, Ti, Nb, and Ta and a solid solution strengthening element such as Co, Mo, and Ta.
At the time of solidification, these precipitation strengthening elements and solid solution strengthening elements segregate in the γ phase and the liquid phase, which are primary crystals of the Ni-base superalloy, according to their respective distribution coefficients. Since the density is different between the concentrated liquid phase and the mother liquor phase generated by this segregation, the concentrated liquid phase flows using gravity as a driving force to form a string-like flow path. In the string-like flow path formed by this phenomenon, a phase different from the γ phase is densely crystallized from the concentrated liquid phase and becomes a macrosegregation defect which is one of solidification defects. In the present invention, the term “concentrated liquid phase” refers to a liquid portion in a solid-liquid coexisting region, and the term “mother liquid phase” refers to a liquid portion that is not a solid-liquid coexisting region. Shall be referred to as "liquid phase".

マクロ偏析欠陥は通常の晶出相よりも非常にサイズが大きいため、熱処理や鍛造といった処理を経た後も残存し、疲労強度を大きく低下させる可能性が高い。また、マクロ偏析欠陥は凝固時の冷却速度が遅いほうが発生しやすく、より大型のインゴット製造時に発生しやすいと考えられる。
従って、石炭火力発電プラントに用いられる蒸気タービン、ボイラ等の中・大型製品へ適用するNi基超耐熱合金にはマクロ偏析欠陥が発生しづらく、大型インゴットが製造可能であることが求められる。マクロ偏析欠陥が発生しづらい合金は、偏析によって発生する濃化液相と母液相の密度差が少ないような組成を有する合金であるが、凝固過程にある濃化液相の組成を高精度で特定することは実験的・計算的に難しい。このため、高い高温強度を有し、かつマクロ偏析欠陥が発生しづらい合金を実現することは容易ではない。
本発明の目的は、蒸気温度が700℃以上となる石炭火力発電プラントの高温部材として使用可能で、かつ、マクロ偏析欠陥が発生しづらく大型インゴットが製造可能なNi基超耐熱合金を提供することである。
Since macrosegregation defects are much larger in size than the normal crystallization phase, they remain even after heat treatment and forging, and are likely to greatly reduce fatigue strength. Further, it is considered that the macro-segregation defect is more likely to occur when the cooling rate during solidification is lower, and is likely to occur when a larger ingot is manufactured.
Therefore, it is required that macro-segregation defects hardly occur in Ni-based super heat-resistant alloys applied to medium and large-sized products such as steam turbines and boilers used in coal-fired power plants, and large-sized ingots can be manufactured. Alloys that are unlikely to have macro-segregation defects are alloys that have a composition in which the density difference between the concentrated liquid phase and the mother liquor phase generated by segregation is small, but the composition of the concentrated liquid phase that is in the process of solidification is highly accurate. It is difficult to specify experimentally and computationally. For this reason, it is not easy to realize an alloy having high high-temperature strength and hardly causing macro-segregation defects.
An object of the present invention is to provide a Ni-based super heat-resistant alloy that can be used as a high-temperature member of a coal-fired power plant having a steam temperature of 700 ° C. or higher and that can produce a large ingot that is unlikely to generate macrosegregation defects. It is.

