JP2020044515A - Fluid sterilizer - Google Patents

Fluid sterilizer Download PDF

Info

Publication number
JP2020044515A
JP2020044515A JP2018176548A JP2018176548A JP2020044515A JP 2020044515 A JP2020044515 A JP 2020044515A JP 2018176548 A JP2018176548 A JP 2018176548A JP 2018176548 A JP2018176548 A JP 2018176548A JP 2020044515 A JP2020044515 A JP 2020044515A
Authority
JP
Japan
Prior art keywords
fluid
light source
channel
flow path
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018176548A
Other languages
Japanese (ja)
Other versions
JP7205128B2 (en
Inventor
剛雄 加藤
Takeo Kato
剛雄 加藤
貴則 越智
Takanori Ochi
貴則 越智
公人 櫻井
Kimito Sakurai
公人 櫻井
幸信 中川
Yukinobu Nakagawa
幸信 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2018176548A priority Critical patent/JP7205128B2/en
Priority to CN201921326091.2U priority patent/CN211141587U/en
Priority to TW108129328A priority patent/TWI804668B/en
Publication of JP2020044515A publication Critical patent/JP2020044515A/en
Application granted granted Critical
Publication of JP7205128B2 publication Critical patent/JP7205128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a fluid sterilizer capable of exchanging a component easily.SOLUTION: The fluid sterilizer of the embodiment is equipped with a channel housing chamber, a light source housing chamber, and a cooling water passage. The channel housing chamber accommodates a channel pipe for flowing a fluid and a channel part provided at an outer periphery of a channel pipe including a reflector plate for reflecting ultraviolet ray toward the channel pipe. The light source housing chamber accommodates a light source for irradiation of ultraviolet ray toward the inside of the channel pipe. The cooling water passage is provided around the light source housing chamber and a cooling water flows therein. Also, the channel housing chamber and the light source housing chamber respectively include a connection port for flowing a dry fluid from the outside.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、流体殺菌装置に関する。   Embodiments of the present invention relate to a fluid sterilization apparatus.

光源となる発光素子が発する紫外線を、例えば、水、気体等の流体が流れる流路部材の流路内へ照射することで、流体を殺菌する流体殺菌装置が知られている。この種の流体殺菌装置では、光源として、紫外線を発するLED(Light Emitting Diode)が収容される光源収容室と、LEDの発熱を抑制するための冷却水路が光源収容室の周囲に形成されているものがある。   2. Description of the Related Art There is known a fluid sterilizer that sterilizes a fluid by irradiating ultraviolet rays emitted from a light emitting element serving as a light source into a flow path of a flow path member through which a fluid such as water or gas flows. In this type of fluid sterilization apparatus, a light source accommodating chamber accommodating an LED (Light Emitting Diode) that emits ultraviolet light as a light source and a cooling water channel for suppressing heat generation of the LED are formed around the light source accommodating chamber. There is something.

特開2014−233646号公報JP 2014-233646 A

ところで、光源収容室に比べて冷却水路を流れる流体や殺菌する流体の温度が低い場合、光源収容室や流体を殺菌する処理室に結露が発生するおそれがある。このため、光源の故障や処理室における殺菌性能劣化が懸念される。   By the way, when the temperature of the fluid flowing through the cooling water passage or the temperature of the fluid to be sterilized is lower than that of the light source storage chamber, dew condensation may occur in the light source storage chamber or the processing chamber for sterilizing the fluid. For this reason, there is a concern that a light source may fail or sterilization performance may deteriorate in the processing chamber.

本発明が解決しようとする課題は、殺菌性能を維持することができる流体殺菌装置を提供することである。   The problem to be solved by the present invention is to provide a fluid sterilization apparatus that can maintain sterilization performance.

実施形態に係る流体殺菌装置は、流路収容室と、光源収容室と、冷却水路とを具備する。前記流路収容室は、流体を流すための流路管と前記流路管の外周に設けられ前記流路管に向かって紫外線を反射する反射板とを有する流路部を収容する。前記光源収容室は、前記流路管内に向けて紫外線を照射する光源を収容する。前記冷却水路は、前記光源収容室の周囲に設けられ、冷却水が流れる。また、前記流路収容室および前記光源収容室は、外部から乾燥流体を流すための接続口をそれぞれ有する。   The fluid sterilization apparatus according to the embodiment includes a flow path storage chamber, a light source storage chamber, and a cooling water passage. The flow passage accommodating chamber houses a flow passage portion having a flow passage tube for flowing a fluid and a reflection plate provided on an outer periphery of the flow passage tube and reflecting ultraviolet light toward the flow passage tube. The light source accommodating chamber accommodates a light source for irradiating the inside of the flow path tube with ultraviolet light. The cooling water passage is provided around the light source accommodating chamber, through which cooling water flows. Further, the flow channel storage chamber and the light source storage chamber each have a connection port for flowing a drying fluid from the outside.

本発明によれば、殺菌性能を維持することができる。   According to the present invention, sterilization performance can be maintained.

