JP2020046231A - Method and device for three-dimensional display of radiation distribution - Google Patents

Method and device for three-dimensional display of radiation distribution Download PDF

Info

Publication number
JP2020046231A
JP2020046231A JP2018173023A JP2018173023A JP2020046231A JP 2020046231 A JP2020046231 A JP 2020046231A JP 2018173023 A JP2018173023 A JP 2018173023A JP 2018173023 A JP2018173023 A JP 2018173023A JP 2020046231 A JP2020046231 A JP 2020046231A
Authority
JP
Japan
Prior art keywords
radiation
dimensional
radiation detector
distribution
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018173023A
Other languages
Japanese (ja)
Other versions
JP7165348B2 (en
Inventor
慎吾 小澤
Shingo Ozawa
慎吾 小澤
洋 菅原
Hiroshi Sugawara
洋 菅原
建男 鳥居
Takeo Torii
建男 鳥居
優樹 佐藤
Masaki Sato
優樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Chiyoda Technol Corp
Original Assignee
Japan Atomic Energy Agency
Chiyoda Technol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Chiyoda Technol Corp filed Critical Japan Atomic Energy Agency
Priority to JP2018173023A priority Critical patent/JP7165348B2/en
Publication of JP2020046231A publication Critical patent/JP2020046231A/en
Application granted granted Critical
Publication of JP7165348B2 publication Critical patent/JP7165348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

To detect the position of a radioactive material in a wide range of a ground surface with high accuracy and displays it in three-dimensions.SOLUTION: The present invention measures radiation using a radiation detector (Compton camera 20) mounted in a moving vehicle (drone 10) capable of detecting a three-dimensional position; creates a three-dimensional map of radiation distribution by using the result of measurement by the radiation detector (20) at a plurality of positions obtained along with the movement of the moving vehicle (10) and the three-dimensional position information of the moving vehicle (10); and corrects a radiation measured value by the radiation detector (20) for time according to the time taken for measurement per unit area of a ground surface (6) when stacking the three-dimensional map of radiation distribution on top of three-dimensional topographic data or aerial photograph. Furthermore, it is possible to correct the radiation measured value for distance according to the distance between the radiation detector (20) and the ground surface (6), or correct the same for angle according to the incident angle of radiation relative to the radiation detector (20).SELECTED DRAWING: Figure 1

Description

本発明は、放射線分布の3次元表示方法及び装置に係り、特に、地表の広い範囲における放射性物質の位置を高精度で検出して3次元表示することが可能な、放射線分布の3次元表示方法及び装置に関する。   The present invention relates to a method and apparatus for displaying a three-dimensional radiation distribution, and more particularly, to a three-dimensional display method of a radiation distribution capable of detecting a position of a radioactive material over a wide area on the ground surface with high accuracy and displaying the three-dimensional image. And an apparatus.

事故などにより大量の放射性物質が環境中に散逸して広域で汚染が生じた際、放射性物質が集積して高線量率の箇所(ホットスポット)を割出し、放射性物質あるいは放射性物質が付着したものを除去あるいは遮蔽して除染する必要がある。このような除染作業を行うに際しては、広域で放射線のモニタリングを行う必要がある。広域で放射線のモニタリングを行うものとして、コンプトンカメラを航空機やラジコンヘリコプタなどの移動体に搭載して地表の放射性物質を検知する方法が特許文献1や2に記載されている。   When a large amount of radioactive material diffuses into the environment due to an accident and causes pollution over a wide area, the radioactive material accumulates to determine high-dose rate spots (hot spots), and the radioactive material or radioactive material is attached Must be removed or shielded for decontamination. When performing such decontamination work, it is necessary to monitor radiation over a wide area. As methods for monitoring radiation over a wide area, Patent Documents 1 and 2 disclose a method of mounting a Compton camera on a moving object such as an aircraft or a radio-controlled helicopter and detecting radioactive substances on the ground.

特開2014−145628号公報JP 2014-145628 A 特開2016−20832号公報JP-A-2006-20832

しかしながら従来は、3次元の地形データやコンプトンカメラによる測定時間を考慮していなかったため、高精度の検出・表示は困難であった。   However, conventionally, three-dimensional terrain data and measurement time by a Compton camera were not taken into account, so that it was difficult to detect and display with high accuracy.

本発明は、前記従来の問題点を解決するべくなされたもので、3次元の地形データ及び測定にかかった時間を考慮することにより、地表の広い範囲における放射性物質の位置を高精度で検出して3次元表示可能とすることを課題とする。   The present invention has been made in order to solve the above-mentioned conventional problems. By taking into account three-dimensional terrain data and the time taken for measurement, the position of a radioactive material in a wide area on the ground can be detected with high accuracy. To enable three-dimensional display.