本発明者は、従来蒸気タービン部材として検討されているNi基超耐熱合金以上にAl量を増加させれば高温で析出するγ’相の量が増えるため、より高い高温強度が実現可能となることを見出した。さらに、偏析によって発生する濃化液相と母液相の密度差を減少させる問題を検討し、Ni基超耐熱合金に添加される主たる金属元素が、比較的偏析傾向の弱いAl、Co、Crと比較的偏析傾向の強いMoのみである場合に、Al、Co、Cr量が変化した場合でも、Mo量を適切に選択することで濃化液相と母液相の密度差を減少させマクロ偏析欠陥が発生しづらく、大型インゴットが製造可能となることを見出した。これにより蒸気温度が700℃以上となる石炭火力発電プラントの高温部材として使用可能かつ大型インゴットが製造可能な合金が実現可能であることを見出し本発明に到達した。
すなわち本発明は、質量%で、C:0.001〜0.1%、Cr:15〜20%、Co:15〜25%、Al:3.0〜6.0%、Mo:5.0〜14.0%、Mg:0.02%以下、B:0.03以下、Zr:0.03%以下、残部はNi及び不可避的不純物からなるNi基超耐熱合金である。
好ましくは、Moが質量%で9.0〜12.0%である。
The present inventor has found that if the amount of Al is increased more than the Ni-base super heat-resistant alloy conventionally studied as a steam turbine member, the amount of the γ 'phase precipitated at a high temperature increases, so that higher high-temperature strength can be realized. I found that. Furthermore, the problem of reducing the density difference between the concentrated liquid phase and the mother liquor phase generated by segregation was examined, and the main metal elements added to the Ni-base superalloy were Al, Co, and Cr, which have relatively weak segregation tendency. In the case where only Mo having relatively strong segregation tendency is used, even if the amounts of Al, Co, and Cr change, the difference in density between the concentrated liquid phase and the mother liquor phase can be reduced by appropriately selecting the amount of Mo. It has been found that segregation defects are less likely to occur and a large ingot can be manufactured. As a result, the present inventors have found that an alloy that can be used as a high-temperature member of a coal-fired power plant having a steam temperature of 700 ° C. or more and that can produce a large ingot can be realized, and has reached the present invention.
That is, in the present invention, C: 0.001 to 0.1%, Cr: 15 to 20%, Co: 15 to 25%, Al: 3.0 to 6.0%, Mo: 5.0 by mass%. 〜14.0%, Mg: 0.02% or less, B: 0.03% or less, Zr: 0.03% or less, the balance being a Ni-based super heat-resistant alloy comprising Ni and unavoidable impurities.
Preferably, Mo is 9.0 to 12.0% by mass%.

本発明のNi基超耐熱合金は蒸気温度が700℃以上となる石炭火力発電プラントの高温部材として使用可能な高温強度を有している。さらに、大型インゴット製造性に優れているため、マクロ偏析欠陥を抑制した大型インゴットを提供することができる。したがって、本発明のNi基超耐熱合金を用いて、蒸気温度が700℃以上となる石炭火力発電プラントで使用可能な中・大型部品を製造することができる。   The Ni-base super heat-resistant alloy of the present invention has a high-temperature strength that can be used as a high-temperature member of a coal-fired power plant having a steam temperature of 700 ° C. or higher. Furthermore, since it is excellent in manufacturability of large ingots, it is possible to provide large ingots in which macro segregation defects are suppressed. Therefore, using the Ni-based super heat-resistant alloy of the present invention, it is possible to manufacture medium and large-sized parts that can be used in a coal-fired power plant having a steam temperature of 700 ° C. or higher.

本発明の合金の一例である合金No.1の大型インゴット製造性を評価するために行った実験において作製したインゴットの高さ65mm位置における横断面マクロ写真である。Alloy No. 1 which is an example of the alloy of the present invention. 1 is a cross-sectional macrophotograph at a position of 65 mm in height of an ingot produced in an experiment performed to evaluate the productivity of large ingot No. 1.

本発明の重要な特徴は、高い高温強度を備えているとともに、マクロ偏析欠陥が発生しづらい合金組成としたことにある。
本発明のNi基超耐熱合金において、以下の範囲で各化学組成を規定した理由は以下のとおりである。なお、特に記載のない限り質量%として記す。なお、本発明で言う「Ni基超耐熱合金」とは、超合金、耐熱超合金、superalloyとも称される700℃以上の高温領域で使用されるNi基の合金であって、γ’によって強化される合金を言う。
C:0.001〜0.1%
Cは、合金元素と結合することで炭化物を形成する。粒界に析出した炭化物は高温での粒界すべりを抑制することで高温強度を高める。しかし、C量が多すぎると、鍛造後組織において炭化物がストリンガー状に析出しやすくなり、強度特性を損なうため、0.1%を上限とする。前述したCの効果をより確実に得るための好ましい下限は0.03%であり、好ましい上限は0.06%である。
An important feature of the present invention is that the alloy composition has high high-temperature strength and hardly generates macrosegregation defects.
The reasons for defining each chemical composition in the following range in the Ni-base superalloy of the present invention are as follows. In addition, it is described as mass% unless otherwise specified. The term “Ni-base superalloy” as used herein refers to a superalloy, a heat-resistant superalloy, or a Ni-based alloy used in a high-temperature region of 700 ° C. or higher, also called superalloy, and is strengthened by γ ′. Say alloy.
C: 0.001 to 0.1%
C forms a carbide by combining with an alloy element. The carbides precipitated at the grain boundaries increase the high-temperature strength by suppressing grain boundary sliding at high temperatures. However, if the C content is too large, carbides tend to precipitate in a stringer form in the structure after forging, and the strength properties are impaired, so the upper limit is 0.1%. A preferable lower limit for more surely obtaining the effect of C described above is 0.03%, and a preferable upper limit is 0.06%.