図1は、第1の実施形態に係る流体殺菌装置全体を示す模式図である。FIG. 1 is a schematic diagram illustrating the entire fluid sterilization apparatus according to the first embodiment. 図2は、第1の実施形態に係る流体殺菌装置の要部を示す断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating a main part of the fluid sterilization apparatus according to the first embodiment. 図3は、第2の実施形態に係る流体殺菌装置の要部を示す断面模式図である。FIG. 3 is a schematic cross-sectional view illustrating a main part of the fluid sterilization apparatus according to the second embodiment.

以下で説明する実施形態に係る流体殺菌装置1、1Aは、流路収容室20と、光源収容室30と、冷却水路35とを具備する。流路収容室20は、流体を流すための流路管22と流路管22の外周に設けられ流路管22に向かって紫外線を反射する反射板23とを有する流路部21を収容する。光源収容室30は、流路管22内に向けて紫外線を照射する光源31を収容する。冷却水路35は、光源収容室30の周囲に設けられ、冷却水が流れる。流路収容室20および光源収容室30は、外部から乾燥流体を流すための接続口C1、C2をそれぞれ有する。   The fluid sterilizers 1 and 1A according to the embodiments described below include a channel storage chamber 20, a light source storage chamber 30, and a cooling water passage 35. The flow passage accommodating chamber 20 houses a flow passage portion 21 having a flow passage tube 22 for flowing a fluid and a reflection plate 23 provided on an outer periphery of the flow passage tube 22 and reflecting ultraviolet light toward the flow passage tube 22. . The light source accommodating chamber 30 accommodates a light source 31 for irradiating the inside of the flow path tube 22 with ultraviolet rays. The cooling water passage 35 is provided around the light source accommodating chamber 30, and the cooling water flows. The channel storage chamber 20 and the light source storage chamber 30 have connection ports C1 and C2 for flowing a drying fluid from outside.

また、以下で説明する実施形態に係る流体殺菌装置1、1Aにおいて、冷却水路35は、流路管22と連通する。   In the fluid sterilizers 1 and 1A according to the embodiments described below, the cooling water passage 35 communicates with the flow pipe 22.

また、以下で説明する実施形態に係る流体殺菌装置1、1Aは、流路収容室20と光源収容室30とを連通させる連通管40を具備する。   In addition, the fluid sterilizers 1 and 1A according to the embodiments described below include a communication pipe 40 that allows the flow path housing chamber 20 and the light source housing chamber 30 to communicate with each other.

また、以下で説明する実施形態に係る流体殺菌装置1、1Aは、乾燥流体が流れる流路に設けられ、乾燥流体の圧力を計測するためのセンサScを具備する。   Further, the fluid sterilizers 1 and 1A according to the embodiments described below are provided in a flow path through which the drying fluid flows, and include a sensor Sc for measuring the pressure of the drying fluid.

また、以下で説明する実施形態に係る流体殺菌装置1、1Aは、センサScの計測結果に基づいて乾燥流体が流れる経路に設けられた開閉弁V1、V2を制御する制御部50を具備する。   In addition, the fluid sterilization apparatuses 1 and 1A according to the embodiments described below include a control unit 50 that controls on-off valves V1 and V2 provided in a path through which a drying fluid flows based on a measurement result of the sensor Sc.

(第1の実施形態)
以下、添付図面を参照して、第1の実施形態に係る流体殺菌装置1について説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。また、以下では、流体が液体である場合について説明するが、流体は気体であってもよい。また、以下では、流体殺菌装置1にて殺菌する流体について処理流体と記載する場合がある。
(First embodiment)
Hereinafter, a fluid sterilizer 1 according to a first embodiment will be described with reference to the accompanying drawings. In the embodiments, configurations having the same functions are denoted by the same reference numerals, and redundant description will be omitted. In the following, a case where the fluid is a liquid will be described, but the fluid may be a gas. In the following, a fluid to be sterilized by the fluid sterilization apparatus 1 may be referred to as a processing fluid.

まず、図1を用いて第1の実施形態に係る流体殺菌装置1の概要について説明する。図1は、第1の実施形態に係る流体殺菌装置1全体を示す模式図である。図1に示すように、流体殺菌装置1は、上流側流路部材4を介して給水タンク2と接続されるとともに、回収タンク7と下流側流路部材5を介して接続される。   First, an outline of the fluid sterilization apparatus 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating the entire fluid sterilization apparatus 1 according to the first embodiment. As shown in FIG. 1, the fluid sterilizer 1 is connected to the water supply tank 2 via an upstream flow path member 4 and is connected to a recovery tank 7 via a downstream flow path member 5.

すなわち、流体殺菌装置1は、給水タンク2から供給される液体を殺菌し、回収タンク7へ供給する。上流側流路部材4は、一端が給水タンク2に接続され、他端が流体殺菌装置1に接続される。   That is, the fluid sterilizer 1 sterilizes the liquid supplied from the water supply tank 2 and supplies the liquid to the recovery tank 7. One end of the upstream channel member 4 is connected to the water supply tank 2, and the other end is connected to the fluid sterilizer 1.