本発明は、3次元位置を検出可能な移動体に搭載された放射線検出器を用いて放射線を測定し、前記移動体の移動に伴って得られる複数位置での前記放射線検出器による測定結果と前記移動体の3次元位置情報とを用いることによって、放射線分布の3次元マップを作成し、該放射線分布の3次元マップを、3次元の地形データ又は航空写真と重ね合せて表示する際に、前記放射線検出器による放射線測定値を、地表面の単位面積毎の測定にかかった時間に応じて時間補正することにより、前記課題を解決するものである。   The present invention measures radiation using a radiation detector mounted on a movable body capable of detecting a three-dimensional position, and the measurement results by the radiation detector at a plurality of positions obtained with the movement of the movable body. When a three-dimensional map of the radiation distribution is created by using the three-dimensional position information of the moving object and the three-dimensional map of the radiation distribution is displayed by being superimposed on three-dimensional topographic data or aerial photograph, The object of the present invention is to solve the problem by time-correcting a radiation measurement value by the radiation detector in accordance with a time required for measurement per unit area of the ground surface.

ここで、前記放射線検出器による放射線測定値を、該放射線検出器と地表面の距離に応じて距離補正することができる。   Here, the radiation measurement value by the radiation detector can be distance-corrected according to the distance between the radiation detector and the ground surface.

又、前記放射線検出器による放射線測定値を、該放射線検出器に対する放射線の入射角度に応じて角度補正することができる。   Further, the radiation measurement value of the radiation detector can be angle-corrected in accordance with the incident angle of radiation on the radiation detector.

又、前記移動体をドローン、前記放射線検出器をコンプトンカメラとすることができる。   Further, the moving body may be a drone, and the radiation detector may be a Compton camera.

本発明は、又、3次元位置を検出可能な移動体と、該移動体に搭載された放射線検出器と、前記移動体の移動に伴って得られる複数位置での前記放射線検出器による測定結果と前記移動体の3次元位置情報とを用いることによって放射線分布の3次元マップを作成する手段と、3次元の地形データ又は航空写真を取得する手段と、前記放射線分布の3次元マップを該3次元の地形データ又は航空写真と重ね合せて表示する手段と、前記放射線検出器による放射線測定値を、地表面の単位面積毎の測定にかかった時間に応じて時間補正する手段と、を備えたことを特徴とする放射線分布の3次元表示装置を提供するものである。   The present invention also provides a moving body capable of detecting a three-dimensional position, a radiation detector mounted on the moving body, and measurement results obtained by the radiation detector at a plurality of positions obtained as the moving body moves. Means for creating a three-dimensional map of the radiation distribution by using the information and the three-dimensional position information of the moving object; means for acquiring three-dimensional topographic data or aerial photograph; Means for superimposing and displaying dimensional topographic data or aerial photograph, and means for time-correcting the radiation measurement value by the radiation detector according to the time required for measurement per unit area of the ground surface. It is another object of the present invention to provide a three-dimensional display device for radiation distribution.

ここで、前記放射線検出器による放射線測定値を、該放射線検出器と地表面の距離に応じて距離補正する手段を更に備えることができる。   Here, it is possible to further include a unit for correcting a distance measured by the radiation detector according to a distance between the radiation detector and the ground surface.

又、前記放射線検出器による放射線測定値を、該放射線検出器に対する放射線の入射角度に応じて角度補正する手段を更に備えることができる。   The apparatus may further include means for correcting the angle of the radiation measured by the radiation detector according to the incident angle of the radiation to the radiation detector.

本発明によれば、地表面の単位面積毎の測定にかかった時間を考慮して放射線分布の3次元マップを作成し、該放射線分布の3次元マップを3次元の地形データ又は航空写真と重ね合せて表示するようにしたので、地表の広い範囲における放射性物質の位置を高精度で検出して3次元表示することが可能である。特に、放射線検出器による放射線測定値を、放射線検出器と地表面の距離に応じて距離補正したり、放射線検出器に対する放射線の入射角度に応じて角度補正するようにした場合には、更に高精度の検出・表示が可能となる。   According to the present invention, a three-dimensional map of the radiation distribution is created in consideration of the time required for measurement per unit area of the ground surface, and the three-dimensional map of the radiation distribution is superimposed on the three-dimensional topographic data or the aerial photograph. Since they are displayed together, it is possible to detect the position of the radioactive substance over a wide area of the ground surface with high accuracy and display the three-dimensional display. In particular, when the radiation measurement value by the radiation detector is corrected for the distance according to the distance between the radiation detector and the ground surface or when the angle is corrected according to the incident angle of the radiation to the radiation detector, an even higher value is obtained. Accuracy can be detected and displayed.