Cr:15〜20%
CrはCと結合して炭化物を形成することで結晶粒界を強化し、高温での引っ張り強度を向上させる。また、表面にCrを含む緻密な酸化被膜を形成することで耐酸化性及び高温耐食性を向上させる。蒸気温度が700℃以上となる蒸気タービンプラントの高温部材としては、少なくとも15%を含有することが必要である。しかし、Crを多く含有すると、σ相が析出して材料の延性及び破壊靭性が悪化するため、20%を上限とする。前述したCrの効果をより確実に得るための好ましい下限は16%であり、好ましい上限は18%である。
Co:15〜25%
Coは、Niと置換して母相に固溶することで高温強度を向上させる。また、Coの含有はγ’相の固溶温度を下げ、熱間加工を容易にする効果がある。高温強度、耐酸化性向上のためにAl量を多くする場合、γ’相が析出し易くなり高温での熱間加工性が低下するが、Coを15%以上含有することで良好な熱間加工性を維持することができる。しかし、Coを多く含有すると、σ相やμ相といった有害相の析出を助長するため、25%を上限とする。前述したCoの効果をより確実に得るための好ましい下限は18%であり、好ましい上限は23%である。
Cr: 15 to 20%
Cr combines with C to form carbides, thereby strengthening crystal grain boundaries and improving tensile strength at high temperatures. Further, by forming a dense oxide film containing Cr 2 O 3 on the surface, the oxidation resistance and the high-temperature corrosion resistance are improved. A high-temperature component of a steam turbine plant having a steam temperature of 700 ° C. or more needs to contain at least 15%. However, if a large amount of Cr is contained, the σ phase precipitates and the ductility and fracture toughness of the material deteriorate, so the upper limit is 20%. A preferred lower limit for more reliably obtaining the above-described effect of Cr is 16%, and a preferred upper limit is 18%.
Co: 15 to 25%
Co improves the high-temperature strength by replacing Ni with a solid solution in the matrix. Further, the inclusion of Co has the effect of lowering the solid solution temperature of the γ 'phase and facilitating hot working. When the amount of Al is increased to improve high-temperature strength and oxidation resistance, the γ 'phase is likely to precipitate and the hot workability at high temperatures is reduced. Workability can be maintained. However, if a large amount of Co is contained, precipitation of a harmful phase such as a σ phase or a μ phase is promoted, so the upper limit is 25%. A preferable lower limit for more reliably obtaining the effect of Co described above is 18%, and a preferable upper limit is 23%.

Al:3.0〜6.0%
Alはγ’(NiAl)相を形成し、合金の高温強度を向上させる。Al量が不足する場合には、γ’相の析出量が少ないため十分は高温強度が得られない。本発明の対象とするNi基合金は、他のγ’相析出強化元素であるTi、Ta及びNbを含まないので、十分な高温強度を得るためには少なくとも3.0%のAl量が必要である。Al量が多くなりすぎるとγ’相の固溶温度が高くなり熱間加工が容易ではなくなるため、6.0%を上限とした。前述したAlの効果をより確実に得るための好ましい下限は3.5%であり、好ましい上限は5.0%である。
Mo:5.0〜14.0%
Moは、固溶によって母相を強化する。また、Moは凝固時に液相に分配される傾向が強く溶湯の密度を大きくするため、Mo量を調整することでマクロ偏析欠陥の発生を抑制することができる。本発明の対象とするNi基合金では他元素との兼ね合いで十分なマクロ偏析欠陥抑制効果を得るためには5.0%以上のMoを含有する必要がある。しかし、14.0%を超えるMoの含有は脆い有害相が多量に析出してしまうため、高温鍛造性及び高温強度に悪影響を及ぼす。そのため、Moの含有量の上限を14.0%とする。前述したMoの効果をより確実に得るための好ましい下限は6.0%であり、さらに好ましくは9.0%、より好ましくは9.5%である。Moの好ましい上限は13.0%であり、さらに好ましい上限は12.0%である。
Al: 3.0 to 6.0%
Al forms a γ ′ (Ni 3 Al) phase and improves the high-temperature strength of the alloy. When the amount of Al is insufficient, sufficient high-temperature strength cannot be obtained because the precipitation amount of the γ 'phase is small. Since the Ni-base alloy targeted by the present invention does not contain other γ′-phase precipitation strengthening elements, such as Ti, Ta and Nb, at least 3.0% of Al is required to obtain sufficient high-temperature strength. It is. If the amount of Al is too large, the solid solution temperature of the γ 'phase becomes high and hot working becomes difficult, so the upper limit was 6.0%. A preferable lower limit for more reliably obtaining the above-described effect of Al is 3.5%, and a preferable upper limit is 5.0%.
Mo: 5.0 to 14.0%
Mo strengthens the parent phase by solid solution. In addition, since Mo tends to be distributed to the liquid phase during solidification and increases the density of the molten metal, the generation of macrosegregation defects can be suppressed by adjusting the amount of Mo. In order to obtain a sufficient effect of suppressing macro-segregation defects in the Ni-base alloy targeted by the present invention, it is necessary to contain 5.0% or more Mo. However, Mo content exceeding 14.0% adversely affects high-temperature forgeability and high-temperature strength because a large amount of brittle harmful phase precipitates. Therefore, the upper limit of the content of Mo is set to 14.0%. A preferred lower limit for more reliably obtaining the Mo effect described above is 6.0%, further preferably 9.0%, and more preferably 9.5%. The preferable upper limit of Mo is 13.0%, and the more preferable upper limit is 12.0%.