ポンプ3は、給水タンク2に貯蔵された液体を上流側流路部材4を介して流体殺菌装置1へ送る働きを担う。下流側流路部材5は、一端が流体殺菌装置1に接続され、他端が回収タンク7に接続されるとともに、流体殺菌装置1から回収タンク7へ送る液体の流量を調整する流量調整機構6が設けられている。   The pump 3 has a function of sending the liquid stored in the water supply tank 2 to the fluid sterilizer 1 via the upstream channel member 4. The downstream side flow path member 5 has one end connected to the fluid sterilizer 1 and the other end connected to the collection tank 7, and a flow rate adjusting mechanism 6 for adjusting the flow rate of the liquid sent from the fluid sterilizer 1 to the collection tank 7. Is provided.

図2は、第1の実施形態に係る流体殺菌装置1の要部を示す断面模式図である。図2に示すように、流体殺菌装置1は、流路収容室20と、光源収容室30と、連通管40と、制御部50と、センサScとを具備する。   FIG. 2 is a schematic cross-sectional view illustrating a main part of the fluid sterilization apparatus 1 according to the first embodiment. As shown in FIG. 2, the fluid sterilization apparatus 1 includes a flow path storage chamber 20, a light source storage chamber 30, a communication pipe 40, a control unit 50, and a sensor Sc.

また、流体殺菌装置1は、流路部21の一端に接続された第1接続部材10と、流路部21の他端に接続された第2接続部材11と、第1接続部材10と第2接続部材11とを連結する筐体24を具備する。   In addition, the fluid sterilization apparatus 1 includes a first connection member 10 connected to one end of the flow path 21, a second connection member 11 connected to the other end of the flow path 21, and a first connection member 10. A housing 24 for connecting the two connection members 11 is provided.

流路収容室20は、流路部21が収容される空間であり、流路部21と筐体24の間に形成される。また、流路収容室20は、外部から乾燥流体を流すための接続口C1を具備する。   The channel housing chamber 20 is a space in which the channel 21 is housed, and is formed between the channel 21 and the housing 24. In addition, the flow path accommodating chamber 20 includes a connection port C1 for flowing a drying fluid from the outside.

流路部21は、流体が流れる流路管22と、流路管22の外周に設けられ、流路管22内へ紫外線を反射する反射板23とを具備する。   The flow path unit 21 includes a flow path pipe 22 through which a fluid flows, and a reflector 23 provided on an outer periphery of the flow path pipe 22 and reflecting ultraviolet light into the flow path pipe 22.

流路管22は、紫外線の透過率が高く、紫外線による劣化が抑えられた材料で形成されることが好ましい。本実施形態では、流路管22として、透明な石英管が用いられており、石英管の外周面全体に、紫外線反射率が高い反射面としての反射板23を用いる。   It is preferable that the flow path tube 22 be formed of a material having a high transmittance of ultraviolet rays and being suppressed from being deteriorated by ultraviolet rays. In the present embodiment, a transparent quartz tube is used as the flow path tube 22, and a reflector 23 as a reflecting surface having a high ultraviolet reflectance is used on the entire outer peripheral surface of the quartz tube.

反射板23は、光源31が流路管22内の処理室25へ照射する紫外線を処理室25内へ反射する。例えば、反射板23は、アルミニウム製の板材が用いられている。これにより、光源31から出射された紫外線を処理室25へ効率よく戻すことができる。すなわち、流体を効率よく殺菌することが可能となる。   The reflection plate 23 reflects the ultraviolet rays emitted from the light source 31 to the processing chamber 25 in the flow pipe 22 into the processing chamber 25. For example, an aluminum plate material is used for the reflection plate 23. Thereby, the ultraviolet light emitted from the light source 31 can be efficiently returned to the processing chamber 25. That is, the fluid can be efficiently sterilized.

なお、反射板23は、石英管の外周面全体に、紫外線反射率が高い反射面としての反射膜が形成されたものを用いてもよい。反射膜は、例えば、シリカ膜が用いられている。また、反射膜は、シリカ膜に限らず、アルミニウム蒸着膜であってもよい。また、流路管22は、透明な石英管に限らず、高反射率のポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE、テトラフルオロエチレンの重合体)等のフッ素樹脂によって形成されてもよい。また、反射膜は、流路管22の外周面に形成する代わりに、流路管22の内周面に形成されてもよい。   In addition, as the reflection plate 23, a quartz tube in which a reflection film as a reflection surface having a high ultraviolet reflectance is formed on the entire outer peripheral surface of the quartz tube may be used. As the reflection film, for example, a silica film is used. Further, the reflection film is not limited to the silica film, and may be an aluminum vapor-deposited film. The channel tube 22 is not limited to a transparent quartz tube, and may be formed of a fluororesin such as polytetrafluoroethylene (PTFE, a polymer of tetrafluoroethylene) having high reflectivity. Further, the reflection film may be formed on the inner peripheral surface of the flow pipe 22 instead of being formed on the outer peripheral face of the flow pipe 22.