本発明の第1実施形態により放射線データを取得している状態を示す斜視図FIG. 2 is a perspective view illustrating a state in which radiation data is acquired according to the first embodiment of the present invention. 第1実施形態で用いるコンプトンカメラが搭載されたドローンの構成を示す斜視図FIG. 2 is a perspective view illustrating a configuration of a drone equipped with a Compton camera used in the first embodiment. 同じくコンプトンカメラの原理を説明するための(A)コンプトンカメラの構成図、及び、(B)コンプトンコーンと線源位置の関係を示す平面図Similarly, (A) a configuration diagram of the Compton camera for explaining the principle of the Compton camera, and (B) a plan view showing the relationship between the Compton cone and the source position. 同じくコンプトンコーン再構成時の距離補正を説明するための(A)斜視図、及び、(B)補正係数の例を示す図Similarly, (A) is a perspective view for explaining distance correction at the time of Compton cone reconstruction, and (B) is a diagram showing an example of a correction coefficient. 同じくコンプトンコーン再構成時の角度補正を説明するための(A)角度特性イメージ図、(B)補正係数の例を示す図、及び、(C)角度補正されたコンプトンコーンの例を示す図Similarly, (A) an angle characteristic image diagram, (B) a diagram showing an example of a correction coefficient, and (C) a diagram showing an example of an angle-corrected Compton cone for explaining angle correction at the time of reconstruction of a Compton cone. 同じく放射線分布再構成時の測定時間補正を説明するための(A)撮影イメージ、(B)測定時間分布、及び、(C)補正係数の例を示す図FIG. 9A is a view showing an example of a photographed image, FIG. 8B is a view showing an example of a measurement time distribution, and FIG. 第1実施形態の処理手順を示す流れ図5 is a flowchart illustrating a processing procedure according to the first embodiment. 第1実施形態で取得した地形データの例を示す図FIG. 4 is a diagram illustrating an example of topographic data acquired in the first embodiment. 同じく放射線分布の例を示す図Diagram showing an example of radiation distribution 第1実施形態で放射線分布と地形データを合成した例を示す図FIG. 6 is a diagram showing an example of combining radiation distribution and topographic data in the first embodiment. 同じく放射線分布と航空写真を合成した例を示す図Diagram showing an example of combining radiation distribution and aerial photography 本発明の第2実施形態で用いるコンプトンカメラと光学カメラが搭載されたドローンの構成を示す斜視図A perspective view showing a configuration of a drone equipped with a Compton camera and an optical camera used in a second embodiment of the present invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments and examples. In addition, constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined, or may be appropriately selected and used.

本発明の第1実施形態では、図1に概要を示す如く、コンプトンカメラ20を搭載したドローン10を移動(飛行)しながら放射線データを取得する。   In the first embodiment of the present invention, as schematically shown in FIG. 1, radiation data is acquired while moving (flighting) a drone 10 equipped with a Compton camera 20.

前記ドローン10は、図2に詳細に示す如く、フレーム12に取付けられたプロペラ14と、前記フレーム12にステー16及びジンバル18を介して取付けられたコンプトンカメラ20と、前記フレーム12に搭載された情報前処理用の小型コンピュータ(PC)32、地上との通信用の通信器34と、電源供給用バッテリー36と、を備えている。   As shown in detail in FIG. 2, the drone 10 has a propeller 14 attached to a frame 12, a Compton camera 20 attached to the frame 12 via a stay 16 and a gimbal 18, and a drone 10 mounted on the frame 12. A small computer (PC) 32 for information preprocessing, a communication device 34 for communication with the ground, and a battery 36 for power supply are provided.

図1において、40は地上側の通信器、42は情報主処理用のコンピュータ(PC)、44は表示用ディスプレイである。   In FIG. 1, 40 is a communication device on the ground side, 42 is a computer (PC) for information main processing, and 44 is a display for display.

前記コンプトンカメラ20は、ジンバル18を介してステー16に取付けられており、ドローン10の飛行状態に係わらず、カメラの撮影方向を安定させることができるようにされている。   The Compton camera 20 is attached to the stay 16 via a gimbal 18 so that the camera shooting direction can be stabilized regardless of the flying state of the drone 10.

前記コンプトンカメラ20は、図3(A)に例示する如く、シンチレータアレイ22A及びシリコンフォトマルチプライヤ(SiPM)アレイ22Bで構成される、散乱位置とエネルギーを検出するための散乱体検出器22と、シンチレータアレイ24A及びSiPMアレイ24Bで構成される、吸収位置とエネルギーを検出するための吸収体検出器24を備えることができる。   As shown in FIG. 3A, the Compton camera 20 includes a scintillator array 22A and a silicon photomultiplier (SiPM) array 22B, and a scatterer detector 22 for detecting a scattering position and energy; An absorber detector 24 for detecting an absorption position and energy, which is constituted by the scintillator array 24A and the SiPM array 24B, can be provided.