Mg:0.02%以下
Mgは本発明の選択元素であり、必要に応じて添加することができる。Mgは合金の溶解時に脆化相形成元素であるS(硫黄)と化合物を形成する脱硫剤として添加することができる。適量のMg添加はSの粒界偏析を抑制して熱間加工性を改善する効果がある。しかし、過度のMgを添加するとMgの低融点相が析出し粒界強度が低下するため、Mgの含有量は0.02%を上限とする。前述したMgの効果をより確実に得るための好ましい下限は0.001%とすると良い。なお、Mgについては、前述の効果を得るために本発明で規定する範囲内で添加するのが好ましいが、0%であってもかまわない。
B:0.03%以下及びZr:0.03%以下
B(ホウ素)及びZrも本発明の選択元素であり、必要に応じて添加することができる。B及びZrは粒界強化のために添加することができる。B、Zrは母相であるγ相を構成するNiとは原子半径が大きく異なるため粒界に偏析し、粒界すべりを抑制する。このため高温強度に有益と考えられる。ただし、多量の含有は耐酸化性を劣化させるためそれぞれ0.03%を上限とする。前述したB及びZrの効果をより確実に得るための好ましい下限はそれぞれ0.001%とすると良い。なお、B及びZrについては、両者が同様の作用効果を生じるため、前述の効果を得るために、少なくとも何れか1つは本発明で規定する範囲内で添加するのが好ましいが、それぞれ0%であってもかまわない。
残部:Ni及び不可避的不純物
残部は実質的にNiであるが、製造上不可避的に混入する不純物は含まれる。不純物含有量は少ないほうが好ましいが、例えば、溶解原料によっては不可避的にFeが3%以下の範囲で混入する場合があるが、Feについては3%以下の範囲であれば許容できる。Fe以外の元素については、それぞれおおよそ0.1%までの範囲であれば許容できる。
Mg: 0.02% or less Mg is an optional element of the present invention, and can be added as needed. Mg can be added as a desulfurizing agent which forms a compound with S (sulfur) which is an embrittlement phase forming element when the alloy is melted. Addition of an appropriate amount of Mg has the effect of suppressing grain boundary segregation of S and improving hot workability. However, if an excessive amount of Mg is added, a low-melting-point phase of Mg is precipitated and the grain boundary strength is reduced. Therefore, the upper limit of the content of Mg is 0.02%. A preferable lower limit for more surely obtaining the effect of Mg described above is set to 0.001%. Note that Mg is preferably added within the range specified in the present invention in order to obtain the above-mentioned effects, but may be 0%.
B: 0.03% or less and Zr: 0.03% or less B (boron) and Zr are also selective elements of the present invention, and can be added as necessary. B and Zr can be added for grain boundary strengthening. B and Zr are segregated at the grain boundaries because of a large difference in atomic radius from Ni constituting the γ phase, which is the parent phase, and suppress grain boundary sliding. Therefore, it is considered to be beneficial for high-temperature strength. However, since a large amount degrades oxidation resistance, the upper limit is set to 0.03%. The preferable lower limits for more reliably obtaining the effects of B and Zr described above are preferably set to 0.001%. As for B and Zr, since both have the same effect, it is preferable to add at least one of them within the range specified in the present invention in order to obtain the above-mentioned effect, but each of them is 0%. It may be.
The balance: Ni and unavoidable impurities The balance is substantially Ni, but includes impurities unavoidably mixed in production. Although it is preferable that the impurity content is small, for example, Fe may inevitably be mixed in the range of 3% or less depending on the dissolved raw material, but Fe is acceptable if it is in the range of 3% or less. Elements other than Fe are permissible as long as each is in a range of up to about 0.1%.