光源収容室30は、例えば、流路管22の下流側の端部に配置され、光源31を収容するとともに、外部に接続される接続口C2を有する。また、光源収容室30の流路管22側には、カバー32が設けられる。カバー32は、例えば、ガラス材によって形成された紫外線透過部材であり、紫外線を透過させつつ、光源31を流体から保護する役割を担う。   The light source accommodating chamber 30 is disposed, for example, at the downstream end of the flow path tube 22, accommodates the light source 31, and has a connection port C2 connected to the outside. In addition, a cover 32 is provided on the flow path tube 22 side of the light source storage chamber 30. The cover 32 is, for example, an ultraviolet transmitting member formed of a glass material, and has a role of protecting the light source 31 from a fluid while transmitting ultraviolet light.

光源31は、図示しない基板上に設置され、紫外線を発する発光素子であるLED(Light Emitting Diode)である。光源31は、殺菌作用が高い300nm以下の波長を有する紫外線を発する。なお、光源31として275nm近辺にピーク波長を有するものが好ましいが、殺菌作用を奏する波長帯域であればよく、紫外線の波長を限定するものではない。   The light source 31 is an LED (Light Emitting Diode), which is a light emitting element that emits ultraviolet light and is installed on a substrate (not shown). The light source 31 emits ultraviolet light having a wavelength of 300 nm or less, which has a high germicidal action. The light source 31 preferably has a peak wavelength near 275 nm. However, the light source 31 may be any wavelength band that exhibits a bactericidal action, and does not limit the wavelength of ultraviolet light.

また、光源収容室30の周囲には、冷却水路35が設けられる。冷却水路35には、光源31を冷却するための冷却水が流れる。これにより、光源31や光源31が載置される基板を冷却することができる。   A cooling water passage 35 is provided around the light source accommodating chamber 30. Cooling water for cooling the light source 31 flows through the cooling water passage 35. Thereby, the light source 31 and the substrate on which the light source 31 is mounted can be cooled.

なお、図2に示す例では、冷却水路35と処理室25とが連通する場合を示す。すなわち、処理流体が冷却水路35を流れる冷却水を兼ねる場合を示す。これにより、冷却水を別途用意する必要がないので、光源31を効率よく冷却することが可能となる。なお、冷却水路35と、処理室25とは、必ずしも連通している必要はなく、冷却水路35と、処理室25とをそれぞれ独立して設けることにしてもよい。   Note that the example shown in FIG. 2 shows a case where the cooling water passage 35 and the processing chamber 25 communicate with each other. That is, the case where the processing fluid also serves as the cooling water flowing through the cooling water passage 35 is shown. Thus, it is not necessary to separately prepare cooling water, so that the light source 31 can be efficiently cooled. Note that the cooling water passage 35 and the processing chamber 25 need not always be in communication with each other, and the cooling water passage 35 and the processing chamber 25 may be provided independently.

また、図2に示すように、本実施形態において、流路収容室20および光源収容室30には、それぞれ外部から乾燥流体を流すための接続口C1および接続口C2が設けられる。   Further, as shown in FIG. 2, in the present embodiment, the flow path housing chamber 20 and the light source housing chamber 30 are respectively provided with a connection port C1 and a connection port C2 for flowing a drying fluid from the outside.

具体的には、流路収容室20の接続口C1は、流路部材60aと接続され、光源収容室30の接続口C2は、流路部材60bと接続される。流路部材60a、60bには、それぞれ開閉弁V1、V2が設けられる。   Specifically, the connection port C1 of the flow path storage chamber 20 is connected to the flow path member 60a, and the connection port C2 of the light source storage chamber 30 is connected to the flow path member 60b. Opening / closing valves V1, V2 are provided in the flow path members 60a, 60b, respectively.

また、流路収容室20および光源収容室30は、連通管40によって連通する。これにより、流路収容室20および光源収容室30の双方で乾燥気体を共有して用いることが可能となる。なお、以下では、乾燥流体が通過する流路を乾燥流路と記載する。   In addition, the channel housing chamber 20 and the light source housing chamber 30 communicate with each other through a communication pipe 40. Thereby, it becomes possible to share and use the dry gas in both the flow channel storage chamber 20 and the light source storage chamber 30. Hereinafter, a flow path through which the drying fluid passes is referred to as a drying flow path.

例えば、流路部材60aの開閉弁V1の外側には、乾燥流体を送出するボンベやポンプが配置され、乾燥流路を通過し、流路部材60bの開閉弁V2から送出される。なお、開閉弁V2側から乾燥流体を流入し、開閉弁V1側から乾燥流体を排出させることにしてもよい。   For example, a cylinder or a pump for sending out a drying fluid is arranged outside the on-off valve V1 of the flow path member 60a, passes through the drying flow path, and is sent out from the on-off valve V2 of the flow path member 60b. The drying fluid may flow in from the on-off valve V2 side and may discharge the drying fluid from the on-off valve V1 side.