そして、線源8のエネルギーEγ、及び、コンプトン散乱の散乱角θを、散乱体検出器22及び吸収体検出器24で測定された位置X、X、及び、エネルギーE、Eを元に、次式で算出する。
ここでmは電子の質量、Cは光速であり、mは電子の静止エネルギーを表わす。
Then, the energy E γ of the radiation source 8 and the scattering angle θ of the Compton scattering are calculated using the positions X 1 , X 2 and the energies E 1 , E 2 measured by the scatterer detector 22 and the absorber detector 24. Is calculated based on the following equation.
Here, me is the mass of the electron, C is the speed of light, and me C 2 represents the resting energy of the electron.

得られたコンプトンコーン26を図3(B)に示す如く重ね合せることで、線源8の位置を特定することができる。   By superposing the obtained Compton cones 26 as shown in FIG. 3B, the position of the radiation source 8 can be specified.

そこで前記ドローン10からは、方位角、ロール、ピッチなどの姿勢情報と、緯度、経度、高度などの位置情報を取得する。前記コンプトンカメラ20からは、散乱角θ及びコンプトンコーン26の方向を取得する。   Therefore, from the drone 10, posture information such as azimuth, roll, and pitch, and position information such as latitude, longitude, and altitude are acquired. From the Compton camera 20, the scattering angle θ and the direction of the Compton cone 26 are acquired.

ドローン10及びコンプトンカメラ20から取得した情報を記録・統合し、別に取得した3次元の地形モデル上にコンプトンコーン26を描画することで、放射線分布の再構成を行なう。   The information acquired from the drone 10 and the Compton camera 20 is recorded and integrated, and the Compton cone 26 is drawn on a separately acquired three-dimensional terrain model, thereby reconstructing the radiation distribution.

なお、コンプトンカメラ20で放射線データを取得する場合、放射線の特性及びコンプトンカメラ20の方向特性を考慮し、コンプトンコーン26の再構成時に、距離補正及び角度補正の補正係数を乗ずることで放射線分布を正しく表示するようにしている。   When acquiring the radiation data with the Compton camera 20, the radiation distribution is multiplied by the correction coefficient of the distance correction and the angle correction at the time of the reconstruction of the Compton cone 26 in consideration of the characteristic of the radiation and the directional characteristic of the Compton camera 20. It is displayed correctly.

即ち、図4(A)に示す如く、コンプトンカメラ20と地表6との距離により、距離が小さい所の影響が大きく、距離が大きい所の影響が小さくなるので、地形データとドローン10の位置情報から、地形モデル上に描画されたコンプトンコーン26とコンプトンカメラ20の距離Lを算出し、図4(B)に例示するような、距離0の時に1より小さくなり、距離が大きくなると1より大きくなる距離補正係数A、例えば次式に示す如く、距離Lの2乗に比例する距離補正係数Aを算出し、放射線測定値に乗ずることによって補正してコンプトンコーン26を描画する。
A=a×L …(3)
ここで、aは任意数である。
That is, as shown in FIG. 4A, the distance between the Compton camera 20 and the ground surface 6 has a large effect at a small distance and a small effect at a large distance. 4B, the distance L between the Compton cone 26 and the Compton camera 20 drawn on the terrain model is calculated. As shown in FIG. 4B, the distance L is smaller than 1 when the distance is 0, and larger than 1 when the distance is large. A distance correction coefficient A that is proportional to the square of the distance L is calculated as shown in the following formula, and the Compton cone 26 is drawn after being corrected by multiplying by the radiation measurement value.
A = a × L 2 (3)
Here, a is an arbitrary number.

又、図5(A)に示す如く、放射線検出器(本実施形態ではコンプトンカメラ20)に対する線源8からの放射線の入射角度によっても特性が異なり、線源8がコンプトンカメラ20と正対する所の影響が大きく、コンプトンカメラ20に対して斜めになる所の影響が小さくなるので、角度毎に設定された、図5(B)に示すような、角度0の時に最小値1となる角度補正係数を放射線測定値に乗ずることによって補正して、図5(C)に示すような、中心から遠い部分が強調されたコンプトンコーン26を描画する。なお、使用するコンプトンカメラ20により角度特性が異なるため、実測もしくはシミュレーションによって角度補正係数を求めることができる。   Further, as shown in FIG. 5A, the characteristics differ depending on the incident angle of the radiation from the radiation source 8 to the radiation detector (the Compton camera 20 in the present embodiment), and the radiation source 8 faces the Compton camera 20 directly. 5B, and the influence of the position oblique to the Compton camera 20 is reduced, so that the angle correction which is set for each angle and becomes the minimum value 1 when the angle is 0 as shown in FIG. The coefficient is corrected by multiplying the radiation measurement value to draw the Compton cone 26 in which a portion far from the center is emphasized as shown in FIG. Since the angle characteristics differ depending on the Compton camera 20 to be used, the angle correction coefficient can be obtained by actual measurement or simulation.