以下の実施例で本発明をさらに詳しく説明する。
真空中で溶解、凝固を行う小型装置を用い、合金の大型インゴット製造性を評価した。本実施例では、少なくとも700℃の高温でも高い強度が得られる合金組成を選択した。
真空誘導溶解で長さ220mm、高さ120mm、幅40mm、10kgの合金素材を作製した。作製した素材をアルミナるつぼにセットし、るつぼ周囲に設置したカーボンヒータを設定温度1500℃まで昇温することによって、真空雰囲気中で素材を溶解した。続いて、ヒータの温度を低下させ、るつぼ側面に冷却板を接触させることで溶解した素材を横一方向凝固させた。冷却板の接触によって、冷却速度は冷却板に近い位置で速く、冷却板から離れるに従って遅くなる凝固を実現した。冷却速度はるつぼに熱電対を挿入し、合金の温度履歴を測定することによって確認した。
The following examples illustrate the invention in more detail.
The productivity of large alloy ingots was evaluated using a small device that melts and solidifies in vacuum. In the present embodiment, an alloy composition that can obtain high strength even at a high temperature of at least 700 ° C. was selected.
An alloy material having a length of 220 mm, a height of 120 mm, a width of 40 mm, and 10 kg was produced by vacuum induction melting. The prepared material was set in an alumina crucible, and the material was melted in a vacuum atmosphere by raising the temperature of a carbon heater provided around the crucible to a set temperature of 1500 ° C. Subsequently, the temperature of the heater was lowered, and the melted material was solidified in one lateral direction by bringing the cooling plate into contact with the side of the crucible. Due to the contact of the cooling plate, solidification was achieved in which the cooling rate was high at a position close to the cooling plate and slowed as the distance from the cooling plate decreased. The cooling rate was confirmed by inserting a thermocouple into the crucible and measuring the temperature history of the alloy.

実験に供した合金素材の組成を表1に、熱力学計算による700℃及び800℃におけるγ’相の量を表2に示す。合金No.1,2,3,4,5,6,7は本発明例である。合金No.11は特許文献1に示されるNi基超耐熱合金である。合金No.12はNi基超耐熱合金として種々の部品に利用されるWaspaloy(商標)相当合金である。なお、表1中のMg及びBについては単位はppmである。
表2に示すように、各合金の700℃におけるγ’相の量を比較すると、本発明例の合金のγ’相量は何れも25%以上と高く、殆どが30%以上のγ’相量を有し、700℃以上においても高い高温強度が得られることを示している。また、800℃におけるγ’相の量を比較すると、本発明例の合金のγ’相量は何れも18%以上の高い値を維持できており、800℃においてもNo.12合金と同等以上の20.0%以上の十分な高温強度が得られることを示している。なお、No.11合金はγ’相量が低く、強度が低くなる。
Table 1 shows the composition of the alloy material subjected to the experiment, and Table 2 shows the amounts of the γ 'phase at 700 ° C. and 800 ° C. based on thermodynamic calculations. Alloy No. 1, 2, 3, 4, 5, 6, and 7 are examples of the present invention. Alloy No. Reference numeral 11 denotes a Ni-based super heat-resistant alloy disclosed in Patent Document 1. Alloy No. Reference numeral 12 denotes an alloy equivalent to Waspaloy (trademark) used for various components as a Ni-based super heat-resistant alloy. The units of Mg and B in Table 1 are ppm.
As shown in Table 2, when comparing the amount of the γ 'phase at 700 ° C. of each alloy, the amount of the γ ′ phase of each of the alloys of the present invention was as high as 25% or more, and almost all of the γ ′ phases were at least 30%. It shows that high high-temperature strength can be obtained even at 700 ° C. or more. Further, when comparing the amount of the γ 'phase at 800 ° C., the amount of the γ ′ phase of the alloys of the present invention can be maintained at a high value of 18% or more in any case. This shows that sufficient high-temperature strength of 20.0% or more, which is equal to or more than that of Alloy No. 12, is obtained. In addition, No. Alloy 11 has a low γ 'phase content and low strength.