ここで、乾燥流体とは、空気から水蒸気を除去した乾燥気体であるが、シリコンオイルなどの絶縁性を有する液体であってもよい。なお、乾燥流体が液体である場合、紫外線透過率が高いものを用いることが好ましい。また、乾燥流体の温度は、流体殺菌装置1の周囲の空気の露点温度以下であることが好ましい。より詳細には、流路収容室20に流す乾燥流体の温度は、処理室25を流れる処理流体の温度以下であることが好ましく、光源収容室30に流す乾燥流体の温度は、冷却水路35を流れる冷却水の温度以下であることが好ましい。   Here, the drying fluid is a drying gas obtained by removing water vapor from air, but may be a liquid having an insulating property such as silicon oil. When the drying fluid is a liquid, it is preferable to use one having a high ultraviolet transmittance. Further, the temperature of the drying fluid is preferably equal to or lower than the dew point temperature of the air around the fluid sterilizer 1. More specifically, the temperature of the drying fluid flowing through the flow channel storage chamber 20 is preferably equal to or lower than the temperature of the processing fluid flowing through the processing chamber 25. The temperature is preferably equal to or lower than the temperature of the flowing cooling water.

これにより、流路収容室20および光源収容室30における結露の発生を抑制することが可能となる。また、この場合、乾燥流体によっても光源31を冷却することが可能となる。なお、乾燥流体の温度は、上記の例に限られず、結露が発生した場合に、結露の蒸発を促進する温度に設定することにしてもよい。   Thereby, it is possible to suppress the occurrence of dew condensation in the flow channel storage chamber 20 and the light source storage chamber 30. In this case, the light source 31 can be cooled by the drying fluid. In addition, the temperature of the drying fluid is not limited to the above example, and may be set to a temperature that promotes evaporation of the dew condensation when dew condensation occurs.

制御部50は、センサScによる計測結果に基づき、開閉弁V1および開閉弁V2を制御する。センサScは、乾燥気体の流路に設けられ、乾燥流体の圧力を計測するためのセンサである。例えば、センサScは、圧力センサであるが、乾燥流体の流速を計測する流速センサなど、圧力に換算可能なセンサであれば、その他のセンサであってもよい。   The control unit 50 controls the on-off valve V1 and the on-off valve V2 based on the measurement result by the sensor Sc. The sensor Sc is provided in the flow path of the dry gas and is a sensor for measuring the pressure of the dry fluid. For example, the sensor Sc is a pressure sensor, but may be another sensor as long as it can be converted into a pressure, such as a flow rate sensor that measures the flow rate of a drying fluid.

また、図2に示す例では、センサScが流路収容室20に設けられる場合について示している。しかしながら、これに限定されるものではなく、センサScを光源収容室30や流路部材60a、60bに設けることにしてもよく、あるいは、開閉弁V1および開閉弁V2に設けることにしてもよい。   Further, the example illustrated in FIG. 2 illustrates a case where the sensor Sc is provided in the flow path housing chamber 20. However, the present invention is not limited to this, and the sensor Sc may be provided in the light source accommodating chamber 30 and the flow path members 60a and 60b, or may be provided in the on-off valves V1 and V2.

開閉弁V1および開閉弁V2は、それぞれ電磁弁や電動弁によって開閉制御されるバルブである。開閉弁V1および開閉弁V2は、それぞれ制御部50による制御によって開閉動作が制御される。これにより、流路部材60aや流路部材60bに流れる乾燥流体の流量を調整することができる。   The opening / closing valve V1 and the opening / closing valve V2 are valves whose opening and closing are controlled by a solenoid valve and an electric valve, respectively. The on / off operation of the on / off valve V1 and the on / off valve V2 is controlled by the control of the control unit 50, respectively. Thereby, the flow rate of the drying fluid flowing through the flow path member 60a and the flow path member 60b can be adjusted.

具体的には、制御部50は、センサScの計測結果に基づき、流路収容室20や光源収容室30内が常に陽圧となるように開閉弁V1および開閉弁V2を制御する。言い換えれば、流路収容室20や光源収容室30内が乾燥流体で充分に満たされるように、開閉弁V1および開閉弁V2を制御する。   Specifically, the control unit 50 controls the on-off valve V1 and the on-off valve V2 based on the measurement result of the sensor Sc so that the inside of the flow path housing chamber 20 and the light source housing chamber 30 always has a positive pressure. In other words, the on-off valve V1 and the on-off valve V2 are controlled so that the inside of the flow path housing chamber 20 and the light source housing chamber 30 is sufficiently filled with the drying fluid.

より詳細には、制御部50は、例えば、乾燥流路内の圧力が低下した場合に、開閉弁V1を開くことで、より多くの乾燥流体を乾燥流路内へ流入させたり、開閉弁V2を閉じることで、乾燥気体を乾燥流路の内部へ留めたりすることができる。   More specifically, for example, when the pressure in the drying flow path is reduced, the control unit 50 opens the on-off valve V1 so that more drying fluid flows into the drying flow path, or the on-off valve V2 By closing, the drying gas can be kept inside the drying channel.

これにより、乾燥流体を乾燥流路内へ充填することができるので、結露の発生を抑制することが可能となる。なお、図2では、流体殺菌装置1が、開閉弁V1および開閉弁V2の2つの開閉弁を具備する場合について説明したが、開閉弁は1つであってもよい。また、図2では、流体殺菌装置1において、流路収容室20と光源収容室30とが連通管40により連通する場合について説明したが、流路収容室20と光源収容室30とが連通していない構成であってもよい。   Thereby, the drying fluid can be filled in the drying channel, so that the occurrence of dew condensation can be suppressed. Although FIG. 2 illustrates the case where the fluid sterilization apparatus 1 includes two on-off valves, the on-off valve V1 and the on-off valve V2, the number of on-off valves may be one. Further, in FIG. 2, the case where the channel accommodating chamber 20 and the light source accommodating chamber 30 communicate with each other through the communication pipe 40 in the fluid sterilizing apparatus 1 has been described. It may be a configuration that is not provided.