又、移動飛行撮影した放射線データから放射線分布の再構成を行う場合、撮影範囲の箇所毎にコンプトンカメラ20の撮影視野に入る時間、即ち、測定時間が異なってしまう。そこで、図6(A)に例示するようなドローン10の飛行情報及びコンプトンカメラ20の視野角から地表面での視野の重複した時間を積算して、図6(B)に例示するような、地表面の単位面積毎の測定時間tの分布を計算する。図6(B)において、明るい所は測定時間が長く、暗い所は測定時間が短い。   Further, when reconstructing the radiation distribution from the radiation data obtained by moving flight imaging, the time in the imaging field of view of the Compton camera 20, that is, the measurement time, differs for each location in the imaging range. Therefore, the overlapping time of the field of view on the ground surface is integrated from the flight information of the drone 10 and the viewing angle of the Compton camera 20 as illustrated in FIG. 6 (A), and as illustrated in FIG. 6 (B). The distribution of the measurement time t per unit area of the ground surface is calculated. In FIG. 6B, a bright place has a long measurement time, and a dark place has a short measurement time.

そして、例えば測定時間が最小の時に最大値となる測定時間補正係数B、例えば次式に示す如く、測定時間tの逆数に比例する測定時間補正係数Bを放射線測定値に乗ずることによって補正して、図6(C)に例示するような放射線分布を描画する。
ここで、bは任意数である。
Then, for example, the radiation measurement value is corrected by multiplying the radiation measurement value by a measurement time correction coefficient B which becomes a maximum value when the measurement time is minimum, for example, as shown in the following equation, a measurement time correction coefficient B proportional to the reciprocal of the measurement time t. , And a radiation distribution as illustrated in FIG.
Here, b is an arbitrary number.

これにより、測定時間が短い場合に検出される放射線が、測定時間が長い場合よりも小さくなることによる誤差を防ぐことができる。   Accordingly, it is possible to prevent an error due to the fact that radiation detected when the measurement time is short is smaller than when the measurement time is long.

ドローン10の飛行情報及びコンプトンカメラ20で取得した放射線データを地形モデルに投影して、放射線分布の3次元再構成を行う。図7に放射線分布再構成の手順を示す。   The flight information of the drone 10 and the radiation data acquired by the Compton camera 20 are projected onto a terrain model to perform a three-dimensional reconstruction of the radiation distribution. FIG. 7 shows the procedure of radiation distribution reconstruction.

まず、ステップ100で、図8に例示するような地形の3次元モデルを作成する。例えば、別途、空撮を行って地形データを取得し、3次元モデルを作成することができる。この3次元モデルの上にコンプトンカメラ20で取得した放射線分布の再構成を行う。なお、地形の3次元モデルが別途入手できる場合には、これを利用しても良い。   First, in step 100, a three-dimensional model of the terrain as illustrated in FIG. 8 is created. For example, a three-dimensional model can be created by separately performing aerial photography to acquire terrain data. The radiation distribution acquired by the Compton camera 20 is reconstructed on the three-dimensional model. If a three-dimensional model of the terrain can be obtained separately, this may be used.

次いでステップ110で、コンプトンカメラ20と地表6との距離に応じて、図4を用いて説明したような距離補正を行う。   Next, in step 110, distance correction as described with reference to FIG. 4 is performed according to the distance between the Compton camera 20 and the ground surface 6.

次いでステップ120で、コンプトンカメラ20と線源8の角度に応じて、図5を用いて説明したような角度補正を行う。   Next, in step 120, the angle correction as described with reference to FIG. 5 is performed according to the angle between the Compton camera 20 and the radiation source 8.

次いでステップ130で、測定時間に応じて、図6を用いて説明したような測定時間分布補正係数を求める。   Next, at step 130, a measurement time distribution correction coefficient as described with reference to FIG. 6 is obtained according to the measurement time.

そして、ステップ140で、測定時間分布を補正して、放射線分布を再構成し、図9に例示したような放射線分布を取得する。   Then, in step 140, the measurement time distribution is corrected, the radiation distribution is reconstructed, and the radiation distribution as illustrated in FIG. 9 is obtained.