作製した合金No.1の凝固インゴットの高さ65mmでの横断面マクロ写真を図1に示す。図1では引け巣が発生している側(図の右側)が最終凝固側であり、引け巣の無い側(図の左側)が冷却板を接触させたるつぼ側である。図1では熱電対は冷却板側から約10mm、30mm、50mm、70mm、110mm、150mm、190mmの位置に挿入されており、黒色の点のように確認されるマクロ偏析欠陥は冷却板側から約120mmの位置から発生している。表3に各合金の評価結果を示す。本評価では合金の大型インゴット製造性の評価指標として、各評価においてマクロ偏析欠陥が発生していない位置にある熱電対のうち、液相線温度から50℃低い温度での最も遅い冷却速度CRを用いる。合金No.1の評価においては、CRは冷却板側の端面から110mmの位置に挿入された熱電対の値であり、2.93℃/minであった。合金No.4の評価においては、CRは冷却板側の側面から110mmの位置に挿入された熱電対の値であり、3.04℃/minであった。合金No.6の評価においては、CRは冷却板側の側面から110mmの位置に挿入された熱電対の値であり、3.23℃/minであった。合金No.2,3,5,7,11ではマクロ偏析欠陥は全面抑制されていたため、CRは全熱電対で最も遅い冷却速度とした。本実験においては、表3に示すCR以上の冷却速度を実現すれば、各合金のマクロ偏析欠陥を抑制できる。したがって、CRが小さいほどマクロ偏析欠陥が発生しにくい合金であるといえる。   The alloy No. FIG. 1 is a cross-sectional macrophotograph of the solidified ingot No. 1 at a height of 65 mm. In FIG. 1, the side where the shrinkage cavities occur (the right side in the figure) is the final solidification side, and the side without the shrinkage cavities (the left side in the figure) is the crucible side where the cooling plate is brought into contact. In FIG. 1, thermocouples are inserted at positions of about 10 mm, 30 mm, 50 mm, 70 mm, 110 mm, 150 mm, and 190 mm from the cooling plate side, and macrosegregation defects identified as black dots are approximately from the cooling plate side. It occurs from the position of 120 mm. Table 3 shows the evaluation results of each alloy. In this evaluation, the slowest cooling rate CR at a temperature 50 ° C. lower than the liquidus temperature among thermocouples at positions where macrosegregation defects did not occur in each evaluation was used as an evaluation index for the manufacture of large ingots of the alloy. Used. Alloy No. In the evaluation of 1, CR was the value of the thermocouple inserted at a position 110 mm from the end face on the cooling plate side, and was 2.93 ° C./min. Alloy No. In the evaluation of No. 4, CR is the value of the thermocouple inserted at a position 110 mm from the side face on the cooling plate side, and was 3.04 ° C./min. Alloy No. In the evaluation of No. 6, CR was a value of the thermocouple inserted at a position 110 mm from the side face on the cooling plate side, and was 3.23 ° C./min. Alloy No. In 2, 3, 5, 7, and 11, macro-segregation defects were all suppressed, so CR was set to the slowest cooling rate of all thermocouples. In this experiment, if a cooling rate equal to or higher than the CR shown in Table 3 is realized, macrosegregation defects of each alloy can be suppressed. Therefore, it can be said that as the CR is smaller, the alloy is less likely to generate macrosegregation defects.