このように、実施形態に係る流体殺菌装置1は、流路収容室20および光源収容室30へ乾燥流体を充填することで、流路収容室20および光源収容室30における結露の発生を抑制することが可能となる。   As described above, the fluid sterilization apparatus 1 according to the embodiment suppresses the occurrence of dew condensation in the flow path storage chamber 20 and the light source storage chamber 30 by filling the flow path storage chamber 20 and the light source storage chamber 30 with the drying fluid. It becomes possible.

すなわち、流路収容室20において、流路管22の外周面や反射板23の内周面に発生する結露の発生を抑制することができるので、流路管22や反射板23の劣化を抑制することが可能となる。また、光源収容室30においては、結露による光源31や、光源31が載置される基板の故障を抑制することができる。つまり、流体殺菌装置1の殺菌性能を維持することができる。   That is, in the flow channel accommodating chamber 20, the occurrence of dew condensation on the outer peripheral surface of the flow channel tube 22 and the inner peripheral surface of the reflection plate 23 can be suppressed. It is possible to do. Further, in the light source housing chamber 30, it is possible to suppress the failure of the light source 31 due to dew condensation and the substrate on which the light source 31 is mounted. That is, the sterilization performance of the fluid sterilization apparatus 1 can be maintained.

上述したように、実施形態に係る流体殺菌装置1は、流路収容室20と、光源収容室30と、冷却水路35とを具備する。流路収容室20は、流体を流すための流路管22と流路管22の外周に設けられ流路管22に向かって紫外線を反射する反射板23とを有する流路部21を収容する。光源収容室30は、流路管22内に向けて紫外線を照射する光源31を収容する。冷却水路35は、光源収容室30の周囲に設けられ、冷却水が流れる。流路収容室20および光源収容室30は、外部から乾燥流体を流すための接続口C1、C2をそれぞれ有する。したがって、実施形態に係る流体殺菌装置1によれば、殺菌性能を維持することができる。   As described above, the fluid sterilization apparatus 1 according to the embodiment includes the flow channel storage chamber 20, the light source storage chamber 30, and the cooling water passage 35. The flow passage accommodating chamber 20 houses a flow passage portion 21 having a flow passage tube 22 for flowing a fluid and a reflection plate 23 provided on an outer periphery of the flow passage tube 22 and reflecting ultraviolet light toward the flow passage tube 22. . The light source accommodating chamber 30 accommodates a light source 31 for irradiating the inside of the flow path tube 22 with ultraviolet rays. The cooling water passage 35 is provided around the light source accommodating chamber 30, and the cooling water flows. The channel storage chamber 20 and the light source storage chamber 30 have connection ports C1 and C2 for flowing a drying fluid from outside. Therefore, according to the fluid sterilization apparatus 1 according to the embodiment, the sterilization performance can be maintained.

ところで、上述した実施形態では、流路管22が1重管構造である場合について説明したが、流路管22は、2重管構造以上の多重管構造であってもよい。次に、図3を用いて第2の実施形態に係る流体殺菌装置1Aについて説明する。図3は、第2の実施形態に係る流体殺菌装置1Aの要部を示す断面模式図である。なお、図3では、図2に示した開閉弁V1、V2や制御部50などの記載を省略して示す。   By the way, in the above-described embodiment, the case where the flow pipe 22 has a single-pipe structure has been described, but the flow pipe 22 may have a multi-pipe structure of a double-pipe structure or more. Next, a fluid sterilizer 1A according to a second embodiment will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view illustrating a main part of a fluid sterilization apparatus 1A according to the second embodiment. In FIG. 3, the illustration of the on-off valves V1, V2, the control unit 50, and the like shown in FIG. 2 is omitted.

また、図3に示すように、第2の実施形態に係る流体殺菌装置1Aは、第1の実施形態に係る流体殺菌装置1と流路部21の流路管22の構成が主に異なる。具体的には、図3に示すように、第2の実施形態に係る流体殺菌装置1Aにおいて、流路部21aが、第1流路管22−1と、第2流路管22−2とを有する。   Further, as shown in FIG. 3, the fluid sterilization apparatus 1A according to the second embodiment mainly differs from the fluid sterilization apparatus 1 according to the first embodiment in the configuration of the flow path pipe 22 of the flow path unit 21. Specifically, as shown in FIG. 3, in the fluid sterilization apparatus 1 </ b> A according to the second embodiment, the flow path unit 21 a includes the first flow path pipe 22-1 and the second flow path pipe 22-2. Having.

また、図3に示すように、第1流路管22−1と、第2流路管22−2とは、処理流体の流れる向きが異なる。つまり、流体殺菌装置1Aにおいて、流路管は、内側と外側で処理流体の流れる向きが異なる多重管構造である。   Further, as shown in FIG. 3, the first flow pipe 22-1 and the second flow pipe 22-2 have different flowing directions of the processing fluid. That is, in the fluid sterilization apparatus 1A, the flow path pipe has a multiple pipe structure in which the flow direction of the processing fluid is different between the inside and the outside.