次いでステップ150で、図8に例示したような地形データと、図9に例示したような放射線分布の取得画像とを組合せて、図10に例示するような放射線分布と地形データの組合せ画像を得てディスプレイ44に表示する。   Next, in step 150, the terrain data as illustrated in FIG. 8 and the acquired image of the radiation distribution as illustrated in FIG. 9 are combined to obtain a combined image of the radiation distribution and terrain data as illustrated in FIG. To be displayed on the display 44.

本実施形態においては、測定時間による補正だけでなく、角度補正と距離補正も行っているので、特に高精度の放射線分布を得ることが可能である。なお、必要に応じて、角度補正や距離補正を省略することもできる。   In the present embodiment, since not only the correction based on the measurement time but also the angle correction and the distance correction are performed, it is possible to obtain a particularly highly accurate radiation distribution. Note that angle correction and distance correction can be omitted as necessary.

又、地形データと組合せる代わりに、3次元的な表示が可能な斜め方向から撮影した航空写真とを組合せて、図11に示す如く放射線分布と航空写真の組合せ画像をディスプレイ44に表示することも可能である。   Further, instead of combining with the topographical data, combining with the aerial photograph taken from an oblique direction capable of three-dimensional display, a combined image of the radiation distribution and the aerial photograph is displayed on the display 44 as shown in FIG. Is also possible.

前記地形データは、図12に示す第2実施形態のように、第1実施形態と同様のドローン10に光学カメラ50を搭載して、この光学カメラ50で取得した画像から作成することも可能である。又、図11に示したような航空写真を光学カメラ50で取得することも可能である。   The terrain data can also be created from an image acquired by the optical camera 50 by mounting the optical camera 50 on the same drone 10 as in the first embodiment, as in the second embodiment shown in FIG. is there. Also, an aerial photograph as shown in FIG.

前記実施形態においては、ドローン10側の通信器34から地上側の通信器40に測定データを送っていたので、迅速な処理が可能である。なお、ドローン10側にメモリーを設けて、測定データを保存し、ドローン10が地上に戻ってきてから、後で読み出すようにすることもできる。   In the above-described embodiment, since the measurement data is transmitted from the communication device 34 on the drone 10 side to the communication device 40 on the ground side, quick processing is possible. Note that a memory may be provided on the drone 10 side to store the measurement data and read out later after the drone 10 returns to the ground.

又、前記実施形態においては、放射線検出器として指向性が有るコンプトンカメラを用いていたので、詳細な放射線分布を得ることができる。なお、コンプトンカメラの構成は、実施形態のシンチレータアレイとSiPMアレイの組合せに限定されず、Cd−Zn−Te半導体素子を積層したCZT検出器を用いたり、SiPMアレイの代わりに光電子増倍管を用いて構成することもできる。   In the above embodiment, since a Compton camera having directivity is used as the radiation detector, a detailed radiation distribution can be obtained. Note that the configuration of the Compton camera is not limited to the combination of the scintillator array and the SiPM array of the embodiment. It can also be configured using.

又、移動体としてドローンを用いていたので、手軽、安価、安定な飛行が可能である。   In addition, since a drone is used as a moving body, simple, inexpensive and stable flight is possible.

なお、放射線検出器や移動体の種類はこれに限定されず、例えばピンホールカメラを無人又は有人のヘリコプターや自動車に搭載することも可能である。   Note that the types of the radiation detector and the moving body are not limited to these, and for example, a pinhole camera can be mounted on an unmanned or manned helicopter or automobile.

6…地表
8…線源
10…ドローン
20…コンプトンカメラ
42…コンピュータ(PC)
44…ディスプレイ
50…光学カメラ
6 ... ground surface 8 ... radiation source 10 ... drone 20 ... Compton camera 42 ... computer (PC)
44 ... Display 50 ... Optical camera

Claims (7)