本発明の大型インゴット製造性を確認するため従来例と比較を行った。本発明例である合金No.1,2,3はいずれもNo12(Waspaloy相当合金)よりもCRの値が小さく、Waspaloy相当合金よりも大型インゴット製造性が良好であることがわかる。さらに、Mo量を9.0〜12.0%の範囲とした合金No.2,3,5,7では合金No.11の特許文献1に示されるNi基超耐熱合金と同様にインゴット全面でマクロ偏析欠陥が抑制されており、合金No.2,3,5,7は特許文献1に示されるNi基超耐熱合金と同レベルの大型インゴット製造性を有していることがわかる。上記の結果に示すように、本発明の合金系ではMo量を適切に選択することにより、非常に良好な大型インゴット製造性を実現することができる。   In order to confirm the manufacturability of the large ingot of the present invention, a comparison was made with a conventional example. The alloy No. of the present invention example. Each of 1, 2, and 3 has a smaller CR value than No. 12 (Waspalloy equivalent alloy), and it is understood that the large ingot manufacturability is better than that of Waspaloy equivalent alloy. Further, the alloy No. with the Mo amount in the range of 9.0 to 12.0%. In alloy Nos. 2, 3, 5, and 7, Macro-segregation defects are suppressed over the entire surface of the ingot as in the case of the Ni-based super heat-resistant alloy disclosed in Patent Document 1 of Japanese Patent No. It can be seen that 2, 3, 5, and 7 have the same level of large ingot manufacturability as the Ni-base superalloy disclosed in Patent Document 1. As shown in the above results, in the alloy system of the present invention, by appropriately selecting the amount of Mo, it is possible to realize very good large-sized ingot manufacturability.

本発明は大型インゴット製造性と高温強度に優れているため、高温強度が必要である大型部品を用いる用途に適用できる。

INDUSTRIAL APPLICABILITY The present invention is excellent in large-sized ingot manufacturability and high-temperature strength, so that it can be applied to applications using large parts requiring high-temperature strength.

Claims (2)

質量%で、C:0.001〜0.1%、Cr:15〜20%、Co:15〜25%、Al:3.0〜6.0%、Mo:5.0〜14.0%、Mg:0.02%以下、B:0.03以下、Zr:0.03%以下、残部はNi及び不可避的不純物からなることを特徴とするNi基超耐熱合金。   In mass%, C: 0.001 to 0.1%, Cr: 15 to 20%, Co: 15 to 25%, Al: 3.0 to 6.0%, Mo: 5.0 to 14.0% , Mg: 0.02% or less, B: 0.03% or less, Zr: 0.03% or less, the balance being Ni and unavoidable impurities. 前記Moが質量%で9.0〜12.0%であることを特徴とする請求項1に記載のNi基超耐熱合金。

The Ni-based super heat-resistant alloy according to claim 1, wherein the Mo is 9.0 to 12.0% by mass%.

JP2019045429A 2018-09-21 2019-03-13 Ni-BASED SUPERALLOY Pending JP2020050946A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018177170 2018-09-21
JP2018177170 2018-09-21

Publications (1)

Publication Number Publication Date
JP2020050946A true JP2020050946A (en) 2020-04-02

Family

ID=69995966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045429A Pending JP2020050946A (en) 2018-09-21 2019-03-13 Ni-BASED SUPERALLOY

Country Status (1)

Country Link
JP (1) JP2020050946A (en)

Similar Documents

Publication Publication Date Title
JP5232492B2 (en) Ni-base superalloy with excellent segregation
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
CN106119608B (en) Article and method of forming an article
JP5500452B2 (en) Ni-based alloy manufacturing method and Ni-based alloy
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
JP5537587B2 (en) Ni-base alloy welding material and welding wire, welding rod and welding powder using the same
US11414727B2 (en) Superalloy without titanium, powder, method and component
JP6733210B2 (en) Ni-based superalloy for hot forging
JP6358503B2 (en) Consumable electrode manufacturing method
KR102048810B1 (en) Low thermal expansion super heat-resistant alloy and method of manufacturing the same
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6068935B2 (en) Ni-base casting alloy and steam turbine casting member using the same
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
KR101601207B1 (en) super heat resistant alloy and the manufacturing method thereof
JP2020050946A (en) Ni-BASED SUPERALLOY
RU2581337C1 (en) Heat-resistant nickel-based alloy for casting gas turbine hot section parts of plants with equiaxial structure
JP7187864B2 (en) Alloy manufacturing method
TWI663263B (en) High creep-resistant equiaxed grain nickel-based superalloy
EP3168320B1 (en) Austenite steel, and austenite steel casting using same
JP2006322025A (en) Heat resistant cast alloy and its manufacturing method
TW201522656A (en) Equiaxed grain nickel-base casting alloy for high stress application
JP2005144488A (en) Build-up welding material for continuous casting roll and roll using it
JP2021116432A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2017145437A (en) Ferritic stainless steel
JP2010242156A (en) Ni-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE STRENGTH, CASTABILITY AND WELDABILITY FOR CAST COMPONENT OF STEAM TURBINE, AND MEMBER FOR STEAM TURBINE