図3に示すように、上流側流路部材4から流入した処理流体は、第1流路管22−1の内周に形成された第1処理室25−1を経て、第2接続部材11−1によって構成される冷却水路35−1にて折り返し、第1流路管22−1と、第2流路管22−2とによって形成された第2処理室25−2を経由し、下流側流路部材5から排出される。   As shown in FIG. 3, the processing fluid flowing from the upstream flow path member 4 passes through the first processing chamber 25-1 formed on the inner periphery of the first flow path pipe 22-1, and then flows through the second connection member 11. -1 and is returned downstream through the second processing chamber 25-2 formed by the first flow path pipe 22-1 and the second flow path pipe 22-2. It is discharged from the side channel member 5.

すなわち、第2の実施形態に係る流体殺菌装置1Aにおいて、流路管を多重管構造とすることで、流体殺菌装置1Aの全長を短くすることが可能となる。なお、ここでは、流路管が2重管構造の多重管である場合について説明したが、流路管は、3重管構造以上の多重管構造であってもよい。   That is, in the fluid sterilization apparatus 1A according to the second embodiment, by making the flow path pipe have a multi-tube structure, the overall length of the fluid sterilization apparatus 1A can be shortened. Here, the case where the flow pipe is a multi-pipe having a double pipe structure has been described, but the flow pipe may be a multi-pipe structure having a triple pipe structure or more.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although an embodiment of the present invention has been described, this embodiment is provided by way of example and is not intended to limit the scope of the invention. This embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

1、1A 流体殺菌装置
2 給水タンク
3 ポンプ
4 上流側流路部材
5 下流側流路部材
6 流量調整機構
7 回収タンク
20 流路収容室
21 流路部
22 流路管
23 反射板
24 筐体
25 処理室
30 光源収容室
31 光源
32 カバー
40 連通管
50 制御部
C1、C2 接続口
Sc センサ
V1、V2 開閉弁
DESCRIPTION OF SYMBOLS 1, 1A Fluid sterilizer 2 Water supply tank 3 Pump 4 Upstream flow path member 5 Downstream flow path member 6 Flow rate adjustment mechanism 7 Recovery tank 20 Flow path storage chamber 21 Flow path section 22 Flow path pipe 23 Reflection plate 24 Housing 25 Processing chamber 30 Light source storage chamber 31 Light source 32 Cover 40 Communication pipe 50 Control unit C1, C2 Connection port Sc sensor V1, V2 Open / close valve

Claims (5)

流体を流すための流路管と前記流路管の外周に設けられ前記流路管に向かって紫外線を反射する反射板とを有する流路部を収容する流路収容室と;
前記流路管内に向けて紫外線を照射する光源を収容する光源収容室と;
前記光源収容室の周囲に設けられ、冷却水が流れる冷却水路と;
を具備し、
前記流路収容室および前記光源収容室は、
外部から乾燥流体を流すための接続口をそれぞれ有する、
流体殺菌装置。
A channel housing chamber for housing a channel portion having a channel tube for flowing a fluid and a reflection plate provided on an outer periphery of the channel tube and reflecting ultraviolet light toward the channel tube;
A light source accommodating chamber for accommodating a light source for irradiating ultraviolet rays into the flow path tube;
A cooling water passage provided around the light source accommodating chamber and through which cooling water flows;
With
The flow channel storage chamber and the light source storage chamber,
Each having a connection port for flowing a drying fluid from the outside,
Fluid sterilizer.
前記冷却水路は、
前記流路管と連通する、
請求項1に記載の流体殺菌装置。
The cooling channel is
Communicating with the flow channel tube,
The fluid sterilizer according to claim 1.
前記流路収容室と前記光源収容室とを連通させる連通管;
を具備する請求項1または2に記載の流体殺菌装置。
A communication pipe for communicating the flow channel housing chamber and the light source housing chamber;
The fluid sterilizer according to claim 1 or 2, further comprising:
前記乾燥流体が流れる流路に設けられ、前記乾燥流体の圧力を計測するためのセンサ;
を具備する請求項1〜3のいずれか一つに記載の流体殺菌装置。
A sensor provided in a flow path through which the drying fluid flows, for measuring a pressure of the drying fluid;
The fluid sterilizer according to any one of claims 1 to 3, further comprising:
前記センサの計測結果に基づいて前記乾燥流体が流れる経路に設けられた開閉弁を制御する制御部;
を具備する請求項4に記載の流体殺菌装置。
A control unit that controls an on-off valve provided in a path through which the drying fluid flows based on a measurement result of the sensor;
The fluid sterilization apparatus according to claim 4, comprising:
JP2018176548A 2018-09-20 2018-09-20 Fluid sterilizer Active JP7205128B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018176548A JP7205128B2 (en) 2018-09-20 2018-09-20 Fluid sterilizer
CN201921326091.2U CN211141587U (en) 2018-09-20 2019-08-15 Fluid sterilizing device
TW108129328A TWI804668B (en) 2018-09-20 2019-08-16 Fluid Sterilization Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018176548A JP7205128B2 (en) 2018-09-20 2018-09-20 Fluid sterilizer