3次元位置を検出可能な移動体に搭載された放射線検出器を用いて放射線を測定し、
前記移動体の移動に伴って得られる複数位置での前記放射線検出器による測定結果と前記移動体の3次元位置情報とを用いることによって、放射線分布の3次元マップを作成し、
該放射線分布の3次元マップを、3次元の地形データ又は航空写真と重ね合せて表示する際に、
前記放射線検出器による放射線測定値を、地表面の単位面積毎の測定にかかった時間に応じて時間補正することを特徴とする放射線分布の3次元表示方法。
Measuring radiation using a radiation detector mounted on a moving object capable of detecting a three-dimensional position,
By using the measurement results of the radiation detector at a plurality of positions obtained with the movement of the moving body and the three-dimensional position information of the moving body, a three-dimensional map of the radiation distribution is created,
When displaying the three-dimensional map of the radiation distribution by superimposing it on three-dimensional terrain data or aerial photograph,
3. A three-dimensional display method of a radiation distribution, wherein the radiation measurement value by the radiation detector is time-corrected in accordance with the time required for measurement per unit area of the ground surface.
前記放射線検出器による放射線測定値を、該放射線検出器と地表面の距離に応じて距離補正することを特徴とする請求項1に記載の放射線分布の3次元表示方法。   The three-dimensional radiation distribution display method according to claim 1, wherein the radiation measurement value of the radiation detector is corrected in accordance with a distance between the radiation detector and the ground surface. 前記放射線検出器による放射線測定値を、該放射線検出器に対する放射線の入射角度に応じて角度補正することを特徴とする請求項1又は2に記載の放射線分布の3次元表示方法。   3. The method according to claim 1, wherein the radiation measurement value of the radiation detector is corrected in accordance with an incident angle of radiation to the radiation detector. 前記移動体がドローン、前記放射線検出器がコンプトンカメラであることを特徴とする請求項1乃至3のいずれかに記載の放射線分布の3次元表示方法。   4. The method according to claim 1, wherein the moving body is a drone, and the radiation detector is a Compton camera. 3次元位置を検出可能な移動体と、
該移動体に搭載された放射線検出器と、
前記移動体の移動に伴って得られる複数位置での前記放射線検出器による測定結果と前記移動体の3次元位置情報とを用いることによって放射線分布の3次元マップを作成する手段と、
3次元の地形データ又は航空写真を取得する手段と、
前記放射線分布の3次元マップを該3次元の地形データ又は航空写真と重ね合せて表示する手段と、
前記放射線検出器による放射線測定値を、地表面の単位面積毎の測定にかかった時間に応じて時間補正する手段と、
を備えたことを特徴とする放射線分布の3次元表示装置。
A moving body capable of detecting a three-dimensional position,
A radiation detector mounted on the moving body;
Means for creating a three-dimensional map of radiation distribution by using measurement results of the radiation detector at a plurality of positions obtained with the movement of the moving body and three-dimensional position information of the moving body,
Means for acquiring three-dimensional terrain data or aerial photographs;
Means for superimposing and displaying the three-dimensional map of the radiation distribution with the three-dimensional terrain data or the aerial photograph;
A means for correcting the radiation measurement value by the radiation detector according to the time taken for measurement per unit area of the ground surface,
A three-dimensional display device for radiation distribution, comprising:
前記放射線検出器による放射線測定値を、該放射線検出器と地表面の距離に応じて距離補正する手段を更に備えたことを特徴とする請求項5に記載の放射線分布の3次元表示装置。   The three-dimensional display device for radiation distribution according to claim 5, further comprising: means for correcting a distance measured by the radiation detector according to a distance between the radiation detector and the ground surface. 前記放射線検出器による放射線測定値を、該放射線検出器に対する放射線の入射角度に応じて角度補正する手段を更に備えたことを特徴とする請求項5又は6に記載の放射線分布の3次元表示装置。   7. The three-dimensional radiation distribution display device according to claim 5, further comprising: means for correcting an angle of the radiation measured by the radiation detector in accordance with an incident angle of the radiation to the radiation detector. .
JP2018173023A 2018-09-14 2018-09-14 Three-dimensional display method and apparatus for radiation distribution Active JP7165348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173023A JP7165348B2 (en) 2018-09-14 2018-09-14 Three-dimensional display method and apparatus for radiation distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173023A JP7165348B2 (en) 2018-09-14 2018-09-14 Three-dimensional display method and apparatus for radiation distribution

Publications (2)

Publication Number Publication Date
JP2020046231A true JP2020046231A (en) 2020-03-26
JP7165348B2 JP7165348B2 (en) 2022-11-04

Family

ID=69901203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173023A Active JP7165348B2 (en) 2018-09-14 2018-09-14 Three-dimensional display method and apparatus for radiation distribution

Country Status (1)

Country Link
JP (1) JP7165348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046408A (en) * 2018-09-21 2020-03-26 学校法人北里研究所 Radiation detector, radiation detection method and program
CN112180418A (en) * 2020-04-21 2021-01-05 宁波甬东核辐射监测有限公司 Method for positioning radioactive source, flight equipment, ground workstation and system
KR20210142298A (en) * 2020-05-18 2021-11-25 학교법인 김천대학교 Unmanned remote apparatus for detecting the radiation
JP7437337B2 (en) 2021-03-02 2024-02-22 株式会社日立製作所 Internal state imaging device and internal state imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000828A1 (en) * 2008-10-03 2012-01-05 Chevron U.S.A. Inc. Hydrodemetallization catalyst and process
JP2012251918A (en) * 2011-06-06 2012-12-20 Kodaira Associates Kk Device for generating radioactivity amount distribution information
JP2014102134A (en) * 2012-11-20 2014-06-05 Hitachi Consumer Electronics Co Ltd Radiation measurement method
JP2014145628A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd System and method for creating radioactive substance distribution map
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000828A1 (en) * 2008-10-03 2012-01-05 Chevron U.S.A. Inc. Hydrodemetallization catalyst and process
JP2012251918A (en) * 2011-06-06 2012-12-20 Kodaira Associates Kk Device for generating radioactivity amount distribution information
JP2014102134A (en) * 2012-11-20 2014-06-05 Hitachi Consumer Electronics Co Ltd Radiation measurement method
JP2014145628A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd System and method for creating radioactive substance distribution map
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRANK MASCARICH, ET AL.: "Radiation Source Localization in GPS-Denied Environments Using Aerial Robots", 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION(ICRA), JPN6022026825, 13 September 2018 (2018-09-13), US, pages 6537 - 6544, ISSN: 0004817192 *
ICRA 2018: "Radiation Source Localization in GPS-Denied Environments Using Aerial Robots", YOUTUBE [ONLINE] [VIDEO], JPN6022026822, 16 May 2018 (2018-05-16), US, ISSN: 0004817193 *
眞田 幸尚: "環境回復の研究開発 −高度化する無人モニタリング技術−", 平成28年度筑波大学 構造エネルギー工学大学院特別講義, JPN6022026821, 6 July 2016 (2016-07-06), JP, ISSN: 0004817194 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046408A (en) * 2018-09-21 2020-03-26 学校法人北里研究所 Radiation detector, radiation detection method and program
JP7014423B2 (en) 2018-09-21 2022-02-01 学校法人北里研究所 Radiation detectors, radiation detection methods and programs
CN112180418A (en) * 2020-04-21 2021-01-05 宁波甬东核辐射监测有限公司 Method for positioning radioactive source, flight equipment, ground workstation and system
KR20210142298A (en) * 2020-05-18 2021-11-25 학교법인 김천대학교 Unmanned remote apparatus for detecting the radiation
WO2021235777A1 (en) * 2020-05-18 2021-11-25 학교법인 김천대학교 Unmanned remote radiation detector
KR102383581B1 (en) * 2020-05-18 2022-04-07 김천대학교 산학협력단 Unmanned remote apparatus for detecting the radiation
JP7437337B2 (en) 2021-03-02 2024-02-22 株式会社日立製作所 Internal state imaging device and internal state imaging method

Also Published As

Publication number Publication date
JP7165348B2 (en) 2022-11-04

Similar Documents

Publication Publication Date Title
JP2020046231A (en) Method and device for three-dimensional display of radiation distribution
KR102121974B1 (en) Disaster damage investigation·analysis system using drone and disaster damage investigation·analysis method
KR101679456B1 (en) Systems and methods of capturing large area images in detail including cascaded cameras andor calibration features
US11099030B2 (en) Attitude estimation apparatus, attitude estimation method, and observation system
CN103038761B (en) Self-alignment long-range imaging and data handling system
KR100762891B1 (en) Method and apparatus of geometric correction of image using los vector adjustment model
JP2017532798A (en) Remote image stabilization and display
US11852761B2 (en) Radiation source localization systems and methods
US7212938B2 (en) Method of using a self-locking travel pattern to achieve calibration of remote sensors using conventionally collected data
CN103675890A (en) Radiation measurement apparatus and radiation measurement method
JP2006507483A (en) Data collection and processing system by mobile body
Hudzietz et al. An experimental evaluation of 3D terrain mapping with an autonomous helicopter
JP2012251918A (en) Device for generating radioactivity amount distribution information
CN108562279A (en) A kind of unmanned plane mapping method
Mouget et al. Photogrammetric archaeological survey with UAV
CN107421503A (en) Simple detector three-linear array stereo mapping imaging method and system
KR101933520B1 (en) Photoflight system for expressing stereoscopic information
Carson et al. Helicopter flight testing of a real-time hazard detection system for safe lunar landing
US8565593B2 (en) Photographing apparatus
Sato et al. Visualization software for radioactive contamination based on Compton camera: COMRIS
Jia et al. Modeling image motion in airborne three-line-array (TLA) push-broom cameras
Qtaishat et al. Assessing the performance of different direct-georeferencing strategies
Kruck Simultaneous calibration of digital aerial survey cameras
CN109765636A (en) Space X X-ray detection X positioning accuracy ground experiment method
CN111932622B (en) Device, method and system for determining flight altitude of unmanned aerial vehicle

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7165348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150