Publications (2)

Publication Number Publication Date
JP2020044515A true JP2020044515A (en) 2020-03-26
JP7205128B2 JP7205128B2 (en) 2023-01-17

Family

ID=69900402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018176548A Active JP7205128B2 (en) 2018-09-20 2018-09-20 Fluid sterilizer

Country Status (3)

Country Link
JP (1) JP7205128B2 (en)
CN (1) CN211141587U (en)
TW (1) TWI804668B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974002A1 (en) * 2020-09-28 2022-03-30 Toshiba Lighting & Technology Corporation Fluid sterilization device
WO2022169203A1 (en) * 2021-02-04 2022-08-11 사단법인 한국물산업협의회 Ultraviolet disinfection device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257554A (en) * 1995-03-27 1996-10-08 Shinko Pantec Co Ltd Ultraviolet irradiation apparatus and water treatment apparatus
JP2010221072A (en) * 2009-03-19 2010-10-07 Kyoei Controls:Kk Ultraviolet irradiation device
JP2012061413A (en) * 2010-09-15 2012-03-29 Toshiba Corp Ultraviolet irradiation device
JP2015139712A (en) * 2014-01-27 2015-08-03 スタンレー電気株式会社 Apparatus for liquid cleaning
JP2015174026A (en) * 2014-03-14 2015-10-05 日機装株式会社 light irradiation device
JP2018034020A (en) * 2017-12-04 2018-03-08 日機装株式会社 Ultraviolet sterilization device
JP2018069144A (en) * 2016-10-27 2018-05-10 メタウォーター株式会社 Water treatment apparatus
JP2018118201A (en) * 2017-01-24 2018-08-02 東芝ライテック株式会社 Fluid sterilizer
JP2018140001A (en) * 2017-02-28 2018-09-13 東芝ライテック株式会社 Fluid sterilizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257554A (en) * 1995-03-27 1996-10-08 Shinko Pantec Co Ltd Ultraviolet irradiation apparatus and water treatment apparatus
JP2010221072A (en) * 2009-03-19 2010-10-07 Kyoei Controls:Kk Ultraviolet irradiation device
JP2012061413A (en) * 2010-09-15 2012-03-29 Toshiba Corp Ultraviolet irradiation device
JP2015139712A (en) * 2014-01-27 2015-08-03 スタンレー電気株式会社 Apparatus for liquid cleaning
JP2015174026A (en) * 2014-03-14 2015-10-05 日機装株式会社 light irradiation device
JP2018069144A (en) * 2016-10-27 2018-05-10 メタウォーター株式会社 Water treatment apparatus
JP2018118201A (en) * 2017-01-24 2018-08-02 東芝ライテック株式会社 Fluid sterilizer
JP2018140001A (en) * 2017-02-28 2018-09-13 東芝ライテック株式会社 Fluid sterilizer
JP2018034020A (en) * 2017-12-04 2018-03-08 日機装株式会社 Ultraviolet sterilization device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974002A1 (en) * 2020-09-28 2022-03-30 Toshiba Lighting & Technology Corporation Fluid sterilization device
US11780750B2 (en) 2020-09-28 2023-10-10 Toshiba Lighting & Technology Corporation Fluid sterilization device
WO2022169203A1 (en) * 2021-02-04 2022-08-11 사단법인 한국물산업협의회 Ultraviolet disinfection device and method

Also Published As

Publication number Publication date
TWI804668B (en) 2023-06-11
CN211141587U (en) 2020-07-31
TW202023957A (en) 2020-07-01
JP7205128B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6458779B2 (en) Fluid sterilizer
US9999696B2 (en) Compact system with high homogeneity of the radiation field
US20200171184A1 (en) Light source module device and fluid sterilizing device
WO2017051774A1 (en) Fluid sterilization device
JP6834664B2 (en) Fluid sterilizer
JP6891537B2 (en) Fluid sterilizer
JP6863135B2 (en) Fluid sterilizer
JP6798327B2 (en) Fluid sterilizer
JP6994687B2 (en) Fluid sterilizer
JP6885279B2 (en) Fluid sterilizer
US11752227B2 (en) Ultraviolet irradiation unit and ultraviolet stertilization device
TWI804668B (en) Fluid Sterilization Device
JP2020000285A (en) Fluid sterilizer
WO2021085143A1 (en) Fluid sterilization device
JP2019154885A (en) Fluid sterilizer
JP2014076205A (en) Sterilizer
JP2019162289A (en) Fluid sterilizing device
JP2019193917A (en) Fluid sterilizer
WO2021015247A1 (en) Ultraviolet sterilizing apparatus
JP2022103883A (en) Sterilizer
JP2020103629A (en) Fluid sterilizing apparatus
US11780750B2 (en) Fluid sterilization device
JP2020044272A (en) Fluid sterilizer
JP2019147114A (en) Fluid sterilization apparatus
JP2020156596A (en) Fluid sterilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151